
SIAM J. COMPUT.
Vol. 22, No. 1, pp. 1-10, February 1993

(C) 1993 Society for Industrial and Applied Mathematics

001

IMPLICIT O(1) PROBE SEARCH*

AMOS FIAT AND MONI NAOR$

Abstract. Given a set of n elements from the domain {1, , m}, this paper investigates how to arrange
them in a table of size n, so that searching for an element in the table can be done in constant time. Yao
[J. Assoc. Comput. Mach., 28(1981), pp. 615-628] has shown that this cannot be done when the domain is
sufficiently large as a function of n.

This paper gives a constructive solution when the domain m is polynomial in n, the number of elements,
as well as a nonconstructive proof for m no larger than exponential in poly (n). The authors improve upon
a result of Yao and give better bounds on the maximum m for which implicit O(1) probe search can be
done. The results are achieved by showing the tight relationship between hashing and certain encoding
problems called rainbows.

Key words, hashing, perfect hashing, spatial complexity, Ramsey theory, randomness in computation

AMS(MOS) subject classifications. 68P05, 68P10, 68Q05, 68R05, 68R10

1. Introduction. The problem addressed in this paper is that of searching a full
table: A set S c {1, , m} of size n is to be stored in a table T of size n, where every
table entry holds a single element of S. Given x {1,..., m}, the goal is to locate x
in the table or to indicate that x S, while probing the table as few times as possible.
We assume that n and m are known to the searcher.
Yao [8] has shown that if no storage is available in addition to the table T, then

there is no table organization that enables an element to be located in less than log n
probes. We refer to a table organization that requires no additional storage as an
implicit scheme. Yao’s proof assumes that the domain size m is much larger than the
number of elements n. This immediately raises the following two questions.

(1) For what values of m (relative to n) does an implicit O(1) probe search
scheme exist?

(2) Given that an implicit scheme does not exist, how much additional storage
is required to ensure O(1) search?

In [4] Fiat, Naor, Schmidt, and Siegel show that if m O(n), then search can be
performed in O(1) time without any additional storage. As for the second question,
Fredman, Koml6s, and Szemer6di [5] show that one probe search can be performed
with O(nlog n +log log m) additional bits of storage. In [4] an O(1) probe scheme
is given that requires only O(log n + log log m) additional bits of storage.

We give an implicit O(1) probe search scheme for a domain of size m that is
polynomial in the number of elements n. We prove that an implicit scheme exists
whenever m is bounded by 2py<n), based upon a probabilistic construction. It then
follows from [4] that O(log log m) additional bits are sufficient for any m.
We provide a refinement to Yao’s theorem mentioned above that yields a better

bound on the maximum m for which implicit O(1) probe search schemes exist. Our
proof technique gives a lower bound tradeoff between the number of probes and the

Received by the editors March 14, 1991; accepted for publication (in revised form) September 9,
1991. Most of this work was performed while both authors were at the University of California, Berkeley,
California 94720.

" Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. The work of this author was
supported by a Weizmann Postdoctoral Fellowship and by National Science Foundation grant DCR 84-11954.

IBM Research Division, Almaden Research Center, 650 Harry Rd, San Jose, California 95120. The
work of this author was supported by National Science Foundation grant DCR 85-13926 and CCR 88-13632.

2 AMOS FIAT AND MONI NAOR

size of the domain that allows implicit search. In particular, if O(1) probe implicit
search is possible, then we can show that

m_<_222" o(1).

Yao’s proof technique obtains a tower whose height depends on n.
These results are obtained by mean of a class of structures we call rainbows. A

t-sequence over a set U is a sequence of length t, without repetitions, of elements in
U. A (c, m, n, t)-rainbow is a coloring of all t-sequences over {1,. ., m} with c colors
so that for any set S c {1,..., m}, ISI n; all c colors occur in the coloring of the
t-sequences over S. We show that the existence of (c n, m, n, O(1))-rainbows is
essentially equivalent to the implicit O(1) probe search problem for a set of n elements
chosen from the domain {1,..., m}.

The relationship between rainbows and implicit O(q) probe search schemes is
specified by the following theorems.

THEOIEM 1. For m, n, let c=max (n, log m). The existence of a (c, m, n,
0(1))-rainbow yields an implicit O(probe search schemefor n elementsfrom the domain
{1,...,m}.

THEOREM 2. Given an implicit O(1) probe search scheme for n elements chosen
from the domain {1,..., m}, we can construct an (n, m, n, O(1))-rainbow.

To motivate rainbows, we start in 2 by showing how they can be utilized to
provide virtual memory.

Theorems 1 and 2 are proved in 3 and 4. Section 5 contains a probabilistic
construction for a (c n, m 2ply(n), n, O(1))-rainbow and an explicit construction
for a (c n, m poly (n), n, O(1))-rainbow. Thus, by Theorem 1, we achieve the
bounds claimed in the beginning of this section.

From their definition it is apparent that rainbows are related to Ramsey Theory.
Indeed, the impossibility results we have are derived from Ramsey Theory are expressed
in terms of Ramsey numbers.

In 6 we show bounds on the maximal m, as a function of n, for which an (n,
m, n, O(1))-rainbow exists. Thus, Theorem 2 gives bounds on m for which implicit
O(1) probe search schemes exist. Section 6 also discusses the connection between
rainbows and colorings of the uniform hypergraph.

Section 7 deals with the relationship between the rainbow structure and other
structures, called dispersers, proposed in the literature (for completely different applica-
tions). Specifically, we show that if an explicit construction for a certain kind of
dispersers is possible, then we can find an explicit construction for an implicit O(1)
probe search scheme for m that is ng’. For these dispersers, Sipser [7] gave a
probabilistic construction.

2. Rainbows provide virtual memory. We now show how Rainbows can be used
to simulate additional memory. The virtual memory problem with parameters c, n’, t,

is defined below:

Virtual memory problem.
AsetR={rl, r2,...,rn,},where l_-<r_-<m for 1-<j=<n’.
Aseriesofvalues vl, v2,’",Vl, whereO=<vi=<c-1 forl-<i=</.

Arrange the elements of R in an array A of size n’ (putting each element of R in
a different location), so that given 1-<j_-< l, v can be reconstructed (decoded) quickly,
via accesses to A.

Note that we do not require anything about locating elements of R, only that they
will reside somewhere in A.

IMPLICIT O(1) PROBE SEARCH 3

The next lemma shows the relationship between this problem and the existence
of rainbows.

LEMMA 1. Given a (c, m, n, t)-rainbow c, the virtual memoryproblemforparameters
c, n’, t, such that n- tl >-n can be solved.

Proof. Divide the first t. locations of the array A into blocks of size t. The
elements of R should be arranged in A so that the color assigned by c to the jth
block, i.e., to the sequence (A[jt + 1],..., A[(j+ 1)t]), is vj. To achieve that, a greedy
algorithm can be applied.

Greedy encoding.
Set U R.
Forj=lto

find a sequence s colored vj in U,
put the sequence s in the jth block of A,
U-U\s.

Arrange U in the rest of A arbitrarily.

Throughout the execution of the loop, the number of elements in U is n’-jt >= n.
Hence there is a sequence in U colored by , and the find step in the algorithm always
succeeds.

This arrangement means that in order to reconstruct v), we have to determine the
color of the jth block under , and this can be done via probes to A. This method
is constructive if the color of a sequence under c can be determined effectively. D

3. Rainbows yield implicit O(1) probe search. Our goal in this section is to prove
Theorem 1. This section is strongly dependent on [4], which is the source of our
techniques. A reader not familiar with the paper should be able to understand the
major steps explained hereafter.

We note the following theorem from [4].
THEOREM 3 [4]., n elementsfrom the domain {1,. ., m} can be arranged in a table

of size n so that 0(1) probe search is possible, provided O(log n + log log m) additional
bits of storage are available.

We will concentrate on proving a slightly weaker version of Theorem 1.
THEOREM 4. For m, n, let c=max (n, log m). The existence of a (c, m, n, t=

O(1))-rainbow yields an implicit 0(1) probe search schemefor 4n elementsfrom a domain

of size m.
Later, we will show that the rainbow construction is robust in that the constants

(4n) are irrelevant, a (c, m, n, O(1))-rainbow can be translated into another (ce,
m e2, n e3, t’ O(1))-rainbow for arbitrary fixed exponents el, e2, e3 > 0.

It now might seem trivial to prove Theorem 1, given Theorem 3. Given 4n elements
from a domain of size m, we encode the O(log n +log log m) bits required by the
(FNSS) scheme above by choosing O(1) groups of elements and ordering the elements
in some fixed set of locations in the table as in the greedy encoding. During the search,
the O(1) special elements chosen for the encoding are read; if the search value is not
found, then the elements are interpreted under the rainbow interpretation as represent-
ing the extra bits of storage required by the scheme in [4].

Unfortunately, moving the required elements to their position as required by the
encoding ruins the original order suggested in [4]. To prove our claim, we must start
afresh.

Given a set of n keys, S c{1,..., m}. Fredman, Koml6s, and Szemer6di [5]
describe how to find a perfect hash function f:{1,..., m}--{1,..., n} with the
property that f is one-to-one and onto when limited to the domain S. This function

4 AMOS FIAT AND MONI NAOR

requires a description of O(loglog m)+o(n log n) bits. The description is split into
O(1) words of size O(log log m +log n) bits, plus an additional o(n) words of O(log n)
bits each. Evaluating the function f requires reading only O(1) of these words.

We say that S is in the natural order in the table T relative to f if T[f(x)] x,
x S. The natural order is easy to search, given f’s description. Another order that
is easy to search is obtained by applying an arbitrary permutation
"{1,..., n/2}--{1,..., n/2} to the first half of the table and applying .-1 to the
second half. (For l<=i<=n/2, set T[-(i)]:= T[i]; for n/2<i<-_n, set T[’-l(i-n/2)+
n/2] := T[i + n/2].) The idea is that both - and .-1 are easy to compute. To compute
.-1(i), simply evaluate f(T[i]); to compute -(i), evaluate f(T[i + n/2]) n/2. As both- and .-1 can be computed with one probe to the table, search can be done by
performing two probes to the table.

This is a variation of Feldman’s involution trick, as presented in [2].
The method.

Find a perfect hash FKS-function f for the 4n elements, as described in [5].
Divide the elements into two sets, depending on whetherf(x)<-2n orf(x)> 2n.
Encode the description of f by arranging the elements x with f(x)<=2n in
the first half of T using the greedy encoding of 2. By Lemma 1, this is
possible.
The arrangement defines a permutation of the elements in the first half of T,
so organize the elements x with f(x)> 2n in the second half of the table as
required under ’-.

Searching for an element now requires decoding O(1) words of the description
of the FKS-function. Each decoding requires probing the table at O(1) locations. The
natural order can be reestablished by appropriately computing either - or .-1, each
of which requires one probe plus O(1) probes to read the [5] function description.
Overall, search requires O(1) probes.

4. Implicit O(1) probe search yields rainbows. In this section we show that rainbows
and O(1) probe search schemes relate in the other direction as well; i.e., given a search
scheme we show how to construct a rainbow. More specifically, we prove a refined
version of Theorem 2.

THEOREM 5. Given an implicit t-probe search schemefor n elementsfrom the domain
{1, , m}, an (n, m, n, + 2 log t)-rainbow can be constructed.

Proof The sequences are assigned colors based on simulating a search scheme.
The colors 1,..., n correspond to locations 1,. ., n in some imaginary search array.
The idea is that in a t-sequence there is enough information to simulate a probe
search; i.e., given a t-sequence over {1,. ., m}, el, e2," ", et, we simulate a search
for el in the imaginary array, where ei+l, 1-< i-< t--1 is the element probed at Step i.
Since the location probed at Step is determined by the search value and the elements
probed in Steps l-i-1, we know the location in the imaginary array at each step of
the simulation. The color assigned to the sequence is the last location we are to probe.

The only problem with this description is that el might be probed at any of the
steps, not necessarily the last, but our sequences do not have repetitions. We can use
log bits to indicate the step number, j, at which el is probed. This can be done by
dedicating a pair of elements is allocated for each bit ofj. If the elements are in order,
they encode 0; otherwise 1. We assume that these elements are at the end of the
sequence, that is, elements et+ 1, et+2, et+21ogt.

To summarize, the color assigned to the sequence

el, e2, et, et+l, et+21ogt

IMPLICIT O(1) PROBE SEARCH 5

is the location of el in the array for which the search is being simulated, where el is
encountered in the step encoded by e,+l,..., e,+Zlog t. Sequences that cannot be
interpreted in such a fashion are colored arbitrarily.

CLAIM 1. Given a set Sc{1,. .,m} of size n, and any eolor l<-_e<-_n, there is a
+ 2 log t-sequence over S that is colored e.

Proof Assume that the set S is arranged in the array A so that implicit t-probe
search is possible. Consider the sequence consisting of the elements probed in A when
searching for A[c], concatenated to 2 log elements in S not appearing in the probe
sequence whose order encodes the step number at which cell e is probed. This sequence
is colored c, and consists only of elements in S.

5. Rainbow construction. This section provides an explicit construction of rain-
bows when the number of colors c n and the length of the sequence is a constant.
We start with a construction for a domain m that is quadratic in the number of elements
n (Lemma 2). The ideas behind this construction are later used in showing how to
reduce a problem with domain m to another problem with domain (Lemma 3).
This yields an explicit recursive construction for any m that is polynomial in n (Theorem
6). Theorem 6 yields as a corollary that implicit O(1) probe search scheme is possible
when m is polynomial in n. We conclude the section by showing that a probabilistic
construction is good even when m is exponential in n (Theorem 7).

LEMMA 2. For any prime p, there is an explicit construction of a (c n, m
n p + 1, 2)-rainbow.

Proof Consider a one-to-one mapping from all elements e {1,..., m} to pairs
(x,y) such that 0=<x, y<-p-1. (For instance, x=e (modp), y=(e-x)/p (modp).)
Given an element in {1,..., m}, we will set its value of the mapping.

Color the sequence (u, v), u (x, y), v (x2, Y2), with the color (yz-y)/(xz-x)
(mod p). If x Xl, then color the sequence (u, v) with the color p. We have colored
all edges of the full directed graph on m vertices. Note that the sequence (u, v) is
colored as the sequence (v, u); hence we can consider the coloring as that of a complete
undirected graph. To prove that this is a good coloring, we need the following.

CLAIM 2. Consider the edge induced subgraph Gi obtained by choosing all edges of
color i. Gi consists ofp vertex disjoint cliques of size p.

Proof First, note that every vertex u (x, y) has exactly p-1 directed edges
(u, vj (xj, y)) colored i, for all 0 -<_ -< p. For p, these are simply pairs (x, y), y y;
for i<p, the x and values are the p-1 solutions to the equation (y-y)/(xj-x)=
(mod p).

To show that the undirected induced subgraph consists of cliques, assume that
the (u, v) and (v, w) sequences are colored i: then the (u, w) sequence must also be
colored i. If u=(xl,y), V--(Xz,y2), and w=(x3,y3), either i=p in which case
y=y2=y3 and (u, w) is also colored p or i<p, in which case (y2-yl)/(xz-x)=
(y-yz)/(x-x)= (mod p). It now follows that (y-yl)/(x-x) (mod p).

Remark. Note that all vertices u, uj (x, y), belonging to the same clique in Gi,
have the same value y-ixj (mod p). This means that we can identify the clique in Gi
containing a vertex u.

We can now resume the proof of the lemma. Given a set S c {1,. ., m} of size
n p + 1, for all 0 < < p, at least two elements u, v S belong to the same clique in
Gi. This means that both sequences (u, v) and (v, u) are colored i.

To construct a rainbow for m polynomial in n, we use a recursive construction.
We explain how to use the construction above to transform the problem from a domain
of size m to a domain of size by concatenating two elements to each sequence in
the domain.

6 AMOS FIAT AND MONI NAOR

LEMMA 3. Given a construction of a c n, m p, n- 2, t)-rainbow, p a prime, a
(c n, p2, n, + 2)-rainbow can be constructed.

Proof. Let 1 be a (p + 1, p2, p + 1, 2)-rainbow as described in Lemma 2, and let
be an (n, p, n-2, t)-rainbow that exists by assumption. Our goal is to construct

an (n, p, n, + 2)-rainbow. Given a + 2-sequence , el, e, , et+, over (1, , m}
we use el and e2 as indicators. If el > e2, then color , with the color assigned to (el, e)
under 1.

Given a set Sc {1,. ., m}, ISI n, if all p+ 1 colors occur in the coloring of the
2-sequences over S under 1, then we are done (In fact, the rainbow contains more
colors than required.)

Otherwise, at least one color is missing under 1, but there is at least one color
that appears (we assume n 2); therefore, there is a color such that no pair in S is
colored by 61 with i, but there exist u, v S such that (u, v) is colored 1 (mod p + 1)
under .

Consider Gg, the edge induced graph defined by edges colored and introduced
above. Every element in S is in a different clique of G; otherwise there would have
been a pair colored i. The cliques of G can easily be indexed as described by the
remark at the end of Lemma 2.

If el < e, we translate to a t-sequence, a dl, d2, dt, over 1, , x/-. We
color by the color assigned to d by
containing ej+2, 1 _-<j _-< t, and (mod p + 1) is the color assigned to (el ,e2) under .

By the discussion above, it follows that for every S = {1,. ., m}, and for every
1-< k-< c there is a + 2-sequence over S that is colored k. Thus we have described a
construction for an (n, p2, n, + 2)-rainbow.

Since for any integer x there is a prime in (x, 2x), we can apply Lemma 3 recursively,
each time reducing the domain from m to 2v/. Using Lemma 2 as the base case
provides us for any d >- 1 with an explicit construction of an (c n, m n d, n, 2 [log d +
I-log log d])-rainbow. Thus we have the following.

THEOREM 6. For any domain m polynomial in the set size n there exists an
(n, m, n, O(1))-rainbow. Given a sequence, its color can be determined in O(1) time
assuming modular arithmetic in unit time.

Remark. Note that the proof implies that the existence of rainbows is a robust
property, meaning that if p, p2, P3 are polynomials, and m is as a function of n such
that a (c, m, n, O(1))-rainbow exists, then a (p(c), p(m), p3(n), O(1))-rainbow exists
as well.

It now follows from Theorem 1.
COROLLARY 1. For any domain m polynomial in the set size n there exists an implicit

O(1) probe search scheme for which search requires O(1) time, assuming modular
arithmetic in unit time.

Probabilistic constructions. We now turn to probabilistic constructions of rainbows
for m that is exponential in n. Suppose m 2 and consider a random coloring with
n colors of all /+2 sequences over {1,..., m}. For a set S={1,..., m}, ISI= n, the
probability that a specific color is missing in the l+ 2 sequences over S is less than

(l--l/n) n(n-1)’’’(n-t-1).
There are n colors and () sets; hence the probability that there exists a set and a
color such that the color is missing over the set is less than

(nm) n (1 1/n)n(n--1)"’(n--l--1)<2n’+’ n. e e lznl<< 1;

therefore, we have the following.

IMPLICIT O(1) PROBE SEARCH 7

THEOREM 7. For any domain m exponential in the set size n there exists an n, m,
n, O(1))-rainbow.

COROLLARY 2. For any domain m exponential in the set size n there exists an implicit
0(1) probe search scheme.

6. Bounds on rainbows. In this section we give bounds on the maximum m, as a
function of n and t, for which a (c- n, m, n, t)-rainbow can exist. We will do that by
showing the connection between rainbows and colorings of the t-uniform hypergraph.
Consider a coloring of all t-subsets (subsets of size t) of {1,..., m} with c colors.
Ramsey Theory tells us that there exists a function R(n, t, c) such that if m > R(n, t,
c), then for any coloring of the t-subsets of {1,. ., m} with c colors there exists a set
S c {1,..., m} of size n such that all the t-subsets over S are colored with the same
color. (See the book by Graham, Rothschild, and Spencer [6] for details on Ramsey
Theory.)

THEOREM 8. If there exists a (c, m, n, t)-rainbow and c > !, then

m<-_R(n,t,t!+l).

Proof. Let c be a (c, m, n, t)-rainbow. Define a coloring of the t-subsets of
{1, , m) : for each subset H c {1,. , m} of size consider all possible orderings
of H. Each of the t! possible orderings receives a color in the rainbow. Since there
are more than t! colors in the rainbow, we know that there is a color i, 1 _-< i_-< t!+ 1,
which none of the orderings receives. @ colors H with the least such i. From Ramsey
Theory it follows that if m> R(n, t, t!+ 1), then there will be a set Sc {1,..., m} of
size n such that all of S subsets of size are colored under with the same color i.
Hence under c none of the t-sequences over S are colored i, and thus c is not a
rainbow. [3

How fast does R(n, t, t!+ 1) grow? Let the tower functions hi(x) be defined as
h(x) x and hi+(x)= 2 h’x) for i-> 1. That is,

2x}hi(x)-222" i-1.

The Stepping Up Lemma in [6, p. 91] yields the following: hj_l(Cl" n2)<= R(n, j,
2)_-<h(e: n) for some fixed el and c2. By the method of the proof of Ramsey’s
Theorem, increasing the number of colors from 2 to t!+ 1 does not add more than
log t!+ 1 to the height, i.e., R(n, t, t!+ 1) < h,+og,+j(cn). Hence we can conclude
that for a (c >_- + 1, m, n, O(1))-rainbow to exist we must have

"2n }m _-<2 o().

Applying Theorem 2, on the connection between rainbow and t-probe search, we
get that an implicit t-probe scheme can exist only if m<R(n, t’, t’!+l), where
t’= + 2 log t. Thus, for an implicit O(1) probe search to exist we must have

2n }m222" O(1).

This constitutes a new proof of Yao’s theorem [8] with better bounds. His bounds
imply that m < R(2n- 1, n, n !), which grows much faster. Yao’s proofhas the advantage
that it implies that whenever m_-> R(2n- 1, n, n!), the lower bound on the search time
is [log hi. Our proof cannot give better bounds than l)(log n/loglog n), since t!+ 1
must be less than n.

8 AMOS FIAT AND MONI NAOR

Any improvement on the lower bounds for rainbows would yield a better lower
bound for implicit O(1) probe search. Conversely, constructive implicit O(1) probe
search schemes for higher bounds imply better rainbow constructions. The reader can
interpret this as either an optimistic or a pessimistic statement.

Undirected rainbows. We now show that the existence of rainbows is closely related
to that of undirected rainbows defined as follows: A (c, m, n, t)-undirected rainbow is
a coloring of all t-subsets over {1,..., rn} with c colors, so that for any set S c
{1,..., m}, [S] n, all c colors appear in the t-subsets over S.

Since the order itself in directed rainbows can determine t! different colors, we
know that (c t!, m, n, t)-rainbows exist for any m and n such that m _-> n. However,
by Ramsey theory, this is not true for undirected rainbows. On the other hand, the
next theorem shows that in order to give bounds on the maximum m for which (c n,
m, n, O(1))-rainbows exist, it is enough to consider undirected rainbows.

THEOREM 9. For every there exists a constant b,, dependent only upon t, such that
a construction for a (c n, m, n, t)-rainbow yields a construction for a (c n, m,
[log (t!) + 1 n, bt)-undirected rainbow.

Proof The idea is to provide enough information in the b,-subset so as to simulate
an ordered set. If, in addition to a t-subset, [log (t!)] bits are provided to determine
the order in the t-subset, then the color of the subset will be the color of the
corresponding t-sequence in the (c= n, m, n, t)-rainbow.

Let be a (c= n, m, n, t)-rainbow. From Theorem 8 we know that m < R(n, t,
t!+ 1), and thus rn < h,,(c2n) for some t’, depending only on t. From the lower bound
on R(n, j, 2) of the Stepping Up Lemma there exists a (2, n, m, t’) undirected rainbow. Let b, + t’. [log (t!)]. Define cg,, a coloring of b,- subsets, as follows. Sort the
bt-subset and partition it into [log (t !)] + subsets of consecutive elements such that
the subset of the largest elements is of size t, and all the rest are of size t’. Compute
the coloring under M of each of the t’-subsets. Each of the [log (t !) t’-subsets supplies
one bit under its 2-coloring, and together those bits determine an ordering of the
t-subset. The color cg, assigns is the one assigns the t-sequence, resulting from the
the t-subset when it is ordered by the encoding given by the smaller subsets.

To see that ’ is indeed a (c=n, m, [log(t!)+l[.n, b,)-undirected rainbow,
consider any Sc{1,...,m} of size [log(t!)+l].n. Partition S into [log(t!)+
1]. subsets $1, $2,’", such that each Si is of size n and all the elements of Si are
smaller than those of Si+. For any color 1 <_-j_<-c, c colors at least one t-ordered
subset of Slog,+11 with j. The order of this subset determines [log(t!)] bits b,
b2, b[log(t!)]. In each subset Si there is a t’-subset colored bi under sO. The b, subset
of S that is the union of all these subsets is colored j under ’. [3

7. Construction through dispersers. In this section we show how an explicit con-
struction for dispersers, defined below, yields an explicit construction for rainbows
with rn n lgn. An (m, n, d, a,b)-disperser is a bipartite graph with rn nodes on the
left side, each with degree at most d, n nodes on the right side with the property that
every subset of a nodes in the left side is connected to at least b of the nodes of the
right side. These graphs have been used, for instance, by Ajtai, Koml6s, and Szemer6di
[1] and Sipser [7] to remove randomness in probabilistic algorithms. Cohen and
Wigderson [3] provide a survey of constructions and applications.

Let rn ngn. We first show how to construct a rainbow with log n colors for such
rn and n, and then we show how to apply it with a (rn, n, log2 n, n, n/2)-disperser to
get an (c= n, m, n, O(1))-rainbow.

IMPLICIT O(1) PROBE SEARCH 9

LEMMA 4. There exists an explicit construction for a (c log n, m, n, O(1))-rainbow
if m is n plylg(n).

Proof. For 1 _-< x _-< m let xi denote the ith bit of x. Consider the coloring of pairs
that assigns the pair (x, y) minl=<i=<logm xi y, i.e., the first bit in which x and y differ.

CLAIM 3. In any set S {1,. ., m} ofsize n, thepairs must be colored with at least
log n different colors.

To see that the claim is true, consider organizing the elements of S in a trie, i.e.,
in a binary tree where each element appears as a leaf and its value is determined by
the path from the root. If a node in the ith level of the trie has two children, then
there is a pair (x, y), where x is a descendent of the left child and y a descendent of
the right child, that is, colored i. There must be at least log n levels in which there is
a node with 2 children, since each level at most doubles the number of nodes from
the previous one and there are n leaves.

The claim shows that rather than having a set of size n out of a domain of size
m, the problem can be reduced to that of a set of size log n from a domain of size
log m. If m is n plylg(n), then log m is polynomial in log n, and hence the construction
of Theorem 6 can be applied to obtain the required rainbow.

Sipser [7] gave a probabilistic construction for an (nlgn, n, log2 n, n, n/2)-disperser.
Given such a disperser D, we now show how to use such dispersers to amplify rainbows
and construct (c= n, rn n lgn, n, O(1))-rainbows. Let be a (c--log n, m, n-l,
t)-rainbow whose existence is assured by the previous lemma and the remark following
Theorem 6. Consider a coloring of t+ 1-tuples over {1,..., m} defined as follows.
The first elements are used to obtain a color e6{1.., log2 n} via % The t+lst
element, v { 1, , m} is treated as a node on the left side of D. e specifies a neighbor
of v on the right side of D. The neighbor is the color of the t-tuple. Since any set of
n nodes on the left side is adjacent to at least half the nodes on the right side, and
since is a (log2 n, m, n, t)-rainbow, it follows that for any set S c {1, , m} of size
n there is a set Tc {1,..., n} of size at least n/2 such that we can specify in this
manner any member of T. Using the construction of Lemma 2, this can be amplified
to include all the n nodes on the right. This construction gives a (c- n, m- nlgn, n,
2t +2)-rainbow. Therefore, an explicit construction for a disperser with those para-
meters yields an implicit O(1) probe search scheme for m n lgn.

No explicit construction with parameters close to the ones given in [7] is known.
The best explicit construction for such expanders is given in Ajtai, Koml6s, and
Szemerdi 1].

8. Conclusions and open problems. As a consequence of the results of this paper,
the maximal m for which implicit O(1) probe is possible lies between 2mply and a
constant height tower of powers. One obvious, open problem is to close this gap.
Finding an explicit construction for rainbows with m superpolynomial in n is another
obvious research direction. A different question is whether rainbows are useful for
implicit data representation in other settings.

Note added in proof. Zuckerman [9] has found some constructions related to those
in7.

Acknowledgments. We thank Noga Alon, Joel Friedman, Nati Linial, Mike Luby,
Jeanette P. Schmidt, Alan Siegel, and Avi Wigderson for helpful discussions and advice
and are grateful to the two anonymous referees for their diligent reading and many
useful remarks.

10 AMOS FIAT AND MONI NAOR

REFERENCES

[1] M. AJTAI, J. KOML6S, AND E. SZEMERIDI, Deterministic simulation in LOGSPACE, in Proc. 19th
ACM Symposium on Theory of Computing, 1987, pp. 132-140.

[2] A. BORODIN, F. E. FICH, F. MEYER AUF DER HEIDE, E. UPFAL, AND A. WIGDERSON, Tradeoff
between search and update time for the implicit dictionary problem, Theoret. Comput. Sci., 58 (1988),
pp. 57-68.

[3] A. COHEN AND A. WIGDERSON, Multigraph amplification, 1989, manuscript.
[4] A. FIAT, M. NAOR, J. P. SCHMIDT, AND A. SIEGEL, Non-oblivious hashing, in Proc. 20th ACM

Symposium on Theory of Computing, Chicago, IL, pp. 367-376.
[5] M. L. FREDMAN, J. KOML(3S, AND E. SZEMERIDI, Storing a sparse table with 0(1) worst case access

time, J. Assoc. Comput. Mach., 31 (1984), pp. 538-544.
[6] R. L. GRArAM, B. L. ROTHSCHILD, AND J. H. SPENCER, Ramsey Theory, Wiley, New York, 1980.
[7] M. SIPSER, Expanders, Randomness or time versus space, J. Comput. System Sci., 36 (1988), pp. 379-383.
[8] A. C. YAO, Should tables be sorted?, J. Assoc. Comput. Mach., 28 (1981), pp. 615-628.
[9] D. ZUCKERMAN, Stimulating BPP using a general weak random source, in Proceedings of the 32nd

Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, October 1991,
pp. 79-89.

SIAM J. COMPU’E
Vol. 22, No. 1, pp. 11-28, February 1993

1993 Society for Industrial and Applied Mathematics
002

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS OF A GRAPH
ON-LINE*

zvI GALIL* AND GIUSEPPE F. ITALIANO*

Abstract. The problem of maintaining the 3-edge-connected components of a graph undergoing repeated
dynamic modifications, such as edge and vertex insertions, is studied. This paper shows how to answer the

question ofwhether or not two vertices belong to the same 3-edge-connected component of a connected graph
that is undergoing only edge insertions. Any sequence of q query and updates on an n-vertex graph can be
performed in O((n + q)(q, n)) time.

Key words, analysis of algorithms, dynamic data structures, edge connectivity, vertex connectivity

AMS(MOS) subject classifications. 68P05, 68Q20, 68R10

1. Introduction. Given an undirected graph G (V, E), and an integer k >_ 2, a
pair of vertices (z, v) is said to be k-edge-connected if the removal of any k 1 edges
in G leaves z, and v connected. This is an equivalence relationship, and we denote it by
=k, i.e., if a pair of vertices (z, V) is k-edge-connected we write z =k V. The vertices
of a graph G are partitioned by this relationship into equivalence classes called k-edge-
connected components. An edge set E’ c_ E is at. edTe-cut for vertices z and V if the
removal of all the edges in E’ disconnects x and V. The cardinality of an edge-cut E’,
denoted by I/’l, is given by the number of edges in E’. An edge-cut E’ for x and V is
said to be a minimum cardinality edge-cut or in short a min-edge-cut if there is no other
edge-cut E" for z and V such that IE"I < IE’I. Then z = V if and only if a min-edge-cut
for z and V contains at least k edges. A graph G is said to be k-edge-connected if all its
pairs of vertices are k-edge-connected. A min-edge-cut of cardinality 1 is called a bridge.
Similarly, a vertex set V’ c_ V {z, V} is a vertex-cut for vertices x and V if the removal
of all the vertices in V’ disconnects z and V. The cardinality of a vertex-cut V’, denoted
by IV’ 1, is given by the number of vertices in V’. A vertex-cut V’ for z and V is said to be
a minimum cardinality vertex-cut or in short a min-vertex-cut if there is no other vertex-
cut V" for and V such that [V"I < IV’I. Then z and V are k-vertex-connected if and
only if a min-vertex-cut for x and V contains at least k vertices. A graph G is said to be
k-vertex-connected if all its pairs of vertices are k-vertex-connected. A min-vertex-cut of
cardinality 1 is called an articulation point.

The following theorems, due to Menger; Ford and Fulkerson; Elias, Feinstein, and
Shannon (see, for instance, [17]), give another characterization of k-vertex and k-edge
connectivity.

THEOREM 1.1 (Menger). Given a graph G and two vertices z and V in G, z and 1 are
k-vertex-connected ifand only ifthere are at least k vertex-disjointpaths between z and 1.

THEOREM 1.2 (Ford and Fulkerson; Elias, Feinstein, and Shannon). Given a graph
G and two vertices z and 1 in G, c and 1 are k-edge-connected if and only if there are at

Received by the editors March 8, 1991; accepted for publication (in revised form) August 12, 1991. This
work was partially supported by National Science Foundation grants CCR-8814977 and CCR-9014605, by the
ESPRIT II Basic Research Actions Program of the EC under contract 3075 (Project ALCOM), and by the
Italian MURST Project ’Tklgoritmi e Strutture di Calcolo." Portions of this paper appear in the Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1991, pp. 317-327.

tDepartment of Computer Science, Columbia University, 450 Computer Science Building, New York,
New York 10027, and Tel-Aviv University, Tel-Aviv, Israel.

tDipartimento di Informatica e Sistemistica, Universith di Roma "La Sapienza," Rome, Italy. Present
address, IBM T. J. Watson Research Center, Yorktown Heights, New York 10598. Part of this work, which was
done while the author was at Columbia University, was partially supported by an IBM Graduate Fellowship.

11

12 Z. GALILAND G. E ITALIANO

least k edge-disjointpaths between z and 1.
Vertex connectivity and edge connectivity problems arise naturally in many applica-

tions and have been extensively studied. Much attention has been given to the 2-vertex-
connected (or biconnected) components and 2-edge-connected (or bridge-connected)
components of a graph. Tarjan [32] gives optimal linear-time sequential algorithms. Tar-
jan and Vishkin [34] give logarithmic-time parallel algorithms. Recently, Westbrook and
Tarjan [36] considered the problem of maintaining biconnected components and bridge-
connected components undergoing any sequence of edge and vertex insertions. They
presented algorithms that run in a total of O(qc(q, n)) time, where q is the total number
of operations, n is the number of vertices, and c is a functional inverse of Ackermann’s
function. As for 3-vertex-connectivity, Hopcroft and Tarjan [18] showed how to com-
pute the triconnected components of a graph in linear time. Di Battista and Tamassia [6]
showed how to maintain the triconnected components of a graph during edge insertions
in a total of O(q + n log n) time1, where q is the total number of operations performed
and n is the number of vertices. Their algorithm achieves an O(qc(q, n)) bound only in
the case of an initially biconnected graph.

In the last decade there has been a growing interest in dynamic problems on graphs.
In particular, much attention has been devoted to (among others) the dynamic mainte-
nance of connected components [10], [11], [26], [28]; 2- and 3-connectivity [6], [15]; [35],
[36]; transitive closure [2], [19], [20], [21], [24], [31], [37]; planarity [5], [6], [30]; short-
est paths [1], [4], [9], [25], [27], [29], [37]; and minimum spanning trees [3], [8], [11],
[29]. In these problems we would like to answer queries on graphs that are undergoing
a sequence of updates, for instance, insertions and deletions of edges and vertices.

A problem is said to befully dynamic if the update operations include both insertions
and deletions of edges. On the other hand, a problem is called partially dynamic if only
one type of update, i.e., either insertions or deletions, is allowed. The goal of a (fully
or partially) dynamic graph algorithm is to update efficiently the solution of a problem
after dynamic changes, rather than having to recompute it from scratch each time. Given
their powerful versatility, it is not surprising that dynamic algorithms and dynamic data
structures are usually more difficult to design than their static counterparts.

In this paper we study the partially dynamic problem of maintaining the 3-edge-
connected components of a connected graph during edge insertions. We wish to main-
tain the graph under an intermixed sequence of operations of the following kinds.

Same3EdgeBlock(u, v): Return true if vertices u and v are in the same 3-edge-connected
component. Returnfalse otherwise.

InsertEdge(z, /): Insert a new edge between the two vertices z and

AddVertex(u, v): Add a new vertex u to the graph, and connect it to G by means of the
edge (u, v).

We give algorithms that support any sequence of q InsertEdge, AddVertex, and
Same3EdgeBlock operations on an initially connected graph with n vertices in a total
of O((n + q)a(q, n)) time. Notice that the best-known bound for the twin problem of
maintaining in a partially dynamic fashion the triconnected components of a graph is
O(q + n log n) [6], and the algorithms given in [6] achieve the O(qc(q, n)) bound only in
the case of an initially biconnected graph.

Our techniques combine a variety of graph properties, and data structures. We rep-
resent the 3-edge-connected components of a graph by means of a tree structure, and

In this paper all the logarithms are assumed to be base two.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 13

update and query this tree instead of the original graph. Indeed, we represent a graph G
by a tree of 2-edge-connected components, each ofwhich is itself represented as a tree of
3-edge-connected components. We then develop efficient data structures for updating
this representation during edge and vertex insertions.

The remainder of the paper consists of four sections. Section 2 gives some graph-
theoretical properties of k-edge-connectivity. Section 3 gives our bounds for 2-edge-
connected graphs, and 4 extends these bounds to connected graphs. In 5 we list some
concluding remarks.

2. Some properties of k-edge connectivity. Let G (V, E) be an undirected graph.
Let V, V,..., Vp be a partition of the vertices of G (V, E) such that if z, y V,
1 _< <_ p, then z -- . Notice that V, V,..., Vp are not necessarily the k-edge-
connected components of G since we can have u -- v for u V and v V, j. Let
(G) (q(V), q(E)) be the graph obtained from G by shrinking each V, 1 _< _< p,
into one super-vertex q(V). If e (u, v) is an edge of G, u V, v V, let (e)
((V/), (V)) be the corresponding edge in (G). Notice that (G) can contain multiple
edges and self-loops. For any E’ C_ E, let (E’) {(e)le E’}. As a consequence
of this definition, I(E’)I I:’1 for any edge set E’ c_ E. Similarly, if z V we define
q(z) (V). In the sequel such a will be referred to as a k-edge-connectivity obeying
mapping.

The following lemmas characterize some combinatorial properties of the k-edge-
connected components of a graph.

LEMMA 2.1. Let q be a k-edge-connectivity obeying mapping. A set ofedges E’, IE’I _<
k 1, is an edge-cutfor x and y in G ifand only if (E’) is an edge-cutfor (x) and (y)
in (G).

Proof. Assume (E’) is not an edge-cut for (x) and (y) in (G). Thus, there is
a path (Tr) in (G) between (x) and (y) containing no edges in (E’). Let (e),
(e),..., (ep) be the edges in (Tr), and let e, ee,..., ep be the corresponding edges
in G. Clearly, e E’, 1 < <_ q. However, e, ee,..., ep does not give a path in G. Let
ei (ui, vi), 1 < < q. Denote x by v0 and y by Up+l. By definition of (G), v =--k Ui+l,
0 < < p. By Theorem 1.2, there are at least k edge-disjoint paths in G between vi and
ui+, 0 < < p. Since [E’I _< k 1, there is at least one path 7r between v and u+,
0 < < p, containing no edges in E’. As a result, 7r0. el .Tr "e2 ep .Trp gives a path
in G between x and y, avoiding edges of E’. Hence E’ is not an edge-cut for x and y
in G.

Conversely, assume E’ is not an edge-cut for x and y in G. That is, there is a path
7r {x v0, v,...,vq-,vq y} in G containing no edges of E’. Then (Tr)
{(x),(v),...,(Vq_l),(y)} gives a path between (x) and (y) in (G) that
uses no edges of (E’). Therefore, (E’) cannot be an edge-cut for (x) and (y) in

LEMMA 2.2. Let be a k-edge-connectivity obeying, mapping,. Let (V) and (V be
any two vertices in (G), and let x and y be any two vertices of G, x Vi, y Vj. Given
any integer h, 1 < h < k, (Vi) and (Vj) are h-edge-connected in (G) ifand only if x
and y are h-edge-connected in G.

Proof. If V/= V, the lemma is trivial.
Assume j and let V and V be such that (V) h (V) in the contracted graph

(G). This means that there is a min-edge-cut for (V) and (V) in (G) containing
at most h- 1 edges. Let A be such such a min-edge-cut, IA] _< h- 1. Let x be any vertex
in V, and let y be any vertex in Vj_ Let E {e El(e A}. By Lemma 2.1, E is an
edge-cut for x and y in G. Since IEI IA[_< h 1, x h y in G.

14 Z. GALILAND G. E ITALIANO

Let z and y be vertices in G such that z h Y. Let z E V, y E V, j. Let E’,
IE’I _< h 1, be an edge-cut for z and y in G. Then by Lemma 2.1, (E’), 1(’)1
I’1 _< h 1, is an edge-cut for (V) and (V) in (G). Therefore, (V) h (V) in

3. Maintaining 3-edge-connected components of 2-edge-connected graphs. In this
section we show how to maintain efficiently the 3-edge-connected components of a graph
G under any sequence of the operations InsertEdge, AddVertex, and Same3EdgeBlock.
We recall here that InsertEdge(z,y) adds a new edge between vertices z and y,
AddVertex(u, v) inserts a new vertex u and connects it to vertex v, and Same3EdgeBlock
(u, v) returns true if vertices u and v are in the same 3-edge-connected component of
G, and it returns false otherwise. We consider first 2-edge-connected graphs and then
generalize the results to connected graphs.

Let G be a 2-edge-connected graph with n vertices subject to Same3EdgeBlock and
InsertEdge operations. In this section we do not consider AddVertez operations since
they do not preserve G 2-edge-connected; we show how to deal with them in the next
section.

For any vertex z in G, denote by C(z) the 3-edge-connected component containing
z. We show now how to maintain information about 3-edge-connected components of
a 2-edge-connected graph G during edge insertions. Let G’ be the graph obtained by
contracting each 3-edge-connected component of G into a super-vertex. Notice that
there can be multiple edges in G’. We use interchangeably the terms 3-edge-connected
component of G and super-vertex in G’. By hypothesis G is 2-edge-connected, and by
Lemma 2.2 G’ is 2-edge-connected, too. As a result, any two super-vertices of G’ lie on
a common cycle. The following lemma states that G’ consists of simple cycles such that
any two of them share at most one super-vertex (see also [7], [22]).

LEMMA 3.1. Two simple cycles ofG can intersect in at most one super-vertex.
Proof. We proceed by contradiction. Assume there exist two different simple cycles

A1 and A2 of G’ intersecting at two super-vertices al and a2. Then there must be a
subpath of A between two vertices a’ and a" of A1 (not necessarily al and a2) that is
edge-disjoint from Ax. As a result, there are three edge-disjoint paths between a’ and
a" in G’. By Theorem 1.2, a’ =3 a" in G’. By Lemma 2.2, any two vertices x and y of G
such that z a’ and y a" are 3-edge-connected. Consequently, a’ and a" cannot be
3-edge-connected components of G, a contradiction. q

LEMMA 3.2. Each biconnected component ofG’ is a simple cycle.
Proof. We proceed by contradiction. Let B be a biconnected component of G’ that

is not a simple cycle. This implies that there are three edges el, e2, and e3 in B that
do not lie in a simple cycle. However, since two edges belong to the same biconnected
component if and only if they lie in a same simple cycle, there must be a simple cycle
A1 containing both e and e2, and a simple cycle A2 containing both e and e3. Since
e belongs to both A and A, A and A must intersect in at least two vertices, which
contradicts Lemma 3.1. D

Define 7" as the block tree of G’. We recall here that given a graph G, the block
tree of G is defined as follows (see, for instance, [17]). The nodes of the block tree are
partitioned into square and round nodes: square nodes correspond to the vertices of G,
while round nodes correspond to the biconnected components of G. There is an edge
between a square node u and a round node p if and only if vertex u ofG is in biconnected
component p. Also, there is an edge between a square vertex u and round vertices pl

and p2 if and only if u is an articulation point separating biconnected components/91 and
p in G.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 15

a nk --
(a)

(b)

(c)
FIG. 1. (a)A 2-edge-connected graph G; (b) the graph G; and (c) the tree of 3-edge-connected components

In the following, we refer to 7- as the tree of3-edge-connected components of G. No-
tice that each 3-edge-connected component ofG corresponds uniqu,ely to a super-vertex
of G’ and to a square node in 7". In the remainder of this section we use interchangeably
the terms 3-edge-connected component of (7, super-vertex of G’, and square node of T.

Figure 1 shows graphs G and G’, as well as the block tree T.
We root the tree 7" arbitrarily at any square node. Edges of 7" are considered di-

rected from children to parent. Furthermore, for each simple cycle in G’, we maintain
the same cyclic order of vertices in 7" (see Fig. 1). In other words, let or1, or2,..., crp be
the vertices of G’ encountered in a counterclockwise walk around around a cycle p. Then
in T there is one square node ere, 1 < < p, that is the parent of p, and all the children
of p from left to right are o+1, o-e+2,..., o-p, tyl, o-2,... ,O’e_ 1. The following corollary
follows easily from Lemma 3.2 and the definition of block tree of a graph.

16 Z. GALILAND G. E ITALIANO

COROLLARY 3.3. Let x and y be any two vertices in G, x 3 y. Let C(x) and C(y) be
the 3-edge-connected components containing x and y, respectively. Let 7r,y be thepath in
between C(x) and C(y) containing vertices C(x) cry, p, a, aq_, pq_, aq C(y),
q >_ 2 (ai are square nodes and pi are round nodes). Then a, a3,..., aq-1 are all the
articulation points separating C(x) and C(y) in G’, and all the simple paths between C(x)
and C(y) in G are given by the q 1 simple cycles pl, p2,..., pq-.

Besides maintaining 7-, we maintain the actual 3-edge-connected components of G
as disjoint sets subject to union and find operations. The name of any such set gives a
pointer to the corresponding square node in 7-. For each vertex x, find(x)=C(x) (i.e.,
find(x) returns the 3-edge-connected component containing vertex x in G). With this
data structure, a Same3EdgeBlock(x, y) operation can be simply performed by checking
whetherfind(x) =find(y). The union operations will be used to update efficiently the 3-
edge-connected components during InsertEdge operations. We recall that using the fast
set-union data structures of [33] yields that any sequence of q union andfind operations
on a collection of n elements can be performed in O(qc(q, n)) worst-case time.

Let x and y be any two vertices in G such that x 3 y. Denote by C(x) and C(y)
the square nodes in 7" corresponding to the 3-edge-connected components of x and y,
respectively, and let 7r,u be the path in 7" between C(x) and C(y). We now describe
the updates needed in 7- because of the insertion of a new edge (x, y). As the following
lemma shows, the path in 7- between C(x) and C(y) plays a crucial role in the update.

LEMMA 3.4. Let G be a 2-edge-connected graph. After the insertion of (x, y), all the
vertices ofthe 3-edge-connected components corresponding to square nodes in 7r,u become
3-edge-connected, while there is no change in the other 3-edge-connected components of G.

Proof. Let V, V2,..., Vp be the 3-edge-connected components of G before the in-
sertion of edge (x, y). Let V, V,... V, 1 < q < p, be the 3-edge-connected of G
corresponding to the square nodes of 7" in 7r,u, as they are met while going from C(x)
to C(y) in 7". Notice that C(x) V and C(y) V. Let Gn G t3 {(x, y)}. Simi-
larly, let (Gn) be the graph obtained from G’ by contracting its 3-edge-connected
components.

Consider the graph Gtemp G [A ((C(x), C(y))}. Notice that Gtemp is not neces-
sarily (Gn)’. However, since any two vertices that were 3-edge-connected in G are still
3-edge-connected in Gn, V, V,..., Vq gives a partition of the vertices of G’ such
that if u, v V, then u _= v. Therefore, Gtemp can be derived from Gn by applying a
3-edge-connected obeying mapping to G" namely, Gemp (Gnew).

Assume first that C(x) C(y). Since by definition no two vertices of G’ are 3-edge-
connected, then no two vertices of (G’) are 3-edge-connected either. Therefore, by
Lemma 2.2 there is no change in the 3-edge-connected components of G. In this case

7r,u {C(x)} and the lemma is trivially true.
Assume now C(x) C(y). By Corollary 3.3, all the simple paths between C(x)

VI’ and C(y) V in G’ are given by q 1 simple cycles p, p,..., pq_ in G’ such that
V Pl, V; Pq-1, Pi-1 CI Pi {Y/’}, 2 _< < q 1, and pi fq pj }, _< j 2 or

_> j + 2. Each pi, 1 < < q 1, is composed of two disjoint paths between V’ and

V_I, say, p) and p2).
Then there are three edge-disjoint paths between V and Vj, 1 _< i < j < q, in

) ,(1) the second by p p(Gnew). The first is given by p e+,-.., P
and, finally, the third is given by i--1 /i--2 1

Thus V/’ 3 Vjt.

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 17

We now show that only the vertices K.’i, 1 _< i _< q, become 3-edge-connected in

o(G’e). Let V be any vertex of G’ different from V..’i, i < i _< q, andletV, i _<
_< p, be any vertex of G’ different from V. Since vertices of G’ correspond to 3-edge-

connected components of G, V -3 V/in G’. We show that also V
By Corollary 3.3, all the simple paths between V and V/in G’ are given by p _> 1 simple

Consequently, if el and e2 are thecycles p, p,..., p, in G’ such that V p, V/ pp.
two edges ofp incident to V, {e, e2 } separates V and V/in G’. Therefore, the removal
of (el, eg } breaks G’ into two pieces: G andG such that G contains V andG contains
V/. We claim that the removal of {e, eg.} must leave C(x) and C(y) on the same side
(i.e., either both in G or both in G). Indeed assume by contradiction that C(x) and
C(y) are left in different sides by the removal of {e, e}. Without loss of generality,
let C(z) be in G and C(y) be in G. This implies that {e, e} is an edge-cut for C(x)
and C(y) in G’. Since el and e2 are both incident to V in G’, also the removal of V
together with its incident edges disconnects C(x) and C() in G’. This implies that V is
an articulation point whose removal disconnects C(x) and C() in G’. But by Corollary
3.3, this gives V V/’, for some i, 1 < < q, contradicting our assumption. Since C(z)
and C(y) must be either both in G or both in G, {e, e2} still separates V and V/in
(G’) G’ t_J {C(x), C(y)}. Consequently, V a V/in q(G’).

By Theorem 1.2, all and only the vertices V’, V, V become 3-edge-connected
in (G’), while all the remaining vertices of (G’) stay 2-edge-connected. By
Lemma 2.2 all and only the vertices of G contained in V’, V,..., V become 3-edge-
connected.

Lemma 3.4 gives a way to compute (G’e) from G’. As shown in the lemma, all
the paths between V’ and V in G’ are given by q 1 edge-disjoint simple cycles
,01, P2,..., Pq-1 in G’ such that VI’ /91, V ,Oq_l, and p_l Pi {V/’}, 2 <_ _< q 1.

Each pi is composed of two edge-disjoint paths between V/’ and V_I, say, p) and p2).
Furthermore, the insertion of (x, y) in G implies that all and only the vertices in V/’,
1 _< _< p, become 3-edge-connected in G. Therefore, (Gn) can be computed from
G’ by simply shrinking all the vertices V’, V,..., V into one vertex V’. This destroys
the previous simple qycles pi, 1 _< _< q 1, and creates at most 2(q 1) new simple
cycles pl) and p2), 1 _< _< q 1, that are all incident to V’ in (Gn)’.

The changes in G’ induce updates in T, which is the block tree of G’. We denote by
A the least common ancestor of C(x) and C(y) in T. The update causes the following
transformations on the path 7r,v of T, to obtain Tn’, the block tree of (G’)’.

(i) Merge together all the square nodes V’, V,..., V in 7r,u into a new square
node V’.

(ii) For each round node pi A in r,v, denote by V’ and V(+ the two square
nodes in r,u adjacent to pi. Without loss of generality, let V_ be the parent of pi in

i) a(i) V..’ i) bi) t > 0, be the children of pi sorted from left torx,y. Let a i, b s,
right. Split pi into two round nodes p) and p2). make ai),..., a(i) children of p) and

bli),..., bi) children of p2). Make p) and p2) children of V’. If s 0 It 0], delete

0}1) [02) 1.
(iii) If , is a round node, again denote by V’ and V_ the two square nodes in

7r,u adjacent to). Without loss of generality, let ai),...,.,’(i) V..’i, bi),-- bi), V/-I
ci),...,,,,.(i), s, t, u _> O, be the children of . sorted from left to right. Split , into

two round nodes)() and ,(2). make ai),..., a(si), V’, ci), ,..u"(i) children of (1) and

18 Z. GALILAND G. E ITALIANO

(a)

(b)

(c)
FIG. 2. (a) G after the insertion ofa new edge; (b) updates in the graph G’ because ofthe new edge; the new

G’ is shown to the right; (c) updates in T because ofthe new edge; thepath involved in the update is shown in bold;
the new T is shown to the right.

bi),..., bi) children of A(9). Make A(1) child of the previous parent of A and A(2) child
of V’. If t 0, delete A(2). Notice that since 7" is rooted at a square node, A cannot be
the root of 7" and thus must have a parent.

The sequence of above transformations, plus the actual merging of the 3-edge-
connected components, is referred to in the sequel aspath compression. Figure 2 shows
the updates needed in the graph of Fig. 1, as a result of the insertion of a new edge.

To implement the above rules, we need to support the following primitives on the
tree 7" during an InsertEdge operation:

split(p, e): Given a round node p and an edge e (z, p), where z is a square node child
of p, split p into two round nodes pl and p2: the edges previously to the left [right] of

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 19

e are now incident to pl [p2]. Make pl and p2 children of z, and z child of the former
parent of p (see Fig. 3(a)). If either/91 or/9:2 has no children, then delete it. Since p is a
round node, it cannot be the root; therefore, the parent of p is always defined.

merge(v): Given a square node v, whose parent is a square node itself, contract the edge
(v, parent(v)) (see Fig. 3(b)), and union the corresponding 3-edge-connected compo-
nents.

parent(v): Given any (round or square) node v, return its parent.

Notice that the primitive merge(v) is not applicable to the tree 7- itself since in
7" each square node has a round parent. However, a split(p, e) produces two adjacent
square nodes as shown in Fig. 3 and, therefore, allows a primitive merge to be applied in
the resulting tree.

P

spllt(p,e)

(a)

merge(x)

(b)
FIG. 3

We are now able to describe our implementation of an InsertEdge(z, 1) operation.
Firstwe perform a Same3EdgeBlock(z, 1) operation: if it returns true, then z and /are in
the same 3-edge-connected component and by Lemma 3.4 nothing need be done. Oth-
erwise, z and /are in different 3-edge-connected components. We proceed as follows.
Given T, we first locate the path 7rx,y. Then we perform path compression on 7rx,u by
doing merge operations on the square nodes of 7r,u and split operations on the round
nodes of 7r,u. We do this as follows. Denote by A the least common ancestor of C(z)
and C’(/) in T. Set fl C(z) and - parent(). While q, A repeat the following
step:

20 Z. GALIL AND G. E ITALIANO

If7 is a round node, then set e (/3, 7) and perform split(7, e). If 7 is a square node,
then perform merge(). In both cases set 7 parent().

Denote by/1 the square node child of A at which the preceding step stops. Now set
C(B) and repeat the same splits and merges in the path from C(y) to A. Similarly,

denote by/32 the square node child of A in this path. If A is a round node, then split
it as shown in Fig. 4(a). Otherwise, A is a square node; merge/1,/2, and A as shown
in Fig. 4(b). Notice that those two operations can be implemented by using a constant
number of merge and split primitives. In the following, we refer to the update of 7" after
an InsertEdge(u, v) operation as CompressPath(u, v, 7").

(a)

(b)

FIG. 4

The following lemma shows how to perform efficiently any sequence of merge, split,
andparent operations.

LEMMA 3.5. Any sequence ofp merge, split, andparentprimitives on a tree with n nodes
requires a total of O(pa(p, n)) worst-case time.

Proof. To support efficiently these primitives, we use different data structures for
each node of 7". We represent square nodes as condensible nodes [36], which enable us to
merge two square nodes in O(a(p, n)) amortized time at the price ofspending O(a(p, n))
amortized time to find the parent of a round node. The idea behind a condensible square
node is to group all the sibling round nodes into disjoint sets and to maintain those
disjoint sets under union and find operations. We do this as follows. By definition, the

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 21

children of each square node in 7" are all round nodes. Let v be any square node in
T, with children/91, p2,..., pe, _> 1. We maintain a set b/.T’(v) such that the name of
b/.T’(v) returns a pointer to v. Let p be a child of v: instead of having an edge from
to v, we have an edge from p to an item in the set

We refer to [36] for the details of this method. It suffices to say that a merge(v)
operation corresponds to a union between disjoint sets L/Y--(v) and bl(parent(v)), and
to a union of the 3-edge-connected components corresponding to v and parent(v). We
remark here that unioning disjoint sets/A-’(v) and bl(parent(v)) implies that the space
used by the item corresponding to v in bl:(parent(v)) is left unused. This implies an
O(1) extra space per merge operation.

Finding the parent of a round node corresponds to a find operation. If for each
square node v E 7- we implement b/’(v) by means of a fast set-union data structure
[33], each merge and parent primitive can be supported in O(tx(p, n)) amortized time.

For splitting round nodes efficiently we use a similar data structure, which we call
expandable node, and which allows us to split a round node and to find the parent of a
square node in constant amortized time. The expandable node data structure has much
the same flavor as condensible nodes, but it is based upon set-splitting data structures.
We recall here that set-splitting data structures are able to perform find and split op-
erations on disjoint sets in constant amortized time [12]. Now we group all the sibling
square nodes into disjoint sets, and we maintain those disjoint sets under sequences of
split, and find operations. Let p be any round node in T, with children
g _> 1. We maintain a set S(p) containing items and such that the name of S(p)
returns a pointer to p. Let v be any child of p: instead of having an edge from v to
p, we have an edge from v to the corresponding item in the set S(p). We implement
split(p, e) as follows. Let v be the square node child of p such that e (v, p), and let u be
the square node parent of p. We perform the corresponding split operation in S(p)"
this creates two new round nodes pl and p2 and destroys p. To make pl and p children
of v we union b/.T’(v) with two singleton sets. Finally we make v child of u by inserting an
edge from u to the item ofb/’(u) that round node p was pointing to. Therefore, splitting
a round node p corresponds to performing a split operation in S.(p) and at most two
union operations involving b/.T’(v). Finding the parent of a square node corresponds to
afind operation in a set-splitting data structure.

Notice that due to the structure of T, in which after each update every path alter-
nates between square and round nodes, there is no interaction between condensible and
expandable nodes, since only round nodes are subject to splits, and only square nodes are
subject to merges. Each merge requires unioning two condensible node, while each split
can be performed by splitting an expandable node and by performing a constant number
of unions on condensible nodes. Each parent requires a find operation in either a set-
union or a set-splitting data structure. Therefore, by using condensible and expandable
nodes we are able to perform each sequence ofp merge, split, andparent primitives on a
tree with n nodes in a total of O(pa(p, n)) worst-case time.

Lemma 3.5 allows us to prove the following theorem.
THEOREM 3.6. The data structure supports any sequence of q Same3EdgeBlock and

InsertEdge operations on an initially 2-edge-connected graph with n vertices in a total of
0 (q + n)a(q, n) time. The space required is 0(n).

Proof. A Same3EdgeBlock operation consists of performing two find operations in
disjoint sets and, therefore, can be performed in O(a(q, n)) amortized time. As for an
InsertEdge(x, !1) operation, it requires (i) finding the path 7r,v in T, (ii) performing the
merging and splitting of square and round nodes in 7r,u, and (iii) unioning the disjoint

22 Z. GALIL AND G. E ITALIANO

sets corresponding to the square nodes (3-edge-connected components) in 7rx,u. Given
T, we can locate the path 7rx,u by first performingfind(z) andfind(y). This returns C(z)
and C(y), the two square nodes corresponding to the 3-edge-connected components
containing z and y, respectively. Then we trace the paths from C(z) to the root of
and from C(y) to the root of T, alternating among them one edge at the time. We stop
when we reach a node already visited. This requires 2lTr,ulparent primitives in the worst
case. Thenwe have to perform at most I,u merges and splits along this path. We recall
that merge operations union all the 3-edge-connected components in 7r,u. Henceforth,
the whole operation can be implemented by using no more than 31r,ul merge, split,
and parent primitives. As a consequence of Lemma 3.5, it can be done in a total of
O(lr,yl(q, n)) time.

The total time spent during a sequence of at most q Same3EdgeBlock and InsertEdge
operations is, therefore, O((q / T(n))c(q, n)), where

T(n) < 31r,yl
(,u)

is the total number of merge, split, and parent primitives performed during InsertEdge
operations.

We prove the claimed time bound by showing that T(n) O(n). Notice that the
path r,u in 7- is a path between square node C(x) and square node C(y). Since any path
in 7" alternates between square and round nodes, 7rx,u contains at least [lr,yl/2] -4- 1
square nodes (i.e., 3-edge-connected components of G). After we perform path com-
pression on 7r,u, we are left with only one square node. Consequently, the number of
3-edge-connected components of G decreases by at least [lr,yl/2]. Since at the begin-
ning G can have at most n 3-edge-connected components, and each time we perform
InsertEdge(x, y) we decrease this number by at least

T(n) < 317r, O(n).
(,)

As for the space complexity, we have to bound the size of the set-union data struc-
tures used to represent the 3-edge-connected components, and the size of the tree 7".
Since each 3-edge-connected component of G consists of at least one vertex, and any
two 3-edge-connected components are disjoint, the total, space required by the set-union
data structures used to store the 3-edge-connected components is O(n). As for the size
of the tree 7-, we bound the number of square and round nodes in 7-. Each square node
of 7- uniquely corresponds to a vertex of G’ (i.e., to a 3-edge-connected component of
G), while each round node of 7" corresponds to a biconnected component of G’. Since
we have at most O(n) 3-edge-connected components in G, there can be at most O(n)
vertices and O(n) biconnected components in G’. Therefore, there can be at most O(n)
square and round nodes in 7". Since 7- has at most O(n) nodes, and each merge primitive
implies an O(1) extra space, 7- can be implemented using condensible and expandable
nodes in O(n) space as shown in [36].

4. Maintaining 3-edge-connected components ofconnected graphs. We now extend
the previous result to the case of connected (but not necessarily 2-edge-connected)
graphs. We start with a singleton vertex, and we would like to perform any intermixed
sequence of Same3EdgeBlock, InsertEdge, andAddVertex operations.

In this case, we maintain the bridge-block tree T1 of G. We recall that each node B
of T1 corresponds to a 2-edge-connected component of G, referred to as graph(B), and

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 23

each edge of T corresponds to a bridge of G. Since graph(B) is a 2-edge-connected
component of (7, it is 2-edge-connected. We maintain for each node B of T1 the tree
T2(B) of 3-edge-connected components of 9raph(B) as defined in the previous section.

Thus, we maintain information about the graph (7 by using a tree of trees. Each
of these trees is rooted as follows. T1 is rooted arbitrarily at any node C, and T(C’)
is rooted arbitrarily at any square node. For each nonroot node B of T, let (cB,
be the bridge in G corresponding to the edge (B,parent(B)) in T, z E B,// B.
We root T(B) at C(zn) (i.e., the square node corresponding to the 3-edge-connected
component containing vertex zn). Besides this data structure, we maintain also the 2-
edge-connected components of G by using the algorithm of Westbrook and Tarjan [36].

As in the previous section, let G’ be the graph obtained by shrinking each 3-edge-
connected component ofG into a super-vertex. Notice that this time G is not necessarily
2-edge-connected and, therefore, G’ is not necessarily 2-edge-connected. However, by
Lemma 2.2 there is a one-to-one correspondence between bridges of G’ and bridges of
G, and between 2-edge-connected components ofG and 2-edge-connected components
of G. Consequently, T is the bridge-block tree of G’ as well, and given any 2-edge-
connected component B of G’, (B) is the block tree of B. We notice that combining

and all the trees T(B) yields a tree T that resembles the block tree of G’. Indeed,
denote by T the tree obtained by plugging each tree (B) in place of the corresponding
node in TI" the only difference between 7" and the block tree of G’ is that each bridge
(u, v) of G’ is represented by a simple edge (u, v) in T, while there is a square node
and edges (u, or) and (r, v) in the block tree of G’. Finally, we remark that Lemma 3.1
still holds for G’. As far as Lemma 3.2 is concerned, we have now that each biconnected
component of G’ consists of either a unique edge or a simple cycle.

We show how to perform the three operations. A Same3EdgeBlock(u, v) is carried
out as follows. Find the 2-edge-connected components of G containing u and v, say, B
and By by using the algorithm of Westbrook and Tarjan [36]. If B, By, then u and v
are not even in a same 2-edge-connected component of G, and, therefore, they cannot
be in the same 3-edge-connected component of G, and we return false. Otherwise,
and v are in a same 2-edge-connected component B B, B of G. We now perform
Same3EdgeBlock(u, v) on a 2-edge-connected graph as explained in the previous section.

To support an InsertEdge(u, v), we first find the 2-edge-connected components of
G containing vertices u and v, say, B, and B,,. If B B,, B, then we perform
CompressPath(u, , (B)) as shown in the previous section.

If B, - B,,, let B B0, B,..., Be By be the nodes in the path 7r, in
between B, and B,, as they are met while going from B,, to B,,. Each/3 corresponds to
the 2-edge-connected component 9raph(B) of G. For each B let (x,//) be the edge
in G between 9raph(B) and 9raph(B+l), 0 _< _< g- 1. For 1 < _< g- i define
start(B) =//_ and end(B) z. Notice that for each 2-edge-connected component
9raph(B), I <_ <_ g 1, start(B) [end(B)] is the vertex to which the edge in
between 9raph(B_) and 9raph(B) [between 9raph(Bi) and 9raph(Bi+)] is incident
to. For sake of completeness, define start(Bo) u, end(Bo) xo, start(Be) !1e-1,
and end(Be) v. Denote by Ba the least common ancestor of B, and B,, in T (see, for
example, Fig. 5).

The following lemma explains the updates needed in our data structure.
LEMMA 4.1. Let 7ri be the path in T2(Bi) between C(start(Bi)) and C(end(Bi)),

0 < i < g. After the insertion ofedge (u, v) in G, we have the following changes:
(i) All and only the vertices in t20<i<e {9raph(Bi)} become 2-edge-connected in G;
(ii) Fix i, 0 < < g. Let u), u),..., u(q be the square nodes in 7ri. All and

24 Z. GALILAND G. E ITALIANO

(a)

(b)

FIG. 5. (a) A graph G (V, E) bridges between vertices u and v are in boM; (b) the tree of the 2-edge-
connected components of G.

only the vertices in the 3-edge-connected components of graph(Bi) corresponding to u),
u), u become 3-edge-connected in G.

Proof. Edge (u, v) introduces cycles in G that contain at least one vertex in 9raph(Bo),
9raph(B1),..., 9raph(Be). Since these are the only new cycles introduced, all and only
the vertices in those 2-edge-connected components become 2-edge-connected as stated
in proposition (i).

The proof of proposition (ii) can be carried out along the same lines as the proof of
Lemma 3.4. Let V,I, V,2,..., V,p be the 3-edge-connected components of 9raph(B)
before the insertion of edge (u, v). Let V,. E’ W 1 < q < p be the 3-edge-,1 i,2’’’ ,q
connected of 9raph(Bi) corresponding to the square nodes of T (Bi) in ri, as they are
metwhile going from C(start(Bi)) to C(end(Bi)) inT(Bi). Notice that C(start(Bi))
E’ and C(end(Bi)) W The insertion of edge (u, v) causes a new path outsidei,1 ,q"

9raph(Bi) between V/t,1 and V/,q. By repeating the same argument given in the proof

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 25

of Lemma 3.4, it can be shown that all and only the vertices of graph(Bi) contained in
V..’ W V..’ become 3-edge-connected.,1 i,2’’’ ,q

Let G’ G t2 {(u, v)}, and let (G) be the graph obtained by shrinking the
3-edge-connected components of Gnew into one vertex. Once again, Lemma 4.1 gives
a way to compute (G) from G’. Consider the 2-edge-connected components of G’
obtained by shrinking the 3-edge-connected components of graph(B), 0 < i < . Let
us refer to them as B, 0 <_ i _< . For each one ofthemwe can repeat the same argument
given after Lemma 3.4. Fix i, 0 < < . By definition of G all the paths between V..
and V..’ in G’,,q are given by q 1 edge-disjoint simple cycles pi,, pi,2,..., pi,q-1 in B
such that V..’,I Pi,1, V..’,q Pi,q-1, and p,j_ fq p,j (V’,j }, 2 _< j _< q 1. Each p,j is

composed of two disjoint paths between W. and V’ () ()
,3 ,j+l, say, t,,j and t,, Furthermore,

the insertion of (u, v) in G implies that all and only the vertices in V..’ 1 < s < p, become
3-edge-connected in G. Therefore, in (chew) the vertices V’,I, V..’i,2, V’,,q of G’ have
to be shrunk into one vertex V’. This destroys the previous simple cycles p,, 1 _< j <
q 1, and creates at most 2(q 1) new simple cycles p) and ’i,^(2), 1 _< j _< q 1, that
are all incident to V’. Furthermore, there is a new simple cycle in G’ consisting of all the
newly created vertices V’, V,..., Ve’ and edges (x0, y0), (x, yl), (xe-1, ye-), (u, v).

Because of Lemma 4.1 we have to perform the following updates in our data struc-
ture. First, all the nodes B, 0 < </?, have to be merged into one node B in T because
all the vertices in graph(Bo), graph(B),..., graph(Be) become now 2-edge-connected.
This can be done by using the algorithm of Westbrook and Tarjan [36]. Second, we
have to compute the tree T(B) of 3-edge-connected components of the new node B
BoUB t_J...tABe. We compute T(B) starting from the trees T(Bo), (B),..., (Be)
as follows. For 0 < i < e, we perform CompressPath(start(B), end(B), T(B)). This
is correct because of condition (ii) of Lemma 4.1, and produces the new trees Tne(Bi),
0 < i < e. Denote by cri the square node of T’e(B) which is the result of the path
compression that took place in T(B). Notice that a, 0 < < , corresponds to the new
vertex V’ in (Gn)’. We recall that B is the least common ancestor of B and By in
T. As said before, all the new vertices V’ are now in a new simple cycle of (G’)’: we
create a new round node p, make p a child of a, and make a+,...,
children of p in T(B) in this order. This preserves the same order as in the new simple
cycle created in (Gnaw)’. Since cri, i A, is the root of T’(Bi), we do not need to
reroot any of these trees.

AnAddVertex(u, v) operation inserts a new vertex u and connects it to v. We update
our data structure as follows. Let By be the 2-edge-connected component containing v.
We create a new 2-edge-connected component B containing only vertex u and make it
child of B. in T. We initialize T(B) to be a tree with a singleton square root node,
and initialize a new 3-edge-connected component containing only vertex u.

THEOREM 4.2. There exists a data structure that supports any sequence
of q Same3EdgeBlock and InsertEdge and n AddVertex operations in a total of
0 (q + n)a(q, n) time. The space required is 0(n).

Proof. We first analyze the space complexity of our data structure. Notice that we
start with a graph containing a single vertex. At the end of the sequence of operations,
we end up with a graph G with at most n + I vertices. Since G can have at most O(n) 2-
edge-connected components and bridges, T has size O(n). For each 2-edge-connected
component B of G, denote by n the number ofvertices in B. Since each vertex of G is
an at most one 2-edge-connected component, we have that] n n + 1. By Theorem
3.6, the tree of 3-edge-connected components of Bi has at most O(n) nodes and edges.

26 Z. GALILAND G. E ITALIANO

As a result, all the trees in our data structure require

space.
Each Same3EdgeBlock operation can be performed in O(c(q, n)) amortized time as

the following argument shows. Finding B, and B, the 2-edge-connected components
ofG containing u and v, can be done in O(a(q, n)) amortized time [36]. If B, By, then
Same3EdgeBlock returns false and no further computation is required. If B, By B,
performing Same3EdgeBlock on T(B) requires O(c(q, n)) amortized time by Theorem
3.6.

As for an InsertEdge(u,) operation, the bridge-block tree can be updated in
O(a(q, n)) amortized time [36]. The update of the trees of 3-edge-connected compo-
nents T(B), 0 _< _< g, requires

merge, split, andparent primitives. By applying exactly the same argument used in The-
orem 3.6, we obtain that the total number of such primitives during any sequence of
InsertEdge operations is O(n). As a result, the total time required to perform any se-
quence of InsertEdge operations is O((q + n)a(q, n)). Finally, eachAddVertex operation
can be performed in O(1) time.

Our data structure can be used even ifwe start with a nonempty graph Go (V0, E0)
and allow o(Iv01 / I:01) preprocessing.

LEMMA 4.3. Given a graph Go (Vo, Eo) our data structure can be initialized in
o(Iv01 / I01)time.

Proof. Compute in O([V01 + I01) the 2-edge-connected components of Go by using
the algorithm of Tarjan [32]. This gives also T, the bridge-block tree of Go, which can be
initialized in o(11) o(Iv01) as a condensible and expandable nodes tree. For each
2-edge-connected component B of Go, compute the 3-edge-connected components of
B and initialize the tree of 3-edge-connected components T(B). This requires O(IBI)
time[16], and sums up to a total time of o(Iv01 / I 01).

5. Concluding remarks. In this paper we have studied the on-line maintenance of
the 3-edge-connected components of an undirected graph during edge and vertex inser-
tions. We have proposed algorithms that support any sequence of q InsertEdge,
AddVertex, and Same3EdgeBlock operations on an initially connected graph with n ver-
tices in a total of O((n + q)c(q, n)) time. Recently La Poutr6 [23] extended this bound
to unconnected graphs.

We remark that the same O(a(q, n)) amortized bound holds also ifwe wish to main-
tain the names of the 3-edge-connected components of a graph subject to the following
operations.

3EdgeBlock(z): Return the name of the 3-edge-connected component containing ver-
tex z.

InsertEdge(z,//, A): Insert a new edge between vertices z and y and call A the new (if
any) 3-edge-connected component created by (z,

We have been able to achieve an O(m2/3) bound per operation for the fully dynamic
maintenance of the 3-edge-connected components of a graph [13] by using techniques

MAINTAINING THE 3-EDGE-CONNECTED COMPONENTS 27

similar to the ones used for the fully dynamic maintenance of the 2-edge-connected com-
ponents [14].

One might ask whether there is any efficient partially dynamic algorithm for main-
taining on-line the k-edge-connected components of a graph, k > 4.

Acknowledgment. We are grateful to Dany Breslauer for many useful discussions.

REFERENCES

[1] G. AUSIELLO, G. E ITALL,NO, A. MARCHETH-SPACCAMELA, AND U. NANNI, Incremental algorithms for
minimal length paths, J. Algorithms, 12 (1991), pp. 615-638.

[2] G. AUSIELLO, A. MARCHETH-SPACCAMELA, AND U. NANNI, Dynamic maintenance ofpaths andpath expres-
sions in graphs, in Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation, Lecture Notes in Computer Science 358, Springer-Verlag, Berlin, 1989, pp. 1-12.

[3] F. CHINAND D. HouK,Algorithmsfor updatingminimum spanning trees, J. Comput. System Sci., 16 (1978),
pp. 333-344.

[4] R. E COHEN AND R. TAMASSIA, Dynamic expression trees and their applications, in Proceedings of the
Second Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1991, pp. 52-61.

[5] G. DIBATnSTA AND R. TAMASSIA, Incremental planarity testing, in Proceedings of the 30th Annual Sym-
posium on Foundations of Computer Science, 1989, pp. 436-441.

[6] .,On-linegraph algorithms with SPQR-trees, in Proceedings ofthe 17th International Colloquium on
Automata, Languages and Programming, Lecture Notes in Computer Science 443, Springer-Verlag,
Berlin, 1990, pp. 598-611.

[7] E. A. DINIC, A. V. KARZANOV, AND M. V. LOMONOSOV, On the structure of the system of minimal edge
cuts in a graph, in Studies in Discrete Optimization, A. A. Fridman, ed., Nauka, Moskow, 1976, pp.
290-306. (In Russian.)

[8] D. EPPSTEIN, G. E ITALANO, R. TAMASSIA, R. E. TARJAN, J. WESTBROOK, AND M. YUNG,Maintenance ofa
minimum spanningforest in a dynamicplanargraph, in Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1990, pp. 1-11; J. Algorithms, to appear.

[9] S. EVENAND H. GAZIT, Updatingdistances in dynamicgraphs, Methods Oper. Res., 49 (1985), pp. 371-387.
[10] S. EVENAND Y. SHILOACH,An on-line edge deletion problem, J. Assoc. Comput. Mach., 28 (1981), pp. 1-4.
[11 G.N. FREDERICKSON, Data structures for on-line updating ofminimum spanning trees, SIAM J. Comput.,

14 (1985), pp. 781-798.
[12] H. GAaOW AND R. E. TARTAN,A linear-time algorithm for a special case of disjoint set union, J. Comput.

System Sci., 30 (1985), pp. 209-221.
[13] Z. GALILAND G. E ITALIANO, Fully dynamic algorithmsfor 3-edge-connectivity, in preparation.
[14] ,Fully dynamic algorithmsfor edge connectivityproblems, in Proceedings of the 23rd ACM Sympo-

sium on Theory of Computing, 1991, pp. 317-327.
[15] ,Maintainingbiconnected components ofdynamicplanargraphs, in Proceedings of the 18th Interna-

tional Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
510, Springer-Verlag, Berlin, 1991, pp. 339-350.

[16] ,Reducing edge connectivity to vertex connectivity, Sigact News, 22 (1991), pp. 57-61.
[17] E HARAR, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[18] J. HOPCROFT AND R. E. TARJAN, Dividing a graph into triconnected components, SIAM J. Comput., 2

(1973), pp. 135-158.
[19] T. IBARArd AND N. KATOH, On-line computation oftransitive closure forgraphs, Inform. Process. Lett., 16

(1983), pp. 95-97.
[20] G. E ITALIANO,Amortized efficiency ofapath retrieval data structure, Theoret. Comput. Sci., 48 (1986), pp.

273-281.
[21] ,Findingpaths and deleting edges in directed acyclic graphs, Inform. Process. Lett., 28 (1988), pp.

5-11.
[22] A.V. KARZANOVAND E. A. TIMOFEEV, Efficient algorithmforfinding all minimal edge cuts ofa nonoriented

graph, Cybernetics, (1986), pp. 156-162. Translated from Kybernetika, 2(1968), pp. 8-12.
[23] J.A. LA POUTR,personal communication, 1992.

28 Z. GALILAND G. E ITALIANO

[24] J.A. LA POUTRAND J. VAN LEEUWEN, Maintenance oftransitive closure and transitive reduction ofgraphs,
in Proceedings of the Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes
in Computer Science 314, Springer-Verlag, Berlin, 1988, pp. 106-120.

[25] C. C. LIN AND R. C. CHANG, On the dynamic shortest path problem, in Proceedings of the International
Workshop on Discrete Algorithms and Complexity, 1989, pp. 203-212.

[26] J. H. REIF, A topological approach to dynamic graph connectivity, Inform. Process. Lett., 25 (1987), pp.
65-70.

[27] H. ROHNERT, A dynamization of the all pairs least cost path problem, in Proceedings of the 2nd Annual
Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science 182,
Springer-Verlag, Berlin, 1985, pp. 279-286.

[28] D.O. SLEATOR AND R. E. TARJAN,A data structure for dynamic trees, J. Comput. System Sci., 24 (1983),
pp. 362-381.

[29] P. M. SPIRA AND A. PAN, On finding and updating spanning trees and shortestpaths, SIAM J. Comput., 4
(1975), pp. 375-380.

[30] R. TAMASSIA, A dynamic data structure forplanar graph embedding, in Proceedings of the 15th Interna-
tional Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
317, Springer-Verlag, Berlin, 1988, pp. 576-590.

[31] R. TAMASSIA AND F. P. PREPARATA, Dynamic maintenance ofplanar digraphs, with applications, Algorith-
mica, 5 (1990), pp. 509-527.

[32] R.E. TARJAN, Depth-first search and lineargraph algorithms, SIAM J. Comput., (1972), pp. 146-160.
[33] R.E. TARJANAND J. VAN LEEUWEN, Worst-case analysis ofset union algorithms, J. Assoc. Comput. Mach.,

31 (1984), pp. 245-281.
[34] R.E. TARJANAND U. VISHKIN,An efficientparallel biconnectivity algorithm, SIAM J. Comput., 14 (1985),

pp. 862-864.
[35] J. WESTBROOK, Algorithms and data structures for dynamic graph problems, Ph.D. thesis, Department of

Computer Science, Princeton University, Princeton, New Jersey, October 1989, Tech. Report CS-
TR-229-89.

[36] J. WESTBROOKAND R. E. TARJAN,Maintainingbridge-connectedand biconnected components on-line, Tech.
Report CS-TR-228-89, Department of Computer Science, Princeton University, Princeton, New
Jersey, August 1989; Algorithmica, to appear.

[37] D. M. YELLIN,A dynamic transitive closure algorithm, Tech. Report 13535, IBM Research Division, T. J.
Watson Research Center, Yorktown Heights, NY, 1988.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 29-45, February 1993

1993 Society for Industrial and Applied Mathematics
003

ON THE BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE DATABASE
SCHEMES*

HtCTOR J. HERN/NDEZ; AND KE WANG$

Abstract. Constant-time-maintainable database schemes are highly desirable with respect to constraint
enforcement, since it is possible to determine whether any of their consistent states plus an inserted tuple
is consistent in time independent of the state size. Several proper subclasses of constant-time-maintainable
database schemes are known to be bounded with respect to dependencies and hence very desirable with respect
to query answering. However, whether the whole class of constant-time-maintainable database schemes is
bounded is not known for sure.

In this paper, it is proven that the entire class of constant-time-maintainable database schemes is bounded
with respect to dependencies and thus very desirable with respect to query answering in the following cases:
(1) only cover-embedded functional dependencies appear as constraints; (2) only equality-generating depen-
dencies appear as constraints and the database scheme has a lossless join. In particular, it is shown that total
projections of representative instances can be computed via unions of projections of simple chase join ex-
pressions. Since it is known how to optimize these expressions, it is possible to compute total projections
optimally. These results show that the class of constant-time-maintainable database schemes is the largest
class of database schemes, which are highly desirable with respect to both constraint enforcement and query
answering. This class of schemes can be effectively recognized by known algorithms. The previously known
largest class of database schemes with these desirable properties is the class of independent database schemes,
which is a proper subclass of constant-time-maintainable schemes.

Key words, database, dependencies, query processing, constraint enforcement, representative instance,
boundedness

AMS(MOS) subject classifications. 68P15, 68Q

1. Introduction. Within the weak instance model [H2], [Vas], the maintenanceprob-
lem [GY], [GW], [W] of a database scheme is the following decision problem: Given
a consistent state of the database scheme and a tuple to be inserted into the state, is
the modified state consistent with respect to the constraints imposed on the database
scheme? Database schemes for which this problem has "very fast" solutions are highly
desirable in practice.

The notion of constant-time-maintainability was proposed by Graham and Wang
[GW] to capture the intuition on "very fast" solutions to the maintenance problem.
Informally, a database scheme is constant-time-maintainable with respect to the con-
straints imposed on the scheme if its maintenance problem can be solved in time in-
dependent of the state size. Therefore constant-time-maintainable database schemes
are particularly desirable in a large and highly dynamic database environment. Also
in such an environment, we will consider only constant-time-maintainable schemes to
have fast solutions to constraint enforcement, because all other schemes are linear time
lower bounded [GW], [WG]. As mentioned in [GW], constant-time-maintainability gen-
eralized the notion of independence [GY], [$1], [$2], and the class of constant-time-
maintainable schemes properly contains the class of independent schemes when (1) only
functional dependencies appear, (2) functional dependencies and the join dependency

Received by the editors May 15, 1990; accepted for publication June 5, 1991.
tTexas A&M University, College Station, Texas 77843-3112. Present address, Department of Computer

Science, New Mexico State University, Las Cruces, New Mexico 88003-0001.
*Department of Computer Science, Chonqing University, Chonqing, Sichuan 63004, People’s Republic

of China. Present address, Department of Information Systems and Computer Science, National University
of Singapore, 10 Kent Ridge Crescent, Singapore 0511. The work of this author was supported by the Nature
Science Foundation of China for Young Scientists.

29

30 HICTOR J. HERN/NDEZ AND KE WANG

of the database scheme appear, and (3) functional dependencies and inclusion depen-
dencies appear [AC2].

Recently, the recognition problem of constant-time-maintainable database schemes
was solved in several useful cases. An exponential time recognition algorithm for con-
stant-time-maintainable database schemes was given in [GW], [W], [WG] for each of
the following cases: (1) The database scheme cover embeds functional dependencies;
(2) functional dependencies plus the join dependency of the database scheme appear
as constraints; and (3) equality-generating dependencies appear as constraints and the
database scheme has a lossless join. An efficient recognition algorithm for constant-time-
maintainable database schemes was presented in [HC] when cover-embedding Boyce-
Codd Normal Form is assumed. Previous work on fast constraint enforcement can be
found in [BrV], [CH1], [CH2], [CH4].

In view of the importance and generality of constant-time-maintainable database
schemes, this paper investigates query processing in that class of database schemes. Un-
der the weak instance model, theX-totalprojection ofthe representative instance [M], [S1],
[$2], [Y] of a database can be used to answer a query defined on a set of attributes X;
intuitively, the representative instance of a database is an adequate and correct repre-
sentation of all the information that can be logically inferred from the database using
certain rules derived from the dependencies that the database must satisfy; the X-total
projection of the representative instance is the set of tuples in the representative instance
that do not contain missing information on X. Under this approach, it is highly desirable
for query processing to have a database scheme that would allow us to compute the X-
total projection of the representative instance via a predetermined relational expression
that is independent of the databases. This is possible exactly when the database scheme
is bounded with respect to the dependencies given [GM], [MUV].

Unfortunately, the problem of deciding whether a database scheme is bounded with
respect to dependencies is conjectured to be undecidable even for the case of functional
dependencies [MUV]. It has been shown that proving boundedness of database schemes
with respect to dependencies is difficult even for restricted cases [C], [CH1], [CH2],
[ILK], [HC], [MRW], [$2], [$3]. Therefore, defining some classes of database schemes
that are general enough and obviously bounded, like the one in [CM1], or proving the
boundedness of some meaningful classes of database schemes seems to be a reasonable
thing to do. The two largest classes of database schemes that can be effectively rec-
ognized and have an effective construction of relational expressions for computing total
projections with respect to functional dependencies are the class ofindependent schemes
[C], [IIK], [$3] and the class of independence-reducible database schemes [CH2]. A
general, sufficient condition for unboundedness of database schemes when functional
dependencies are considered was presented in [CH3]. A methodology for incrementally
generating bounded database schemes can be found in [CH4]. When only total pro-
jections on the universe of attributes are considered, Sagiv [$4] gave a necessary and
sufficient condition for computing total projections for lossless database schemes with
only tuple-generating dependencies.

The notion of boundedness has also been investigated in the context of optimiza-
tion of Datalog (the language of function-free Horn-clause) programs. A Datalog pro-
gram is bounded if it is possible to eliminate recursion from it [CGKV], [GMSV], [I],
[NS]. Boundedness of Datalog programs has been shown to be undecidable in [GMSV].
Some other decidable and undecidable results on boundedness of Datalog programs are
presented in [CGKV], [$4], [Var].

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 31

The class of constant-time-maintainable database schemes seems to be a subclass of
bounded database schemes. Several subclasses of constant-time-maintainable database
schemes are known to be bounded: Boyce-Codd Normal Form (BCNF) independent
database schemes [$2], independent database schemes [C], [ILK], [MRW], [$3], --acyclic
BCNF database schemes [CH1], split-free independence-reducible schemes [CH2], and
BCNFconstant-time-maintainable database schemes [HC]. However, whether the whole
class of constant-time-maintainable database schemes is bounded with respect to depen-
dencies is not known.

In this paper we prove in 4 that the entire class of constant-time-maintainable
database schemes is bounded when only cover-embedded functional dependencies ap-
pear as constraints. In 5 we describe a method to construct the relational expressions
that compute total projections of representative instances. In particular, we prove that
unions of projections of simple chase join expressions [AC3], [C], a kind of extension
joins [H1], compute the total projections of the representative instances. The construc-
tion, however, takes exponential time in the size of the database scheme. Since it is
known from [AC3], [C] how to optimize these expressions to a minimal number of union
and join operations, we can compute total projections optimally (in that sense). Then in
6 we show that the boundedness and construction of relational expressions obtained in
4 and 5 also hold when only equality-generating dependencies appear as constraints
and the database scheme has a lossless join. In 7 we prove that we can compute X-
total projections via unions of projections of simple chase join expressions, for any X
included in any relation scheme in the database when a set of functional dependencies
and the join dependency of the database scheme are the constraints. In 8 we give our
conclusions.

2. Definitions and notation. In this section, we give most of the notation required
for the rest of this paper.

2.1. Basic definitions. We shall follow standard notation [Ma], [U] and only give
some nonstandard definitions here.

We fix a finite set U to be the universe of attributes (or columns) and fix R, the
database scheme, to be a collection of relation schemes {Rx,..., R,} whose union is U.
Adatabase state (or state) r on l:t is an assignment offinite relations to relation schemes of
R; we shall denote it as r =< rl r(R1),..., rn r(R,) >. Atableau is a set of tuples
defined on U [ASU]. For each attribute Aj E U, the domain of a tableau on Aj consists
of countable many variables, and constants taken from dom(A), the domain of A. We
assume that all the tableaux and states are typed, that is, the domains of a tableau or state
on different attributes are disjoint. Asymbol is either a constant or a variable, and we say
that a symbol is unique if it is distinct from any other symbol appearing anywhere else.
We say that a tuple #[X], the restriction of tuple # onto attributes X, is total if #[Ai] is
a constant for all Ai E X, where X c_ U.

Assume T1 and T2 are tableaux. A valuation function 0 TI T2 is a function
from symbols in Tx to symbols in Tz, which is the identity on constants. A containment
mapping 0 T T is a valuation function such that t 6 T, implies O(t) T.

Let r =< r r(R),... ,r r(R) > be a state on R. We define Tr, the tableau
for state r, as follows: For each relation r r and for each tuple t r, there is a
tuple s in Tr corresponding to it; the tuple s is defined as follows: s[Ri] t, and for all

be a relation on R R. ThenA U- Ri, s[Aj] is a unique variable in Tr. Now, let r
shall denote the state < r, r r t_Jrl2rj rjrj+l...rn >.

32 HICTOR J. HERNANDEZ AND KE WANG

2.2. Dependencies and chasing. The kinds ofconstraints considered here are (typed)
equality-generating dependencies (egd’s), functional dependencies (fd’s), and the join de-
pendency (jd) R [ABU], [BV], [F], [YP]. We shall use the term dependencies to refer
to the above-mentioned dependencies.

Associated with each dependency there is a dependency rule [ABU], [BV], [F], [YP].
Given a tableau T and a set of dependencies D, we can apply their associated rules to
T to infer additional information. These dependency rules are defined in [ABU], [BV],
[MMS]. UHASE9(T) denotes the final tableau obtained from applying exhaustively to
T the rules for the dependencies in D; CHASED(T) is also known as the chase of T
(with respect to D) [MMS].

Without loss of generality, we will assume in this paper that every fd has a single
attribute as its right-hand side. We define the closure of a set of fd’s F, denoted as F+,
to be the set of fd’s that logically follow from F [Ma], [U]. An fd X A is embedded in
a relation scheme R ifXA c_ R. A set of fd’s F is embedded in lq, if each fd X A F
is embedded in some R R. For a set of fd’s F and a relation scheme
denotes all fd’s from F that are embedded in Ri. R is said to be cover embedding (or to
coverembed) a set of fd’s F if there exists a cover G of F, that is, G+ F+, such that G is
embedded in It; G is said to be an embedded cover of F. lq, is said topreserve a set of fd’s
F if for any relation I defined on U, I satisfies F implies 7rrt (I) satisfies F, where 7rrt (1)
denotes the state < zrn (I),..., 7rn (I) > and t 7rn(I) 7rn (I) 7rn (I). R is
said to have a losslessjoin with respect to a set of dependencies D if the jd N R logically
follows from D [ABU].

2.3. Simple chasejoin expressions and derivation sequences. Borrowing from [C],
in this subsection we define derivation sequences and simple chase join expressions, a
generalization of extension joins [H1].

Given a set of fd’s F, a derivation sequence (ds) of some relation scheme Ri (with
respect to F) is a finite sequence of fd’s < Y1 A1,..., Y,, Am >, m _> 0, that
satisfies the following conditions: For all 1 _< j _< m,

Y A F;
Y C_ RiA1... Aj-1, and Aj

_
RA1... Aj_I.

The ds is said to cover X if RA1... Am
_
X. Ads < Y1 A1,..., Y, Am >

that covers X is said to be nonredundant if for every Y Ay with 1 _< j _< m, either
Aj Z or Aj Yk, for some k > j (otherwise, any fd that fails to satisfy this condition
is said to be redundant). Two ds’s of R are said to be equivalent if they are identical up
to permutation of the fd’s in the sequences. Given a ds < Y1 A1,..., Ym Am >
of R that covers X, if each fd Y A is embedded in some relation scheme Ry, then
we define the simple chase join expression (simple cje) E for the ds as E rx(Ri
7ry1A (R1) N"" I 7rYmAm (Rm)). Given a simple cje E and a state r on R, E(r) denotes
the evaluation ofE after substituting every relation scheme Rj in Ewith the relation rj E
r. It should be obvious that for every ds 7rl of R covering X, there is a nonredundant ds
7r2 of Ri covering X (obtained by removing redundant fd’s from 7rl) such that the simple
cje E1 for 7rl and the simple cje E2 for 7r2 satisfy E2 (r)

_
E1 (r) for every state r.

2.4. Weak instance and boundedness. Let r be a state on R, let I be a relation
defined on U, and let D be a set of dependencies. Then I is a weak instance for r with
respect to D if 7rn (I)

_
r for each Pi E R and I satisfies D. r is said to be consistent

with respect to D if a weak instance exists for the state with respect to D [GMV], [H2],
[Vas]. The set of all consistent states for Itwith respect to D is denoted by CONS(R, D).
CHASED(Tr) is called the representative instanceforstate r (with respect to D) [M], [$1],

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 33

[$2], [Y]. The X-totalprojection of the representative instance (with respect to D) for r,
denoted [X]rD, is {t[X][t E CHASED(Tr) and fiX] is total}.

A database scheme R is bounded with respect to a set of dependencies D if for every
X c_ U, every X-total tuple in the representative instance of any consistent state r of R
with respect to D can be obtained in at most k applications of rules for dependencies in D
to tableau Tr for some constant k _> 0 [GM], [MUV]. It has been shown in [GM], [MUV]
that a database scheme is bounded with respect to D if and only if for any X c_ U, the X-
total projection of the representative instance for any consistent state can be computed
by a predetermined relational expression that is independent of the state.

2.5. Constant-time-maintainable and independent schemes. The maintenanceprob-
lem (for database states) of R with respect to a set of dependencies D is the following
decision problem: Let r be a consistent state of a database scheme R with respect to D
and assume we insert a tuple t into rp E r. Is r to {t) a consistent state of R with respect
to D? We say that < r, t > is a yes-instance of the maintenance problem of R with re-
spect to D if rto {t} is consistent with respect to D; otherwise, < r, t > is a no-instance of
the maintenance problem of R with respect to D. An algorithm solves the maintenance
problem of R with respect to F if for every instance < r, t >, the algorithm returns a
yes answer exactly when < r, t > is a yes-instance of the maintenance problem ofRwith
respect to D. We call such an algorithm a maintenance algorithm.

Following [GW], we define constant-time-maintainable database schemes as follows.
Suppose there is a maintenance algorithm A that solves the maintenance problem of R
with respect to a set of dependencies D. Let < r, t > be an instance of the maintenance
problem of R with respect to D. Assume that r is stored on a device that responds to
requests of the form < R, >, where R R and is a Boolean combination of
formulas of the form A ’a,’ where A R, a is an element of the domain of A that
appears in either the inserted tuple t or the tuples previously returned, as defined below.
The device responds to the request < R, > by returning, if it exists, an arbitrary tuple
from ri r that satisfies . Now, we define #A(r, t) to be the number of requests of the
above form made by A on < r, t >. We say that A solves the maintenance problem ofR
with respect to D in constant time if there is a constant integer k _> 0 such that k _> 4CA
(r, t) for all instances < r, t > of the maintenance problem of R with respect to D. A
database scheme R is said to be constant-time-maintainable (ctm) with respect to D if
there is a maintenance algorithm that solves the maintenance problem ofRwith respect
to D in constant time [GW]. The reader should note that the definition suggests that
constant-time-maintainability is cover insensitive; that is, for any two equivalent sets of
dependencies, say, D and D, R is ctm with respect to D if and only if R is ctm with
respect to D.

A database scheme is independent with respect to a set of dependencies D if each
relation in a state satisfies its projected dependencies implies that the state is consistent
with respect to D [GY], [IIK], [$2].

The following example illustrates these definitions.
Example 1. Let R- {CAZ, CZ} and F- {CA Z, Z C}. This is the classic

City, Address, Zip database scheme. R is not independent with respect to F because
Z - C is embedded in both CAZ and CZ. We now show that R is ctm with respect to
F. Suppose that we have a consistent state r with respect to F and that we insert a tuple
t into either the CZ relation or the CAZ relation. We now prove that we need to issue
at most three requests of the above form to verify whether r tO {t} CONS(R, F).

Case 1. Assume t =< c, z > is to be inserted into the CZ relation. To verify whether
Z C is satisfied by the updated state, we need to issue the requests < CZ, Z =’z’>

34 HICTOR J. HERN/ifqDEZ AND KE WANG

and < CAZ, Z =’z’> to retrieve from r any tuple of the form < el, z > or < c2, a, z >.
Then the consistency of r implies that the updated state is consistent if and only if none
of these tuples is returned (i.e., they do not exist in r) or the returned tuples have the
constant c on column C (i.e., if one tuple is returned, then cl c or c2 c; if two tuples
are returned, then Cl c and c2 c).

Case 2. Assume t =< c, a, z > is to be inserted into the CAZ relation. To verify if
CA Z is satisfied by the updated state, we need to issue the request < CAZ, C ’c’
AA =’a’> to retrieve from r any tuple of the form < c, a, z’ >; if a tuple is returned with
z’ z, the updated state is not consistent with respect to F. Otherwise, we still have
to check for a possible violation of Z C. To verify this, we need to issue at most two
requests, as it is shown in Case 1 above.

The above discussion shows that at most three requests are required to solve the
maintenance problem of R with respect to F. Therefore R is ctm with respect
to F. [3

3. An equivalent definition of ctm schemes. It is difficult to work directly with the
notion of constant-time-maintainability as it was defined above, because the notion is
concerned with the existence of some kind of algorithm. To alleviate that problem, an
equivalent definition of constant-time-maintainability, which is based on a specific com-
putation, was given in [W]. We now present this alternative definition.

Assume that F is a set of fd’s embedded in R such that F]R is a cover of F+IR
for every R It. Let r be a state on R and let u be a tuple on U. We say that the pair
r =< vi,X A > can expand u if X A FI/t, v is a tuple in ri r for some
Ri R, and u[X] v IX]. Sometimes, we just say that vi (or X A) can expand u
if we are not concerned with the other element. Assume that r --< v, X A > can
expand u. Then r(u), the result of expanding u by r, is the tuple defined on U as follows:
r(u) is u, except that r(u)[A] is vi[A] if u[A] vi[A]. If r(u) u, we say that r can
stctly expand u. Let X =< r,..., r, >, where for 1 < j < m, rj =< pj, Xj - Aj >
and Xy Aj FIR, for some R, 6 R, and pj is a tuple from r, in r. We say that X can
(strictly) expand u if rx can (strictly) expand u, and for 2 < j < m, ry can (strictly) expand
rj_x(r_2(...rx(u) ...)). We also say that the sequence of fd’s < X A,... ,X, -A, > can (strictly) expand u in the above case.

Given a state r 6 CONS(R, F) and a total tuple v on V c_ U, let augu(v) be the
tuple on U defined as follows: augu(v)[V] v and for each B U V, augu(v)[B] is
a unique variable. The expansion computation of v in r (with respect to F) is defined as
follows [W]:

Let be augu(v).
Repeatedly expand by a tuple in r and an fd in F until either

(i) no more changes can be made to or

(ii) some constant is replaced by a different constant.

It was proven in [W], [WG] that the expansion computation has finite Church-
Rosser-like properties, provided that for every R R, F]R is a cover of F+ IR, which
has been assumed at the beginning of this section. In particular, the computation stops

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 35

after at most IUI strict expansions, and the condition (i) or (ii) on which the computa-
tion stops and the final tuple if it stops at (i) are unique for every input r and v. If
the expansion computation of v in r stops at condition (i), v is said to be expansible in r
(with respect to F), and the final universal tuple is called the expansion of v in r (with
respect to F); otherwise, v is said to be not expansible in r (with respect to F), and we
say that the expansion computation of v in r reveals a contradiction. Obviously, for any
state r CONS(R, F), every tuple in r is expansible in r.

The following theorem gives another equivalent definition of ctm schemes, which
we shall use for the rest of this paper.

THEOREM 1. Let R be a database scheme, and let F be a set of fd’s embedded in R
such that FIRi is a cover of F+IRi, for every R It. Then It is ctm with respect to F
ifand only iffor every instance < r, u > ofthe maintenanceproblem of It with respect to
F, r t3 {u} CONS(It, F) implies u is not expansible in r with respect to F.

Proof. See the proof of Theorem 3.3 and Definition 3.1 in [W]. (For a full proof see
Thm. 4.2.3 in [WG]. The assumption that for any R It, F[R is a cover of F+IR is
essential in that proof.)

4. Ctm schemes are bounded with respect to cover-embedded fd’s. Throughout this
section we assume that (1) F is a set of fd’s embedded in R; (2) FIR is a cover of
F+ IR for every R It; and (3) every fd in F has a single attribute on the right-hand
side. Any set G of cover-embedded fd’s can be transformed into a set satisfying (1)
and (3) above in polynomial time [BH], [GY]. The transformation into a set satisfying
(2) takes exponential time in general. For any such cover F of G, CHASEF(Tr) and
CHASEa(Tr) are identical up to the renaming of variables [MMS], and therefore they
have identical total projections. Thus our results in this section, about boundedness, and
in 5, about the computation of total projections, are actually those for cover-embedding
ctm schemes.

In this section, we shall prove that the constant-time-maintainability of It with re-
spect to F implies the boundedness of It with respect to F. We prove this fact by showing
how to chase any consistent state of a ctm database scheme in a particular way. In 5,
we show how to construct the relational expressions that compute the total projections
of representative instances.

4.1. The expansion of r. Let r CONS(R, F). We define

Tx {[is the expansion of u in r (with respect to F), u ri, r r},

where we assume that all the variables in T are unique. We say that T is the expansion
of r (with respect to F). Observe that Tt is a tableau in a chase of Tr with respect to
F. We shall prove that if R is ctm with respect to F, then we can obtain CHASEF(Tr)
from T without equating any variable in Tt to a constant from r. This shall imply that
for any X c_ U and for any r CONS(R, F), [X]rF {t[X][t T. and t[X] is total}.
Then the boundedness of It with respect to F follows because every X-total tuple in
can be obtained by at most IUI strict expansions, each being an application of an fd-rule
for some fd in F. We are going to prove this claim in 4.3 by induction on the number
of applications of fd-rules to the tableau. The following subsection shall constitute the
basis of such proof.

4.2. Basis of the proof of the main lemma. Assume the following for the rest of this
subsection:

It is ctm with respect to F, where F is as assumed above,
r CONS(R, F), and

36 HtCTOR J. HERN/DEZAND KE WANG

There are two tuples and in T, and a nontrivial fd X A F+IR1 for
some R R such that [X] [X] and [A] [A]. Furthermore, we assume
that and come from tuples u and v in r, respectively, that is, 2 is the expansion
of u in r (with respect to F) and is the expansion of v in r (with respect to F).

We shall prove that both [A] and [A] are variables.
Let V {BIB R1 and [B] [B]}; notice that R V is nonempty since

A R V; also observe that X c_ V and [V] are constants because by construction
ofT all the variables in and are distinct. Let z be a tuple on R defined as follows:
z[V] [V] and for all 13 R V, z[B] is a unique constant. We are going to prove
(1) z is expansible in r, and hence, by Theorem 1, r to {z} is consistent with respect to F,
and (2) [A] and [A] are variables.

LEMMA 1. z[V] is expansible in r.

Proof. This follows from [V] z[V] and [V] is expansible in r. [3

We now prove that the expansion computation of z[V] in r does not equate to a
constant any unique variable on columns/:1 V of aZgu (z, [V]). Therefore, if we re-
place these unique variables with the unique constants in z[R1 V], the same expansion
computation shows that z is expansible in r.

LEMMA 2. Let :v be the expansion of z[V] in r. Let Y {BIB U and :v[B] is a
constant}.Y fq (RI V) O.

Proof. We first prove that fi[Y] v[Y] V[Y].
Let T < y, Y B >,..., Tt =< yt, Y - Bt >, _> 0, be a sequence that can

strictly expand augu(z[V]) in an expansion computation of z[V] in r. From Lemma 1,
no contradiction is revealed in this expansion.

Let zj Ty(... (T(Zo))’" "), for 1 <_ j < l, where z0 augu(z[V]). It is not difficult
to prove that for 0 < j _< and for any C 6 U if zy [C] is a constant, then [C] zy [C].
This implies [Y] :v[Y]. Similarly, we can prove that for 0 < j _< and for any C U
if zy [C] is a constant, then V[C] zy [C]. This implies V[Y] :v[Y].

Now assume that there is B Y (R V). Then B V. But since fi[Y] V[Y],
[B] [B] and thus, by definition of V, B V. This is a contradiction. V1

Now we prove that z is expansible in r, that is that r {z} CONS(R, F).
LEMMA 3. (a) z is expansible in r, and (b) r tO {z} CONS(R, F).
Proof. From Lemma 2, the expansion computation of z[V] in r does not equate to a

constant any unique variable on columns Rx V of augt(z[V]). Therefore, by replacing
each unique variable of augt;(z[V]) on column A, A R1 V, with the unique constant
z[A], the same sequence of expansions shows that z is expansible in r.

Part (b) follows from part (a) above and Theorem 1. [3

The following lemma says that if we can apply an fd-rule to two tuples in T, then
the fd-rule equates only variables.

LEMMA 4. Let , and A be as defined above, g[A] and 9[A] are variables.
Proof. Without loss of generality, we assume that [A] is a constant. If g[A] is a

constant, then by assumption that [X] [X] and [A] [A], r CONS(R, F),
which is a contradiction to our assumption about r. Hence [A] must be a variable. Let
z and V be as defined above. We now show that z and violate the fd X A. Since
A V (because [A] [A]), z[A] [A] and both are constants by definition of z;
thus X - A is violated by these two tuples, because z[X] o[X]by definition of z. This
implies r tO {z} CONS(R, F). But this is a contradiction to Lemma 3. Therefore
both [A] and [A] must be variables. [3

4.3. Proofofmain lemma. We nowwant to prove that in any chase ofT no variable
is replaced by a constant, provided the database scheme is ctm. Before proving this, we

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 37

need to introduce the following notation. Let T be a tableau, and let 7- be the triple
< z, v, X A >, where u and v are tuples defined on U and X A is a nontrivial
fd in F+ IRi, for some Ri E P. We say that 7- is anfd-mle for T (with respect to F) if
and v are tuples in T and u[X] v[X]. If z[A] v[A], we say that 7- is a strict fd-mle
for T. 7-(T) denotes the tableau that results by equating u[A] with viAl. We say that the
sequence 7-z, , 7-, of triples of the above form is a sequence of (strict)fd-mlesfor T if 7-z
is a (strict) fd-rule forT, and for 2 < i < m, 7-i is a (strict) fd-rule for 7-i- ("" (7- (T))...).

LEMMA 5. Let R be a ctm database scheme with respect to F. Then for all r
CONS(R, F), there is no finite sequence of fd-rules for T. (the expansion of r) that re-
places a variable in T. by a constantfrom r.

Proof. We prove it by induction on the length, k, of any sequence of fd-rules for Tt.
Basis. k 1. By Lemma 4, there is no sequence of fd-rules for T of length at most

1 that replaces a variable of Tx by a constant from r.
Induction. k > 1. Assume that for all r CONS(R, F), there is no sequence of

fd-rules for Tt of length at most k m 1 > 1 that replaces a variable of Tx by a
constant from r. We show the lemma holds for k m. In fact, if it does not hold for
k m, we can construct a consistent state r that will let us show that there is a sequence
of fd-rules for Txl, the expansion of rl, of length no more than m 1 that replaces a
variable in TxI by a constant from r, contradicting the inductive hypothesis.

Let r CONS(R, F) and let Tt be the expansion of r. We assume there is a
sequence of fd-rules 7-z =< z,v,X A >,7-2 =< z2,v2,X2 A2 >,...,7-,, =<
z,,, v,, X, A, >, for T, in which 7-, is the first fd-rule that replaces a variable
in Tx by a constant from r. Without loss of generality, we further assume that each fd
Xj Aj is in F, for 1 < j < m, and u,,[A,] is a constant and v,[A,,] is a variable. By
the inductive hypothesis, all of the other fd-rules equate only variables.

We now construct a state r that shows that the sequence 7-z 7-m does not exist.
Let us consider the first fd-rule, 7-t =< z,Vl,Xt A1 >, and assume without loss of
generality that XA1 c_ Rz, for someR R. Then Ul [Xl] ’Ol IX1] 1 and u are both
in Tx, and we may assume z [A vz [A]; otherwise, 7-2"" 7-, will be a sequence of fd-
rules for Tt of length at most m I that replaces the variable v,,[A,,] with the constant
z,[A,], contradicting the inductive hypothesis. From the inductive hypothesis,
and vt [A1] are variables. Let V {B[B /1 and ul [B] 1 [B]} and let z be the (total)
tuple on R defined as follows: z[V] zz [V] and z[R V] are all unique constants (i.e.,
new constants that are not in r). Then from Lemma 3, r r t3 {z} CONS(R, F).

We now expand every tuple in T by the tuple z (and fd’s in F+l/tl) as much as
possible and let the final result be T’. (Note that we cannot assume that T and T’ are
the same, because z, which contains unique constants, is not in r, andT is the expansion
with respect to only the tuples in r.) Furthermore, let z’ be the expansion of z in the
state r, and let T1 T’ t_J {z’}. In the following, we show that T1 is identical to T,*r up to
renaming ofvariables and that < 7-,..., 7- > is a sequence of fd-rules for T1 (hence for
T) that equates a variable with a constant, where 7- < u, v,X A >, uj
originates from u and v T originates from v, 2 < j < m. The proofs are stated as
the following claims. (See the appendix for the proofs of these claims.)

CLAIM 1. Tt is the expansion ofrz. That is, T is identical to the T.t up to the renaming
ofvariables.

CLAIM 2. u[A] and vt [A] are both replaced by the constant z[Az], that is, the effect
ofthefirstfd-rule has been enforced when computingTfrom T.. (Note that this is different
from saying that u [At] and v [A] are equated directly in the computation ofTz from T..
Thus, the expansion T contains no repeated variables still holds.)

38 HICTOR J. HERNANDEZAND KE WANG

In the following claim, we prove that there is a sequence of fd-rules 7- =< u, v],
X, A, > for T that is "parallel" to the sequenceX A >,...,T =< U,, V,,

and uj come from the same tuple in T and so doT,..., T, for T in the sense that ujv and vj. This is intuitively correct because the computation of T’ from T does not
make distinct any repeated occurrences of symbols; therefore we can always apply the
fd’s in T,..., T, to the corresponding tuples in T. A formal argument is given in terms
of containment mappings by the following claim.

CLAIM 3. There are mappings 00,. 0,_ such thatfor all 0 < j < m 1,
(i) 0j is a containment mappingfrom Tj(. (To(T.))...) to T(. (T(T’))...);
(ii) 0 satisfies the condition that any variable 6 is mapped to either itselfor to the unique

constantfrom z[R V] that replaced 6 when we computed T’, wherefor i < < j, T[=<
Ol-l(Ul),Ol-l(Vl),Xl At >,and TO and T are defined to be such that To(T.) T. and
T(T’) T’.

We now complete the proof of the lemma by showing that there is a sequence of fd-
rules for T’ (hence for T Tx) of length no more than m 1 that replaces a variable
by a constant. Let us consider T, --< Urn, V,, Xm A, > and Om- defined as
above. Recall that um[Am] is a constant from r and v,[Am] is a variable. Since Om- is a
containment mapping, we have that Om- (u,) [X,] Om-- (Vm)[X,], because u[Xm]

vm[X,]. Then from part (ii) of Claim 3, O,_ (Vm)[A,,] must be the variable vm[Am];
otherwise Om- (Vm) and Om-(Um) will violate Xm Am, which is a contradiction
to r 6 CONS(R,F). Therefore, applying T to T_I(..-(-(T’)).-.) equates the
variable v,,[Am] to the constant urn[Am], where Tm =< Om-(Um),Om-(Vm),X,
Am >. Then, Claims 1 and 2 and the above discussion show that r is a consistent state
for which < T, 7" T > iS a sequence of fd-rules for T* of length at most m- 1 thatrx
equates a variable with a constant. But this is a contradiction to the inductive hypothesis
of the lemma.

This completes the induction and the proof of this lemma. [q

4.4. Main theorem. The following theorem follows from the way we compute T,
Lemma 5, and the definition of bounded schemes.

THEOREM 2. Let R be a ctm data base scheme with respect to F. Then R is bounded
with respect to F.

5. Computing [X]rF by simple chasejoin expressions. We now show that the unions
of simple cje’s that compute the total projections of representatives instances can be
constructed in exponential time in the scheme size.

We first give a lemma stating a close relationship between the sequences of fd’s used
in the expansion computations and derivation sequences.

LEMMA 6. Let R be a database scheme, and let F be a set offunctional dependencies.
Let r be a consistent state on R with respect to F and let t be a total tuple on some
R such that t is expansible in r with respect to F. If some sequence of fd’s < X1
A,..., Xm -- Am >, m >_ O, in F strictly expands augu(t) in an expansion computation
of t in r and the expanded tuple has constants on X c_ U, then < X
A, > is a ds of Ri covering X.

Proof. The lemma follows immediately from the definitions.
Unlike independent schemes, when ctm schemes are considered, one fd may be

embedded in more than one relation scheme, as illustrated by Example 1. To deal with
such a multiple embedding situation, we define for any set of attributes W c_ U

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 39

That is, $ W $ is the relational expression that is the union of projections on W of all
the relation schemes that embed W.

In fact, Lemma 5 and the way the expansion T was computed in the last section
suggest a method to extract the relational expression that computes the total projections
of representative instances. Given a consistent state r with respect to F and a subset
X c_ U, let t be a tuple in [X]rF. From the result of the last subsection, t [X] for
some tuple in Tx, where is the expansion of some tuple v in some rp E r. From
Lemma 6, let < X1 "-’-+ Ai,..., Xm Am >, m _> 0, be the ds of Rr, covering X that
strictly expands augv(v) in the expansion computation of v in r with respect to F. We
define the expression E 7rx(Rp N.L X1A1 .L .L XmAm .L). Clearly, from the
way is computed, we have t E E(r). By Theorem 5 in [MUV], E(r) c_ [X]rF. It is not
difficult to see that we can transform the expression E into a union of simple cje’s for
the ds < X1 A1,..., Xm Am >, in which each simple cje corresponds to a choice
from the relation schemes embedding the fd’s in the ds.

From the above discussion, the union of all simple cje’s for all ds’s of Ri’s covering X
produces exactly the X- total projection of representative instances. Hence we have an
algorithm to compute the X-total projections for consistent states of any ctm database
scheme Rwith respect to a set F of embedded fd’s: For each Ri E R such that R+

_
X,

find all nonequivalent and nonredundant ds’s of Ri covering X. The ds’s are of the form
< X1 A1,...,X, Am >,m _> 0, whereX A Fforalll _< j _< m.
For each of these ds’s, construct the union of simple cje’s E for it as above. The union
of all these E’s is an expression for computing the X-total projection of representative
instances. The following theorem is a consequence of the above discussion.

THEOREM 3. Let Rbe a ctm database scheme with respect to F, where F is a set offd’s
embedded in R. Thenfor any X c_ U andfor any consistent state r ofR, [X]r, the X-total
projection of the representative instance of r, can be computed with a union ofprojections
onto X ofsimple cje’s that cover X.

By an algorithm given in [AC3], [C], we can optimize the unions of simple cje’s
obtained above in polynomial time of size of these expressions. The returned expression
is minimal both in the number of subexpressions and in the number of join operations
[AC3], [C]. However, the algorithm given above does not suggest an efficient way of
doing it, since in general, there may be an exponential number of simple cje’s. As shown
in [AC1], [IIK], when independent schemes are considered, for each X c_ U and each

R Rsuch that Rf
_
X, there is just one "maximum" simple cje ofR covering X that

has to be considered. This is not true of ctm schemes because there is no such maximum
simple cje, as shown below. We usually examine all simple cje’s for all the combinatorics
of derivations for each R R. Let us consider the following example.

Example 2. Let R {R(ID),R2(IC),R3(CD)} and F {I D,I --. C,C --.
I, C D}. This is a Course-Instructor-Department database scheme. It is not difficult
to see that R is not independent with respect to F. However R is ctm with respect to F;
Example 1 in [HC] shows this fact. To compute the CD-total projection ofrepresentative
instances, for example, we need to consider the following ds’s that cover CD: the empty
ds <> of R3, < C D > and < I D > of R2, and < I C > of R1. Their
corresponding simple cje’s are E1 R3, E2 7rCD(R2 b R3), E3 7rcD(R2 R),
and E4 7reD(R1 R2). Observe that E2 and E3 are incomparable1. In particular,
let ra and r2 be the consistent states shown in Table 1. It is easy to verify that E2(r)
E3(rl) and E3(r2) E2(r2).

1E and E’ are incomparable if neither E C_ E’ nor E’ C_ E holds, where E D_ E’(E D E’) if and only if
E(r) _D E’(r)(E(r) D E’(r)) for every consistent state r.

40 HICTOR J. HERN./dNDEZ AND KE WANG

TABLE 1
Statesfor Example 2.

Tag I C D Tag
R2 c R2
R3 d Rt

The reader may also note that < C D > and < I D > both are minimal ds’s
ofR covering CD in the terms of [C], and both are minimal derivations of CD from R
in terms of [ILK], and neither is "embedded" in the other.

Then from the above we get the expression

R3 J 7rcD(R2 > R3) t_J 7rcD(R2 R1) I.J 7rcD(R1 R2),

which is equivalent to Ra t3 7rcD(R2 R1).
It is interesting to note that the polynomial constructions of algebra computing X-

total projections for independent schemes [AC1], [IIK], [$2] follow immediately from
the uniqueness property of independent schemes and our results for ctm schemes. When
independent schemes are considered, the problem of combinatorics of derivations dis-
appears because at most one ds has to be considered for each relation scheme, and each
term XiAi .L becomes 7rxiAi (Ri) for the unique relation scheme Ri that embeds the
fd Xi Ai.

Alternatively, to compute the total projection [X]rF for ctm schemes, we may first
compute the expansion T of r using the expansion computation as a subroutine. This
way we can compute total projections in linear time (in the state size) without predeter-
mining any relational algebra expression, assuming each strict expansion is charged one
unit of time. One advantage of this alternative is that the expansion T, once computed,
can be used for answering all queries until state r is updated next time, and all we have to
do for each additional query is a total projection operation on T. Another advantage is
the uniformity of enforcing constraints and processing queries. The expansion computa-
tion is all we need for both kinds of transactions. This method is particularly meaningful
when queries are more often imposed than updates and the universe of attributes is not
very large.

6. Computing [X]r with respect to egd’s. In this section, we prove that if the con-
straints considered is a set of egd’s and the database scheme has a lossless join with re-
spect to the constraints, then the database scheme is bounded if it is ctm. The following
theorem is due to Wang and Graham [W], [WG].

THEOREM 4. Let R be a database scheme, let D be a set of egd’s on U such that the
scheme R has a lossless join with respect to D, and let G be the embedded fd’s implied by
D. Then R is ctm with respect to D ifand only ifthe following statements hold.

1. G is a cover of D;
2. R is ctm with respect to G.

The following is a corollary to Theorem 4 above.
THEOREM 5. Let R be a database scheme and let D be a set of egd’s on U such that

the scheme R has a lossless join with respect to D. IfR is ctm with respect to D, then
1. R is bounded with respect to D;
2. A relational algebra expression for computing totalprojections ofrepresentative in-

stances can be constructed in exponential time in the number ofattributes.
Proof. Assume R is a ctm database scheme with respect to D. Let G be a cover of the

embedded fd’s implied by D. We can find G by enumerating all fd’s and selecting those

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 41

logically implied by D. From part (1) of Theorem 4 and the cover-insensitive property
of total projections, for every consistent state r with respect to D, and for every X c_ U,
[X]r [X]ra. Then from part (2) of Theorem 4, R is ctm with respect to G. Thus,
the method in the last section for computing [X]ra can be used to compute [X]g as well.
Then the theorem follows from the results in that section.

A useful case to which the above results can be applied is when D is a set of fd’s and
the scheme It has a lossless join with respect to D.

7. Computing [X]r with respect to fd’s and M It. When D F to {M It} is given
as the constraints and X is taken from a single relation scheme, our method to compute
the X-total projection with respect to a set of embedded fd’s F can also be used.

The following lemma is Theorem 5 in [GW] (or Thm. 5.4.1 in [WG]).
LEMMA 7. Let It be a ctm database scheme with respect to D F tO { It}, where F

is a set of fd’s. Let G be the set of fd’s implied by D. Then It cover embeds G.
From the above lemma, we have the following result.
THEOREM 6. Let It be a ctm database scheme with respect to D F t_J { It}, where

F is a set of fd’s. Let G be the set of fd’s implied by D and let H be an embedded cover of
G. Thenforany r CONS(R,D), andforany X c_ R,R R, [X]rD [X]rH.

Proof. By Lemma 7, H tO {> R} is equivalent to F tO {t R}. Since the chase
H{R}process is cover insensitive, we have [X]rD [X]r Then by Theorem 7 in [CM2],

Ht.J{>R}[X]rn [X]r and the theorem follows.
Given a set of fd’s G, if R cover embeds G, an algorithm in [GY] can find an em-

bedded cover H of G in polynomial time. Therefore the total projection of any set of
attributes X _c Ri, Ri R, for ctm schemes with respect to fd’s plus the jd M R can be
computed by our methods in 5.

$. Conclusions. We have shown that constant-time-maintainable database schemes
are bounded with respect to dependencies in the following cases: (1) only cover-embed-
ded functional dependencies appear as constraints; (2) only equality-generating depen-
dencies appear as constraints and the database scheme has a lossless join. Interest-
ingly, we showed that total projections can be computed via unions of projections of
simple chase join expressions. Therefore by previous results in [C], we can compute opti-
mally the total projections of the representative instances of constant-time-maintainable
database schemes. We also proved that by the same methodwe can compute X-total pro-
jections when a set of functional dependencies and the join dependency of the database
scheme are the constraints, for any X included in some relation in the database scheme.

Within the above context, our results show that fast constraint enforcement is strong-
er than efficient query processing in the sense that every constant-time-maintainable
scheme is bounded with respect to dependencies. Our results also showed that the class
of constant-time-maintainable schemes is highly desirable with respect to query process-
ing. Therefore the class of constant-time-maintainable database schemes is the largest
class of database schemes, which is highly desirable with respect to both constraint en-
forcement and query processing. Importantly, this class of schemes can be effectively
recognized by known methods [GW], [W], [WG]. The previously known largest class of
database schemes with these desirable properties is the class of independent database
schemes which is a proper subclass of constant-time-maintainable schemes.

The boundedness of constant-time-maintainable schemes was proven in the absence
of the essential uniqueness property [GY], [$2] of independent schemes. As a conse-
quence, the polynomial construction ofthe relational expressions that compute total pro-

42 HCTOR J. HERN,h.NDEZ AND KE WANG

jections for independent schemes with only functional dependencies [AC1], [C], [IIK],
[$2], [$3] follows immediately from the uniqueness property and our construction.

Ourwork illustrates a more general technique to prove boundedness, and it provides
more insight into characterizing boundedness.

Appendix.

A. Proofs of claims in main lemma. In this section, we present the proofs of Claims
1, 2, and 3 in Lemma 5. These proofs should be read in the context of that lemma, since
we are assuming all the assumptions, definitions, and notation introduced there. First,
we present a claim needed in Claims 1 and 3.

CLAIM 0. No variables are replaced by constantsfrom z[V] when computing T’ from

Proof. Let tl be a tuple in T. Let 1 =< z, W1 B1 >,..., , =< z, W,
B,, > be a sequence that can strictly expand tl when computing T’ from Tx; observe that
the fd’s are from F+IR1. Since A1,..., A, can strictly expand tl and rl CONS(R, F),
tl [/3/] is a variable (because z[Bt] is a constant) for i < < m.

We claim that for 1 < < m, Bt R1 V. Assume otherwise. That is, assume
there is Bq for some 1 < q < m such that Bq V. Let Y1 {Bltl[B] z[B]}. Then
Y1 c_ V since z[R1 V] are all unique constants. Thus tl[Yx] z[Y1] ul[Y1]. Also,
notice that Bq Y1, because tl [Bq] is a unique variable (and z[Bq] is a constant). From
a property of the chase process and the fact that t and z have common values exactly
on Y1, we have Y1 Bq F+IR. Therefore one step of chasing Tx by applying the
fd-rule < zq,tl,Y1 Bq > toul and tl will equate the variable tl[Bq] to the constant
ul [Bq], which is a contradiction to the inductive hypothesis. Thus the claim B R1 V
for I < < m holds, and therefore Claim 0 is proven.

CLAIM 1. T1 is the expansion ofrl. That is, T1 is identical to T. up to the renaming of
variables.

Proof. Assume that T1 is not the expansion of rl. Then there is a tuple t T1 and a
tuple p ert for some rt e rl and an fd Yt Bt FIRs such that < p, Yt --* Bt > can
strictly expand t. Then t[Bt] must be a variable; otherwise, t andp violate B, which
is a contradiction to rl CONS(R, F). We claim that t comes from a tuple in T, and
p is a tuple from r. First, notice that t cannot be the tuple z’ because z’ is already the
expansion of z in rl. Then t must come from a tuple in T (that is, t T’). Therefore, p
cannot be z, because at this point we already expanded every tuple from Tx by z as much
as possible. Therefore our claim holds. Since we are expanding t T’ by p from r, and
since by Claim 0 to obtain T’ from T we have just replaced some variables with unique
constants that do not appear in r, these changes certainly will not create the possibility
for new strict expansions by tuples from r. Therefore this is a contradiction. Thus Claim
1 holds.

CLAIM 2. ul [A1] and vl[A1] are both replaced by the constant z[A1], that is, the effect
ofthe first fd-rule has been enforced when computing T1 from T..

Proof. It is not difficult to see that in the above computation of T1, u [A], and vl
are both equated to z[A1] because expanding ul by < z, X1 A1 > will set ul[A1] to
z[A1], and expanding Vl by < z, X1 --. A1 > will set vl[A1] to z[A1]. Therefore Claim 2
holds. U

CLAIM 3. There are mappings 0o,..., Ore-1 such thatfor all 0 < j < m 1,
1. Oj is a containment mappingfrom 73 (... (7o (T)) .) to 7" (... (7" (T’)) .);
2. O satisfies the condition thatany variable is mapped to eitheritselforto the unique

constantfrom z[R1 V] that replaced when we computed T’,

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 43

wherefor 1 < < j, T[=< Ol_l(Ul),Ol_l(Vl),Xl At >, and TO and T are defined to be
such that TO (T:) T and (T’) T’.

Proof. The proof is by induction on j.
Basis. j O. Let tl, t2,..., tq be the tuples in T; for each tt, 1 < < q, let t} be the

tuple in T’ that comes from h, that is, t is tt with possibly some of its variables replaced
by the unique constants from z[R1 V] from Claim 0. Thus it should be clear that there
is a containment mapping 00 from T to T’ given by Oo(h) t for 1 < < q; and
00 is such that any variable 6 is mapped to either itself or to the unique constant from
z[R1 V] that replaced 6 when we computed T’.

Induction. We now assume that our claim is true for j k 1, 1 < k < m 1. We
prove it for j k.

First we notice that the sequence TI,..., T are fd-rules for T’ from the inductive hy-
pothesis; and thereforeOk_l (Uk)[Xk] Ok_l (Vk)[Xk]. LetT_ Tk--l (" (To(T.)) ")
and let T_ T_ (... (T6(Tt)) "). We now derive a containment mapping Ok from
0k-1 and Tk. Since uk[Ak] and vk[Ak] must be some distinct variables
(because at the beginning of the proof of Lemma 5 we have assumed that all fd-rules ex-
cept T, equate only variables), Ok-1 maps each of them to either itself or to the unique
constant from z[R1 V] that replaced it when we computed T’. There are two cases
to analyze depending on whether both Ok-1 (61) and Ok-1 (62) are unique constants from

Case 1. 0k-1(61) and 0k-1(62) are both unique constants from z[R1 V]. Then
0_ (6) 0_ (6z), because we only introduced at most one unique constant on each
column in the construction of T’. (Then T is a trivial fd-rule for T_ that makes no
change to T_1, i.e., T T_I.) Without loss of generality, we assume the application
of Tk to T_ replaces 61 with 62. We define Ok to be Ok-1 except that Ok does not need
to be defined for 61.

Case 2. Either Ok-1 (61) or Ok-1 (62) (or both) are variables. Assume without loss of
generality that Ok-1 (61) is a variable and that we apply -k to T_ by replacing 61 with
62. Then we apply T to T_ by replacing Ok-1 (61) with Ok-1 (62) and define Ok to be
Ok-1 except that Ok does not need to be defined for 61.

The mapping Ok defined above satisfies the conditions required by our claim. This
completes the induction and our proof of Claim 3.

Acknowledgments. We are grateful to the anonymous referees for their constructive
comments and suggestions that made this paper more readable.

[ABU]

[ACI]

[AC2]

[AC3]

[ASU]

REFERENCES

A. V. AHO, C. BEERI, AND J. D. ULLMAN, The theory ofjoins in relational databases, ACM Trans.
Database Systems, 4 (1979), pp. 297-314.

E ATZENI AND E. P. E CHAN, Efficient query answering in the representative instance approach, in
Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1985, pp. 181-188.

Independent database schemes underfunctional and inclusion dependencies, in Proceedings
of the Thirteenth International Conference on Very Large Databases, Brighton, England,
1987, pp. 159-166.

Efficient optimization ofsimple chase join expressions, ACM Trans. Database Systems, 14
(1989), pp. 212-230.

A. V. AHO, Y. SAGIV, AND J. D. ULLMAN, Equivalence ofrelational expressions, SIAM J. Comput.,
8 (1979), pp. 218-246.

44 HICTOR J. HERNANDEZAND KE WANG

[BH]

[BV]

[BrV]

[c]

[CMI]

[CM2]
[CGKV]

[CHI]

[CH2]

[CH3]

[CH4]

IF]

[GM]

[GMSV]

[GMV]

[GW]

[GY]

[H1]

[H2]

[HC]

[I]

[IIK]

[M]

[Ma]
[MMS]

[MRW]

C. BEERI AND P. HONEYMAN, Preserving functional dependencies, SIAM J. Comput., 10 (1981),
pp. 647-656.

C. BEERIAND M. Y. VARDI,Aproofprocedurefor data dependencies, J. Assoc. Comput. Mach., 31
(1984), pp. 718-741.

V. BROSDA AND G. VOSSEN, Update and retrieval in a relational database through a universalschema
interface, ACM Trans. Database Systems, 13 (1988), pp. 449-485.

E. E E CHAN, Optimal computation oftotalprojections with unions ofsimple chasejoin expressions,
in Proceedings ofACM SIGMOD Annual Meeting, Boston, MA, June 1984, pp. 149-163.

E. E E CHAN AND A. O. MENDELZON, Answering queries on the embedded-complete database
schemes, J. Assoc. Comput. Mach., 34 (1987), pp. 349-375.

Independent and separable database schemes, SIAM J. Comput., 16 (1987), pp. 841-851.
S. S. COSMADAKIS, H. GAIFMAN, P. C. KANELLAKIS, AND M. Y. VARDI, Decidable optimization

problems for database logic programs, in Proceedings of 20th ACM Symposium on Theory
of Computing, 1988, pp. 477-490. (It also appears as IBM Research Report RJ 6145 (60855),
Yorktown Heights, NY, March 22, 1988.)

E. P. E CHANAND H. J. HERNANDEZ, On the desirability of-r-acyclic BCNFdatabase schemes, The-
oret. Comput. Sci., 62 (1988), pp. 67-104.

Independence-reducible database schemes, in Proceedings of the Seventh ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Austin, TX, 1988, pp.
163-173.

Testing unboundedness ofdatabase schemes andfunctional dependencies, Inform. Process.
Lett., 28 (1988), pp. 317-326.

On generating database schemes bounded or constant-time-maintainable by extensibility,
Acta Inform., 25 (1988), pp. 475-496.

R. FAGIN, Horn clauses and database dependencies, J. Assoc. Comput. Mach., 29 (1982), pp. 952-
983.

M. H. GRAHAMAND A. O. MENDELZON, Thepower ofcanonical queries, unpublished manuscript,
1983.

H. GAIFMAN, H. MAIRSON, Y. SAGIV, AND M. Y. VARDI, Undecidable optimization problems for
database logic programs, in Proc. of 2nd IEEE Symposium on Logic in Computer Science,
Ithaca, NY, 1987, pp. 106-115. (It appears also as IBM Research Report RJ 5583 (56702),
Yorktown Heights, NY, April 3, 1987.)

M. H. GRAHAM, A. O. MENDELZON, AND M. Y. VARD,Notions ofdependency satisfaction, J. Assoc.
Comput. Mach., 33 (1986), pp. 105-129.

M. H. GRAHAM AND K. WANG, Constant time maintenance or the triumph of the fd, in Proceed-
ings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
Cambridge, MA, 1986, pp. 202-216.

M. H. GRAHAM AND M. YANNAKAKIS, Independent database schemas, J. Comput. System Sci., 28
(1984), pp. 121-141.

P. HONEYMAN, Extension joins, in Proceedings of International Conference on Very Large
Databases, 1980, pp. 239-244.

Testing satisfaction offunctional dependencies, J. Assoc. Comput. Mach., 29 (1982), pp.
668-677.

H. J. HERNANDEZAND E. E E CHAN,A characterization ofconstant-time maintainabilityforBCNF
database schemes, in Proceedings of the 1988 ACM SIGMOD International Conference on
Management of Data, Chicago, IL, June 1988, pp. 209-217.

Y. E. IOANNIDIS,A time bound on the materialization ofsome recursively defined views, in Proceed-
ings of the Eleventh International Conference on Very Large Databases, Stockholm, Sweden,
1985, pp. 219-226.

M. ITO, M. IWASAKI, AND T. KASAMI, Some results on the representative instance in relational
databases, SIAM J. Comput., 14 (1985), pp. 334-354.

A. O. MENDELZON, Database states and their tableaux, ACM Trans. Database Systems, 9 (1984),
pp. 264-282.

D. MAIER, The Theory ofRelational Databases, Computer Science Press, Rockville, MD, 1983.
O. MAIER, A. O. MENDELZON, AND Y. SAGIV, Testing implications of data dependencies, ACM

Trans. Database Systems, 4 (1979), pp. 455-469.
D. MAIER, D. ROZENSHTEIN, AND D. S. WARREN, Windowsfunctions, in Advances in Computing

Research, JAI Press, Greenwich, CT, 1986, Vol. 3, pp. 213-246.

BOUNDEDNESS OF CONSTANT-TIME-MAINTAINABLE SCHEMES 45

[MUV]

[NS]

[S1]

[S2]

[S3]
[S4]

[u]
[Var]

[Vas]

[w]

[WG]

[Y]

[YP]

D. MAIER, J. D. ULLMAN, AND M. Y. VARDI, On the foundations of the universal relation model,
ACM Trans. Database Systems, 9 (1984), pp. 283-308.

J. E NAUGHTON AND Y. SAGIV, A decidable class of bounded recursions, in Proceedings of the
Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
San Diego, CA, 1987, pp. 227-236.

Y. SAGW, Can we use the universal instance assumption without using nulls?, in Proceedings of the
1981 ACM SIGMOD International Conference on Management of Data, 1981, pp. 108-120.

,Acharacterization ofglobally consistent databases and their correct accesspaths, ACM Trans.
Database Systems, 8 (1983), pp. 266-286.
,Evaluation ofqueries in independent database schemes, J. Assoc. Comp. Mach., to appear.
,On bounded database schemes and bounded horn-clause programs, SIAM j. Comput., 17

(1988), pp. 1-22.
J. D. ULLMAN, Principles ofDatabase Systems, Computer Science Press, Rockville, MD, 1982.
M. Y. VARDI, Decidability and undecidability results for boundedness of linear recursive queries, in

Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Austin, TX, 1988, pp. 341-351.

Y. VASSILIOU, A formal treatment of imperfect information in data management, CSRG TR-123,
University of Toronto, Toronto, Canada, 1980.

K. WANG, Can constant-time-maintainability be morepractical? in Proceedings of the Ninth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, 1989, pp. 120-
127.

K. WANGAND M. GRAHAM, Constant-time maintainability: A generalization ofindependence, sub-
mitted for publication, 1988.

M. YANNAKArdS,Algorithmsforacyclic database schemes, in Proceedings of the International Con-
ference on Very Large Databases, 1981, pp. 82-94.

M. YANNSAND C. H. PAPADIMITRIOU, Algebraic dependencies, J. Comput. Systems Sci., 25
(1982), pp. 2-41.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 46-56, February 1993

() 1993 Society for Industrial and Applied Mathematics
004

TIGHT WORST-CASE PERFORMANCE BOUNDS
FOR NEXT-k-FIT BIN PACKING*

WEIZHEN MAOt

Abstract. The bin packing problem is to pack a list of reals in (0, 1] into unit-capacity bins using the
minimum number of bins. Let R[A] be the limiting worst value for the ratio A(L)/L* as L* goes to x,
where A(L) denotes the number ofbins used in the approximation algorithm A, and L* denotes the minimum
number ofbins needed to pack L. Obviously, R[A] reflects the worst-case behavior of A. For Next-k-Fit(NkF
for short, k _> 2), which is a linear time approximation algorithm for bin packing, it was known that 1.7 -k

3
lo(k-1) -< R[NkF] _< 2. In this paper, a tight bound R[NkF] 1.7 + o(-1) is proved.

Key words, bin packing, approximation algorithm, worst-case performance

AMS(MOS) subject classifications. 68Q25, 68R05

1. Introduction. Given a finite list L (al, a2,..., am) of reals in (0, 1], and a se-
quence ofunit-capacity bins, B1, B2,..., the bin packing problem is to pack the numbers
in the list into the bins such that no bin contains a total exceeding i and that the number
of bins used is minimized.

Since the bin packing is NP-complete [9], no polynomial-time algorithm has ever
been developed. A lot of effort has been made to find good approximation algorithms
for the problem.

In order to evaluate and compare the quality of different approximation algorithms,
we need to have a rigorous mathematical analysis of the worst-case behavior of these
algorithms. Given an approximation algorithm A, and for any list L, let A(L) be the
number of bins used in the packing resulting when A is applied to L, and L* be the
minimum number of bins needed to pack L. The worst-case performance bound of the
approximation algorithm A is defined to be R[A] lim sup max{A(L)/L* } as L* - .Besides those well-studied approximation algorithms such as First-Fit (FF), Best-
Fit (BF), First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD), and Next-Fit (NF)
[1], [5], [6], [7], [8], there is another important algorithm called Next-k-Fit (NkF), where
k is an integer greater than 1. In NkF, we process the numbers in L in turn, starting from
a, which is placed at the bottom of the first bin B1. Suppose that a is now to be packed.
We look at the last k nonempty bins. If a does not fit into any of them, a new bin is
created; otherwise, a will go to the lowest indexed one of these k nonempty bins into
which it fits. Earlier, Johnson [7] proved that 1.7 + < R[NkF] < 2. In the recent
paper written by Csirik and Imreh [2], a new lower bound of R[NkF] was given. They
showed that R[N2F] 2 and 1.7 + 10(:--1) R[NkF] _< 2 for k _> 3. In this paper, we
study the tight worst-case performance bound for the Next-k-Fit algorithm. Our result
is the following theorem.

MAIN THEOREM.

3
R[NkF]=I.7+ lO(k-1)’

k>2.

In 2, we study the upper bound proving technique for NkF bin packing. In 3, we
prove an important lemma. In 4, we show the proof of the main theorem.

Received by the editors May 6, 1989; accepted for publication (in revised form) October 1, 1991. This
research was supported by National Science Foundation grant CCR-88-13283, andwas partially done at Prince-
ton University.

Department ofComputer Science, The College ofWilliam and Mary, Williamsburg, Virginia 23187-8795.

46

NEXT-k-FIT BIN PACKING 47

2. The upper bound of R[NkF]. It is known that R[N2F] 2, and R[NkF] >_
31.7 + 10(k-1) for k _> 3 [2]. To prove the main theorem, all we need to do is prove the

3 for k > 3. We need some carefulupper bound result, i.e., R[NkF] <_ 1.7 + 10(k-1)
analyses and preliminary results.

In the NkF packing of any list L, there are NkF(L) nonempty bins, B1,B2,...,
BNkF(L). For each bin Bi, its content can be divided into k areas, Ai,1, A,2,..., A,k,
where A,I contains all the numbers coming to B when B is the rightmost, or, in other
words, the most recently created nonempty bin in the current packing, and Ai,2 contains
all the numbers coming to B when B becomes the second rightmost nonempty bin, etc.
Finally, A,k contains all the numbers coming to B when Bi becomes the oldest among
the k active bins and is about to be thrown away. Figure 1 shows the division for N3F.

3To prove the upper bound, we wish to show that NkF(L) <_ (1.7 + 10(k-1))L* + c

for all L, where c is a constant. With the help of the following weighting function W
(0, 1] R+, also shown in Fig. 2, we will find the relation between NkF(L) and L*.

c- lO

+ +

if c E (0,];

ifc e (1/2, 1/21;
ifc e (1/2, 1].

For any number ai in L, W(ai) is called the weight of ai. W(B), the weight of
the bin Bi, is defined to be the sum of the weight of all numbers in B, i.e., W(B)
YV,eB, W(ay). And W(L), the weight of the list L, is defined to be the sum of the

weight of all numbers in L, i.e., W(L) YVaeL W(ay). When there is no possibility of
confusion, we also use B to denote the sum of the numbers in bin B, Ai,h the sum of
the numbers in area Ai,h, and bi the bottommost item in bin B.

3. A lemma.
LEMMA. In the NkFpacking of L, for j < NkF(L), if By < , then there is > 0

such thateither(1) j +l < NkF(L),and By + W(By+I) +. .+ W(By+I) >_ l+ By+l,
6or (2) j + NkF(L), and B + W(Bj+) +... + W(BNF(Z)) + 2 >_ + gBNF(Z).

Proof For notational simplicity, we assume j 1. Because B1 < , items in A2,1
1 Consider the following cases.and A3,1 must be greater than g.

Case I. If B < 1/2, then B must be followed by k bins with their bottommost items
greater than 7, i.e., b2,..., bk+l > 21- (Fig. 3).

B1 + W(B2) +"--+- W(Bk) + W(Bk+l)
_> A,I + (-b + + lo(2-)1 +"" + (-b + + 10(/--1))-’l- -Uk+l + " "at- 10(2--1)

6>_ -(A,I + b21 + -(b3 +’" + bk) + (- + 10(2_1)1k + Bk+l
6_> - x 1 + x 1/2 x (k- 2)+ (52- + lo(2_1))k + "gBk+

_> k + -B+I.
Case II. If 1/2 < B < , then we consider the cases in Fig. 4.

48 WEIZHEN MAO

Bi_3 Bi_2 Bi_l

Bi_2 Bi_l

Bi_l Bi+l

Ai,3 is formed.

B is thrown away.

B

B is created.

Ai, is formed.

Bi+l Bi+2

Ai,2 is formed.

Bi+l Bi+2 Bi+3

FIG. 1. How the three areas of Bi in N3Fpacking areformed.

We haveCase 1. B2 has one item greater than 7.

-B + w()
_> 1 + + + 10Ll

2>- ++B
_> 1+ B2.

Starting from now, we assume that all the items in B are no greater than .
Since A2,1 has at least two items, we assume at least one of its twoCase 2. A, >

bottommost items is in (, 1/2]. It is clear that B is greater than .

NEXT-k-FIT BIN PACKING 49

w)
1.6+3/(10(k-1))

1+3/(10(k-1))

0.7

0.5

0.2

0 1/6 1/3 1/2 2/3 5/6

B

FIG. 2. The weightingfunction W(o).

B2 Bk Bk+
FIG. 3. Thepossiblepacking when B1 <_ .

If the other item in A2,1 is also in (, 1/2], then

B + W(B)5

> -B1 + B2 + -(1 B1)- 6o + (1 B)
> 1+ -B2.

If the other item is in (, 7], then

6Bg "J- W(B2)
_> B1 + /3. + (1- B1)- o + o
>3B1-+--- 56-B2

>_ 1+ B2.

lO

50 WEIZHEN MAO

B B2

B B2

B B2 B3

B B2 B3

B B2

Case 1: B2 has one item >1/2

Case 2:A2,1>1/2, with at least

one of two bottommost
items in (1/6, 1/3]

Case 3: A2,1>1/2, with its two

bottommost items in
(1/3,1/2] and A3,1>1/2

Case 4: A2,1>1/2, with its two

bottommost items in
(1/3,1/2land A3,1<=1/2

Case 5: A2,1 <=1/2

FIG. 4. Thepossiblepackings when < B1 <

1/2], and Aa,1 > ’1 It is clearCase 3. A, > 1/2, with its two bottommost items in (,
2that Bz > .

If/t3,1 has one item greater than 1/2, then

6B1 + W(B2) + W(B3)5
2 3-65B1 + -B2-- o "-[- o + -B3 + g %- 10(k-l)

>
_> 2 + 56-B3.

NEXT-k-FIT BIN PACKING 51

If the two bottommost items of A3,1 are in (, 1/2], then

6Bg -t" W(B2)+ W(B3)
6_> -65BI + -B2 + 60 + 60 + gB3 + -(i BI)- + -(i B2)

> + + +
6>_ -B1 + -(1- B1 + 1/2)+ - + gB3

>_ 2+ -Ba.

lO

If one of the two bottommost items is in (-, 1/2], and the other is in (1/2, 5], then

If the two bottommost items are in (1/2, 1/2], then

In thisCase 4. A2,1 > 7,1 with its two bottommost items in (1/2, 1/2], and Az, _< .
case, we need to consider several possibilities according to the area distribution of B3.
In Fig. 5, on the right side of the vertical line are the three such possible packings that
may follow the bins B and B2.

If A3,1 +... -t- A3,h <_ 1/2, but A3,1 +... q- Aa,h+l > 1/2, for 1 < h < k 2, then

fiB1 -k- W(B2) +"" + W(Bh+a)5
3 6

__
B1 -[- B2 + 0 + 0 -t- B3 + (b4 -nt-... + bh+2) -1- (+ 10(k,1))h + "gBh+3

_> B1 -1- B2 q- if- (A3,1 -1- A3,h+l)-b x 1/2 (h- 1)+ -h + -Bh+3
_> BI + B2 -+- (i B1 + i B2)+ h- + Bh+3
>_ h + 2 + -Bh+3. thenIf A3,1 +... + Aa,a-1 _< 1/2, but A3,1 +... + Aa,a > 7,

-B1 + W(B2) +’" + W(Bk+2)
>_ -65B1 -t- B2 -I- -t- B3 -I- -(b4 +""-I- bk+l) + (-} -I- io(2,1))(k 1) -b Bk+2
_> 56-B1+56-(1-Bl+1/2)+g+56- x 21-+56- x 1/2 x (k-2)+52-(k-1)++Bk+2

6B>_k+l+g k+2.

52 WEIZHEN MAO

B3 B4 Bh+2 Bh+3

B3 B4 Bk+l Bk+2

B3 B4 Bk+2 Bk+3

FIG. 5. Thepossiblepackings when A2,1 > 1/2, with its two bottommost items in (g, 5], and A3,1 <_ 5"

If A3,1 -+--..-+- A3,k _< 1/2, then

fiB1 q- W(B2) +’" q- W(Bk+a)5

6B B3 q- q- bk+2) if- (g + 10(k-l) 6B_> -Blq-g 2+6o+-o-+ -(b4nt- 2 3)k+g k+a
6__> B1 nt- (1- B1 -I- 1/2)nt- q- A3,1 nt- b4 nt- X 2k q- 0 nt- Bk+3

>_ x l+k+ + Bk+a
6Bk>_ k+2+g +a

Let us consider the subcases in Fig. 6.Case 5. A2,1 _< 7"
If A2,1 +... + A2,h _< 1/2, but A2, +... + A2,h+l > 1/2, where 1 < h < k 2, then it is

where a is the smallest item among A,I, A2,h+leasy to prove that W(B) >_ -a+ g,
Because we know that A,I and A,h+l are both nonzero, so there are at least two items

then (A2,+...+Az,h+l)-a > 1/4. Ifthereisin these areas. Since A,+.. "+A2,h+l > 7,
one item in A2,1, A h+l in (g 7] then W(B2) > 6a-5 +-((A,l+...+A.,h+l)-a)+
+/- > a + 2 Otherwise, all numbers in A,I A2,h+l are in (g g] and there are at
I0 g"
least two of them. If there are only two numbers in (], then W(B) > go;+ ((A2,1 +

6 2__6 2 If..+A2,h+l)-a)+(A2,1+...+A2,h+l)-l-d > -a-I- g x 1/4-+- 2 lO ga+g.
A,I,..., A,h+l have at least three items in (g, g], then W(B) >_ -a + 5

6- x (g + g)
2 Therefore,a+g.

NEXT-k-FIT BIN PACKING 53

B

B2 B3 Bh+l

B2 B3

Bh+2

Bk Bk+l

B2 B3 Bk+l Bk+2

FIG. 6. Thepossiblepackings when A2,1 <_ -.

6--B1 q- W(B2) -t- if W(Bh+2)5
2 2 3)h "[- Bh+2_> 56-B + a + + (b3 +... + bh+) + (- + O(k-)

(h 1) +-h+ Bh+2_> -(B + a)+] +
_> 1 + + (h- 1)+ h +

6B>_ h+l+ hq-2.

If A2, + + A,a_ < 1/2, but A2,1 W... -1- A2,a > 1/2, then it is easy to prove that
W(B2) _> A2,1 + 0" Because if A2,1 has at least one item in (g, 7], then the inequality
is obvious. If all the items in A2,1 are in ($,], then there are at most two such items in
A2,1 since A2.1 is less than 1. So W(B2):Z’_’A2,1 1A6 2 + (A2,2 +... + A2,k) >

B 6A "1- x 1/2 A2,1 -[- 0" Therefore,56A2,1- -I- 2 --
-6B1 + W(B2) +"" + W(Bk+l)5

2 3> -B1 + -A2,1 + 1- -+" -(b3 -+-"-q- bk) + (g + i0(k-1))(k 1) + Bk+l
>_ " q’- (A2,1 "b b3) q- 60 + 5

6- 1/2 (k 3) + 52-(k 1) + + Bk+l
> + - x 1 + + (k- 3)+ (k- 1)+ + Bk+l
>_ k--t-- Bk+l.

54 WEIZHEN MAO

If A2,1 +.." + A2,k < 1/2, then it is easy to prove that W(B2) > B2 + A2,1 5"
6Because if A2,1 has at least one item in (1/2, 1/2], then W(B2) >_ B2 + ig gB2 + x

21 51 _> B2 + A2,1 . If all the numbers in A2,1 are in (, g], then W(B2) _>
6 39A2,15 0 2 + - (A2,2 +"" + a2,k) gB2 + g a2,1 -. Therefore,

B1 + W(B2) +... + W(Bk+2)
62 a)k + gB+2_> B1 + B2 + A2,1 + (b3 +"" + bk+l) -]" (g -I-" 10(k-l)

1 2k + + Sk+2> BI+(B+A2,1)-+(B2+b3)+ 1/2(k-2)+
6B2kW0+g k+2_> 1+ g

6B_>k+l+g k+2.

This ends the case analysis. If beginning with Bj (B1 in the case analysis) there is
a portion of the NkF packing which matches one of the above cases, and if we let be
the index of the last bin in that portion minus j, then j + < NkF(L), and Bj +
W(Bj+I) +"" + W(Bj+t) >_ + Bj+t, which satisfies (1) in the Lemma. However, if
the NkF packing of the list L ends without completely matching any of the above cases,
i.e., B,..., BNF(L) only matches the first part of one of the cases, then we can see that
no matter where the packing ends B is followed by h(> 0) bins with -B.5 + W(Bj+I) +
+ W(Bj+h) >_ h, then followed by g(> 0) bins with items greater than 1/2, hence each

having weight greater than 1. Ifwe let be the index of the last bin in the packing minus
j,i.e.,NkF(L)-j, thenj+l NkF(L),and Bj+W(Bj+I)+. ’’+W(BNkF(L))+2 >

6(NkF(L) j) + 2 >_ + -g BNkF(L), which satisfies (2) in the Lemma.

4. Proof of the main theorem.
CLAIM 1. For any bin Bi ofitems oftotal size 1 or less,

3
W(Bi) N 1.7 + 10(k- 1)"

Proof. See the proof of Lemma i in the work of Garey, Graham, Johnson, and Yao
[4]. We note that our weighting function differs from that in the reference only by the
addition of 10(-) for the items of size exceeding 1/2, and there can be only one such item
in Bi. So the bound in the claim exceeds the bound 1.7 in the reference by precisely this
amount.

CLAIM 2. For any list L,

W(L)<_ 1.7+
10(k-l)

Proof. Apply the optimal algorithm to L. We get L* nonempty bins.

W(L) L*Yi=l W(Bi)__
E/L21(1.7 + 10(2-1))
(1.7 + 10(2_1))L*.

(by Claim 1)

CLAIM 3. For any list L, there exists a constant c such that

W(L) + c >_ NkF(L).

NEXT-k-FIT BIN PACKING 55

Proof. Letj be the largest index ofthe bins in the NkFpacking such that Ei=lW(Bi)
>_ j- 1 + By. Such j always exists.

If j NkF(L) then W(L) ,=lW(Bi) >_ j- 1 + By >_ NkF(L)- 1. So
W(L) / 1 >_ NkF(L). Now assume j < NkF(L). Let us consider

If By _> , then Y W(By+I) _> 6Y’i=l W(Bi) + j 1 + -B: + B+I _> j + gB+l.
There exists j + 1, such that z_,=lV’+ W(B) _> j + B+I. This is a contradiction to the
assumption that j is the largest index having the property. So the case of By _> can
never happen.

If By < , and (1) in Lemma happens, then Ei=lJ W(Bi) + W(By+l) + +
66 6B. Therefore, v,Y+ W(B) > j +l- 1 + gBy+W(By+t) >_ j-l+By+l+-gBy+t 5 ," /-,=

This is again a contradiction to the assumption that j is the largest index. So (1) in
Lemma can never happen.

If By < , and (2) in Lemma happens, then we have -i=l W(Bi) + W(By+l)+
fiB.. So W(L) + 3+ W(BNkF(L)) + 2 >_ j 1 + By + YkF(n) j + BNkF(L) 5

>_ YkF(n).
Now we are prepared to prove Main Theorem.
ProofofMain Theorem.

R[NkF] limsupmax{NkF(L)/L*}
<_ limL.__.(W(L) / c)/L* (by Claim 3)
< limL.((1.7 + 10(-l))L* + c)/L* (by Claim 2)

1.7 + 10(:-1)"
Combining with the previous results R[N2F] 2 and R[NkF] >_ 1.7 + 10(-1)’ we

3 fork > 2.have R[NkF] 1.7 + 10(k-l)

Aeknowledgmem. The author wishes to thank Professor Andrew C. Yao, without
whose valuable advice, constructive comments, and enthusiastic encouragement the
work of this paper could never have been accomplished. And also, many thanks go to
Dr. David S. Johnson, who read the first version of the paper carefully, pointed out
one mistake in the proof of the lemma, and suggested the current proving style, which
significantly simplifies the entire proof.

REFERENCES

[1] E. G. COFFMAN, JR., M. R. GAREY, AND D. S. JOHNSON, Approximation algorithms for bin packing--an
updated survey, in Algorithm Design for Computer System Design, G. Ausiello, M. Lucertini, and
P. Serafini, eds., Springer-Verlag, Berlin, New York, 1984, pp. 49-106.

[2] J. CSIRIK AND B. IMREH, On the worst-caseperformance ofthe NkFbin-packing heuristic, Acta Cybernet.,
9 (1989), pp. 89-105.

[3] J. CSIRIK AND D. S. JOHNSON, Bounded space on-line bin packing: Best is better than first, Proc. 2nd Ann.
ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 309-319.

[4] M.R. GAREY, R. L. GRAHAM, D. S. JOHNSON, AND A. C. YAO, Resource constrained scheduling as gener-
alized bin packing, J. Combin. Theory, 21 (1976), pp. 257-298.

[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[6] D. S. JOHNSON, Near-optimal bin packing algorithms, Ph.D. thesis, Tech. Report Mac TR-109, Mas-
sachusetts Institute of Technology, Cambridge, MA, 1973.

[7] ,Fast algorithmsfor bin packing, J. Comput. System Sci., 8 (1974), pp. 274-314.
[8] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY, AND R. L. GRAHAM, Worst-caseperformance

boundsfor simple one-dimensionalpacking algorithms, SIAM J. Comput., 3 (1974), pp. 229-325.

56 WEIZHEN MAO

[9] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

10] W. MAO, Scheduling and Bin Packing: A Study ofthe Worst-Case Performance Bounds, Ph.D. thesis, De-
partment of Computer Science, Princeton University, Princeton, NJ, 1990.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 57-61, February 1993

() 1993 Society for Industrial and Applied Mathematics
005

A NOTE ON THE COMPLEXITY OF A SIMPLE TRANSPORTATION PROBLEM*

GREG N. FREDERICKSONt

Abstract. Consider the problem ofusing a vehicle to transport k objects one at a time between a stations on
a circular track. Let the cost of the transportation be the total distance traveled by the vehicle on the track. An
O(k+M(a, q)) time algorithm is presented to find a minimum cost transportation, where M(m, n) is the time
to solve a minimum spanning tree problem on a graph with m edges and n vertices, and q <_ min{k, } is the
number of strongly connected components in an associated balanced problem. Also, the minimum spanning
tree problem on a graph with m edges and n vertices is reduced to a transportation problem on a linear track
with O(m) stations, O(m) objects, and O(n) strongly connected components in O(m) time.

Key words, transportation problems, robot arm motion, circular track, graph augmentation

AMS(MOS) subject classification. 68Q25

1. Introduction. Consider an undirectedweighted graph with objects located at var-
ious vertices. Associated with each object is a destination vertex, to which that object is
to be moved by a vehicle that traverses the edges of the graph. A fundamental problem
in motion planning is to determine a minimum cost tour of the vehicle that transports all
objects from their initial positions to their destinations. In the case of general graphs, the
problem is NP-hard, even if the vehicle can transport only one object at a time [FHK].
Recently, attention has focused on solving this motion planning problem on very simple
classes of graphs with unit capacity vehicles. Such examples have potential applications
in robotics. Atallah and Kosaraju consider graphs that are simple paths and simple cy-
cles [AK]. Frederickson and Guan consider graphs that are trees [FG1], [FG2], [FG3].
These papers distinguish between two cases, based on whether or not drops are allowed
in the transportation. A drop is an unloading of an object at a vertex that is not its des-
tination. If an object is dropped, its move is not immediately completed, and the object
must be picked up and transported farther at some later time in the transportation.

In this note we tighten the bound of [AK] for the case of simple cycles with no drops.
Whereas all possible solutions are considered in a divide-and-conquer search that is used
in [AK], we quickly prune away all but a constant number of possible solutions. We also
show that the asymptotic complexity of the transportation problem with no drops for
either a simple path or a simple cycle is essentially the same as that of the minimum
spanning tree problem (on a general graph).

For simplicity, we shall use much of the notation in [AK]. In particular, we shall
refer to the underlying graph as a track, and the vertices in the graph as stations. Let
k be the number of objects; s, the number of stations; and q, the number of strongly
connected components once additional moves are added to yield a certain "balanced"
problem. Let M(m, n) be the time to solve the minimum spanning tree problem on a

graph with n vertices and m edges. (Currently, the fastest known algorithm in a standard
comparison-based model for finding the minimum spanning tree problem is given in

[GGST], providing an upper bound on M(m, n) of O(mlog(m, n)), where/3(., .) is a

slowly growing function similar to the log* (.) function. In the trans-dichotomous model
of Fredman and Willard, an upper bound of O(m) is achieved for M(m, n) in [FW].) For
the case in which drops are allowed, an O(k + s) time algorithm is given in [AK] for the

Received by the editors September 30, 1988; accepted for publication (in revised form) December 2,
1991. This research was supported in part by the National Science Foundation under grant CCR-8620271 and
by the Office of Naval Research under contract N00014-86-K-0689.

tDepartment of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.

57

58 GREG N. FREDERICKSON

circular track and hence the linear track. For the case in which no drops are allowed, an
O(k + slog s) time algorithm is given in [AK] for a circular track and an O(k + M(s, q))
time algorithm for a linear track (where the time is as indicated in the note added in
proof in [AK]).

We make several observations about the structure of the transportation problem
on a circular track with no drops that allows us to generate an O(k + M(s, q)) time
algorithm. We also provide a simple argument that solving a transportation problem
on a linear track where k s is in general no easier than solving a minimum spanning
tree problem on q vertices and s edges. Thus in the sense of asymptotic complexity, the
circular track problem with no drops is no harder than the linear track problem with no
drops. Thus for both the case of drops and the case of no drops, restricting the graph
from a circular track to a linear track will make the problem no easier.

2. A faster algorithm. In this section we derive several observations that lead to a
faster algorithm. We first recall some definitions from [AK]. Let the stations be indexed
from 1 to s, and the edge between stations and + 1 be denoted as interval (i, +
1). Assume that each object moves in the shorter of the two directions for it, either
clockwise or counterclockwise around the cycle. Let 4(i) be the inputflux across interval
(i, + 1), defined as the number of clockwise moves in the input minus the number of
counterclockwise moves in the input across interval (i, + 1).

Recall from [AK] that in any transportation, the number of clockwise moves across
an interval minus the number of counterclockwise moves across an interval will be the
same for all intervals. More generally, for any set ofmoves in which the difference across
every interval is the same, this common difference is called theflux. By adding moves in
which the vehicle carries no object, any particular value of flux can be achieved. Let b
be the value of the flux for some set of moves. Let li be the length of interval (i, + 1).
Let db(b) be the cost of a minimum cost set of augmenting moves that yield a flux of b.
The function db(.) represents the cost to achieve degree balance between incoming and
outgoing moves at each station. Then db(b)]in__11(b 4(i))1 l. Note that adding
moves with the "empty object" to achieve degree balance may result in more than one
strongly connected component, where each component is Eulerian, and each is isolated
from the others. Among all minimum-cost sets of augmenting moves that yield a flux of
b, let q be the minimum number of strongly connected components that result from any
of these augmentations. There is a minimum-cost set of augmenting moves that achieves
flux , creates q strongly connected components, and is of cardinality O(k + s), and
such a set can be found in O(k + s) time. Besides the augmenting moves that achieve
a particular flux, additional moves with no object are in general necessary to achieve
connectivity among the components. With these additional moves a transportation can
then be constructed.

We introduce some additional notation. Let c be the total length of intervals with
b(i) b. Then c -()= l. Note that c > 0 for all . Let tc(b) be the cost of
a minimum cost set of augmenting moves that yield a transportation with flux . The
function tc(.) represents the total cost to achieve both degree balance and connectivity.
Let -y be the largest value of flux for which a set of augmenting moves of overall minimum
cost achieves degree balance. We note some simple relationships among these quantities
in the following lemmas.

LEMMA 1. For all values offlux, tc() < db() / 2c, which holds with strict
inequality if db() < tc().

Proof. The addition of the augmenting moves that achieve degree balance will leave
one or more strongly connected components. If there is more than one such compo-

A SIMPLE TRANSPORTATION PROBLEM 59

nent, then the components are separated by intervals (i, + 1) with (i) . Adding a
move in each direction across all but one such interval will yield one strongly connected
component.

LEMMA 2. For all values offlux, db() db(1) ’j>_lcj +]j<_lcj.
Proof. Given a set of moves that achieve degree balance for flux 1, one can gen-

erate a set of moves that achieve degree balance for flux by removing an augmenting
move from each interval for which (i) > 1,and by adding an augmenting move
for each interval for which (i) <

LEMMA 3. The value " satisfies thefollowing:

(ii) Yj<cj >

Proof. Part (i) follows directly from Lemma 2 and the definition of 7- Part (ii) follows
by combining the definition of 7 with

db(7 + 1) db(7) E cj + E
j> j<

which is obtained from Lemma 2.
Next we note that db() is a concave (upwards) function of .
LEMMA 4. Thefunction db(.) is concave.

Proof. A simple proof by induction on n establishes that functions of the form
Ein__X [aix bi[are concave. Note that db(.) is of this form. [3

Let 6 be the largest value offlux forwhich a minimum cost transportation is achieved.
Then tc(6) mine{re(e)}. We next show that at most three values of need to be
considered.

LEMMA 5. A value of in the range 7 1 < < " + 1 achieves the minimum value
of re(.).

Proof. Suppose > 3’ + 2. Then

db() <_ tc(- 1),

< db(6 1) + 2ce_ (by Lemma 1)

j>6--1

By the nonnegativity ofc, cj _> 0 for 7+ 1 _< j _< 6- 2. But then <_Tcj]g>cj <_ O,
which contradicts Lemma 3(ii). Thus < , + 2.

Suppose 6 _< 7 2 and db(+ 1) tc(6 + 1). Then by Lemma 4

db(5) >_ db(5 + 1) tc(5 + 1).

Thus the cost of a solution with flux 6 + 1 is always at least as good as a solution with flux
6, a contradiction to the choice of 6.

60 GREG N. FREDERICKSON

Suppose 6 _< 3’- 2 and db(6 + 1) < tc(6 + 1). Then

db(6) < tc(6 + 1),

< db(5 + 1) + 2ce+1 (by Lemma 1)

j>6 j<_6

j j>-),-1 j--6+2

By the nonnegativity of c, cj _> 0 for 6 + 2 < j _< 3’ 1. But then Ej<_7_lCj
y]j>.r_lej > 0, which contradicts Lemma 3(i). From this and the preceding case, we
may conclude that > 3’ 2.

Thus the above cases rule out all values of flux except those in the range 3’ 1 _<

The algorithm to solve the transportation problem is the following. First, compute
the values of db() for values of from -k to k, as discussed in [AK]. Next perform a
scan of the values db() to identify 3’. Then for each of the values 3’ 1, % 3’ + 1 of flux,
solve the associated minimum spanning tree problem, using the fastest currently known
algorithm. Choose from among the three transportations the solution that is of smallest
total cost. Let q be max{q.r_l, q’r, q’r+l }.

THEOREM 1. The time to solve a transportationproblem with no drops on a graph that
is a simple cycle is O(k + M(s, q)), where k is the number of objects, s is the number of
stations, q is the maximum of number of strongly connected components in three related
balancedproblems, and M(m, n) is the time to solve the minimum spanning tree problem
on a graph with n vertices and m edges.

Proof. By the discussion in [AK], the time to find 3’ is O(k). The three minimum
spanning tree problems can each be set up in O(s) time. Since M(s, .) is f(s), the result
follows.]

3. A reduction from the minimum spanning tree problem. We show how to reduce
the minimum spanning tree problem to a transportation problem with no drops on a
linear track. Recall from [AK] that the degree balanced version of the problem is one
in which a minimum cost set of balancing moves has been added so that for any interval
(i, + 1) on the track, the number of moves across the interval in the clockwise direction
equals the number of moves across the interval in the counterclockwise direction. Let k
be the number ofmoves and s the number of stations. Among all such minimum-cost sets
of augmenting moves, let q be the minimum number of strongly connected components
that result from any of these augmentations. There is a minimum-cost set of augmenting
moves that creates q strongly connected components and is of cardinality O(k + s), and
such a set can be found in O(k + s) time.

THEOREM 2. Let R(k, s, q) be the time to solve a transportationproblem with no drops
on a linear track ofs stations, with k moves and q components in the balancedproblem. The
time tofind a minimum spanning tree in a graph ofmedges and n vertices is O(R(m, m, n)).

Proof. Let G (V, E) be a connected weighted undirected graph with m edges and
n > 3 vertices. Without loss of generality, assume all edge weights are positive. Let W

A SIMPLE TRANSPORTATION PROBLEM 61

be the largest of the edge weights. Compute the degree of every vertex. For any vertex of
degree less than 3, add edges of cost W-+- 1 to (7 to make every vertex be of degree at least
3. Once these edges have been added, if not all vertices are of even degree, introduce a
new vertex with edges of cost W + 1 to each vertex of odd degree. The resulting graph
G’ will have n’ vertices, n < n’ < n + 1, and m’ edges, m < m’ < m + 3n, and the
degree of each vertex will be even and at least 4. By the choice of the cost of new edges,
a minimum spanning tree of G’ will be a minimum spanning tree of G, plus some edge
to the new vertex if a new vertex was introduced. Given graph G’, find an Euler tour of
G’, starting at any vertex. We denote the tour by the sequence of vertices and edges v0,

e,l Vl e2 v2 Vm em Vo.
Given the Euler tour, we generate an instance P of a transportation problem on a

linear track as follows. There will be m / 1 stations, one for each visit of a vertex in the
Euler tour. The edge from the jth to the (j + 1)st station will correspond to the (j + 1)st
edge in the Euler tour and thus be of cost c(e.+). There will be one object originating
at each station. The destinations of the objects are determined as follows. Consider the
rth station, and suppose it corresponds to a visit to vertex v in the Euler tour. Let the
rth station correspond to the next visit to vertex v in the Euler tour. (If there is no next
visit to v, let the rth station correspond to the first visit to v.) Then the destination of
the object at station r is station r. Since the degree of each vertex in G is at least 4,
every object will have a destination different from its originating station.

It is clear from the construction that for any vertex in G the set of arcs in P form a
cycle. It follows that there are n strongly connected components in P. For each edge
(v, w) in G there is an edge of the same cost in the track from a station in the cycle of
stations corresponding to v to a station in the cycle of stations corresponding to w.

Consider an optimal transportation Q for P. Consider the set of edges traversed by
Q when no object is being carried. Any edge traversed in one direction is traversed in
the other direction. The number of such edges is n’ 1, and these edges correspond to a
minimum spanning tree of G. Thus we can solve a minimum spanning tree problem by
generating an instance P, finding an optimal transportation Q for P, and extracting the
edges of the minimum spanning tree from Q. Clearly, all steps other than that of finding
the transportation will take O(m) time. Thus the minimum spanning tree problem in
G’ can be solved in time O(m’ + R(m’ + 1, m’ + 1, n’)). Assuming the monotonicity of
R(.,., .), and noting that R(m,., .) is f(m), this is O(R(m, m, n)).

Acknowledgment. I would like to thank Mike Atallah for some helpful comments.

[AIq

[FGll

[FG2]
[FG3]
[FHK]

[FW]

[GGSTI

REFERENCES

M. J. ATALLAH AND S. R. KOSARAJU, Efficient solutions to some transportation problems with appli-
cation to minimizing robot arm travel, SIAM J. Comput., 17 (1988), pp. 849-869.

G. N. FREDERICKSONAND D.-J. GUAN,Ensemble motionplanning in trees, in Proc. 30th IEEE Symp.
on Foundations of Computer Science, Research Triangle Park, NC, October 1989, pp. 66-71.

Preemptive ensemble motionplanningon a tree, SIAM J. Comput., 21 (1992), pp. 1130-1152.
Nonpreemptive ensemble motion planning on a tree, J. Algorithms, to appear.

G. N. FREDERICKSON, M. S. HECHT, AND C. E. KIM, Approximation algorithms for some routing
problems, SIAM J. Comput., 7 (1978), pp. 178-193.

M. L. FREDMAN AND O. E. WILLARD, Trans-dichotomous algorithms for minimum spanning trees
and shortestpaths, in Proc. 31st IEEE Syrup. on Foundations of Computer Science, St. Louis,
MO, October 1990, pp. 719-725.

H. N. GABOW, Z. GALIL, T. SPENCER, AND R. E. TARTAN, Efficient algorithms forfinding minimum
spanning trees in undirected and directed graphs, Combinatorica, 6 (1986), pp. 109-122.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 62-71, February 1993

1993 Society for Industrial and Applied Mathematics

A LOWER BOUND ON THE SIZE OF SHELLSORT SORTING NETWORKS*
ROBERT CYPHER

Abstract. Shellsort is a sorting algorithm that is based on a set of parameters called increments. Shellsort
has been used both as a sequential sorting algorithm and as a sorting network. The central result of this paper
is that all Shellsort sorting networks based on monotonically decreasing increments require f(N log2 N/log
log N) comparators. Previously, only the trivial fl(N log N) bound was known for this class of networks. The
lower bound obtained in this paper nearly matches the upper bound of O(N log2 N) that was proven by Pratt.

Key words. Shellsort, sorting networks, parallel sorting, lower bounds

AMS(MOS) subject classifications. 68P10, 68Q20, 68Q25

1. Introduction. Shellsort is a sorting algorithm that was first proposed by D. L.
Shell in 1959 [11]. Shellsort is based on a sequence of integers Z zk, zk-1,’’’, zl that
is called an increment sequence. Different increment sequences yield sorting algorithms
with different complexities, so a great deal of effort has been devoted to finding the best
increment sequence possible.

Given an array of items A A[1], A[2],..., A[N] and an increment sequence Z
z, z_,..., z, Shellsort sorts the array A by performing zj-sorts for j k, k- 1,..., 1.
A zj-sort consists of partitioning the locations in the array A into equivalence classes
modulo z and sorting the data in each equivalence class. Therefore, following the z-
sort, for all where z < <_ N, A[i] >_ A[i- z]. It is required that z 1, so the
z-sort completely sorts the file. In general, the increment sequence used for sorting N
items can depend on N. However, one common technique is to define a single infinite
sequence and to use, in decreasing order, those elements in this sequence that are less
than N. Increment sequences that are created in this manner are said to be uniform.

The zj-sorts are implemented by using insertion sort [5]. Insertion sort sorts a set of
items by processing the items from left to right. Each item w is processed by comparing
it to the items to its left until an item v is found that is smaller than w (or the list of items
to the left of w has been exhausted). Item w is then inserted immediately to the right of
v, and the items that were between v and w are moved one position to the right. Thus
for any item w, if there are c items to the left of w that are larger than w, then c + 1
comparisons are required. Although insertion sort is an inefficient sorting algorithm (it
requires O(N2) time to sort N items in the worst case), it is used because it performs
well when the data are nearly sorted. It is hoped that the z-sorts will be efficient because
the sorts performed by the earlier increments will have left each item near its correct,
sorted position.

Shellsort has been studied both as a sequential sorting algorithm and as a technique
for creating sorting networks. A sorting network is a collection of comparators that are
wired together in such a way that when a set of items is placed on the input wires, the
items appear in sorted order on the output wires. A comparator is a device that takes
two inputs and produces two outputs; the smaller input is placed on the first output
and the larger input is placed on the second output. Shellsort can be used to create a
sorting network by implementing each of the insertion sorts with a sorting network [5].
An example of a sorting network that performs an insertion sort is given in Fig. 1.

Received by the editors May 14, 1990; accepted for publication (in revised form) December 3, 1991. This
research was supported in part by a National Science Foundation Graduate Fellowship.

tDepartment K54/802, IBM Research Division, Almaden Research Center, 650 Harry Rd., San Jose,
California 95120.

62

SHELLSORT LOWER BOUND 63

Inputs Outputs

FIG. 1. Insertion sort network. Horizontal lines represent wires, and vertical lines represent comparators.
Each comparatorplaces the smaller of its inputs on its upper output wire and the larger of its inputs on the lower
output wire.

The size of a sorting network is the number of comparators that it contains, and
the depth of a sorting network is the maximum number of comparators through which
an item may pass. Sorting networks are important because their nonadaptive nature
allows them to be implemented directly in hardware and also because of a result due to
Leighton [7]. Leighton has shown that any small-depth sorting network can be used to
create a fast sorting algorithm for a bounded-degree parallel computer.

An O(log N)-depth sorting network was created by Ajtai, Koml6s, and Szemer6di
[1]. Their sorting network is very complex, and it has an extremely large constant of
proportionality associated with the O(log N) depth. A number of researchers have sug-
gested that Shellsort might provide a simple O(log N)-depth sorting network that would
be practical for realistic values of N [4], [10]. This paper proves that a fundamentally
new type of increment sequence will be needed if this goal is to be attained.

Two well-known results are helpful in understanding the behavior of Shellsort. First,
Knuth proved that if an array is z-sorted and then it is v-sorted, it will remain z-sorted
[2]. Second, from transitivity it follows that if an array is both z-sorted and v-sorted,
then it is also (z + v)-sorted [9]. These two results suggest the use of a data structure
that Pratt calls a template [9]. A template is a set of natural numbers that contains 0
and is closed under addition. Let Z z, z_, , z be a sequence of increments, and
let Y be the smallest template containing Z. If an array has been zj-sorted for all j,
k > j > 1, then it follows from the two results given above that the array is also y-sorted
for each y E Y. Thus templates provide a means of keeping track of all of the properties
implied by the above results. Templates have been used to obtain upper bounds on the
time requirements of Shellsort algorithms and on the size and depth of Shellsort sorting
networks. This paper shows that templates can also be used to obtain lower bounds on
the size of Shellsort sorting networks.

Shell used the increments N/2J, [N/4J, N/8I,..., 1. However, whenN is a power
of 2 this sequence requires O(N2) comparisons. Modifications to Shell’s increment se-
quence were suggested by Lazarus and Frank [6], Hibbard [3], and Knuth [5]. Papernov
and Stasevich showed that Hibbard’s increment sequence yields a sequential algorithm
that runs in O(NS/2) time [8]. All of the above modifications to Shell’s increment se-

64 ROBERT CYPHER

quence have the property that they are within an additive constant of a geometric se-
quence. Pratt proved that a large class of such nearly geometric sequences result in
O(N3/2)-time sequential algorithms [9]. Pratt also proposed using the uniform incre-
ment sequence consisting of all numbers of the form 2i3j, where i and j are integers,
and he showed that these increments yield a sorting network with size O(N log9 N) and
depth O(log N) [9].

Sedgewick then proposed a uniform increment sequence that yields an O(N4/3)-
time sequential algorithm [10]. Although this is greater than the O(N log N) sequen-
tial time required by Pratt’s sequence, Sedgewick’s sequence has O(log N) increments,
whereas Pratt’s sequence has O(log N) increments. The restriction to using O(log N)
increments is required if an O(N log N)-time algorithm is to be obtained. Incerpi then
developed a uniform increment sequence with O(logN) increments that required
0 (Nl+/v/gN) comparisons for any > 0 [4]. Finally, Weiss and Sedgewick proved

that Sedgewick’s sequence does require f(N/) comparisons in the worst case [12],
[13]. In addition, Weiss and Sedgewick made a conjecture that, if true, would imply
that f "(NI+’/) time is required by Incerpi’s sequence and by any sequence Z

Zk, Zk-,’’’, z for which zj O(c) for some c > 1 [12], [13].
All of the increment sequences mentioned above are monotonically decreasing. In

fact, Knuth has called Shellsort the "diminishing-increment sort" [5]. Monotonically de-
creasing increments are natural because they sort larger sets of data as the data become
increasingly ordered. Monotonically decreasing increments thus provide a smooth tran-
sition from sorting small, very unordered sets to sorting large, very ordered sets. How-
ever, this paper shows that all Shellsort sorting networks with monotonically decreasing
increments are of size f(N log2 N/log log N). Previously, only the trivial 9t(N log N)
lower bound was known for this class of increment sequences.

Also, although the results presented here are for Shellsort sorting networks, they do
provide some insight into the sequential Shellsort algorithm. In particular, many proofs
of upper bounds on the sequential running time of Shellsort use templates to bound the
time requirements of the insertion sorts. Such proofs ignore the adaptive nature of the
sequential algorithm, so they actually imply an identical upper bound on the number
of comparators in the corresponding Shellsort sorting network. Given the results of this
paper, it is clear that such a proofwill yield an upperbound that is f(N log2 N/log log N)
if monotonically decreasing increments are chosen. It should be noted, however, that the
f(N log2 N/log log N) bound applies only to the upper bound created by such a proof
technique and not to the actual running time of the sequential algorithm.

This paper is organized as follows. Section 2 contains definitions and notation that
are used throughout the paper, and 3 proves a connection between template costs (de-
fined in 2) and the number of comparators that a sorting network must have. In 4, the
relationship between the cost of an increment and the number of items that it adds to a
template is established. Section 5 proves a lower bound on the number of elements miss-
ing from a template, 6 proves a lower bound on the total template costs of any Shellsort
algorithm with monotonically decreasing increments, and 7 gives a lower bound on the
number of comparators required when monotonically decreasing increments are used.
Some conclusions and open problems are presented in 8.

2. Definitions and notation. The expression log N will be used to indicate log2 N.
The set of nonnegative integers will be denoted by I. An I-set is any subset of I. Upper-
case letters will be used to name/-sets, and lowercase letters will be used for arbitrary
members of/-sets. An uppercase letter with the subscript [i], where >_ 1, will be used

SHELLSORT LOWER BOUND 65

to indicate the ith smallest member of an/-set. For example, if Z is an/-set, then Z[1]
is the smallest member of Z. Given a nonempty/-set Z, Min(Z) Z[1], and if Z is
finite, Max(Z) Z[IZI]o Given an/-set Z, the complement of Z, written Z, is I Z.
Given an/-set Z, a positive integer u, and an integer v, Slice(Z, u, v) {z E Z z v
(mod u)}.

An/-set Y is a template if it contains O, it is closed under addition, and Y is finite.
Given a template Y, a positive integer u, and an integer v, Lack(Y, u, v) -]Slice(Y, , v)I.
The cost ofincrement u with respect to template Y, written Cost(Y, u), is Lack(Y, u, 0).

Let D d, d2,.-., d be a finite sequence of nonnegative integers, and let Z be an
I-set where]Z] >_ k. Theproduct of D and Z, written D (R) Z, is y,ki=l diZ[i]. An integer
x is said to be representable by the/-set Z if there exists a finite sequence of nonnegative
integers D dl, da,..., dk where D (R) Z x. The span of an/-set Z, written Span(Z),
is the/-set consisting of the integers that are representable by Z. The weight of a finite

sequence D all, da,... ,dk, written Weight(D), is i=1 di. If u is representable by
Z, then Size(Z, u) is the minimum of Weight(D) taken over all sequences D such that
D(R)Z=u.

We will consider the input to a Shellsort sorting network to be an array of registers
A A[1], A[2],..., A[N] that holds N items. Each comparator in the sorting network
will be viewed as performing a compare-exchange operation on a fixed pair of regis-
ters. The compare-exchange operation compares the contents of the two registers and
exchanges the contents if they are out of order. We will divide the comparators into a
sequential set of stages, each of which performs the z-sort for a given increment z. For
any/-set Z, the array A is said to be sorted by Z if for all z E Z, A is z-sorted. For
any/-set Z, Y is the template generated by Z if Y Span(Z {i I _> N}) (it
is easily verified that Y is, in fact, a template). Recall that if the array A is z-sorted for
each z Z, then it must also be y-sorted for each y Y (the integers greater than or
equal to N are included in Y because the array A contains only N data items, so it must
be y-sorted for all _> N).

3. Template costs and comparators. Throughout this section let Z be an/-set, let
Y be the template generated by Z, and let x be a positive integer. Also, let c be the cost
of z with respect to template Y, and let L be any integer, where 1 <_ L _< N. We will first
show that the cost of an increment with respect to a template can be used to put an upper
bound on the size of the sorting network stage that performs the sort for that increment.
It is easy to see that if the array A is sorted by Z, there are at most c array locations i such
that i < L, A[i] > A[L], and _= L (mod x). Therefore, when we perform the x-sort
each location L will have to be compared to at most c other locations. As a result, the
stage of the network that performs the x-sort requires only O(Nc) comparators. Pratt
used a similar argument to prove the correctness of his sorting network [9].

Of course, we are trying to prove a lower bound on the size of Shellsort sorting
networks, in the remainder of this section we will show that the stage of the network
that performs the x-sort does, in fact, require f(Nc) comparators.

LEMMA 3.1. For any integer L, 1 < L < N, there exists an assignment ofvalues to the
array A such that A is sorted by Z andfor all i, 1 < i < L, where L

_
Y, A[i] > A[L].

Proof. LetE- {i11 _< <_ L and L-i Y}, let F {il 1 _< i _< L and L-i

_
Y},

and let G- {ill < <_ N}. Assign values to A as follows. For each E[i] E E let
A[E[]] i, for each F[] F let A[F[]] + [El, and for each G[] G let A[G[]] i+L
(see Fig. 2). Note that for alli, 1 _< < L, whereL-i

_
Y, A[i] > [El A[L].

Therefore, all that remains to be shown is that A is sorted by Z.

66 ROBERT CYPHER

1,5 14 13 1:2 11 10 9 8 7 6 5 4 3 2 1 0

Template

FIG. 2. Worst-case arrayfor Shellsort.

Assume for the sake of contradiction that A is not sorted by Z. Then there exist
and j, where i < j, A[i] > A[j], and j E Z, which implies that j i E Y. Note that
because < j and A[i] > A[j], and j cannot both be in E, they cannot both be in F,
and they cannot both be in G. Also, j G because this would require that A[j] > L and
A[i] < L. Furthermore, i f/E because this would require that A[i] < I1 and A[j] > IEI.
Finally, i t/(7 because this would require that > L and j < L. Therefore, F and
j e E. However, j e E implies that L j e Y, and it was shown that j E Y, so
(L j) + (j i) L i Y (because Y is a template and is closed under addition),
which is a contradiction because F implies that L

Recall that insertion sort works by performing a sequence of comparisons that insert
each of the items into the list. Also, recall that insertion sort performs all of the compar-
isons that insert a given item into the list before performing any of the comparisons that
insert the next item into the list. As a result, it is impossible for a single comparator in an
insertion sort sorting network to participate in the insertion of two different items. We
will use this observation to obtain a lower bound on the number of comparators required
by a single stage of a Shellsort network.

THEOREM 3.2. IfA has been sorted by Z, z < N/2, and c Cost(Y, z), then at least
Nc/24 comparators are needed to implement an z-sort of A.

Proof. If c 0, the proof is trivial. Otherwise, let m Max(Slice(Y, z, 0)) (that is,
m is the largest multiple of x that is not in Y). There are two cases based on the value
ofm.

Case 1" m < 3N/4. Let L be any integer where 3N/4 < L < N. From Lemma 3.1
all c registers i, where 1 < i < L and L-i Slice(Y, z, 0), can be such that A[i] > A[L).
Thus immediately before A[L] is inserted it is possible that A[L jz] > A[L] for all j,
where 1 < j < c. As a result, at least c comparators are needed to insert AlL] by using
an insertion sort. Because there are at least N/4 such integers L, because c comparators
are required for each L, and because no comparator can be shared by different values
of L, at least Nc/4 comparators are needed.

Case 2: m > 3N/4. Let U Slice(/, z, 0) (that is, U is the set of all nonnegative
multiples of x), and let V {i U m/4 < i < 3m/4}. Let k m/x, and note
that IVI is a function of k. Specifically, there are four cases. If k _= 0 (mod 4), then
IVl-- k/2+1. Ifk _= 1 (mod 4), then IVl- Lk/2]. Ifk 2 (mod 4), then IV[k/2.
If k 3. (mod 4), then [Y] [k/2]. In any case, IV] _> [k/2J. Note that c <_ mix k,
so IV[_> [c/2J. Also, note that x Y (because x E Y would imply that c 0), m Y,
and x # m (because x < N/2 and m > 3N/4), so c _> 2 and [c/2] _> c/3. Therefore,
IV[_> c/3.

Now let W V \ Y, and note that Max(W) < 3N/4. Because m Y and Y is
closed under addition, for any Y, where < m, m Y. Also, for any V,
m-i V. Therefore, for any i Yr3V, m-i YV. As a result, IWI > IVI/2 > c/6.
Let L be any integer where 3N/4 < L < N. From Lemma 3.1 all IWI > c/6 registers

SHELLSORT LOWER BOUND 67

i, where 1 < i < L and L i E W, can be such that A[i] > A[L]. Thus immediately
before A[L] is inserted it is possible that A[L jz] > A[L] for all j, where i < j < c/6.
As a result, at least c/6 comparators are needed to insert AlL] by using an insertion sort.
Because there are at least N/4 such integers L, because c/6 comparators are required
for each L, and because no comparator can be shared by different values of L, at least
Nc/24 comparators are needed. U

4. Efficiency of increments. At any time during the Shellsort algorithm let the cur-
rent template be the template generated by the increments for which sorts have been
performed. Before the sorts for the first increment are performed, the current template
is missing N 1 natural numbers, namely, 1, 2,..., N 1. After the sort for the final in-
crement (which must be 1) is performed, the current template contains all of the natural
numbers. In this section we examine the relationship between the cost of an increment
and the number of items that it adds to the current template.

For the remainder of this section let Z be an/-set, let z be a positive integer, let Y
be the template generated by Z, and let c be the cost of z with respect to template Y.
Also, let Z’ Z U {z}, and let Y’ be the template generated by Z’.

THEOREM 4.1. Given the above definitions, IY’ \ YI < z
Proof. Let E Y \ Y. Assume for the sake of contradiction that the claim is

false, in which case IEI > zc. Therefore, there must exist a u for which 0 _< u < z and
ISlice(E, :c, u)l > c. Let F Slice(E, z, u).

It will first be shown that for each f E F there exists a t 6 Slice(Y, z, u) where
t < f. Let f be an arbitrary member of F, and note that f E. Therefore, f is not
representable by Z, but f is representable by Z. Let the sequence D dl, d,..., dj be
such that D (R) Z f. Note that if Z(i z, then d > 0 because f is not representable by
Z. Let the sequence H dl,..., di-1, O, di+l,..., dj, and let t H (R) Z. Then t < f,
t is representable by Z, and t f (mod :c). Therefore, t Slice(Y, z, u) and t < f.

Now let m Min(Slice(Y, z, u)). By the argument given in the previous paragraph
Min(F) > m. For any i, 1 _< _< IFI, FIll m Y because F[il f[Y and Y is closed
under addition. But F[il m 0 (mod z), so _< Lack(Y, z, 0) Cost(Y, z) c,
which is a contradiction. [q

We can now outline the remainder of the lower-bound proof. We have shown in
Theorem 3.2 that lower bounds on increment costs can be used to obtain lower bounds
on the size of Shellsort sorting networks. We have just seen that only large increments
are efficient in adding items to the current template. That is, for a given cost a large
increment is capable of adding more new items to the template than will a small incre-
ment. Therefore, to obtain a small sorting network we should use large increments to
add items to the template. Therefore, when using monotonically decreasing increments
we should add as many items as possible to the template with the increments in the be-
ginning of the sequence. However, we will show in Theorem 5.2 that there will always be
a large number of items missing from the template. As a result, monotonically decreas-
ing increments cannot be efficient. The remaining lemmas and theorems formalize this
argument.

5. Elements missing from templates. In this section we will prove a lower bound
on the number of elements missing from a template. Throughout this section let Z be a
nonempty/-set with Min(Z) > 1 and Max(Z) < N, let Y be the template generated by
Z, and let x Min(Z).

LEMMA 5.1. For any k such that Y[k] < N, Y[k] >_ z log k/ og(IZl / 1).

68 ROBERT CYPHER

Proof. Assume for the sake of contradiction that the claim is false, so there exists a k
such that Y[k] < N and Y[k] < x log k log(lZ + 1). Let E {Y[i] 1 < i < k}. For each
Y[i] E E, Y[i] < N, so Y[i] E Span(Z). Let j be such that Y[j] E, and for all i, where
1 < < k, Size(Z, Y[i]) < Size(Z, Y[j]). Let h Size(Z, Y[j]). Note that there are at most
(IZl/ 1)h integers i Span(Z) such that Size(Z, i) < h. Therefore, k IEI _< (IZl/ 1) h,
so h _> log k/log(IZl / 1) and x log k/log(lZ + 1) < xh < Y[j] < Y[k], which is a
contradiction.

THEOREM 5.2. If 1 < IzI < log2 N, N1/2 < x < N/logN, and N > 264, then
IYI > x log NIl6 log log N.

Proof. Let u Max(Y). Note that for all i, u + 1 < < u + x, Y. Therefore,
u + x > Y[] and u > Y[]- x. Because x < N/logN, x logx/log(IZI + 1) < N,
Therefore, either Y[] _> N > x log x/log(lZ[/ 1) or Y[] < N, and from Lemma 5.1
Yt] -> x og x! log(IZI + 1), Thus in either case u > x(log x/og(IZI + 1)- 1), Because
log x > 1/2 log N and log([Z + 1) < 2 log log N, log x/log([Z[+ 1) _> log N/4 log log N
and u _> x(log N/4 log log N 1). Because N > 264, log N/4 log log N _> 8/3 and
(log N/4 log log N) 1 _> (log N/4 log log N)/2 log N/8 log log N. Therefore, u >_
x log N/8 log log N. Because Y is closed under addition and u Y, for each i, 0 < < u,
either Y or u Y. Therefore, IYI > u/2 >_ x log N/16 log log N.

6. Template costs for monotonic increments. In this sectionwe prove a lower bound
on the total template costs incurredwhen monotonically decreasing increments are used.
Throughout this section let N > 264 and let Z be an/-set where Min(Z) 1 and
Max(Z) < N. Letk]Z],where 1 < k < log2N. LetRk+l O and for all i,
where 1 < < k, let R {z Z z >_ Z[q}. For all i, where 1 < i < k + 1, let

Y be the template generated by R and let b IY I, For all i, where 1 < < k, let
ci Cost(Yi+1, Z[i]).

LEMMA 6.1. For all i, 1 <_ <_ k, if N1/ <_ Z[] <_ N/ log N, then ci > (b+l/b
1)(log N/16 log log N).

Proof. From Theorem 4.1 ci >_ (bi+l-bi)/Z[i]. From Theorem 5.2 bi > Z[i] log N/16
log log N, so Z[q < 16bi log log N/log N and c > (b+l b) log N/16b log log N
(bi+l/bi 1) (log NIl6 log log N).

LEMMA 6.2. For any u and v where N1/2 <_ Z[u] < Z[v_l] _< N/ log N,

v--1

Eci > (log NIl6 log log N)(v u)((bv/bu)1 1).
i--u

Proof From Lemma 6.1

v-1 v-1

E ci > E(bi+l/bi 1)(log NIl6 log log N)
i--u i-=u

=(logN/161oglogN) u v + E bi+l/bi
i--u

Note that

v--1

H bi+l/bi bv/bu.
i--z

SHELLSORT LOWER BOUND 69

Because the arithmetic mean is always greater than or equal to the geometric mean,

v--1

(1/(v u)) E bi+/bi >_ (bv/bu) 1/(v-u)
i--u

and

v--1

E bi+l/bi >_ (v- u)(bv/bu)1
i--u

Therefore,

v--1

E ci > (log N/16 log log N)(v u)((bv/b)/(’-) 1). [:]

i--u

THEOREM 6.3. E/k=l i log N/192 log log N.
Proof. If Max(Z) _< N1/2, then from Theorem 4.1

k

1=
i=1
k

< c
i--1
k

< E ciNl/2
i=I

k
SO Ei=I ci (N- I)/NI/2 >_ log2 N/192 log log N.

If Max(Z) > N/, then let u and v be such that Z[] is the smallest member of Z
that is greater than N1/9 and Z[] is the largest member of Z that is less than or equal to
N/log N. There are two cases.

Case 1: b >_ N/ log N. From Theorem 4.1

N1/2 log2 N _< b,

E(b,+ bi)
i=1

<-- E ci Z[i]
i=1
u-1

E ciN1/2’
i-1

u-1
SO Ei=I Ci >_ log2 N and1 ci >_ log2 N/192 log log N.

Case 2: b < N1/2 log2 N. Note that if v k, then bv+l N 1, whereas if
v < k, then because Z[v+l] > N/log N, b+ >_ N/log N 1. So in either case b+ >_
N/log N 1 >_ N/log2 N. From Lemma 6.2

E ci >_ (logN/161oglogN)(v u + 1)((bv+l/bu) 1/(v-u+l) 1).
i--u

70 ROBERT CYPHER

Let t v u + 1, and note that t < k < log2 N. Then

(log N/16 log log N)(v u + 1)((bv+t/b,)/(’-u+) 1)
> (log N/16 log log U)(t)((ul/2/log4 N)1/t 1)
> (log NIl6 log log N)(t)(N1/8t 1).

Because t(N1/8t-1) t(elnN/St--1) and ez ’]io xi/i!, t(elnN/8t-1) > t(ln N/8t)
In N/8 > log N/12. Therefore,

c _> c
i=1

> (log NIl6 log log N)(t)(N1/8t 1)
_> log2 N/192 log log N. [3

From Theorem 6.3 it is clear that any upper bound on the sequential running time
that is based on template costs and that uses monotonically decreasing increments will
be at least f(N log2 N/log log N).

7. Network sizes for monotonic increments. This section establishes a lower bound
on the size of Shellsort sorting networks when monotonically decreasing increments are
used. The proof is based on Theorems 3.2 and 6.3.

THEOREM 7.1. Shellsort sorting networks with monotonically decreasing increments
require f(N log2 N/ log log N) comparators to sort N items.

Proof. It will be shown that when N > 264 at least N log2 N/4608 log log N com-
parators are required. Let Z be the set of increments that are used, and let k
Let Rk+l 0, and for all i, where 1 < < k, let Ri (z E Z z > Z[i]}. For all i,
where 1 < i < k, let Y be the template generated by R. For all i, where 1 < i < k, let
c Cost(Y+l, Z[i]). It will be assumed that for all i, where 1 < i < k, ci >_ i because
increments that have no cost have no effect on the order of the data items. Two cases
will be considered.

Case 1" k > log2 N. Because for each i, where i < i < k, ci > 1, from Theorem 3.2
at least N/24 comparators are required to perform each Z[]-sort. Therefore, a total of

at least -]= N/24 > N log2 N/24 comparators are required.
Case 2: k < log2 N. From Theorem 3.2 at least (N/24) k’]i= ci comparators are re-

kquired; from Theorem 6.3 i= c >_ log2 N/192 log log N, so N log2 N/4608 log log N
comparators are required.

8. Conclusions and open problems. We have shown that all Shellsort sorting net-
works based on monotonically decreasing increments require f(Nlog2N/log log N)
comparators. This lower bound nearly matches the upper bound of O(N log2 N) that
was proved by Pratt. One open problem is the removal of the O(log log N) gap between
these lower and upper bounds.

Another interesting open problem consists of removing the restriction that the in-
crements be monotonically decreasing. Although the case of monotonically decreasing
increments is an important special case, it is natural to ask if a similar lower bound ap-
plies when the increments are not monotonically decreasing. The results of 3, which
establish the relationship between template costs and comparators, and the results of

SHELLSORT LOWER BOUND 71

4, which bound the efficiency of increments, are independent of whether or not the in-
crements are monotonically decreasing. However, the results of 5, which give a lower
bound on the number of items missing from a template, are stated in terms of the small-
est increment that has been used. As a result, if the increments are not monotonically
decreasing, this lower bound is seriously weakened. In fact, a single very small increment
will render the lower bound given in 5 worthless. As a result, a stronger theorem on the
number of items missing from a template appears to be needed in order to address the
issue of nonmonotonic increments.

Acknowledgment. I am very grateful for the helpful comments and recommenda-
tions given by the anonymous referee.

REFERENCES

[1] M. AJTAI, J. KOML0S, AND E. SZEMERIDI,An O(n log n) sorting network, Combinatorica, 3(1983), pp.
1-19.

[2] D. GALE AND R. M. KARP,A phenomenon in the theory ofsorting, J. Comput. System Sci., 6(1972), pp.
103-115.

[3] T. HIBBARD,An empirical study ofminimal storage sorting, Comm. ACM, 6(1963), pp. 206-213.
[4] J. INCERPI,A study ofthe worst-case ofShellsort, Ph.D. thesis, Department of Computer Science, Brown

University, Providence, RI, 1985.
[5] D. E. KNUTH, TheArt ofComputerProgramming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
[6] R. LAZARUS AND R. FRANK,A high-speed sortingprocedure, Comm. ACM, 3(1960), pp. 20-22.
[7] T. LEIGHTON, Tight bounds on the complexity ofparallel sorting, IEEE Trans. Comput., C-34(1985), pp.

344-354.
[8] A. PAPERNOV AND G. STASEVICH,A method ofinformation sorting in computer memories, Prob. Inform.

Transmission, 1(1965), pp. 63-75.
[9] V. R. PRAYr, Shellsort and sorting networks, Ph.D. thesis, Department of Computer Science, Stanford

University, Stanford, CA, 1972.
[10] R. SEDGEWICK,A new upper boundfor Shellsort, J. Algorithms, 7(1986) pp. 159-173.
[11] D.L. SHELL,A high-speed sortingprocedure, Comm. ACM, 2(1959), pp. 30-32.
[12] M. A. WEISS, Lower bounds for Shellsort, Ph.D. thesis, Department of Computer Science, Princeton

University, Princeton, NJ, 1987.
[13] M.A. WEISS AND R. SEDGEWICK, Tight lower boundsfor Shellsort, Tech. Report CS-TR-137-88, Depart-

ment of Computer Science, Princeton University, Princeton, NJ, 1988.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 72-78, February 1993

1993 Society for Industrial and Applied Mathematics
007

A NOTE ON POSET GEOMETRIES*
JOEL FRIEDMAN

Abstract. This note describes howvarying the geometric representation of a poset can be applied to "poser
balancing." It is shown that the 1/:3, 2/:3 balancing property holds for a certain class of posers whose number of
relations is sufficiently small, in a certain sense.

Key words, partial order, linear extension, poset balancing

AMS(MOS) subject classifications, primary 06A10; secondary 68P10

1. Introduction. Given a poset (partially ordered set) for elements x and y, let p(x <
y) denote the fraction of completions of the partial order to a total order in which x < y.
Fredman’s conjecture, in connection with [Fre76] (also conjectured by Linial in [Lin84]),
is that any nontotal poset (i.e., poset that is not a total order) has two elements, x, y, for
which 1/3 < p(x < y) < 2/3. This conjecture arose in the context of studying the in-
formation theoretic bound on the complexity of sorting the elements of the poset. The
nontrivial nontotal three-element poset shows this conjecture to be as optimistic as pos-
sible.

To date the conjecture is unresolved, but using convexity in geometric realizations of
the posets, such as the techniques of Stanley in [Sta81], theorems have been proven with
the 1/3, 2/3 replaced by different constants. In [KS84], Kahn and Saks, proved the above
conjecture with 3/11, 8/11 as constants. In [KL88], Kahn and Linial gave a simpler proof
of the conjecture with 1/(2e), (2e- 1)/(2e) as constants (a referee has informed me that
Khachian had earlier given a proof similar to that of [KL88] with constants e-2, 1 e-2).

Both proofs are based on convex geometry involving a geometric realization of Sn,
the group ofpermutations on n objects. The point of this note is to remark that byvarying
the geometries one can sometimes get better results. This is definitely true when the
poset has few enough relations in a certain sense. The geometries we use are suggested
by the standard realization of Sn as its associated Coxeter complex (see, e.g., [Ron89]).
We combine the varying geometries with the simplified technique of [KL88] to obtain
improved results for such posets. In this note we prove the following theorem.

THEOREM 1.1. For any e > 0 them is a C such that the following is true. Let P be a
poser on {x1,..., x, }, and let a and b denote the number ofelements, respectively, > and
< than x in P. Iffor everypermutation a E Sn we have

1 ai + l n+b+ll-a(i)) _> Cn,

then P has elements x, y with (I/e) < p(x < y) < 1/2.
This appears as Theorem 3.6 of 3 and is proven there. This is the precise sense of

P having "few enough relations" mentioned earlier. As applications we have Theorem
1.2.

THEOREM 1.2. For any e > 0 there is a C such that if P either (1) has at least Cv/-d
maximal (or minimal) elements or (2) has no chain of length _> 2 log2 log n C, then P
has elements x, y with (l/e) _< p(x < y) < 1/2. For any > 0 and v > O, there is a

Received by the editors November 1, 1990; accepted for publication (in revised form) November 25, 1991.
The author also wishes to acknowledge the National Science Foundation for supporting this research in part
under a Presidential Young Investigator Award grant, CCR-8858788.

tDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544.

72

ANOTE ON POSET GEOMETRIES 73

> 0 such that the same conclusion holds ifP has some un ofits elements each unrelated
to at least (1 #)n other elements.
This appears as Theorems 3.5, 3.7, and 3.8 of 3.

We also note that other special cases of the poset (1/3, 2/3) conjecture have been re-
solved. In [Lin84], Linial proves the conjecture for posets of width 2. In [Kom], Koml6s
proves that for any e > 0, there is a function f,(n) o(n) such that any poset with at
least f(n) minimal elements has two elements, x, y, such that Ip(x < y) 1/2] < e; here
f(n)/n decreases to zero exponentially fast in the inverse of some Ramsey-type function
of n. Also Kahn and Saks [KS84] have conjectured that as the width of the poset tends
to infinity, a Ip(x < y) 1/21 < o(1) balancing result should hold.

2. Variants of a standard model. A standard geometric model of S, is its associ-
ated Coxeter complex (see [Ron89]). One views this as a triangulation of the (n 2)-
dimensional sphere. The convex polytope determined as the convex hull of the simplices
of this triangulation (this polytope looks like a beachball) is a realization of 5’, such that
the realization of every poset is convex. Of course, there is no reason to insist that this
polytope’s vertices all lie on one sphere. By moving certain vertices further or closer to
the center, we get different convex polytopes.

So consider n points vl,..., v, E R’- not contained in any hyperplane of dimen-
sion n 2. Every point v E R’-1 can be uniquely written as

(2.1) v- cvi, with c,- 1.

For a permutation of { 1,..., n}, cr {il,..., i, }, let

If U is any convex body, say, conta.ning the vi, then cr U A fq U is a realization
of S, in which every poset corresponds to a convex subset of U. U will be adjacent
to U-, i.e., will share a facet (i.e., an (n 2)-dimensional face), if and only if
differ by some transposition (i, j), and in that case the facet lies on the hyperplanes
containing (vi + vj)/2 and all vk with k i,j. When no confusion will occur, we will
often simply refer to this facet as H.

For future reference, the c’s in (2.1) are called the barycentric coordinates of v (with
respect to the v’s). If U is the simplex spanned by the v’s, the barycentric distance of v
to a facet, F, of U (i.e., a simplex spanned by any n I distinct v’s), is the barycentric
coordinate of v with respect to the vi not contained in F.

We now make some explicit calculations to describe various choices of U. For sim-
plicity, we perform them in R’ restricted to the hyperplane z +-.. + z, 1. For a
subset S c {1,..., n}, let es be the vector that is I on the ith coordinate if i S and 0
elsewhere. Let Q (I/n,..., l/n). For positive real 01,..., 0,, consider the collection
of points

with 0s 0is I, ranging over all nonempty proper subsets, S, of {1,..., n}. Clearly all
these vertices lie on the hyperplane zl + / z, 1. Let U be their convex hull.

LEMMA 2.1. Thefollowing two conditions are equivalent: (1) no vs is in the interior of
U and (2) for all < j

74 JOEL FRIEDMAN

(2.2) iOi <_ jO and (n i)Oi > (n j)Oj.

Proof. By symmetry the first condition is equivalent to saying that for any ISI, the
centers of mass of the sets

Ej,k (VT ITSI j,]T- SI
for all k, j lie between (or on) Q and v. Each of these gives an inequality between
and O+k, which is exactly of the form of those of (2.2) (except when j + k ISI, which
is trivial), and conversely each inequality in (2.2) arises in this way.

For future reference we note that the distance of vs to a half planeH is just Os/
if exactly one of i, j are in S (and 0 otherwise); this is seen by noting that the reflection
through H merely exchanges the ith and jth coordinates. We also note some familiar
choices of 0i. The choice 0i 1/i and 0 1/(n i) are simplices with vertex sets {vs }
ranging over S of respective sizes i and n 1. Choosing the vs’s to be equidistant from
Q gives

Oi i(n 2 i)"

We now describe some features of varying the geometry. First, we make the obser-
vation that in any poset there exists an ordering of the elements {x,..., x,} such
that p(xi > xi+) >_ 1/2 for all i. We call such a a optimal. Its existence follows from
the fact that any tournament has a Hamiltonian path. This statement also implies that
p(x > x) > 2/3 for all i > j if P is a counterexample to Fredman’s conjecture. The
point to our method is that by fixing P and such an ordering we can choose the geometry
best suited to the situation at hand. We will apply this to the centroid method used in
[KS84] and [KL88], using the simplified technique of the latter. We explain this in the
next section.

It is sometimes easier to visualize the problem and amusing, if not particularly use-
ful, to state the poser problem in the "real-estate" terminology (see IRon89]). Given a
Coxeter complex, there are two natural notions of convexity for a subset of chambers
that of metric convexity and that of being an intersection of half-apartments. It is easy
to see that these two notions are equivalent; in the case of Sn, a convex set is merely
a poset, and our question is to try to find a wall that divides a given convex set P into
roughly equal parts. For example, since any collection of > 2 chambers is nontrivially
divided by some wall, it follows by descending induction on k that for all k _> 2 there is
a collection of < k chambers all of whose bounding half-apartments contain more than
half of P; this again proves the existence of an optimal a.

3. Centroid type arguments. We review the techniques in [KL88]. They start with
the observation given below.

LEMMA 3.1. Let C be a convex body in R" such that the centroid of C has z co-
ordinate -c and contains points with Zl coordinates u and -w, with some u, w, >_ O.
Then

(3.1)]C CI {Xl

_
O}l > min

1 1
(m+,l)-:,,W, 1+ "Icl v>,w> + + (,-)v

ANOTE ON POSET GEOMETRIES 75

Furthermore the right-hand side above is minimized at U u, W w if u >_ u* and
otherwise at U u* W w, where

w + a(m2 1)

Proof. The proof is a simple argument that shows that the worst case (7 is a "double
cone," in the spirit of Mityagin (see [Mit68]). Calculating the worst case volume ratio
on this basis is easy and yields (3.1), which is essentially straight from [KL88]. Differen-
tiating in U and W yields the second part, using the fact that w > (a(m + 1) + u)/m
always holds in the above situation. 1

If a 0 in the above, the above volume ratio is at least l/e, which is Mityagin’s
result. So we can expect volume ratios close to this if a is small enough.

The argument in [KI8] is as follows. Fix a realization of S, as in the previous
section. Let r be an optimal total order, and let c be the centroid of the poset P, where
we identify P with its realization. We can assume c A (or else we can apply Mityagin’s
result), so consider c’s barycentric coordinates with respect to the vertices of A. IfH
is a facet of A with i and j related in P (i.e., either < j or > j in the partial
ordering), then P itself lies to one side of Hi and it easily follows that the barycentric
distance of c toH is at least 1In. Hence, there must exist some facet, H, ofA whose
barycentric distance is _< 1/n such that i, j are unrelated in P, and in particular A, lies
in P, where tr’ is tr followed by the transposition (i, j). Then we can apply Lemma 3.1
with m n 1, u w 1, a 1/(m + 1), which gives a volume ratio _> 1/(2e).

Actually, the realization used in [KL88], [KS84], and [Sta81] is different from ours;
namely, they use the cube [0, 1] with A,, being the set z() _< < z(,). In this
realization, when H is a facet of A, there is never any point in P that is further away
from Hij than one of the vertices of A. If we use our realizations, then it can happen
that some of P’s points are further away, and we can get better results. This can be
guaranteed to be the case when P is "sufficiently sparse."

More precisely, recall from the last section that the distance from a vertex vs to is
proportional to 0s. The choice of 0i 1 would yield a situation like the cube realization,
but varying the 0’s allows some improvement. Varying the 0’s involves slightly different
applications of Lemma 3.1, namely, those outlined in the following lemma.

LEMMA 3.2. For anypositive e there is a positive 6 6() such that if, in Lemma 3.1,
a is less than u/m or 6w/m in Lemma 3.1, then

ICfq{Xl_>0}l > 1

ICI

Proof. This is an easy calculation. If we have (m + 1)a/U < 6 for some small 6
(slightly different from the 6 in the statement of the lemma), then the right-hand side of
(3.1) with U u is bounded below by

By substituting t W/u and differentiating, we can see that for any fixed m there is a
6 making the above expression >_ (I/e) e for all positive W. On the other hand, for

76 JOEL FRIEDMAN

large m the above expression is

and as before we see that this is > (l/e) e for m sufficiently large and some positive
6 (independent of m). This proves the first case of the lemma. In the second case, we
write (m + 1)c W < -(1 6)W and proceed similarly, showing that a small enough
yields the desired lower bound.

Returning to the situation at hand, given a poset P fix settings of the 0’s, consider
any optimal a (zl,..., z,,), and let c be the centroid of P. Being interested in bounds
of the form l/e, 1 (l/e) or worse, we can assume that c lies in A. The vertices ofA
are vs, with S {xl,... ,x}, 1 < < n- 1. Let

n--1

C VS
i--1

be the barycentric representation of c in A. For each i fix a set T that contains exactly
one of x, x+ and with VT, E P; usually we’ll take T to be the smallest or largest such
set, depending on the choice of 0’s. T is any set whose elements are not < any element
not in T (in the partial order P).

COROLLARY 3.3. Ifx > x+ in P, then

1 OT
n-- 10s

Ifnot, then for any > 0 we have

s, >_ ()
1

n- 1

unless p(x < xi+) _> (l/e) e, for 6(e) as in Lemma 3.2.
Proof. In the first case, the facet, H, of A,, opposite vs,, bounds P, and yet there is a

point of P, VT,, whose distance to H is OT,/X/. c’S distance to H must be at least 1/(n- 1)
of T’s distance to H. On the other hand, c’s distance to H is precisely as, Os,/x/.

The second case follows from Lemma 3.2, with similar distance considerations. [3

COROLLARY 3.4. If

(3.2) OTi > n- 1

then there exists an with p(xi < xi+) > (l/e) e.
We now seek situations in whichwe can guarantee that (3.2) will hold for appropriate

Oi’s.
THEOREM 3.5. Forany > 0, there is a Csuch that ifP contains at leastCmaximal

elements, then there exists elements x, y

1 1
-e -e < P(x < Y) < -"

ANOTE ON POSET GEOMETRIES 77

Proof. Take 0i 1/i in the above. If, in the above circumstances, zi is maximal,
then taking Ti {zi} gives OT/Os, I1, Hence,

cv

,=x-s >- Zi->
n-1

for sufficiently large C. V1

More generally we have the following theorem.
THEOREM 3.6. For any e > 0, there is a C such that the following is tree. Let P be

a poset on {Zl,..., z,}, and let a and b denote the number of elements in P that are,
respectively, > and < than zi. Iffor everypermutation a E S, we have

n +bi+ll a(i)) _> Cn,(3.3) (a(i)= a+l
+

then P has elements x, y with (l/e) e < p(x < y) < 1/2.
Proof. Consider the two choices for 0, 1/i and 1/(n i). Taking C to be 2/6(), we

find that if (3.3) holds, then we can apply Corollary 3.4 for one of these two choices of
0. O

While the condition in Theorem 3.6 requires optimizing over a and is not entirely
explicit, in many cases it is not hard to check that it holds, such as when there exist Cx/
maximal elements. We give some other examples to which Theorem 3.6 can be applied.

THEOREM 3.7. For any e > O, there is a C’ such that the condition (and therefore
conclusion) of Theorem 3.6 holds ifevery chain in P has length < C’ + 2 log2 log n.

THEOREM 3.8. For any e, v > O, there is a # > 0 such that the condition (and therefore
conclusion) of Theorem 3.6 holds if some vn of P’s elements are each unrelated to more
than (1 #)n (possibly different) elements of P.

Proof. For the latter theorem, each element x unrelated to more than (1 #)n has
both ai and bi less than #n. Hence, it suffices to chose # so that u/# exceeds C(e) of
Theorem 3.6. To prove the former, let X be the set of nodes whose longest chain from
a maximal element is of length i + 1; for example, X is the set of maximal elements.
Then any two elements of any X are unrelated. Then, setting n IXi I, we have

’ ’ n i

ai+l n+l
t-

n+n2+l
i=1 i=1 i=nl+l i=nl+n2+l

which, within a constant, is

(3.4) _> n2 + n22 + n_ +"’.
nl n2

A similar estimate holds for the sum in (3.3) involving the b’s. Now let k be the length of
the longest chain in P. If the condition for Theorem 3.6 is not met, then the expression
in (3.4) must be bounded by Cn for some constant C. Then we conclude n < and
then n2 _< (Cn)3/’ and more generally

nj <_ (Cn) 1-(1/2).

Now let k be the length of the longest chain in P. Applying the same argument to the
sum in (3.3) involving the b’s, we conclude that

nk+-j < (Cn)-(/2)

78 JOEL FRIEDMAN

for all j. Hence,

;(#-I;i)/’n nl +." +nk < k(Cn)-
and thus (k + 1)/2 > log2 log n + C’. Hence, if k < C" + 2 log2 log n, Theorem 3.6 must
apply. Iq

4. Concluding remarks. There are some other possible variants on these techniques.
For one thing, we can vary the Os’s even over S’s of the same size. Of course, it may no
longer be true that the A’s all have the same volume, but if we are only interested in
1/3, 2/3 type results we might have some room for slight variations of volume.

On some level it seems appealing to phrase the poset question in terms of finding a
wall separating a convex set of chambers in a Coxeter complex into roughly equal sizes,
but it is not clear if this is of any use. It is easy to see that any convex set of a general
Coxeter complex on k generators has a wall separating it into sets of fractional sizes
between 1/(k + 1), k/(k + 1) and that this is the best one can say. From this point of
view, it is clear that for the poset problem one is making use of the special fact that most
of the generators of S, commute.

Acknowledgment. The author wishes to thank Nati Linial for useful discussions.

[Fre76]

[KI8]

[Kom]
[KS84]
[Lin84]

[Mit68]
[Ron89]
[Sta811

REFERENCES

M. FREDMAN, How good is the information theory bound in sorting? Theoret. Comput. Sci.,
(1976), pp. 355-361.

J. KAHN AND N. LINIAL, Balancing extensions via Brunn-Minkowski, Tech. Report, Rutgers Uni-
versity, New Brunswick, NJ, November 1988.

J. KOMLOS,A strangepigeon-holeprinciple, preprint.
J. KAHN AND M. SAKS, Balancingposet extensions, Order, 1 (1984), pp. 113-126.
N. LINIAL, The information theoretic bound is goodfor merging, SIAM J. Comput., 13 (1984), pp.

795-801.
B.S. MITYAGIN, Two inequalitiesfor volumes ofconvex bodies, Math. Notes, 5 (1968), pp. 61-65.
M. RONAN, Lectures on Buildings, Academic Press, New York, 1989.
R.P. STANLEY, Two combinatorial applications oftheAleksandrov-Fenchel inequalities, J. Combin.

Theory Ser. A, 31 (1981), pp. 56-65.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 79-101, February 1993

() 1993 Society for Industrial and Applied Mathematics
008

AN O(n) ALGORITHM FOR DETERMINING THE SUBREGION-TREE
REPRESENTATION OF A RECTANGULAR DISSECTION*

SUKHAMA KUNDU

Abstract. A rectangular dissection is a partition of a rectangular space R into n _> 1 disjoint rectangles
{rl, r2,..., rn}. A T.-plan is a dissection that is obtained by repeated application of the (1) horizontal,
(2) vertical, (3) left-spiral, and (4) right-spiral partitioning operations. Two common ways of representing a
T.-plan are the wall representation w(D) and the subregion-tree representation t(D). It is known [S. Kundu,
Comm. ACM, 31 (1988), pp. 752-763] that these two representations are equivalent in that one can be uniquely
determined from the other. This paper presents an optimal O(n) algorithm for constructing t(D) from w(D),
which improves the previous bound of O(n2) in [S. Kundu, Comm. ACM, 31 (1988), pp. 752-763]. The new
algorithm is based on a domination relationship among the walls, which is defined here and represented by a
digraph Gw(D). The algorithm exploits the disjoint cycle property of Gw(D) and the relationship between
the tree (D) and the transitive reduction of the acyclic digraph obtained by merging the cycles of Gw (D)
into distinct nodes. The new method of constructing the tree (D) by means of the digraph Gw (D) can be
applied to an arbitrary class of dissections D that are generated by a finite family of partitioning operations that
satisfies certain natural restrictions. The complexity of the algorithm remains O(n) for many such families.

Key words, rectangular dissection, subregion representation, wall representation, acyclic digraph, transi-
tive reduction, depth-first search

AMS(MOS) subject classifications. 68Q20, 68R10

1. Introduction. Let R be a rectangular space in a plane. A partition of R into
n _> 1 disjoint rectangles {rl, r2,..., r,} is called a dissection. Each rj is called a basic
region. A dissection D is called a T-plan [2] if each junction point between a vertical line
and a horizontal line is a T-junction. The T-plans form models for space partitioning
in very-large-scale-integration (VLSI) design [10], [11] and for floor-space planning in
architectural design [2]-[9]. Figure l(a) shows a T-plan consisting of 10 basic regions.
We assume that the top and the bottom horizontal lines of R extend to infinity on both
the left and the right (as indicated in the figure by the broken lines), although the exten-
sions are usually not shown. The regions outside R, which are labeled W (for west), E
(for east), N (for north), and S (for south), are called the external regions. A wall is a
maximal horizontal or vertical line segment. The set ofwalls of a T-plan D forms its wall
representation w(D); see Fig. l(b), where each wall is written as a pair of ordered lists.
Each list consists of the basic and external regions adjacent to the wall from one side
and ordered from left to right or from top to bottom. A subregion of D is a rectangular
subspace that is the union of one or more basic regions. In general, a T-plan may not
have any nontrivial subregion other than R and the basic regions rj. Since either any two
nontrivial subregions of a T-plan are disjoint or one is contained in the other (with few
trivial exceptions; see 2), the subregions of a T-plan D form a tree structure t(D). The
basic regions of D form the terminal nodes of t(D), and the whole space R corresponds
to the root. The tree t(D) is called the subregion tree of D. In Fig. l(c), the labels h and
v for the intermediate nodes of t(D) indicate the type of partitioning operation applied
to the associated subregion.

The tree representation t(D) is particularly important for a subclass of T-plans,
called T.-plans, which are obtained by repeated application of the (1) horizontal, (2)
vertical, (3) left-spiral, and (4) right-spiral partitioning operations. (See Fig. 2.) We re-
fer to these operations as h, v, s, and S partitions, respectively. The T.-plans that are

Received by the editors July 15, 1988; accepted for publication (in revised form) December 4, 1991.
Computer Science Department, Louisiana State University, Baton Rouge, Louisiana 70803.

79

80 SUKHAMAY KUNDU

W1

W

W3

W6

W5

W7

Wlo

w12

r6 r7

r4

w

rlo

r5

r8

r9

w2

W9

W13

Wll

W4

(a)

w <(N), (W, rx, r4, rs, E)>
w2 <(W), (rx, r2, r3)>
w <(V, r 3, r lo, E), (S)>
w <(rs, rs, rg, rlo), rE)>

w <(r 1), (r9>
w <(rl, r2, r3), (ra, r6, rio)>
w <(r :z), (r 3)>
w <(r7), (r s, r9)>

W <(r4, r5), (r6, r7, rs)>
w 10 <(r6), (rT)>
Wll <(r6, rT, r9), (rio)>
w 12 <(r,), (r 5)>
w 13 <(rs), (rg)>

(b)

(c)

FIG. 1. (a)A T-plan D consisting of 10 basic regions {rl,r2,...,rlo}; (b) walls of the T-plan D; (c)
subregion tree t(D) ofD.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 81

formed by only h and v partitions are called acyclic; others are called cyclic. In [7]-[9]
we present several important properties of the tree representation, including the equiv-
alence between the wall representation and the tree representation. The main contribu-
tions of this paper are the following:

(1) It provides a linear O(n) algorithm for constructing the tree representation
t(D) of a T.-plan D from its wall representation w(D), where n is the number of ba-
sic regions in D. This is an improvement over the O(n) algorithm given in [7]. (The
algorithm for converting t(D) to w(D) is O(n), as shown in [7].)

(2) The method developed here for constructing t(D) from w(D) is general. The
new method is applicable to an arbitrary class of T-plans that are generated by a finite
family of partitioning operations that satisfies certain natural restrictions. The complex-
ity of the algorithm remains O(n) for many such families.

D1

D2

D

(a) (b)

D

(c) (d)
FIG. 2. Thefourpartitioning operations {h, v, s, S} forgenerating a T.-plan and the structure oftheir asso-

ciated subregion trees t(D); partitioning operations: (a) horizontal, (b) vertical, (c) left spiral, and (d) right spiral.

As a brief comparison of the new algorithm given here and the algorithm in [7],
we note that the algorithm in [7] constructs the tree t(D) in a top-down fashion, where
a basic region ri is processed once for every subregion containing it. This results in a
computation time proportional to the sum of the path lengths in t(D) from the root to
the terminal nodes, which can be as much as O(n2) in the worst case and as small as
O(n logk n) in the best case. The best case occurs when the tree t(D) is highly balanced
and k _> 2 is the minimum number of subregions created by a partitioning operator. The

82 SUKHAMAY KUNDU

algorithm given here employs a more global approach using the properties ofcycles in the
digraph G,o(D), which represents the domination properties of walls and basic regions
in D (see 2). The digraph G,o(D) is determined directly from the wall representation
w(D). The new algorithm builds the tree t(D) in a top-down fashion as in [7], but it
does not explicitly construct subregions of D. The two special properties of the digraph
G,o (D) that are exploited in the new algorithm are the following:

(1) The cycles in G,o(D) correspond to the spiral partitions in D, and, moreover,
no two cycles in Go(D) have a node in common. This property allows us to determine
the cycles in G,o(D) in linear O(n) time.

(2) The transitive reduction of the acyclic graph obtained by merging each cycle
of Go(D) into a distinct node has a tree structure that is isomorphic to t(D) as an un-
ordered tree. The orderings among the children of nodes in t(D) are constructed by
using a partial order "<" that is also determined from the wall representation w(D).
The ordering information in the wall representation w(D) allows us to obtain the rele-
vant part of the ordering "<", which is needed in the construction of t(D), by using only
O(n) time.

2. Basic concepts. We denote a wall w of a T-plan by a pair of lists w (L1,
one list for each side of the wall. For a horizontal wall (h-wall) L1 is the list of basic
regions and possibly some external regions adjacent to w from the above (north), and
similarly L2 is the list of basic regions and external regions adjacent from below (south).
The regions in both L1 and L are ordered from the left to right. Likewise, for a vertical
wall (v-wall) L1 is the list of basic regions and external regions adjacent to w from the
left (west) and L is the list of basic regions and external regions adjacent to w from
the right (east). The regions in both L1 and Lz are now ordered from north to south.
We sometimes refer to L1 as the first region list of w and to L as the second region
list. In Fig. l(b) the horizontal walls are labeled Wl, w3, ws,..., and the vertical walls are
labeled w2, w4, w6,.... This odd-even labeling convention for the h-walls and v-walls
is used throughout the paper. The two horizontal walls bordering the external regions
N and S and the two vertical walls bordering the external regions W and E are called
the external walls. They are also referred to as the north wall, south wall, etc. The other
walls are called the internal walls. The four external walls are labeled Wl, w, w3, and w4,

respectively. Note that each external wall is easily identified by the presence of N, S, W,
and E in the first or the second region list.

We formally define the subregion tree t(D) of a T.-plan D recursively as follows.
If D consists of only one basic region, region rl, then t(D) consists of a single node rl.
Otherwise, the root node of t(D) that corresponds to the whole rectangular space R
is labeled by one of the symbols 7r h, v, s, or S, where 7r 7r(R) denotes the top-
level partitioning operation applied to R. If the partition 7r(R) decomposes R into k
subregions {R1,R,... ,Rk}, then the root node has k child nodes 7ri, 1 < i < k, one
for each subregion Ri. For 7r(R) s or S we have k 5, and for 7r(R) h or v we
have k _> 2. The left-to-right ordering of the child nodes 7ri is determined according
to the schemas shown in Fig. 2. The subtree at each child node 7r is now determined
recursively by the T.-plan corresponding to the dissection on the subregion R. The
tree t(D) is an ordered tree. Note that the only subregions of D for which there is no
node in t(D) are the ones that are formed by the union of m, 2 < m < k, consecutive
subregions of a k-part horizontal or vertical partition. For instance, there is no node in
the tree in Fig. l(c) corresponding to the subregion formed by the union of r and

We use Ri to denote both a subregion and the dissection of that subregion in D.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 83

such a subregion may be called a trivial subregion. Henceforth, by subregion we shall
mean a nontrivial subregion, which may be a basic region in the extreme case.2

We sometimes refer to an intermediate node oft(D) that has the label 7r as a u-node.
A node with the label s or S is also referred to as a spiral node. If R’ is a subregion, then
we denote by 7r(R’) the top-level partitioning operation of R’. The set of walls created
by 7r’ 7r(R’) is called the primary walls of R’ and is denoted by Wp(Trt) or wp(Rt). We
write wi(R’) for the set of all internal walls of R’; wi(R’) wp(R’). For an h-partition
7r’ each wall in Wp (Tr’) is an h-wall, and for a v-partition 7r’ each wall in Wp (Tr’) is a v-wall.
If 7r’ is a spiral partition, then Wp(Tr’) consists of two h-walls and two v-walls.

2.1. The partial order"<". We now define a partial ordering "<" among the walls
and basic regions of an arbitrary T-plan D. The partial order "<" captures the spatial
(left-to-right and north-to-south) relationships among the walls and the basic regions.
It is important in the determination of the left-to-right ordering of the children of the
nodes in t(D).

If w (L1,Le) is an arbitrary wall, ri E L1, and rj E Le, then we let ri < w < rj.
For an h-wall w the ordering r < w < rO represents the vertical spatial relationships,
and for a v-wall the ordering r < w < rO represents the horizontal spatial relationships.
In general, we write :Co < zk, where each of z0 and zk is a wall or a basic region, if there is
an alternating sequence (z0, zl,..., z) of basic regions and walls such that z0 < Zl, <
..z. In Fig. l(a) we have the following ordering relationships among the walls and

basic regions on the south side of the wall Wl"

W2 (rl < w6 < r4 < W12 < r5 < W4.

Similarly, among the walls and basic regions on the east side of the wall we we have

wl < r < w5 < r2 < w7 < r3 < w3.

Note that we get the same ordering "we < w6" by following the south side of W and by
following the north side of w3. Figure 3(c) shows the partial order "<" resulting from
the left-spiral operation in Fig. 3(a), where an arc (x,xy) corresponds to the ordering
x < x such that there is no xk with the property xi < xk < xj. It is easy to see that
"<" defines a proper partial order.

The algorithm in [7] does not make full use of the partial order "<". Instead, it
uses two subpartial orders of "<", namely, l(r, rj) ="r left of rj" and a(r, rj) ="r
above ry", both ofwhich were originally defined in [2]. The relation l(ri, rj) arises as the
special case of the relation "<" for which each of the walls xe+l, i > 0, in the sequence
(ri, xl,’",xk-1, rj) is a v-wall, and, similarly, a(r, r) arises as the special case of the
relation "<" for which each of the walls xe+l is an h-wall.

2.2. The wall digraph Go(D). We now define the domination relationship among
the walls and basic regions in a T-plan D. In general, the domination relationship is not
a partial order. The main use of the domination relationship is in the determination of
the hierarchical structure of the subregions in D, i.e., the parent--child relationships in
t(D).

2The above definition oft(D) easily generalizes to an arbitrary dissection D that is generated by a family of
partitioning operations II provided these partitioning operations are independent of each other in the sense
that if a E II, then for no subset IV C_ II {a} a dissection generated by applications of IV equals the
dissection obtained by a single application of a.

84 SUKHAMAY KUNDU

Wl

w3

W2 W8

W5
rl

r4
r3

r2 w7

W6 W4

Wl

W3

W7

W8

r

r3
r5

14,,

w5

W2 W6

The left-spiral partition. The right-spiral partition.

(a) (b)

(c)
FIG. 3. Wall graphs Gw for (a) left-spiral and (b) ght-spiral showing only some of the arcs to the region

vertices with the exception of r3; (c) acyclic graph ofthepartial order "< "for the left-spiralpartition.

We say that a wall wz dominates another wall w if they form a T-junction with w
forming the leg of the T. Put another way, if wz (Lzz, Lz) and w (Lz, L),
then wz dominates w if and only if the first members of both LI and L belong to
the second region lists Lz of wz or the last members of both Lz andL belong to the
first region lists Lzz of wz. If wz is an h-wall and w is a v-wall, then in the first case
we say that wz dominates w from above or north and in the second case we say that wz
dominates wz from below or south (see Figs. 4(a) and (b)). Similarly, if wz is a v-wall
and w is an h-wall, then in the first case we say that wz dominates w from left or west
and in the second case we say that wz dominates w from right or east (see Figs. 4(c) and
(d)). We extend the notion of domination to that between a wall and a basic region by

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 85

saying that the wall w (L1, L2) dominates a basic region ri if ri E L1 or L2, i.e., if w
is a boundary wall of r. If w is an h-wall, then in the first case we say that w dominates
ri from below or south and in the second case we say that w dominates r from above
or north. The notion of domination of r from left or west (respectively right or east) by
a v-wall is defined similarly. In Fig. l(a) the basic region rl0 is dominated by Wll from
above, by w3 from below, by w6 from left, and by w4 from right.

w w2

W w1

(a) (b)

w W1

W2 W2

(c) (d)

FIG. 4. Thefour types ofdomination relationships between an h-wall and a v-wall: (a) the h-wall ZOl domi-
nates the v-wall w2from above, (b) the h-wall Wl dominates the v-wall wg.from below, (c) the v-wall Wl dominates
the h-wall wfrom the left, and (d) the v-wall Wl dominates the h-wall wg from the right.

We represent the domination relationships in a T-plan D as a digraph Go (D), called
the wall digraph of D. The digraph Gw (D) contains one node for each wall and basic re-
gion of D, and (w, wj) or (w, rj) is an arc of Go(D) ifw dominatesw or wi dominates

r. We label each arc (w,w) and (wi,r) by one of the symbols {N, 5’, W,E} to indi-
cate the direction of domination by w. These labels are used primarily for analyzing the
spiral partitions, and therefore we often show these labels only for the arcs that join two
primary walls of a spiral partition. (We show in Lemma 2 in 3 that these are the only
walls that belong to cycles in Go(D).) A vertex in Go(D) that corresponds to a wall is
called a wall vertex, and a vertex that corresponds to a basic region is called a region vertex.
The wall vertices wl and w3 in Go(D), corresponding to the external north and south
walls, have no incoming arcs and are the only source nodes in Go(D). All other wall
vertices in Go(D), including w2 and w4, which correspond to the external west and east
walls, have exactly two incoming arcs. Each region vertex rj in Go(D) has, on the other
hand, four incoming arcs and no outgoing arcs. Figure 5 shows the digraph Go (D) for
the T-plan in Fig. l(a), where we have shown only some of the arcs to the region vertices
r, with the exception of r and rl0 to keep the diagram simple. The wall digraphs for
the two spiral partitions are shown in Figs. 3(a) and (b); once again, we show only some
of the arcs to the region vertices, with the exception of the central region r3. Note that
the labels of the arcs along the cycle are (N, W, q, E) for the left spiral and (N, E, fi’, W)

86 SUKHAMAY KUNDU

for the right spiral. We use this difference to distinguish a left spiral from a right spiral.
If D has n basic regions, then the number of internal walls in D is n 1 and hence the
digraph Go(D) has 4 + (n 1) + n 2n + 3 nodes and 4 + 2(n 1) + 4n 6n + 2 arcs.
If z and y are two nodes in Go(D), we say that y is reachable from z if V z or there is
a (directed) path from z to V.

FIG. 5. The wall graph Gw(D) ofthe dissection in Fig. l(a); to keep the diagram simple, only some ofthe
arcs to the region vertices rj, exceptfor rl and vlo, are shown here.

If a dissection D is not a T.-plan, then the digraphG(D) may contain cycles with an
arbitrarily large number ofnodes in it; some examples of such T-plans are given in Fig. 10
and in [4]. It is easy to see that if D is an acyclic T.-plan and (wi, w) is an arc in Go(D),
then there is a unique subregion R’ of R such that wi is a boundary wall of R’ and w3
wp(R’); we write R’ p(wi, w). In Fig. l(a) we have p(w6, wg) {r4, rs,’", ’10},
the subregion consisting of the basic regions r4, rs,..., and rl0; p(wl, w2) {r4, r}.
For the cyclic T.-plans in Figs. 3(a) and (b), there is no such R’ corresponding to the arc

If w is an h-wall, then let

6v(w) {z z is a v-wall or a basic region dominated by w from north},

and

6s(w) {z z is a v-wall or a basic region dominated by w from south}.

For a v-wall w the sets 6w(w) and 6(w) are defined similarly. We regard each of the
sets 6iv(w), 6s(w), 6w(w), and 6(w) as linearly ordered according to "<" and refer to
them as lists. The items in each list alternate between a wall and a basic region. For an
h-wall w the set of nodes adjacentfrom the node w is given by adj[w] {z (w, z) is
an arc in Go(D)} 6s(w) t_J 6v(w), which is a disjoint union. We thus write adj[w]

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 87

(6s(w), 6N(W)). Similarly, for a v-wall w we have adj[w] (6E(W), 6w(W)). For each
basic region rj, adj[rj] (R) by the definition of Go(D). Figure 6(a) shows the adjacency
lists adj[w] for the T-plan in Fig. l(a). We use the notation adj[w] (6 (w), 6(w)),
where 6 (w) 6s(w) or 6(w) and 6z(w) 6N(W) or 6w(W), when we do not wish to
emphasize whether w is an h-wall or a v-wall. The number of arcs that are incident to a
node x in Go(D) is denoted by indeg[x].

adj[wl] (Q), (zo2, rl, 1/36, ’4,1/312, ’5,

griffin2] (, (rl, 5,r2,
adj[w3] <(w2, r3, w6, rio, w4), >
adj[w4] <(r5, wg, r8, w13, rg, Wll, rio),
adj[w5] <(rl), (r2)>
=d[] <(1,,,,), (,,,1, 10)>

(a)

The list L for the node-groups formed

The wall w after processing 61 (w) after processing 62(w)
processed 8s(w) or 8E(w) N(W) or SW(W)

/36 (W5, W?) (Wg, Vll
W5 (rl) L empty

(2) (3)
W9 (W12) L empty
Oll (010, 08) (’10)
/319 (4) (r5)
Wl0 (r6) L empty
338 (rT) (/313)
W13 (rS) (r9)

(b)
FIG. 6. Illustration ofAlgorithm 1for the T-plan in Fig. l(a): (a) adjacency lists adj[w]for the wall vertices in

the digraph Go D for the T-plan in Fig. 1(a); (b)formation ofsuccessive node groups byAlgorithm 1. The walls
in (b) areprocessed in the ordershown in thefirst column; the root node corresponds to the node group L w6

If G is an acyclic digraph, then the transitive reduction of G is the (unique) minimal
digraph G’ c_ G such that G’ and G have the same nodes and there is a path from a node
x to a node y in G if and only if there is a path from x to y in G’. IfG contains cycles, then
there may be more than one distinct minimal subdigraph G’ as defined above. However,
if no two cycles in G have a node in common, then G’ is unique.

The fundamental observation behind the algorithm presented here is that if the top-
level partition 7r(R’) of a subregion R’ is an h or v partition, then the source nodes in the
subdigraph Gt(R’) c G(D) on the internal walls and basic regions in R’ (excluding
the vertices for the boundary walls of R’) consist of the primary walls wp(R’) created
by the top-level partition operation 7r(R’) in R’. The situation is slightly more complex
if 7r(R’) is a spiral partition. In this case we do not have any source nodes in the sub-
digraph Gt(R’). Instead, we have a "source cycle" formed by the set of walls wp(R’)
such that the only arc (w, w) in G(R’) to a wall w wp(R’) is from another wall
wi Wp(R’). Fortunately, the source cycles in the various G(R’) are precisely the cy-
cles in Go (D); moreover, they are easily identified because they are disjoint from each
other (see Lemma 2, 3). Identifying the subsets of nodes of the form wp(R’) without
constructing the subregions R’ themselves is also possible by exploiting certain special
properties of the wall digraph Go(D) that are described in 3.

88 SUKHAMAY KUNDU

3. Properties of wall digraph Go(D). The following lemmas summarize some of
the important properties of the digraph Go(D) for a T,-plan D. These properties form
the basis of the algorithms given in 4 and 5 for the construction of t(D).

LEMMA 1. Ifw is a boundary wall ofa subregion R’, then there is a path from w to
each internal wall wj of R’. Also, if wi is an internal wall of R’, then the paths from wi to
other vertices in Go(D are limited to only the internal walls and basic regions of R’.

Proof. The second part of the lemma is immediate from the fact that for any arc
(w, wk) from an internal wall w E wx(R’), wk is necessarily an internal wall of R’ and,
in particular, w is not a boundary wall of R’. If (w, rj) is an arc from the internal wall
wi of R’, then r is necessarily a basic region of R’.

We prove the first part of the lemma by induction on the number of partition op-
erations m >_ 1 applied to R’. If w is one of the primary walls in wp(R’) created by
the top-level partition operation 7r(R’) of R’ and 7r(R’) h or v, then either (w, w)
is an arc in Go(D) or there is another boundary wall Wk of R’ such that (wi, Wk) and
(wk, w) Go(D). The latter occurs, for example, if R’ is created by an h (respectively,
v) partition and 7r(R’) v (respectively, h). On the other hand, if 7r(R’) s or S,
then there is a path of length _< 4 from w to each primary wall w wp(R’). Thus the
lemma is true for m 1. Now suppose that the lemma is true for subregions having
fewer than m >_ 2 partition operations, and suppose that R’ has m partition operations.
If wj wx(R’) wp(R’), then one of the subregions R" c R’ created by 7r(R’) contains
wj as an internal wall. Let w’ wp(R’) be a boundary wall of R". Then w’ is reachable
from wi (by the case m 1), and wj is reachable from w’ by the induction hypothesis.
Hence there is a path from w to wj. [3

COROLLARY 1. The digraph Go(D is connected as an undirected graph.
Proof. Each vertex in Go (D) is reachable by an undirected path from the node w,

say. [3

LEMMA 2. If D is an acyclic T,-plan, then Go(D) is an acyclic graph. If D is not
acyclic, then each cycle of Go(D) corresponds to the set ofprimary walls wp(R’) for some
subregion R’, where 7r(R’) s or S, and the converse is also true. No two-cycles in Gw(D)
have a node in common.

Proof. Clearly, any cycle of Go(D) involves only the wall vertices. In view of Lemma
1, if Go (D) contains a cycle that involves w and if w is a boundary wall of a subregion
R’, the cycle must not involve any internal wall of R’. Thus the only way that a cycle may
be formed is by the boundary walls of the subregions created by a single partition, i.e.,
the set of primary walls Wp(R’) for some (R’), where 7r(R’) s or S. The converse and
disjointness of the cycles are now immediate. [3

LEMMA 3. Let D be an acyclic T,-plan. Ifthe wall w dominates the walls wj and w
from two different directions (i.e., below and above or left and dght), then there is no wall
w such that there is a pathfrom wi to w through wj and apathfrom w to w through w.

Proof. LetR p(w, w) and R2 p(w, wk). The subregionsR andR lie on two
different sides of the wall w. Since wj is an internal wall of R, it follows from Lemma 1
that a path leading from the arc (w, w) cannot reach any wall that is not internal to R.
A similar property holds for the paths leading from the arc (wi, w) and the subregion
R. This proves the lemma. V1

Lemma 3 may not be true, in general, for T.-plans containing spiral partitions. For
instance, in Fig. 7(a) the wall w14 dominates the walls w7 and w19 from two different
directions, but p (w4, w7, w0) is a path from w4 to w0 via the arc (w14, w17) and
p’ (z014, 2/319, z018, 2/35, z06, z017, z010) is a path from w4 to w0 via the arc (w4, Z019).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 89

Wl

w3

w21

w5

w20 w12 w16

w7

w

w13

w8

Wl0

w

w15 w19

Wll

W17

W6 W14

(a)

W18 W4

W4

(b)
FIG. 7. (a)A T.-plan D with nested spiral partitions and its wall digraph Gw (D); (b) a part of the digraph
D) for the T.-plan D in (a); only the wall vertices and the arcs among them are shown.

LEMMA 4. Let D be an acyclic T,-plan. Then the arcs in the transitive reduction of
Go (D) are given by the following:

(1) (w, w), (w, wa), (w, w), and (wz, w);
(2) (w, wj) E G,(D), where wi is a boundary h-wall of a subregion R’ such that

7r(R’) v and my wp(R’);
(3) (w, wj) Go(D), where w is a boundary v-wall of a subregion R’ such that

7r(R’) h and wj e wp(R’);
(4) (wi, rj), where w (n,L2) and n (rj) or n2 (rj).
Proof. Let G’(D) denotes the transitive reduction of Go(D). That the arcs in group

(1) are the only arcs to w2 and w in G (D) is easily verified. Now assume that w is an

90 SUKHAMAY KUNDU

h-wall and w wp(R’) as in (2). We need to show that there is no other path from wi
to w. If possible, let p (wi, w,..., w) be a path from wi to w. By Lemma 3 w
must be on the same side of w as w, and by Lemma 1 w must be internal to R’. If
w [wp(R’), thenw is an internal wall of a subregion R" c R’ created by the partition
operation 7r(R’), and thus the path p cannot reach w, which is not internal to R". Thus
w wp(R’). However, this means that the path p enters a subregion R" c R’ following
the arc (w, w) and that w is not an internal wall of R". Once again, the path p cannot
continue to w. Thus no path p (wi, w,..., w) exists, and hence (wi, w) G’(D).
The prooffor group (3) is similar. On the other hand, if (wi, w) Go(D), w q[wp(R’),
and w wz or w4, then there is a subregion R" c R’ such that w is an internal wall
of R" and by Lemma i there is a wall w wp(R’) and a path from w to w via the arc
(wi, w). This shows that the only arcs (wi, w) in G’(D) are those in groups (1)-(3).

Finally, consider the arc (wi, r), where L (r) or L (r). Let (wi, w) 6

Go(D). Then r andw are on two different sides of the wall wi. Ifwe write p(wi, w)
R", then a path leading from the arc (w, w) cannot reach any basic region that is outside
R" and hence cannot reach r. This shows that (wi, r) G’(D). On the other hand,
if r L and L (r), then there is a wall w such that both the arcs (w, w) and
(w, r) belong to Go(D) and hence (w, r) G’(D). Similar reasoning applies for the
case rj L2 and L2 : (rj). [3

4. Construction of t(D) for an acyclic T,-plan. The following theorem shows the
relationship between t(D) and Go(D) for an acyclic T,-plan D and forms the basis of
Algorithm 1 for the construction of t(D) from the wall representation w(D).

THEOREM 1. Let D be an arbitrary acyclic T,-plan, and let G(D) Go(D)
{w, w, w3, wa} be a subdigraph that shows the domination relationships among the inter-
nal walls and basic regions ofD. Then the subregion tree t(D) is isomorphic as an unordered
tree to the digraph obtained from the transitive reduction of Gz(D) by merging each node
group ofprimary walls wp(R), where R is a subregion, into a single node.

Proof. If D consists of a single basic region, then there is nothing to prove. Suppose
that D has two or more basic regions. It is easy to see that the source nodes of Gz(D) are
the same as the set of primary walls wp(R) {wj, wj. ,--., wj_ }, say, that are created
by the top-level partition operation 7r(R) corresponding to the root node of t(D). By
Lemma 1 it follows that the removal of nodes wp(R) from Gz(D) decomposes G(D)
into k disconnected components (as an undirected graph), one for each of the subre-
gions {R, R2,.-., Rk} created by 7r(R). (The wall wy may be regarded as the common
boundary wall between R and R+.) The connected component of Gz(D) correspond-
ing to the subregion Ry equals G(Ry), 1 _< j _< k. The theorem now follows by a simple
induction argument applied to each R.

Figure 8(a) shows the transitive reduction of the wall digraph Go(D) for the T-
plan in Fig. l(a); a part of Go(D) was shown earlier in Fig. 5. Each node group of the
form wp(R’) is shown here enclosed in a rectangular box. The node groups w(R’) are
easily identified successively as follows. Initially, the external walls {w, wz} form the
source nodes of Go(D). The nodes {w, w3} may be thought of as the primary walls
of a hypothetical h-partition of the whole infinite plane (without any boundary lines)
creating the three subregions N, S, and the area R+ R tO W tA E between the walls Wl
and wa. The removal of {w, wa} from Go(D) (see Fig. 5) gives rise to the source nodes
{w2, w4, w6}, which consist of the external wall {w2, w4} and the node group w6(R)
{w6}. Here the walls {w, w4, w6} may be thought of as the primary walls of an extended
v-partition ofR+ corresponding to 7r(R) v. If 7r(R) were an h-partition, then {w2, w4}
would be the only source nodes in G,(D) {wx, wa} and the source nodes in GI(D)

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 91

Go(D) (l/11, to2, 2/33,1/14} would equal the set of primary walls wp(R). Each successive
node group is obtained by removing the current node group and taking the source nodes
of a connected component of the resulting digraph? Figure 8(b), save the labels h and v
for the nonterminal nodes, shows the tree obtained by merging each node group in the
transitive reduction of GI(D) into a distinct single node. This tree is isomorphic to the
tree t(D) in Fig. l(c) as an unordered tree.

(a)

(w6) v

(b)
FIG. 8. (a) The transitive reduction of Gw(D) for the T-plan in Fig. l(a); each node group consists of the

primary walls wp R forsome subregion R (b) The result ofmerging each nodegroup wp R into a single node
after deleting the nodes (wl, w2, w3, w4} in the transitive reduction. The tree is identical to the tree in Fig. l(c)
exceptfor the h and v labels ofthe nonterminal nodes.

3The method of forming the successive node groups in this way may be likened to the topological sorting
algorithm in [1]. It essentially amounts to computing the transitive reduction of GI(D) because of the special
structure of Gz (D).

92 SUKHAMAY KUNDU

To complete the construction of the tree t(D), we now show how to determine the
ordering of the children of each node in t(D) by using the ordering "<" together with
the digraph Go (D). We argue below the case for the root node only; the same argument
holds for all other nodes of t(D) as well. Let {R1, R2,..., Rk } be the subregions cre-
ated by 7r(R), in the left-to-right or top-to-bottom order, according to whether r(R) v
or h. If wj, is the wall between subregions R and R+I, then wj, < w. < ...w_
and wp(R) {wl, w.,..., wj_ }. If we disconnect the node wl from each node in
*l(Wx) c adj[w], then in view of Lemmas 1 and 3 we have that Gz(R1) becomes iso-
lated as one connected component and the second component consists of the union of
wp(R) and Gx(Ri), 2 < i < k. The component Gz(R1) is identified as the one that does
not contain w. We now complete the deletion of wj from Gz(R) by disconnecting
wl from the remaining nodes 62(wx) in adj[w] and by removing w. This, however,
causes no further decomposition of the second component into two or more compo-
nents if k _> 2.4 The process now continues by first disconnecting wj. from the nodes
in 61 (w2) and isolating the component Gz(R2) as the one that does not contain w2.
The deletion of w2 is then completed by disconnecting it from the nodes in 62 (w.) and
removing wj and so on. The last component remaining after the removal ofw_ is the
component G(Rk). This completes the determination of the ordering of the children
of the root node, which correspond to the subregions R, 1 < < k. In Algorithm 1
below, we determine only the source nodes in the various components R in the order
i 1, 2,..., k instead of determining the whole components R. This helps to minimize
the computation and keep the overall computation at the level O(n).

Algorithm 1 constructs the subregion tree t(D) for an acyclic T.-plan D in a top-
down, breadth-first fashion by successively identifying the various node groups of the
form wp(R’) as described above. It assumes that the linear ordering "<" of each of the
lists 61 (w) and 62(w) has already been determined. It is from these orderings that we
directly obtain the orderingw < w2 < < wk_ ofthe primary walls wp(R’) in each
node group, without having to order the set wp(R’) {wj, w. ,..., w_ } separately
for each R’ after the determination of wp(R’). The advantage of using the orderings of
61 (w) and 6(w) is that they can be determined for all walls wj by using only O(n) time
(see 6). Algorithm 1 uses a queue Q to hold the source-node groups that have been
identified but that have not been deleted yet from Go(D). In terms of the tree t(D),
these node groups correspond to the nodes whose children are yet to be determined.
(The use of a stack instead of a queue results in constructing the tree t(D) in the depth-
first fashion.) Each item in Q is a pair (p(z), L(z)), where p(z) is a pointer to the node z
in t(D) and L(z) the node group at z in the order "<". The list L(z) consists of either
a basic region or the set ofprimary walls wp(R’) for some subregion R’. The pointerp(z)
is used for connecting the children of z to the node z. When an arc (w, w) is deleted
from Go(D), we label wj as an h-wall or a v-wall according to whether w is a v-wall
or an h-wall. Initially, the external north and south walls (wl and w3) are labeled as
h-walls. The h-v labels are maintained in an array label[w]. A node in t(D) is labeled
h or v according to whether the walls in that node group are h-walls or v-walls.

4To see this, one may argue as follows. If R2 is a basic region, then it is adjacent from both wj and wj..
On the other hand, if R2 is not a basic region, then the primary walls wp (Rg.) of R are adjacent from both
Wjl and wj. and all basic regions and internal walls in R2 can be reached from wj via the primary walls
w,(R.).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 93

ALGORITHM 1

Construction of t(D) from w(D) ofan acyclic T,-plan D.

Input: The set ofwalls w(D) of an acyclic 7’.-plan D.

Output: The subregion tree t(D) of D.
1. If there are only four walls in w(D), then D consists of a single basic region

and t(D) consists of a single node rj. Otherwise, for each wall w determine the
adjacency lists in the form adj[w] (61(w), 62(w)), including the ordering "<"
in each of the lists 61 (w) and 62(w). Let indeg[w] 2 for each wall w except
for indeg[wl] 0 indeg[w3], and let indeg[r] 4 for each basic region r.
(Here wl is the external north wall and w3 is the external south wall.)

2. Let w2 and w4 be the external west and east walls, respectively.
3. Remove wl and wa from Go(D), and adjust indeg[z] appropriately for each

vertex z that is adjacent from one or both of wl and wa.
4. (Determine the label of the root node of t(D).) Let Lo the list of the source

nodes other than w2 and w4, if any. Remove the nodes w2 and w4, and adjust
indeg[z] for all vertices that are adjacent to one or both of w2 and w4. Perform
step (a) or (b) as appropriate.
(a) If L0 (R), then the label of the root node of t(D) is

62(wl); assume that Lo is ordered according to 62(Wl).
(b) If L0 (R), then the label of the root node of t(D) is h; let L0 the set of

new source nodes after removal of w2 and w4. In this case L0 c 62 (w2);
assume that L0 is ordered according to 6(w).

5. Create the root node z of t(D) with the associated node group L(z) Lo.
Initialize the queue Q with the item (p(z), L(z)), where p(z) is a pointer to the
node z.

6. While Q is nonempty do (a) and (b):
(a) Remove the first item (p(z), L(z)) from Q.
(b) Process each wall w E L(z) according to the order "<" in L(z) as follows,

where adj[w]
(i) For each z E 61 (w) reduce indeg[z] by one. Let L c_ 61 (w) be the list

of new source vertices in the order as in 61 (w).
(ii) IfL (R), then create a new node z’ in the tree t(D) with the associated

node group L(z’) L; make z’ the current rightmost child of the node
z using the pointer p(z). If L is not a single basic region, then add the
item (p(z’), L(z’)) to the end of Q and let label[z’] be the same as the
labels of the nodes in L (all nodes in L have the same label, v or h).

(iii) Repeat steps (i) and (ii) using 62(w) in place of 61(w). (In this case L
is empty except when w is the last item in L(z); in processing 61(w), L
is always nonempty.)

Fig. 6(b) illustrates Algorithm 1 and shows the various node groups L formed for
the set of walls in Fig. l(b). The final tree obtained by the algorithm is the same as that
in Fig. l(c).

5. Construction of t(D) for an arbitrary 7".-plan. Suppose now that the T.-plan D
contains one or more spiral partitions. As we noted in 2, if the partition operation
7r(R’) s or S, then the digraph Gz(R’) c Go(D) on the internal walls and basic
regions of R’ does not contain a source node because the primary walls wp(R’) form a
cycle (7. By Lemma 1, cycle C has the distinguishing property that no internal wall in

94 SUKHAMAY KUNDU

wz(R’) dominates a wall in (7. In this sense we may say that cycle C is a "source cycle" in
Gz(R’). We determine all cycles in Go(D) by a single depth-first traversal [1] of Go(D)
starting at the external north wall Wl, say. Since the region vertices have no outgoing
arcs, it suffices to traverse only the ares to wall vertices. Also, because the cycles are
disjoint (Lemma 2), each cycle is formed by a back arc (wi, w) and the path from w
to w in the depth-first tree. We assume that the arcs (w, w) from a wall vertex w are
processed in the depth-first search first for w 61(wi) and then for w 62(wi), in
both cases following the ordering "<" in the lists 6 (wi) and 6(w). Figure 9(a) shows
the depth-first tree for the wall digraph of the T,-plan D in Fig. 7(a) which contains
three spiral partitions, three h-partitions, and two v-partitions. Here, one of the spiral
partitions is nested inside another one and the third spiral partition is disjoint from the
first two. The three cycles corresponding to the spiral partitions are given by

C2 (WT, w6, w17, w12),

C3 (w13, Wlo, w11, w8),

a right spiral,

a left spiral,

a right spiral.

The following theorem (similar to Theorem 1) is now easily proved by using the
lemmas in 2 and is stated here without proof. Note that the special properties ofGo(D),
including the disjointness of its cycles, imply that the transitive reduction of Gx(D)
Go(D) {2/31, zo2, 2/33, /34} is uniquely defined.

THEOREM 2. Let D be an arbitrary T.-plan acyclic or not. Then the subregion tree t(D)
is isomorphic as an unordered tree to the digraph obtainedfrom the transitive reduction of
Gx(D) Go(D) {Wl, w, wa, w4} by merging each node group wp(R’), where R’ is a
subregion, into a single node.

We are now ready to present Algorithm 2 for constructing the tree t(D) from w(D)
for a general T.-plan D that may contain one or more spiral partitions. We regard a
cycle C as a composite vertex consisting of the vertices wi C. For each cycle C we
define indeg[C] 4, which is simply the number of arcs from nodes not in C to the
nodes in C. We augment the array indeg[z] for the wall and region vertices z in Go(D)
by adding an entry indeg[C] for each cycle C in Go(D). When an arc (wi, w), wi C
and w C, is deleted from Go(D), we reduce indeg[C] by one; we say the cycle C is
adjacent from wi. The test w C is performed by using an additional array cycle[w],
which gives for each wall vertexw the unique cycle in Go(D) containing w, if any (ifw
does not belong to any cycle, then we let cycle[w] nil). We assume that each cycle C
is Written in the standardized form, which is defined to be C (w, Wb, w, wa), where
the vertices are listed in the cyclic order and the wall vertexw dominates Wb from north.
We define label(C) s or S according to whether the labels of the arcs along the cycle
are (N, W, S, E) or (N, E, S, W). As in Algorithm 1, on processing an arc (wi, w) we
identify the wall w as an h-wall or a v-wall according to whether w is a v-wall or an
h-wall.

The main difference between Algorithm 1 and Algorithm 2 lies in the processing of
the vertices in a source cycle C. The processing of C [i.e., the deletion of the nodes in C
from Go(D)] generates five separate node lists L, 1 < k _< 5, corresponding to the five
regions formed by the associated spiral partition. If z is a cycle, then the test "z < w"
in steps 6(c)(i) and (ii) is considered to be true if a vertex wi belonging to the cycle z
satisfies wi < w (in which case w < w holds for all vertices wi in the cycle z).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 95

(a)

s Cl (w19, wl, ws, w14)

14,’ V W16

C,_=(wT, w,wv,w9

(wla, Wlo, w11, ws)

(b) (c)
FIG. 9. Illustration ofAlgorithm 2 for the T.-plan in Fig. 7(a): (a) Depth-first traversal of the wall vertices

ofGw(D shown in Fig. 7(b) with the back arcs shown in broken lines and vertex wa not visited; (b) node groups
L constructed by Algorithm 2 corresponding to the nonterminal nodes of t(D) and the arcs among them in the
transitive reduction; (c) nonterminal nodes in the tree t(D).

96 SUKHAMAY KUNDU

ALGORITHM 2

Determination oft(D) from w(D) for an arbitrary T.-plan D.

Input: The set of walls w(D) of an arbitrary T.-plan D, which may contain
spiral partitions.

Output: The subregion tree t(D) of D.
1. If there are only four walls in w(D), then t(D) consists of a single node r D.

Otherwise, for each wall w determine the adjacency lists in the form adj[w]
(61 (w), 62(w)), including the ordering "<" in each of the lists 1 (w) and 62 (w).
Let indeg[wj] 2 for each wall wj except for indeg[wl] 0 indeg[w3], and
let indeg[r] 4 for each basic region r.

2. Let wl, w2, w3, and w4 be the external north, west, south, and east walls, respec-
tively. Determine the cycles (7 in Go(D) by a depth-first traversal starting from
the node Wl. Let indeg[C] 4 for each cycle, and compute the array cycle[w]
by scanning each cycle C’ once.

3. Remove wl and wa from Go(D), and adjust indeg[z] for all vertices and cycles
z that are adjacent from one or both of wl and

4. (Determine the label of the root node of t(D).) Let L0 the list of the source
nodes other than w2 and w4, if any. Remove the nodes w and w4, and ad-
just indeg[z] for all vertices and cycles z. Perform one of the steps (a)-(c) as
appropriate.
(a) If L0 % (R), then the label of the root node of t(D) is v. In this case L0 c

6(wl); assume that L0 is ordered according to 62(Wl).
(b) If L0= (R) and there is a wall wi that is a source node (after removal of

and w4), then the label of the root node of t(D) is h; let L0 the set of
source nodes after removal ofw and w4. In this case L0 c 69.(w); assume
that L0 is ordered according to 6(w2).

(c) Otherwise, there is a unique source cycle (7 (wl wj2 w3 w,), in the
standard notation, with indeg[C] 0. Let L0 (7, and let the label of the
root node of t(D) be label(U).

5. Create the root node z of t(D) with the associated node group L(Z) Lo.
Initialize the queue Q with the item (p(z), L(z)), where p(z)is a pointer to the
node z.

6. While Q is nonempty do (a) and (b) or (a) and (c) as appropriate:
(a) Remove the first item (p(z), L(z)) from Q.
(b) If L(z) is not the vertices of a cycle or, equivalently, if it contains only h-

walls or only v-walls, then process each wall w L(z) according to the
order "<" by (i)-(iii), where adj[w] (61 (w),
(i) For each z E 61 (w) reduce indeg[z] by one and reduce indeg[C] by

one, where C cycle[z], if any. Let L be the new source cycle, if any,
or let L c_ 61 (w) be the list of new source vertices in the order as in
6(w).

(ii) If L (R), then create a new node z’ in the tree with the associated
node group L(z’) L; make z’ the current rightmost child of the
node z using the pointer p(z). If L is not a basic region, then add the
item (p(z’), L(z’)) to the end of Q and let label[z’] label(L) if L
consists of acycle; otherwise, let label[z’] be the same as the labels of
the nodes in L (all nodes in L have the same label, h or v).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 97

(iii) Repeat steps (i)-(ii) using 62(w) in place of 62(w). (In this case L is
empty except when w is the last item in L(z); in processing 6 (w), L is
always nonempty.)

(c) If L(z) (wjl wj., w3 w,) is a cycle, then process the lists 61(w,), and
62(w,), 1 < i < 4, in the order "<" as shown in the table below. The
processing of 61 (wj,) or 62(w,) means that for each z in that list, indeg[x]
and indeg[C], where C cycle[z] nil, are reduced by one. Moreover,
if the indegree of a node or a cycle becomes zero after it is reduced by
one, then that node or the nodes of that cycle are added to one of the listg

Lk, 1 < k < 5. This is indicated in the table by "z Lk". The lists
L are initially assumed to be empty. The final result of this step are the
five lists L, 1 < k < 5. (See Fig. 3(a) with the walls ws, w6, wT, and ws
regarded as wx wj., w3, and wj4, respectively.) Now, create five child
nodes z, 1 < k < 5, of the node z in the tree in that order, with the
associated node groups L(z) Lk. For each L(z) that is not a basic
region add to Q the item (p(z), L(z)), where p(z) is a pointer to the
node z.

(i) The case label[z] s (ii) The case label[z] S

I (wj): z L1
82(wj): if x < wj. then x L2

else x L3
dl (wj2): x L2
82(wj2): if x < wja then x L3

else x L5
81 (wjz): if x < wj4 then x L3

else x L4
82(wjz): x L5
8 (wj4): if x < wj then x L1

else x L3
2(Wj4): X L4

51 (Wjl): X L4
52(wj): if x < wjz then x L3

else x L5
5l (wj:): if x < wja then x L3

else x L2
2(wj): x L5
l(wj) if x < wja then x L1

else x L3
82(wjz): x L2
81(wja): x L1
82(wja): if x < wj then x L4

else x L3

Figures 9(b) and (c) show the results of applying Algorithm 2 to the set of walls for
the T.-plan in Fig. 7(a). We show only the various node groups formed by Algorithm 2
corresponding to wp(_R) and the cycles in the wall digraph, i.e., the nonterminal nodes
of the tree t(D).

6. Complexity analysis. Let n be the number of basic regions in the T.-plan D. To
argue that the time complexity of both Algorithms 1 and 2 are O(n), it suffices to show
that for all wallsw w(D) the lists 1 (Wj) and (w) together with their linear ordering
"<" can be determined in time O(n). As for the other computations, we note that the
total number of of arcs in Gw(D) is O(n) and the various processings of each arc (for the
depth-first traversal, updates to indeg[z] for the vertices and cycles z and computation
of label[w] for the walls) take at most a constant time c, for some c. Also, the number of
cycles in Go(D) is at most n/4. This shows that the total time required by each algorithm
is O(n).

We determine the ordered lists (wj) and 2(wy) for all wy in time O(n) as follows.
For each basic and external region xi let first[xi] denote the list of walls wy (L,
in some order, such that x is the first member of L or L2. We define the lists last[x]
similarly. Each of the lists first[xi] and last[xi] has at most four items. The lists first[xi]
and last[xi] can be constructed by a simple scan of LI and Le for each wall wy w(D) and
by noting the first and last items in LI and Le. The time required for this is proportional

98 SUKHAMAY KUNDU

to the sum of lengths of all the lists L and L for w E w(D), which equals 4n + 8
(8 the number of times the external regions N, S, W, and E appear in the various Lx
and Lz). Table 1 shows first[xi] and last[xi] for the walls in Fig. l(b) when the walls are
processed in the order w, wz,..., wa.

TABLE
The lists first[x] and last[x] corresponding to the walls in Fig. l(b).

x first[x] last[x]
N
S
W
E

?’2

r3
?’4

?’5
?’6
r7
?’8
?’9
?’10

If wj (L1, L2), then we construct the ordered list 1 (Wj) by scanning L1 in left-to-
right order as follows. Let L1 (xx,x2,x3,... ,xk) and wj last[xi]N last[xi+x], 1 _<

_< k 1. Then l(Wj) (Xl,Wyl,X2, Wy.,’’’,Wyk_I,Xk), except that we may have
to remove one or both of Xl and xk, whichever equals an external region. The or-
dered list 2(wy) is constructed similarly by using the list Le and the lists first[xi]. For
example, to compute e(wx) for the T.-plan in Fig. l(a), we start with the second list
L2 (W, rl, r4, r5, E) for WI in Fig. l(b) and this gives

(W, first[W] fq first[r1], rl, first[r1] f3 first[r4], r4, first[r4] first[r5], r5, first[r5] f3 first[El, E)

(W w2, rl, w6, r4, W12, r5, w4, E)

from Table 1. By removing the external regions W and E from this list, we get 2(wl)
(W2, rl, w6, r4, w12, r5, w4).

THEOREM 3. The time complexity ofeach ofAlgorithms 1 and 2 is O(n), where n
number ofbasic regions in the T,-plan D.

7. Generalization to arbitrary partitioning operators. The technique described in
4 and 5 for the construction of the subregion tree t(D) from w(D) actually applies to
more general classes of T-plans, namely, those generated by a finite family II of parti-
tioning operators that satisfy some natural conditions. If 7r II is an arbitrary parti-
tioning operator, let D denote the dissection obtained by a single application of 7r and
let G0(Tr) c Gz(DTr) denote the subdigraph on the internal walls of D, excluding the
region vertices. An operator 7r, 7r h or v, is called primitive if D contains no proper
subregion other than a basic region. This is the same as saying that D. cannot be ob-
tained by combining two or more applications of other partitioning operators (in II or
otherwise). The spiral partitions are examples of primitive partitioning operators. Fig-
ures 10(a) and 10(b) show two other primitive partitioning operations E the double
left spiral and f the weave partition; also shown are the digraphs G0(E) and G0(f).

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 99

14,’

W7
W$

W6

W9

Wll
W10

W12

(a)

W5

Wll

W6

W7

W 12 WI10 W 14

W13

WI5

s

(b)

FIG. 10. Examples of primitive partition operations that cannot be generated by {h, v, s, S’} partition
operations. The internal h-walls are labeled as w2i-1, and the v-walls are labeled as w2i, > 1 (a) double-
left-spiralpartitioning operation E and its wall graph Go(E) on the internal walls; (b) weave-pattern partitioning
operation f and its wall graph Go 9t on the internal walls.

A digraph G is called strongly connected if there is a directed path from each ver-
tex to every other vertex in G. If G is not strongly connected, then a maximal strongly
connected subdigraph of G is called a strong component. The strong components form a
disjoint partition of the nodes of G. Ifwe merge each strong component ofG to a distinct
vertex, then the result is an acyclic digraph. A strong component of G that corresponds
to a source node in that acyclic digraph is called source component.

LEMMA 5. If 7r h or v is a primitive partition operator, then the digraph G0(zr) is
strongly connected and has at leastfour vertices.

Proof. Let {wl, w2, w3, w4} be the external walls of the dissection D, and let C be
a source component of G0(Tr). We claim that the walls in C form the internal walls of
a dissection of the rectangular space R of D. The only way that this may be false is if
there is a wall wj E C that is dominated by a wall w E G0(Tr) C. However, because
C is a source component, there cannot be any wi in G0(Tr) C that dominates a wall
wj (7. Thus the walls in C define a dissection, and hence must have C G0(Tr)
because otherwise one of the subregions of the dissection defined by (7 is partitioned by
one or more of the remaining walls in G0(Tr) C, which contradicts that 7r is primitive.

100 SUKHAMAY KUNDU

Now if (7 {wj } consists of a single wall, then 7r h or v according to whether wj is
an h-wall or a v-wall, and this is a contradiction. Finally, to show that (7 has at least four
vertices, we simply note that G0(Tr) is a bipartite graph with each arc joining an h-wall
and a v-wall. (The number of nodes in G0(Tr) may be odd or even. In Fig. 10(a) if we
delete the h-wall w9 and extend the v-wall Wl0 downward to meet with the h-wall w11,

then we get a variant E’ of the double-left spiral partition, which is primitive, and there
are seven nodes in

For the techniques used in Algorithm 2 to work correctly for a general class of T-
plans, which are obtained by the partition operators II, we must assume that conditions
(1) and (2) below hold. Condition (1) is a global property of the family II as it relates
different members of II. Condition (2), on the other hand, constrains each individual
member of II separately. The family of operators II0 {h, v, s, S} for generating the
T.-plans clearly satisfies conditions (1) and (2); the same is true for the family II’
{h, v, s, S, E, gt}.

(1) No two digraphs in the family {G0(Tr) 7r E H and 7r h, v} are isomorphic
as labeled digraphs (where each arc is labeled appropriately by one of the symbols in
{N,S,W,E}).

(2) There is no nontrivial isomorphism of G0(r) to itself as a labeled digraph if. = horv.
Note that although both G0(E) and G0(t) contain as a subdigraph an isomorphic

copy of G0(s), this does not cause any problem in recognizing whether a particular oc-
currence of the subdiraph Go (s) in a wall digraph G(D) is due to an s-partition or is
due to one of the partition operators E and gt. The former is the case if and only if that
subdigraph Go (s) is a strong component ofG(D).

The main reason that Algorithm 2 can be extended to the general class ofT-plans ob-
tained by partition operations H without increasing the time complexity O(n) is that one
can determine the strong components of the wall digraph G(D) in time O(n) [1]. As for
the correctness of such an algorithm, we only need to note that Lemma 1 remains valid
for the general T-plans in view of the stron-connectedness property of G0() shown
in Lemma 5. This also means that Theorem 2 remains valid for the general T-plans.
The role of the source cycles in Algorithm 2 is now replaced by the more general notion
of source components. The details of the modification of step 5(c) in Algorithm 2 will
depend on the specific partitioning operators in II. For example, if the double left
spiral, then there will be nine lists Lk obtained in step 5(c).

We conclude the paper with two conjectures: (i) If r and ’ are two primitive par-
titioning operators other than h and v, then G0() and Go(r’) are not isomorphic as
labeled digraphs. (ii) If = h or v is a primitive partition operator, then there is no
nontrivial isomorphism from G0() to itself as labeled digraph. We assume here that
two partitioning operators that have the same wall representation are not distinguished.
For example, if the h-wall w13 in Fig. 10(b) is moved slightly up or down in relation to the
h-wall w5, then we do not consider the result to be a partitioning operator different from
gt. However, ifwe rotate the dissections in Fig. 10 by 90 degrees, then the corresponding
partition operators are considered to be distinct from E and . The h-walls now corre-
spond to the original v-walls and vice versa. In particular, the wall representations of the
new T-plans can be distinguished from those of E and ifwe consider both the internal
walls and the external walls (and only then). Also, the digraphs G0(E) and G0(gt) are
distinguished from those of the new partition operators by the arc labels.

Acknowledgment. The author gratefully acknowledges the comments of the anony-
mous referees, which greatly helped in improving the presentation.

AN O(n) ALGORITHM FOR DETERMINING SUBREGION TREE 101

REFERENCES

[1] A.V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design andAnalysis ofAlgorithms, Addison Wesley,
Reading, MA, 1974.

[2] U. FLEMMING, Wall representation ofrectangular dissections and their use in automated space allocation,
Environ. Planning B, 5 (1978), pp. 215-232.

[3] ,On the representation andgeneration oflooselypacked rectangles, Environ. Planning B, 13 (1986),
pp. 189-205.

[4] , Wall representations ofrectangular dissections: additional results, Environ. Planning B, 7 (1980),
pp. 247-251.

[5] E GALLE, An algorithm for exhaustive generation of building floor plans, Comm. ACM, 24 (1981), pp.
813-824.

[6] ,Abstraction as a tool ofautomatedfloor-plan design, Environ. Planning B, 13 (1986), pp. 21-46.
[7] S. KUNDU, The equivalence ofthe subregion representation and the wall representation for a certain class of

rectangular dissections, Comm. ACM, 31 (1988), pp. 752-763.
[8] S. Kurd,DO AND R. SIGH, Spatial reasoning in rectangular dissection, in Proceedings of the Workshop on

Spatial Reasoning and Multi-Sensor Fusion, IL, 1987, pp. 82-91.
[9] S. KtmDU, A non-backtracking hierarchical placement algorithm for T.-plans, Tech. Report, Computer

Science Department, Louisiana State University, Baton Rouge, LA, 1989.
[10] J.E. HASSETr,Automated layout inASHLER: an approach to theprobtemof’eneral cell"layoutfor VLSI,

in Proc. 19th Design Automation Conference, 1982, pp. 777-784.
[11] B.T. PREAS AND W. M. VANCLEEMPUT, Placement algorithms for arbitrary shaped blocks, in Proc. 16th

Design Automation Conference, San Diego, CA, 1979, pp. 474-480.
[12] J. ROTH, R. HASHIMSHONY, AND A. WACHMAN, Turning a graph into a rectangularfloorplan, Build. En-

viron., 17 (1982), pp. 163-173.

SIAM J. COMPU’E.
Vol. 22, No. 1, pp. 102-113, February 1993

() 1993 Society for Industrial and Applied Mathematics

TALLYVERSIONS OF THE SAVITCH AND IMMERMAN-SZELEPCSINYI
THEOREMS FOR SUBLOGARITHMIC SPACE*

VILIAM GEFFERT

Abstract. It is shown that for each s(n)-space-bounded nondcterministic Turing machine recognizing a
language L C_ 1" there exists an equivalent deterministic O(s2 (n))-space-bounded machine, and also a non-
deterministic O(s(n))-space-bounded machine recognizing the complement of L, for any s(n), independent
of whether s(n) is below log(n) or is space constructible. In other words, the Savitch [J. Comput. System Sci.,
4(1970), pp. 177-192] and Immerrnan-Szelepcsnyi [SIAMJ. Comput., 17(1988), pp. 935-938], [Acta Inform.,
26(1988), pp. 279-284] theorems can be extended to any space bound s(n) for languages over a single-letter
alphabet.

Key words, space bounded computation, nondeterministic Turing machine, nondeterministic space, tally
sets

AMS(MOS) subject classifications. 68Q15, 68Q75, 68Q05

1. Introduction. Two of the most important results in space-bounded complexity
theory, Savitch’s simulation of nondeterministic space-bounded Turing machines by de-
terministic space-bounded machines [4] and the Immerman-Szelepcs6nyi proof that
nondeterministic space is closed under complement [3], [6], were proved for only space
bounds s(n) >_ log(n). If these facts are taken into consideration, the question of
whether these two results can be extended to sublogarithmic-space bounds naturally
arises. Although we do not give a complete answer, we show that for tally sets, i.e., for
languages over a single-letter alphabet, the Savitch and Immerman-Szelepcs6nyi theo-
rems are valid for any space bound s(n), independent ofwhether s(n) is below log(n) or
is space constructible.

In fact, these two theorems are also valid for languages over the binary-tape alphabet
with low information content, e.g., if there exists a constant d such that each word in L
of length n contains at most d8(’) zeros.

The situation is much more complicated for space-complexity classes below log(n)
than for those above, because we do not have enough space to count the number of
reachable configurations or the length of a computation path and hence we cannot use
the deterministic simulation [4] or the inductive counting method [3], [6] directly. More-
over, each machine using less than log(n) space is physically incapable of verifying that
it has returned to the same input-tape position after moving its input-tape head too far,
because it does not have enough space to remember a position of the input-tape head.

We shall begin in 2 by showing that the result of any computation on tally input is
completely determined by the machine’s behavior near the input-tape end markers. For
the detailed proofs of the lemmas presented in 2 the reader is referred to [2]. Section 3
deals with the closure under complement. The construction is based on a modified ver-
sion of the standard inductive counting algorithm [3], [6], which calls as its subprogram
another version of the inductive counting algorithm. In 4 we shall show that the same
technique can be applied to Savitch’s deterministic simulation [4] as well, that is, one
version of the deterministic simulation algorithm calls another one. Section 5 discusses
some extensions and the fundamental difference between the methods presented here
and the standard Savitch and Immerman-Szelepcs6nyi algorithms for s(n) >_ log(n).

Received by the editors May 24, 1991; accepted for publication (in revised form) January 24, 1992. This
work was supported by research grants SPZV 1-1-5/08 and MSMS SR 01/46.

tDepartment of Computer Science, University of E J. affirik, Jesennfi 5, 04154 Ko,ice, Czechoslovakia.

102

TALLY SETS IN SUBLOGARITHMIC SPACE 103

2. Nondeterministic computations of tally inputs. We shall consider the standard
Turing machine model having a two-way read-only input tape, a finite control, and a
separate semi-infinite two-way read-write work tape. This model was introduced in [5]
for studying computations requiring less than linear space. A nondeterministic Turing
machine is s(n)-space bounded if all computation paths on all inputs of length n use at
most s(n) tape squares on the work tape.

DEFINITION 1. (a) A memory state of a Turing machine is an ordered triple q
Iv, u, j), where r is a state of the machine’s finite control, u is a string of work-tape sym-
bols written on the work tape (not including the left end marker and blank symbols), and
j is a position of the work tape head.

(b) A configuration is an ordered pair k =/q, i), where q is a memory state and i is
a position of the input-tape head.

It is not too difficult to verify that for each s(n)-space-bounded nondeterministic
Turing machine there exists a constant c > 6 such that the number of different memory
states for inputs of length n is at most c8(n)+1. Similarly, the number of configurations
can be bounded by nc8(’)+1 for each n > 1. Thus we have a constant c such that for each
n>l

(1)
6_<c,

number of memory states < c(n+

number of configurations < nc

Note that we need only O(s(n)) space to remember a memory state, but we need
O(s(n) + log(n)) space to remember a configuration. The same amounts of space are re-
quired to count the number of memory states and the number of configurations, respec-
tively. That is why the Savitch and Immerman-Szelepcs6nyi algorithms can be applied
only to space bounds satisfying log(n) E O(s(n)).

In particular, both the Savitch and Immerman-Szelepsc6nyi theorems are valid if

n < (c(n)+l) 6, since then the position of the input-tape head can be stored in O(s(n))
space, as can be a particular configuration or number ofreachable configurations. There-
fore, we shall now concentrate on nondeterministic Turing machines using very little
space, i.e., with

(2) (c,(n)+1)6 < n.

The computations taking place very close to the input-tape end markers play a domi-
nant role for such machineswhen they are computing on tally inputs. In fact, the result of
any computation [2] on a tally input is completely determined by computation paths not
moving the input head farther than (c(’)+1)5 positions away from the tape end markers.
To make these ideas more precise, we shall need some lemmas. For the detailed proofs
of Lemmas 1, 3, and 4 the reader is referred to [2]. All proofs are based on the assump-
tion that (c(’)+1)6 < n. In what follows we shall therefore assume that the input word
is 1’ and that the space bound s(n) satisfies (c8(’)+1)6 < n. Define

M c(n)+l

to be an upper bound on the number of reachable memory states for input 1’.
LEMMA 1 [2, Lem. 3]. If there exists a computation path from the configuration kl

(ql, i) to the configuration k2 (q2, i), i.e., beginning and ending at the same position on

104 VILIAM GEFFERT

the input tape, such that the input head never visits the right end marker, then the shortest
computationpathfrom (ql, i) to (q2, i) nevermoves the input.headfartherthan M2positions
to the dght of i.

By symmetry a similar statement holds for computation paths from (ql, i) to (q2, i)
that never visit the left end marker.

The next lemma states that the optimal computation paths beginning and ending
very close to the end markers never move the input head too far, nor do they consume
too much time.

LEMMA 2. If there exists a computation path from the configuration kx (ql, i1> to
k2 (q2, i2), where il < M4 + M and i2 < M4 + M, such that the input head nevervisits
the right end marker, then the shortest computation path from kl to k2 (a) never moves the
input head more than M5 positions away from the left end marker .and (b) never executes
more than M6 steps. The same holds for computation paths beginning and ending closer
than M4 + Mpositionsfrom the right end marker.

Proof. (a) Suppose that the rightmost configuration in the shortest computation path
from kl to k2 is k (q, i), where i > M5. Because M c8(’)+1 > c > 6, by (1), we have
that M5 (M4 + M) > M2. Since both il and i2 lie to the left of the position M4 + M,
we can find two configurations k (q, M4 + M) and k (q, M4 + M) such that
the shortest computation path from k to k moves the input head to the position i, i.e.,
more than M2 positions to the right (see Fig. 1), but this is a contradiction by Lemma 1.

k.

2
M4+M

FIG.

(b) Furthermore, since there are at most M6 different configurations with the input-
head positions bounded by M5, the shortest computation path from k to k2 executes at
most M6 steps. If not, some configuration would have been repeated. [3

The following lemma shows that computation paths on tally inputs are position in-
dependent provided that they begin and end at least M2 + 1 positions away from either
end marker.

LEMMA 3 [2, Lem. 4]. If machine A can get from configuration (ql, i) to (q2, q-- e)
by a computation path visiting neither of the end markers, then A can get from (ql, j) to
(q2, j + g)for each j satisfying

M2 + 1 _< j <_ n- (M2 + 1),

M2+l <_j+g<n-(M2+l).

TALLY SETS IN SUBLOGARITHMIC SPACE 105

The proof uses Lemma 1 and the fact that the input head scans the same symbols
(ones) everywhere along the tape with a tally input.

The following lemma asserts that the nondeterministic machine A, having a com-
putation path that traverses the whole input from left to right (or vice versa), has one
path that repeats a single loop on most of the input, beginning and ending in the same
configurations at the endmarkers. A loop of length is a computation path starting in
configuration (q, i) and ending in (q, i + /for some memory state q and tape position i.
Moreover, neither of the end markers is visited by the input head during this computa-
tion.

LEMMA 4 [2, Thm. 1]. Each computation path beginning in configuration (qx, 0) and
ending in (q2, n + 1) such that the end markers are visited only in (q, O) and (q2, n + 1) can
be replaced by an equivalent computation path visiting the end markers only in (q, O) and
qe, n + 1) such that machineA,

(a) having traversed s input-tape positions,
(b) gets into a loop oflength g that is iterated r times and
(c) then traverses the rest ofthe input tape oflength se

for some s, g, r, s2 such that

(3)
M2 + 1 _< sl _< M4,
M2 + 1 _< s _< M4,

l<g<M.

The same holdsfor traversalsfrom right to left (see also Fig. 2).

ql
Pl

P P P P P P P

s
1 / s2

r times

P2
q2

FIG. 2

A configuration is extending if it has used space h on the work tape and is going to
use space h + 1 on the next computation step (by rewriting the leftmost blank on the
work tape by a nonblank symbol).

LEMMA 5. For each s(n)-space-bounded nondeterministic Turing machineA there ex-
ists an equivalent machine A’ such thatfor each h 0,..., s(n) there exists a configuration
having used exactly h space on the work tape with the input headpositioned at the left end
marker (reachablefrom the initial configuration). Moreover, A’ accepts with the input head
at the left end marker.

Proof. We can replace the original machine A by a new machine A’ that simulates A
but that, each time A gets into an extending configuration, nondeterministically decides

106 VILIAM GEFFERT

whether to carry on the simulation or to move the input head to the left end marker,
extend the work tape space, and then halt and reject the input. Machine A’ has more
computation paths than does the original machine A, but all new computation paths are
terminated in nonaccepting configurations, and hence both A and A’ recognize the same
language. A similar idea can be used for accepting configurations as well.

3. Inductive counting. The reader is assumed to be familiar with the Immerrnan-
Szelepcs6nyi proofs that nondeterministic space is closed under complement for each
space bound s(n) >_ log(n) [3], [6]. The idea is that if for each s(n)-space-bounded
nondeterministic machine A we could compute d, the exact number of distinct config-
urations reachable from the initial configuration, then we could recognize L(A) in s(n)
space.

Simulate, d times, a computation of A from the very beginning along a (nondeter-
ministically chosen) computation path, and check whether these d simulations are ter-
minated in d different configurations in a lexicographically increasing order. This can be
done in O(s(n)+log(n)) space because all we have to remember is d, a variable to count
from 1 to d, a current configuration along some computation path, and the configuration
resulting from the previous simulation in order to check that these d configurations are
generated in increasing order so that none of them is generated twice. For the right se-
quence of nondeterministic guesses we shall reach d distinct configurations in increasing
order and accept the input if and only if none of these d configurations is an accepting
configuration.

The proof that the number of reachable configurations can be computed in space
O(s(n) + log(n)) is shown by induction on the number of steps. We shall present this
result in a slightly modified form. The algorithm computing the number of reachable
configurations is used to test whether a configuration k2 can be reached from kl by a
computation path executing at most tg steps for any given kl, k2 and time limit tg.

To do this we need to compute d, defined as the number of configurations reachable
from a configuration kl by computation paths executing exactly t steps, for any given kl
and t.

Clearly, d 1 for t 0. Having computed d, we can compute d’, the number
of configurations reachable from kl, by computations executing exactly t + 1 steps. To
do this, for each target configuration k’ generate the d distinct configurations reachable
from k in t steps in lexicographically increasing order. Verify whether, among these d
configurations, there is a configuration k such that k’ is reachable from k in one step,
and increment d’ in this case.

Now, if we want to check whether a configuration k2 can be reached from k by a
computation path executing at most tg steps, we must successively check for each t
0,..., t? if k2 is equal to any of the configurations reachable from k in exactly t steps.

Because this algorithm will be used in several modifications on different levels, we
shall present it using a more formal notation, in the form of a Boolean function
test(k, k, re) such that (a) if a configuration k2 is reachable from kl by a computation
path executing at most tg steps, then the test will return TRUE in at least one computa-
tion path and no computation path will return FALSE; (b) if k is not reachable from kl
in tg steps, then the test will return FALSE in at least one computation and no computa-
tion will return TRUE. Note that the test may also halt the computation and reject the
input returning no value if it finds that a wrong nondeterministic choice has been made.

TALLY SETS IN SUBLOGARITHMIC SPACE 107

1 function test(kl,k2,tQ
2 d:=
3 for 0 to t/? do
4 d:= d; d 0
5 for each k do
6 kprev kzero; increment 0
7 for/:= toddo
8 k := simulation_result(k1, t)
9 if k k2 then return TRUE
10 if k _< kprev then reject
11 if step(k, k) then increment :=
12 kprev k
13 end
14 d d + increment
15 end end
16 return FALSE
17 end

In the algorithm above, "for each k’ do end" denotes the loop that is executed for
each configuration k’ not using more than s space, where s is a global variable stored
on a separate work tape track, kzero is a constant representing a dummy configuration
that lexicographically precedes any other configuration, k,.ero is not reachable from any
other configuration, simulation_result(k1, t) is a nondeterministic function returning a
configuration that is reachable from kl by a computation path executing exactly t steps. It
simply simulates machine A from k and counts the simulated steps up to t. This function
may halt the entire computation and reject the input if it finds that the computation path
ends, not having executed t steps. The reject procedure halts the computation and rejects
the input, and Boolean function step(k, k’) returns the value TRUE if and only if k’ is
reachable from k in one computation step.

Clearly, ifwe want to determine whether k2 is reachable from kl, it is sufficient to use
test(k, k2, ncs(n)+l) because the shortest computation path from k to k cannot enter
the same configuration twice and there are at most nc8(n)+1 nM distinct configura-
tions. In particular, we can test whether any of the accepting configurations is reachable
from the initial configuration. It can easily be seen that all variables then require at most
O(s(n) + log(n))space.

We shall now show that the space used can be reduced to O(s(n)) if we consider
computations on the input ln. By the lemmas presented in 2 the actions of the nonde-
terministic machine on tally inputs can be understood as a combination of moves that
are close to one of the end markers of the input tape (at a distance of at most M4) to-
gether with long marches between the end markers. Moreover, these long marches can
be replaces by fixed loops of lengths less than or equal to M. Space O(s(n)) suffices to
describe these situations.

Using inductive counting, by induction on the number of times the input head hits an
end marker (instead of single computation steps), we shall construct a procedure that
checks whether there is a com.putation path connecting two configurations that have
the input head positioned at the end markers. This procedure calls as its subprogram
another version of the inductive counting algorithm that is used to analyze computations
that are close to one of the end markers.

First, we shall show that the space O(s(n)) is sufficient for analysis of computations
taking place entirely within positions 1 and M5. The following modifications are re-
quired in the procedure test:

Line 5. The loop is iterated for each configuration k’ not using more than s space,
such that the input head is between positions 1 and M5, where s and M are global vari-

108 VILIAM GEFFERT

ables stored on separate work tape tracks and M is equal to c8+1.
Line 8. The function simulation_result(k1, t) is replaced by a nondeterministic func-

tion L_simulation_result(kx, t), which returns a configuration reachable from k by a
computation path executing exactly t steps, neither moving the input head to the right of
M5 nor visiting the left end marker (position 0). This procedure simulates A from kl and
counts the simulated steps. It rejects the input (returning no configuration) if machine
A moves the input head to the right of position M5 or scans the left end marker or if the
chosen computation path terminates too early, not having executed t steps.

The above modifications give function L_test(k, k2, t), which checks whether con-
figuration k2 is reachable from kl by a computation executing at most t steps taking
place entirely within positions 1 and M or rejects the input because of a wrong non-
deterministic decision. The procedure simply uses inductive counting to compute the
number of configurations reachable by computation paths taking place between posi-
tions 1 and M.

Note that by Lemma 2 we can check whether configuration k is reachable from k
by a computation path visiting neither of the end markers by the use of L_test(k, k, M6)
for each k (ql, il) and k2 (q2, i2) such that 1 _< i _< M4 + M, 1 _< i _< M4 + M,
because the shortest computation path from kl to k never moves the input head to the
right of position M nor does it execute more than M6 steps, since both the initial and
final positions are to the left ofM4 + M. It is not difficult to verify that L_test then uses
at most O(s(n)) space.

Now we can easily construct function L_L_path(q, qg.), which checks whether there
exists a computation path from memory state q to q2 beginning and ending at the left
end marker such that the end markers are visited only in ql and q2"

function L_L_path(q, qz)
if step((q, 0), (q2, 0)) then return TRUE
for each pl, p2 do

ifstep((qt, 0), (pt, 1)) and step((p2, 1), (q2,0)) and
L_test((pl, 1), (p2, 1), M6)

then return TRUE
end
return FALSE

end

The construct "for each px, p2 do end" denotes two nested loops that are iterated
for all memory states not using more than s space.

DEFINITION 2. An R-configuration is an ordered pair k (q, i), where q is a memory
state and i is a distance between the input-tape head and the right end marker.

Clearly, for each configuration (q, i) there exists a corresponding R-configuration
(q, n + 1 i), and vice versa. We introduce this notion only to have a space-efficient
coding for configurations with the input head positioned close to the right end marker.

We can now design procedures R_step, R_simulation_result, R_test, and R_R_path
that, by symmetry, mirror step, L_simulation_result, L_test, and L_L_path, respectively.
That is, R_step(k, k’) returns TRUE if and only if R-configuration k’ is reachable from
R-configuration k in one computation step, and R_test(k,ke,t) checks whether R-
configuration k is reachable from k by a computation path executing at most ti steps,
neither moving the input head more than M positions away from the right end marker
nor visiting the right end marker. For R-configurations with the input head less than
M4 +M positions to the left of the right end marker, R_test(kl, ke, M) checks whether
ke is reachable from kx by a computation path visiting neither of the end markers.
R_R_path(q, q2) checks whether there exists a path from memory state ql tO q2 begin-

TALLY SETS IN SUBLOGARITHMIC SPACE 109

ning and ending at the right end marker, visiting the end markers only in ql and q2.

We shall now construct a function L_R_path(ql, q2), which checks whether there ex-
ists a computation path from memory.state ql to q2 traversing the entire input from left
to right such that the end markers are visited only in q and.q2. By Lemma 4 it is sufficient
to check whether there exist Sl, , r, s2 satisfying (3) and a memory state p such that

(a) (p, s) is reachable from (q, 0),
(b) (p, Sl + (i + 1)e) is reachable from (p, s + ie), for each i 0, ..., r 1, and
(c) (q, n + 1) is reachable from (p, n + 1 s) (p, sl + re) (see Fig. 2). Because

the end markers are visited only in q and q2, condition (a) can be verified by using
L_test((p, 1), (p, s), M6) for each memory state p such that (pl, 1) is reachable from
(q, 0) in one step. The same holds for (c), but we shall use R-configurations instead to
reduce the space used.

From Lemma 3 it follows that, having verified that (p, s +) is reachable from
(p, s), we have verified that (p,s + (i + 1)e) is reachable from (p, sl + ie) for each
_> 0 provided that both Sl +i and s + (i + 1) are at least Mz + 1 positions away from

either end marker. This is satisfied for each i 0,..., r 1, since Sl > M + 1 and
sz _> M + 1 by(3) (see Lemma 4). It only remains to checkwhether s +re+s. n+ 1.
Note that we must store sl,s2 and e, but not r, on the work tape. We can verify whether
(n + 1 s sg.) mod 0 by moving the input head s + s positions to the right
from the left end marker and checking whether the rest of the tape can be divided into
segments of equal length t?. We are now ready to present the algorithm:

function L_R_path(ql, q2)
for each p, Pl, p2 do

for 81,82 :: M2 + i to M4 do
for := I to M do

if step((ql, 0),/Pl, 1)) and
L_test((pl, 1), (p, s), M6) and
L_test((p, s), (p, sl +), M6) and
R_test((p, sg.), (pg., 1), M6) and
R_step((p2, 1), (q2,0)) and
(n + 1 s s2) mode 0

then return TRUE

end

end end end
return FALSE

In the algorithm "for each p, p,p do end" denotes three nested loops iterated for
all memory states not using more than s space.

A similar algorithm can be used for the function R_L_path(ql, q), which checks
traversals from right to left.

DEFINITION 3. An M-configuration is an ordered pair k (q, m), where q is a
memory state and m E {L, R}, where L and R denote the left and right end markers,
respectively.

M-configurations will be used to identify configurations with the input head scan-
ning the end markers. Combining L_L_path, R_R_path, L_R_path, and R_L_path, we
obtain

function M_step((ql, ml), (q2, m2))
return ml_m2_path(ql q2

end

which checks whether there exists a computation path from M-configuration (ql, ml) to
M-configuration (q2, mz) by visiting the end markers only in (q, ml) and (q,

110 VILIAM GEFFERT

Now, using inductive counting again, we can construct a function M_test(k, kz, tQ,
which checks whether there exists a computation path from M-configuration kl to M-
configuration k such that the input head visits the end markers at most t times.

The algorithm uses induction not on the number of single computation steps but,
rather, on the number of times the input head visits the end markers. Having computed
d, the number of M-configurations reachable from kl by computation paths visiting the
end markers exactly t times, we can compute d’, the number of M-configurations reach-
able from k by computations visiting the end markers exactly t + 1 times. For each
target M-configuration k’ generate the d distinct M-configurations reachable from kl
by exactly t visits to the end markers and verify whether there is an M-configuration k
such that k’ is reachable from k by a computation path visiting the end markers only in
k and k’ by using the function M_step. Increment d’ in this case.

We shall need some modifications in the procedure test:
Line 5. The loop is not iterated for each configuration; rather it is iterated for each

M-configuration k’ not using more that s space on the work tape.
Line 11. The function step(k, k’) is replaced by M_step(k, k’).
Line 8. The function simulation_result(k, t) returning a configuration reachable

from k by a computation executing t steps is replaced by nondeterministic function
M_simulation_result(kx, t), which returns an M-configuration reachable from M-config-
uration k by a computation path visiting the end markers exactly t times not including k
itself. This procedure simulates the original machine A from k and counts the number
of times the head visits the end markers instead of counting single computation steps.
The input is rejected and the entire computation is halted if the chosen path terminates
without having visited the end markers t times. The only M-configuration returned for
t 0 is kl itself.

Clearly, M_test(k, k2, 2M) checks whether M-configuration k2 is reachable from
M-configuration kl, since there are at most 2M distinct M-configurations and therefore
the shortest computation path from k to k cannot visit the end markers more than 2M
times. By using this it can easily be shown that M_test uses at most O(s(n)) space.

By Lemma 5 there is no loss of generality is assuming that the original machine A
accepts with the input head at the left end marker. Therefore, it is sufficient to check
whether any accepting M-configuration with the head at the left end marker is reachable
from the initial M-configuration (q, L). However, two problems arise here. First, we
do not know a priori how much space machine A is going to use. This can be overcome
by testing for 1, 2,... if A is going to use at least that much space. By Lemma 5
we may assume without loss of generality that if A uses s(n) space on the work tape,
then for each h 0,-.., s(n) there exists a configuration reachable from the initial
configuration that uses exactly h space with the input head at the left end marker. Hence
it is sufficient to iterate over all M-configurations having used exactly space s with the
input head at the left end marker and to check whether any of these is reachable from
(q, L). We shall interrupt the work-tape space extension when we reach s such that
no M-configuration using exactly space s at the left end marker is reachable from the
initial M-configuration. Second, our strategy is based on Lemmas 1, 3, and 4 [2], i.e.,
on the assumption that M6 (cs(n)+l)6 (n. Fortunately, if n < (cs(n)+l)6 M6,
then the STANDARD inductive counting algorithm [3], [6] uses at most O(s(n)) space,
since then log(n) O(s(n)). Therefore, each time the work-tape space s is extended we
should check whether M6 (c+)6 < n and decide whether to proceed further or to
switch to the standard inductive counting procedure.

Combining the ideas above, we get the following main program:

TALLY SETS IN SUBLOGARITHMIC SPACE 111

procedure main
s :-- O; M :-- c; extend :-- 1
while extend I and M6 < n do

extend := 0
for each q do

ifworktape_space_used (q) s and
M_test((q_r, L) (q, L) 2M)

then extend := 1
end
s := s + 1; M := cs+l

end
ifM6 >_ n then STANDARD else begin

for each q do
if accepting(q) and

U_test((qi, L), (q, L), 2M)
then reject

end
accept

end end

By the argument above we have the following theorem:
THEOREM 1. For each s(n)-space-bounded nondeterministic Turing machine recog-

nizing a language L c_ 1" there exists a nondeterminiac 0(s(n))-space-bounded Turing
machine recognizing the complement ofLfor each s(n), independent ofwhether it is below
log(n) or is space constructible.

4. Deterministic simulation. The same approach can be applied to Savitch’s theo-
rem [4]. Consider the deterministic version of the function test:

function test(kl,kg,t)
2 ifk k2 then return TRUE
3 ift i then return step(k, k2)
4 for each k do
5 if test(k, k, Lte/2J) and test(k, k2, [te/2])
6 then return TRUE
7 end
8 return FALSE
9 end

We have used the same function step but no nondeterministic function like simula-
tion_result. The procedure uses O(s(n) + log(n) + log(if)) local space, but it calls itself
recursively. The depth of recursion is bounded by [log(ff).

The basic idea of the proof is the same as it was for the nondeterministic simulation.
The deterministic version of L_test will use O(s(n)) local space to store configurations
that have input-head positions bounded by M5. The same amount of local space is suf-
ficient for the time limit t bounded by M6. The depth of recursion for L_test is then
bounded by Ilog(M6)l E O(s(n)), which gives the total space O(s2(n)). The same
amount of space is sufficient for R_test and also for the deterministic recursive variant
of M_test, calling M_step instead of step (cf. the deterministic function test, line 3) with
t bounded by 2M. Savitch’s STANDARD procedure that is called in the main program
also uses at most O(s2(n)) space if n < M.

We can now establish the following theorem"
THEOREM 2. Foreach s(n)-space-bounded nondeterministic Turing machine recogniz-

ing a language L C_ 1" there exists an equivalent deterministic Turing machine that is space
bounded by O(sZ(n)) for each s(n), independent of whether it is below log(n) or is space
constructible.

112 VILIAM GEFFERT

5. Conclusion. The above idea can be used not only for tally inputs but also for
binary inputs with a low information content, e.g., for strings not containing too many
zeros:

DEFINITION 4. A language L c_ {0, 1}* is f(n).zero-bounded if each w L of length
n contains at most f(n) zeros.

THEOREM 3. For each s(n)-space-bounded nondeterministic Turing machine recog-
nizing an f(n)-zero-bounded language L, such that the value off(n) can be computed and
stored in 0 s n space, there exists a nondeterministic 0 s n)-space-bounded Tuting ma-
chine recognizing the complement of L and also an equivalent O(s2 (n))-space-bounded
Turing machine that is deterministic.

Note that we have to compute f(n) by using O(s(n)) space only, but s(n) itself need
not be fully space constructible.

Proof. We state only the basic ideas for the inductive counting, since the proof is
very similar to the arguments presented above. (A similar argument can be used for the
deterministic simulation.)

First, compute f(n), and store this value on a separate work-tape track. Accept the
input if the number of zeros on the input tape exceeds f(n).

Otherwise, we must simulate the original machine A. Because f(n) can be stored in
O(s(n)) space, there is a constant d such that f(n) < ds(n). Since there are at most ds(n)

zeros on the input tape, there can be at most c(’)+ d(’) so-called Z-configurations, i.e.,
with the head scanning a symbol zero on the input tape.

No optimal computation path enters the same Z-configuration twice, and there-
fore we shall consider only computation paths scanning zeros on the input tape at most
Cs(n)+lds(n) times. (In fact, the value of c+f(n) will be computed and stored on a sep-
arate work-tape track. Because s is not known at the beginning of the computation, this
value is recomputed each time s is extended.)

Moreover, each Z-configuration can be stored on the work tape by using only O(s(n))
space because the input tape position can be coded by the number of zeros lying to the
left of the current position.

Using inductive counting, we can now generate and count all Z-configurations that
are reachable from the initial configuration by induction on the number of times the
input head scans zero.

We must call a nondeterministic Z-configuration generator, i.e., a function Z_simula-
tionesult(k, t) returning a Z-configuration reachable from Z-configuration k by a com-
putation path scanning zeros on the input exactly t times.

Second, we shall need a single Z-step verifier, i.e., a function Z_step(k, k2) to.check
whether Z-configurations k and k2 can be connected by a computation path scanning
zeros .only in kl and k2. Such a computation path can be found only if k and k2 scan the
same zero on the input tape or if they scan two adjacent zeros, i.e., two zeros separated by
1, for some k >_ 0. Return FALSE if this is not satisfied. Now consider the two adjacent
zeros. (The argument for the first case is very similar--by Lemma 1--and therefore
is omitted.) Compare k, the distance between these two zeros, with M6. If k < M6,
then we shall .call the standard inductive counting procedure and use the tape segment
between the two zeros as its effective input, measuring off the input-head positions from
the left zero. Othel"wise, we shall use the strategy based on Lemma 4 (see 3, procedure
L_R_path).

The basic difference from the tally input recognition is that M6 is compared not
at the beginning of the main program but each time the procedure Z_step is called to
analyze computation paths between any two adjacent zeros.

TALLY SETS IN SUBLOGARITHMIC SPACE 113

For example, the Savitch and Immerman-Szelepcs6nyi theorems hold for each d
zero-bounded language, where d is a constant, if s(n) is fully space constructible.

These two theorems hold for each L c_ a* b* for each s(n), independent of whether
s(n) is above log(n) or is space constructible, since there is a straightforward correspon-
dence between L and the 1-zero-bounded language L’ {1’01’; arab E L}.

However, there is a very important difference between inductive counting in sublog-
arithmic space and the standard Immerman-Szelepcs6nyi result. In fact, the Immerman-
Szelepcs6nyi algorithm for s(n) >_ log(n) can be used to generate all configurations
reachable from any given configuration k, not only from the initial configuration. It
is this fact that is needed to prove that the alternating hierarchy of s(n)-space-bounded
machines collapses to]1 SPACE(s(n)). Ek SPACE(s(n) and Hk-SPACE(s(n)) de-
note the classes of languages recognizable by alternating s(n)-space-bounded machines
making fewer than k alternations between universal and existential states with the initial
state existential and universal, respectively. This is not possible in sublogarithmic space
because we do not have enough space to remember the input-head position. Once we
have moved the input head too far, the tape position is lost. We cannot restart, over and
over again, computation paths beginning in the same configuration. On tally inputs this
is possible only for a restricted set of configurations with the input-head positions close
to the end markers. Fortunately, the initial configuration belongs to this set, and that is
why we were able to check whether there is an accepting reachable configuration.

However, we still have that H2 SPACE(s(n)) E1 SPACE(s(n)) #- 0 for each
s(n) between log log(n) and log(n) [7], [1]. An example [7] of a language over a single-
letter alphabet in H2 SPACE(s(n)) 1 SPACE(s(n)) for each unbounded fully
space-constructible s(n) below log(n) is

L {a’; n < least common multiple of 1,..., dS(’)}.

There exist unbounded fully space-constructible functions below log(n), e.g., s(n)
log(min{i; does not divide n}) E O(log log(n)). However, none of these functions can
be monotone increasing [1], [2].

Acknowledgment. The author thanks Branislav Rovan for some remarks concerning
this work.

REFERENCES

[1] J. H. CHANG, O. H. IBARRA, B. RAVIKUMAR, AND L. BERMAN, Some observations concerning alternating
Turing machines using small space, Inform. Process. Lett., 25 (1987), pp. 1-9; Erratum, 27 (1988), p.
53.

[2] V. GEFFERT, Nondeterministic computations in sublogarithmic space and space constructibility, SIAM J.
Comput., 20 (1991), pp. 484-498.

[3] N. IMMERMAN, Nondeterminstic space is closed under complement, SIAM J. Comput., 17 (1988), pp. 935-
938.

[4] W.J. SAVITCH, Relationship between nondeterministic and deterministic tape complexities, Comput. System
Sci., 4 (1970), pp. 177-192.

[5] R.E. STEARNS, J. HARTMANIS, AND P. M. LEWIS II, Hierarchies ofmemory limited computations, 1965 IEEE
Conference Record on Switching Circuit Theory and Logical Design, 1965, pp. 179-190.

[6] R. SZELEPCSINYI, The method offorced enumeration for nondeterministic automata, Acta Inform., 26
(1988), pp. 279-284.

[7] A. SZEPIETOWSKI, Some remarks on the alternating hierarchy and closure under complementfor sublogarith-
mic space, Inform. Process. Lett., 33 (1989), pp. 73-78.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 114-135, February 1993

() 1993 Society for Industrial and Applied Mathematics
010

NV-SEQUENTIALITY: A DECIDABLE CONDITION FOR CALL-BY-NEED
COMPUTATIONS IN TERM-REWRITING SYSTEMS*

MICHIO OYAMAGUCHIt

Abstract. In 1979 Huet and Levy introduced the class of sequential term-rewriting systems in which call-
by-need computations are possible (without look-ahead) and defined the subclass called strongly sequential
systems for which needed redexes in a given term are effectively found [chapter in Computational Logic: Essays
in Honor ofAlan Robinson, J.-L. Lassez and G. Plotkin, eds., MIT Press, Cambridge, MA, 1991]. This paper
introduces a larger subclass that is a natural, extension of strong sequentiality and is based on the analysis of
both the left-hand sides and part of the right-hand sides (i.e., the nonvariable parts) of systems, whereas strong
sequentiality is based on the analysis of left-hand sides alone. This new sequentiality is called NV-sequentiality.
It is shown that (i) the class ofNV-sequential systems properly includes the class of strongly sequential systems,
(ii) there exists an algorithm for finding needed redexes for a given term when a system is NV-sequential, and
(iii) it is decidable whether an arbitrary left-linear system is NV-sequential.

Key words, term-rewriting system, call-by-need computation, sequentiality, strong sequentiality, left-
linear system

AMS(MOS) subject classification. 68Q50

1. Introduction. Aterm-rewriting system (TRS) is a set of directed equations (called
rewrite rules). TRSs are used as abstract interpreters of programming languages and
as formula-manipulating systems in various applications, such as theorem proving, rea-
soning about specifications, program optimization, and transformation (see [5], [6], [9],
[131).

The notion ofcall-by-need computations has turned out to be fruitful in implementa-
tion of interpreters for (applicative) programming languages [5], [10], [21], [22]. Here a
computation step is said to be call-by-need if the step is necessary to reach a normal form
(or to obtain an answer). (This notion is closely related to that of strictness, which is im-
portant in functional programming (see [1]).) Huet and Levy [8] gave a more complete,
theoretical treatment of this subject for TRSs and used the notion of sequentiality given
in [11], [22] to define a subclass of TRSs for which the call-by-need computations are
possible (without look-ahead). Intuitively, a TRS is said to be sequential if, for any term
M that is not in normal form but can reduce to a normal form, there exists a redex in M
that we need to compute to obtain to a normal form ofM and this redex (which is said to
be needed) can be determined without look-ahead. However, sequentiality was shown
to be undecidable for TRSs in [8]. This undecidability stems from the undecidability of
the reachability problem for TRSs. Here the reachability problem is the problem of de-
ciding, for two terms M and N, whether there exists a reduction sequence from M to N.
To overcome this difficulty a sufficient condition for sequentiality, called strong sequen-
tiality, was introduced in [8]. The notion of strong sequentiality is based on the analysis
of left-hand sides of rewrite rules alone. (In other words, it is similar to the sequentiality
condition for the set of new rewrite rules defined under the assumption that any redex
can reduce to an arbitrary term.) It was shown in [8] that needed redexes for a given term
are effectively found when we consider a strongly sequential system. Moreover, whether
a TRS is strongly sequential was shown to be decidable in [8]. For a refinement of the
notion of strong sequentiality, see [20], and for a related result on strong sequentiality

Received by the editors December 18, 1989; accepted for publication (in revised form) December 17,
1991. This research was supported in part by the Alexander von Humboldt Foundation.

Faculty of Engineering, Mie University, Tsu-shi 514, Japan (mo+/-nfo. m+/-

114

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 115

with constructors, see [19]. For an alternative analysis of strong sequentiality and two
simplified proofs of the decidability of this property, see [12].

In this paper we introduce a new notion of sequentiality that is a natural extension
of strong sequentiality and is based on the analysis ofboth the left-hand sides and part of
the right-hand sides (i.e., the nonvariable parts) of systems, whereas strong sequentiality
is based on the analysis of left-hand sides alone. (In other words, this new sequential-
ity condition is sufficient for ensuring sequentiality under the assumption that for each
rewrite rule c fl every redex cr(c), where tr is a substitution, can reduce to any term
that contains the nonvariable part of fl as the prefix (or upper) part. Note that reducing
r(c) to tr’(fl), where tr’ is another substitution, is permitted, but reducing r(c) to any
term is not permitted. Thus this new sequentiality is based on relatively more precise
(or detailed) analysis than is strong sequentiality.) Henceforth this new sequentiality is
called NV-sequentiality, which is an abbreviation of sequentiality with respect to nonvar-
iable parts of right-hand sides.

We first show that the class of NV-sequential systems properly includes the class
of strongly sequential systems and that NV-sequentiality is a sufficient condition for se-
quentiality. (These results show that NV-sequentiality gives a wider class of TRSs, in
which call-by-need computations are possible, than does strong sequentiality.)

Next we show that for an NV-sequential system there exists a redex selection algo-
rithm deriving normal forms from given terms whenever they possess normal forms. To
show this we prove that the problem of deciding, for a term M and an occurrence (posi-
tion) u, whether u is a needed redex occurrence for obtaining the normal form of M is
reducible to the reachability problem for quasi-ground TRSs, which has been shown to
be decidable in [4], [15], [16]. Here a TRS is a quasi-ground system if for every rewrite
rule in the TRS the left-hand side is linear and the right-hand side contains no variables.
Thus we obtain a redex selection algorithm for NV-sequential TRSs. The algorithm
operates in polynomial time. Moreover, whether a left-linear TRS is NV-sequential is
shown to be decidable. The proof of this decidability leads to a new (perhaps simplified)
proof of the decidability of strong sequentiality that is different from the more algorith-
mic one given in [8].

This paper is organized as follows. Section 2 is devoted to standard definitions. The
notions of sequentiality and strong sequentiality are explained in 3, and the definition
of NV-sequentiality is given in 4. In 5 we give a redex selection algorithm for NV-
sequential TRSs, and in 6 we show that NV-sequentiality is decidable.

2. Definitions. We use e to denote the empty string and 0 to denote the empty set.
For a set U we let IIUII be the cardinality of U. We use N to denote the set of positive
integers and N0 to denote N U {0}.

The following definitions and notations are similar to those in [7]. Let X be a finite
set of variables, and let F be a finite set of operation symbols graded by an arity function
a F N0. Let T be the set of terms constructed from X and F. That is, a term
either is a variable or is of the form fM1... M, for some f E F with arity a(f) n
and M1,. , M, E T. For any M in T we define V(M) as the set of variables that occur
in M. A term M is called a ground term if V(M) and is called a linear term if no
variables occur more than once in M.

Let F {f Fla(f n}. We define several functions on terms: For any M in
T let M z, where z X, or M fM... M, where f F,. Then

(i) the size IMI" I1- 1,

IfM’" MI- 1 + IMll + + IMI;

116 MICHIO OYAMAGUCHI

(ii) the set of occurrences O(M) O(z) {e},

O(fM1... M,)= {e} tO {iu I1 _< i _< n, u e O(M{)};

(iii) the subterm M/u at occurrence u x/e x,

fM Mn/e fM Mn,

fM Mn/iU Milu, l<i<n;

(iv) M[u-N]ET, whereuEO(M) andNT:

M[e N]- N

fM Mn[iU <-- N] fMl Mi-(Mi[u <-- N])Mi+I Mn, l<i<n;

(v) the height h(M) h(x)= 0,

f 1 + Max{h(M1),... ,h(Mn)}
Mn

0

(vi) the operation symbol Occ(M, u) at occurrence u:

ifn > 0;

otherwise;

Occ(x, e) x, Occ(fM1’’’ M,, e) f,

Occ(fM1’’- Mn, iu)= Occ(Mi, u), 1 _< i _< n;

(vii) sub(M)= {M/ulu e O(M)}.
The set of occurrences O(M) is partially ordered by the prefix ordering u _< v if and

only if 3w such that uw v. In this case we denote w by v/u. If u v and v u, then
u and v are said to be disjoint and are denoted ulv. If u <_ v and u v, then u < v.

Let Ox(M) be the set of variable occurrences in O(M), i.e., Ox(M) {u
O(M)IM/u e X}.

A substitution cr is a mapping a X T, and a is extended to a mapping from
terms to terms: a(fM... Mn) for(M1)’’’ cr(Mn) for f G Fn.

A TRS is a finite set E of rules ce /3 such that ce,/3 T, and V(/3) c_ V(ce). Let
LE {Ce ICe fl E E} and RE {fl ICe fl G E}. For any substitution a and Ce LE,
a(Ce) is called a redex. A term M reduces to N at occurrence u if and only if M/u a(Ce)
and N M[u - a(/3)] for some substitution a and rule Ce /3 E. In this case u is
called the redex occurrence of the reduction. We denote this reduction by M "-E N.
In this notation u and E may be omitted (i.e., M 4 N) and 4 is regarded as a relation
over T. Let 4+ and 4" be the transitive closure and the reflexive-transitive closure of
4, respectively. Let 4 be the identity relation, and let 4k=4 k- for k > 0. Let
4() k --#fork>O.Ui=0

We define the size of system E by ’]---+/3eE / I l, which is denoted size(E).
UkDEFINITION 2.1. Let 7" M -% M 4 Mk be areductionsequence. Then

v O(M) is said to be safe for 7 if there exists no u, 1 < i < k, such that ui < v.
DEFINITION 2.2. For a termMwe use R(M) to denote the set of redex occurrences

in M, i.e., (M) {u e O(M)IM/u cr(Ce) for some Ce LE and mapping cr X 4
T}. The minimal subset A47Z(M) of(M) consists of the minimal occurrences of7Z(M)
in a sense of <. For example, if (M) {1, 2, 21}, then A/17Z(M) {1, 2}.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 117

DEFINITION 2.3. A term M is a normalform if and only if 7"Z(M) 0. In this case
M is also said to be irreducible. We denote the set of terms in normal form by NFE. We
use NF if E is clear in the context.

DEFINITION 2.4. A TRS E is said to be left-linear if every term c in LE is linear and
is said to be a quasi-ground system if for every rule c --*/3 in E, c is linear and/3 is a
ground term. TRS E is said to be nonoverlapping if there are no critical pairs [7], [13].

Notation. For a term M let U {u,..., Un-, u} C_ O(M), where u,...,
are pairwise disjoint. We use M[u .-N,’",Un_ +-Nn-l,U, *--Nn] to denote
(M[Ul Ul,-",u,-i Un-1])[ltn +-’- U,]. We also use M[ui Ui, ui E U] to
denote this term.

Henceforth we will be dealing with a fixed TRS E {ci 311 < i < n0} and will
that E satisfies the following conditions:

(i) LE X O,
(ii) E is lft-linar and nonovrlappin.
Note that by (ii) E is confluent, so that if a term M can rduce to a term in normal

form, then the normal-form trm is uniqu (see [7], [9]).
3. Sequentiality and needed redex. We will first explain the notion of sequentiality.

Intuitively, a TRS E is sequential if and only if for any term M not in normal form there
exists a redex in M that we must compute to get to the normal form of M, and this redex
can be determined without looking at the subparts of M, which are not yet computed.
For a more precise explanation, we need some preliminaries.

First, a new constant symbol 9t (i.e., a(f) 0) will be added to the set F ofoperation
symbols, and the augmented set of terms will be denoted by Tn. We denote the set of
non-f-terms constructed from F tO X by T. Members of Tn will be called f-terms, and
an irreducible)-term will be called an f-normal form. Only irreducible terms in T are
said to be normal forms. Intuitively, f denotes the absence of information and is the
least information symbol (in denotational semantics [18]).

An information ordering on Tn is defined as follows.
DEFINITION 3.1 [8], [18].
(i) f _< M for all M E Tn.
(ii) For f F tO X, fM1... M, <_ fN1... Nn if and only if Mi _< Ni for all i, 1 _<

_< n. Here n a(f) iff F, and n 0 iff X.
(iii) For f,9 F U X, fM1...Mn 9NI’"N, if f 9. Note that if M E T,

then M _< N if and only if M N. We write M < N if M _< N and M N.
By this definition, however, we can easily show the following lemma concerning the

ordering _<.
LEMMA 3.1. Let M, N Tn. Then thefollowing three statements are equivalent:
(i) M E N;
(ii) u O(M) such that M/u <_ N/u and M[u n] <_ N[u];
(iii) M N or there exists a set U c_ O(N) such that occurrences in U are pairwise

disjoint and M N[u , u U].
Theproofis straightforward, so it is omitted.
DEFINITION 3.2 [8]. For a term M T we use Mn to denote the term obtained

from M by replacing all variables in M by 2, i.e., Mn M[u 2, u Ox(M)].
DEFINITION 3.3. For an fl-term N

occurrences in O(N), i.e., On(N) {u
Next we define a normal-form predicate rifE as follows:
DEFINITION 3.4 [8]. For M Tn, rifE(M) TRUE if and only ifN NFE such

that Mv N, that is, M can reduce to a normal form. nfE(M) FALSE if and only if

118 MICHIO OYAMAGUCHI

nfE(M) # TRUE. We may omit the subscript E if E is clear in the context.
Note that NFE is a monotonic predicate under the assumption FALSE < TRUE,

i.e., M _< N implies NF(M) _< NF(N).
Assume that nf(M) TRUE and that M contains f. Then note that all f’s in M

must be eliminated in the reductions to the normal form. We now define needed redex
occurrences as follows.

DEFINITION 3.5. Let nf(M) TRUE for M Tfl. Then a redex occurrence
u R.(M) is said to be needed for the normal form if and only if nfE(M[u f])
FALSE. (This definition is equivalent to that in [5].) A reduction M - N is said to be a
call-by-need reduction (or computation) if u is needed for the normal form of M.

It has been shown that in A-calculus the leftmost reduction for any term is call-by-
need, but in TRSs the leftmost outmost reduction is usually not call-by-need (see [2],
[8]).

We now consider the case for which TRS E is left-linear and nonoverlapping. Let
M be an f-term not in normal form. If there exists a reduction sequence 7 M * N
for some N NF, then at least one outermost redex of M (i.e., M/u for some u in
A/JR(M) (see Definition 2.2)) must be evaluated in 7. As a stronger result, it was shown
in [8, Lemma 4.3] that there exists u in .MR(M) needed for the normal form (i.e., M/u
must be evaluated for all reduction sequences 7 M * N such that N NF).
Generally, such an occurrence u depends on the subterms M/u’, u’ .MR(M). For
example, in the case for which E

_
{f(A, B, z) O, f(z, A, B) -- O, f(B, z, A)

O} a needed occurrence of an f-term M f(M, Mz, Ma) depends on the contexts
M, Mz, 343 (e.g., if M1, M, Ma are redexes and there is no reduction sequence such
that Ma --** A or Ma ---** B, then occurrences 1 and 2 are needed, but if Ma * B, then
occurrence 1 may not be needed [8]).

We now explain the notion of sequentiality of the predicate nfE. The notion is based
on the assumption that there exists a needed occurrence independent of the subterms
M/u, u 3A(M) Let M’ M[u 2, u A47(M)], where AA(M) - O. Note
that nfE(M’) FALSE. Then the sequentiality condition is that there exists an occur-
rence u 2MT(M) such that if N >_ M’ and nfE(N) TRUE, then N/u f. That is,
sequentiality ensures that this occurrence u is a needed occurrence of M and that it can
be determined independently of the contents of the M/v’s, v .MR(M). The following
definition of a sequential predicate is given in [11] and [8].

DEFINITION 3.6. Let the truth values be ordered by FALSE < TRUE. Let 79 be a
monotonic predicate on Ta. An occurrence u of a term M is said to be an index of T’ in
M if and only if (i) M/u f and (ii) N _> M and P(N) TRUE (where N Tn)
imply N/u # ft. (Note that P(M) is false if M has an index of 79.) We use 1(79, M) to
denote the set of indices ofP in M. 79 is said to be sequential at M if and only ifwhenever
P(M) FALSE and there exists N such that N > M and P(N) TRUE, it follows
that there exists an index of 79 in M.

DEFINITION 3.7 [8]. TRS E is sequential if and only if the predicate nf is sequen-
tial at every f-normal form.

Unfortunately, sequentiality ofTRSs is known to be undecidable, and indices of nfE
are not computable in general [8]. A sufficient condition for sequentiality, called strong
sequentiality, is given in [8]. The notion of strong sequentiality is based on the analysis
of the left-hand sides of rules alone, and the contents of the right-hand sides are ignored.
Precisely, strong sequentiality is defined as follows.

DEFINITION 3.8 [8]. From the set E ofrewrite rules, a new reduction st is defined
as follows: M st N if and only if M/u a(a) and N M[u - N’] for some

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 119

u O(M), redex tr(a) (where a Lv and cr X Tn), and N’ Tn. Note that any
term N’ is allowed as the right-hand-side term of the rule, andL is the set of left-hand-
side terms of E. We define a predicate snfv as follows: snf(M) TRUE if and only if
N such that M N and N is in normal form; (i.e., N NF). (Note that snfv

nf if we denote by st the set of the new rules {M N[M --. N}.) A TRS E is said
to be strongly sequential if and only if snf is sequential at every ft-normal form.

We will see in 4 that if a TRS E is strongly sequential, then E is sequential, and
for every f-normal form N if an occurrence u is an index of snf in N, then u is also an
index of nf in N, although these results have already been shown in [8]. Thus strong
sequentiality is a sufficient condition for sequentiality, and Huet and Levy [8] showed an
efficient algorithm to compute indices of snf in a given 9t-term. Hence by the previous
arguments it follows that a needed occurrence of a given ft-term M is efficiently com-
puted if TRS E is strongly sequential, nf(M) TRUE, and R(M) . Moreover,
it is shown in [8] that if nf(M) TRUE, then every call-by-need reduction sequence
from M is normalizing, i.e., reaches the normal form in finite steps. Thus we can obtain
a redex selection algorithm that derives the normal form from a given term whenever it
has the normal form. Also, whether a TRS is strongly sequential has been shown to be
decidable [8].

As a related work, it has been shown that in left-linear and nonoverlapping TRSs if
a given term has the normal form, then every sequence of parallel-outermost reductions
(i.e., simultaneously rewriting all outermost redexes) from the term is normalizing (see
[3], [14]).

4. NV-sequentiality. In this section we introduce a condition called NV-sequenti-
ality, which is more general than strong sequentiality. The notion of NV-sequentiality
is based on the analysis of both the left-hand sides and part of the right-hand sides (i.e.,
the nonvariable parts) of systems, whereas strong sequentiality is based on the analysis
of the left-hand sides alone.

DEFINITION 4.1. From the set E of rewrite rules, a new reduction nv is defined
as follows: M ""+nv N if and only if 3u E O(M)2a E such that M/u > and
N M[u N’] for some N’, where N’ >/3. Note that Q is a redex of E if and only if
Q > c for some c E L, since E is left-linear. So under the reduction -’nv any redex
Q >_ c can reduce to any term N’ such that N’ >/3, where c /3 E.

Note that st_n,,_z hold, and these reductions have the same set of redexes
(and the same normal forms). Using v, we now define NV-sequentiality as follows.

DEFINITION 4.2. A predicate term is defined as follows: term(M) TRUE if and
only if 3N such that M v N and N E T. Note that N is a term and N does not
contain f. A TRS E is said to be NV-sequential if and only if term is sequential at every
f-normal form, that is, for any M in f-normal form if (i) term(M) FALSE and (ii)
there exists a term N such that N _> M and term(N) TRUE, then there exists an
index of term in M. Note that condition (ii) is always true. So from now on we will omit
(ii) from the definition of NV-sequentiality. The predicate term is defined over the new
reduction nv, but it is not defined over.

Note. To define NV-sequentialitywe used the predicate term. Of course, we can use
a predicate similar to nfz to define another sufficient condition for sequentiality. That is,
we can define a predicate nvnfz(M) as follows: nvnf(M) TRUE if and only ifN
NFv such that Mv N. Using this predicate, we can define a class of TRSs such that
nvnfz is sequential at every f-normal form. In this paperwe did not adopt this definition,
since it will be very difficult to obtain an (efficient) algorithm for finding indices ofnvnf.

120 MICHIO OYAMAGUCHI

(We conjecture that the class of TRSs satisfying this sequentiality properly includes the
class of NV-sequential TRSs,)

We will give a relationship between sequential TRSs, NV-sequential TRSs, and
strongly sequential TRSs. We will show that the class of NV-sequential TRSs is included
in the class of sequential TRSs and properly includes the class of strongly sequential
TRSs. The following two technical lemmas are used to obtain this result.

LEMMA 4.1. Assume that NFE 0. Then thefollowing statements hold:
(i) term(M) TRUE = snfE(M) TRUE;
(ii) nf(M) TRUE term(M) TRUE.
Proof. (i) By term(M) TRUE we have M -v N for some N T, so that

M s*t N holds. If N/u is a redex for some u O(N), then we have a reduction
N st N[u N’], where N’ NFE. Hence snf(M) TRUE by repeating the above
reductions. (ii)By nfE(M) TRUE we have M. N for some N NF. ByN T
term(M) is true.

LEMMA 4.2. LetMbe an f-norrnalform. Let NFE 0.. Then thefollowingstatements
hold:

(a) u I(SnfE, M) = u /(term, M);
(b) u /(term, M) = u I(nfE, M).
Proof. By Definition 3.6, u I(79, M) if and only if (i)M/u f and (ii) N > M

and 79(N) TRUE = N/u f for a predicate 7.
Proofof (a). Let u I(SnfE, M). That is, the above (i) and. (ii) hold where 79

snfE. Assume that N > M and term(N) TRUE. Then snfE(N) TRUE holds by
(i) of Lemma 4.1. So N/u f by (ii) above, where 7 snfE. Thus the above (i) and
(ii) also hold in the case for which 79 term.

Proof of (b). This proof is similar to that of (a), except that Lemma 4.1(ii), i.e.,
nfE(M) TRUE = term(M) TRUE is used (instead of Lemma 4.1(i)). [:]

LEMMA 4.3. Let TRS E be left-linear and nonoverlapping. Let NFE 0. Then the
following statements hoM:

(i) E is strongly sequential = E is NV-sequential;
(ii) E is NV-sequential E is sequentiaL.
Proof. Let M be an f-normaI form.
Prooff’of (i). Assume that

(1) term(M) FALSE.and 3N, (N _> M)/ (term(N) TRUE).

By (1) snf(M) FALSE, since term(M)= FALSE implies that M containsf and M
is in f-normal form. Obviously, 3N’ such that (N’ > M)/X (snf(N’) TRUE).. (For
example, choose N’ T such that N’ _> M.) Hence strong sequentiality of/ implies
that there exists an index u I(snf, M). Hence by (a) of Lemma 4.2, u /(term, M).
Thus/ is NV-sequential.

Proofof (ii). Assume that

(2) nf(M) FALSE and N such that. (-N > M)A (nf(N) TRUE),
We first show thatterm(M) FALSE. Since M is an f-normalform, there is no redex in
M. So nf(M) FALSE in (2) implies that M contains at least one f. Thus term(M)
FALSE, as claimed. Hence NV-sequentiality of E implies that there exists an index
z. /(term, M). So by (b) of Lemma 4.2, u I(nf, M). Thus E is sequential.

We can obtain a TRS E that is NV-sequentialbut not. strongly sequential.
Example 4.1. Let

E {f(f(a, x), f(b, y)) f(e, e), f(f(x, a), f(c, y)) f(e, e), f(d, d) f(e, e)},

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 121

where a, b, c, d, e E F0, f E F2, and z, y X. Note that E is similar to that given in
[8, p. 27], and E is not strongly sequential since f(f(, f), f(f(f, f), f)) has no index.
(However, note that occurrence 22 in this term is an index of term.) We can show that
E is NV-sequential. We omit the proof. (A reader who is interested in the proof may
refer to the previous version of this paper [17].) A general algorithm for checking NV-
sequentiality will be given in 6.]

By Lemma 4.3 and Example 4.1 we have the following theorem.
THEOREM 4.1. (i) The class of NV-sequential TRSs properly includes the class of

strongly sequential TRSs.
(ii) The class ofNV-sequential TRSs is included in the class ofsequential TRSs.
Note. Properness of (ii) in Theorem 4.1 can be proved since NV-sequentiality is

shown to be decidable in 6, but sequentiality is undecidable in general. As a concrete
candidate for a sequential TRS that is not NV-sequential, we give the following TRS E2.

Example 4.2. Let

E2 {f(g(a,x),a) -- c,f(g(x,a),b) - c,f(k(a),x) c,g(b,b) ---. h(b),h(x)-k(x)},

where a,b,c Fo, f,g F2, h,k F, and x E X. Note that E2 is similar to that
given in [8, p. 26]. We can show that E2 is not NV-sequential, because f(g(f, f), f)
has no index of term. (Note that occurrence 2 is not an index, since f(g(b, b), f) -nv
f(h(b), f) --nv f(k(a), f) nv c.) The author thinks that E2 is sequential, although the
formal proof has not been given.

5. Redex selection algorithm. In this section we consider the problem of deciding,
for an f-term N and an occurrence u O(N), whether u is an index of term in N,
i.e., u /(term, N). We show that this problem is decidable. From now on we call this
problem the term I-problem.

Notation. For N T let It(N) -/(term, N).
Let M be a term in T, where A//7(M) , and let TRS E be NV-sequential, where

E is left-linear and nonoverlapping. Let M’ M[u 2, u j4(M)]. Note that
term(M’) FALSE by 7(M) 0. So NV-sequentiality of E ensures that some
occurrence u in A/7(M) is an index of term in M’ (i.e., u It(M’)). By Lemma 4.2(b),
u is also an index of nf in M, so that u is a needed redex of M for the normal form
by Definition 3.5. Let M --U-*E N be the call-by-need reduction. If N is reducible, i.e.,
A//7(N) }, then we repeat the above procedure for N (instead of M) until we obtain
the normal form. As was explained in 3, it is shown in [8] that if rifE (M) TRUE, then
every call-by-need reduction sequence from M is finite-terminating and eventually leads
to the normal form. Thus, using an algorithm for deciding the above term/-problem,
we can obtain a redex selection algorithm that gives a reduction sequence from a term
to the normal form whenever the term can reduce to the normal form.

To obtain an algorithm for deciding the term/-problem, we need some preliminar-
ies. The following definition is given in [8].

DEFINITION 5.1 [8]. For f-terms M, N Ta, M and N are said to be compatible,
written M T N, if and only if there exists an f-term Q such that M _< Q and N < Q.
We write M T/ N if M T N and M f.

DEFINITION 5.2 [8]. The least upper bound of two compatible f-terms M and N,
written M N, is defined as follows:

fUM MUf= M

(fMl""Mn) U(fNl""Nn) f(M UN1,...,MUN,),where f FOX. Note that
if M T N, then M U N is defined and M < M U N and N < M U N.

122 MICHIO OYAMAGUCHI

We now define a new kind of rewrite rules associated with a TRS E as follows.
DEFINITION 5.3. For f-terms M, N E T,M N if and only if M/u T + a

and N M[u fin] for some u O(M),a E. We call this reduction an
w-reduction, and we call M/u an w-redex.

Note. The reduction in [8] is the same as that of Definition 5.3., except that f
is substituted for fl.

Note. LetM be an f-normal form. Then there is no redex a(a) in M, where a L
and a X T, but M may have an w-redex, i.e., M/u T+ cm for some u O(M) and
aL.

We first explain a relationship between this new reduction and n,, (defined
in 4). Using this relationship, we will show that the term/-problem reduces to the
reachability problem for quasi-ground TRSs, which is shown to be decidable in [4], [15],
[16].

LEMMA 5.1. (a) Let M n where M T+ an and a E. Then there exists
M’ > M such that M’ nv Qfor any Q > flf.

(b) Let M -nv M’ and N < M where N, M, M’ T. Then either N < M’ or
there exists N Tn such that N N’ and N’ < M’. (This implies that 3N’ such that

N and N’ < M’.)N --w
MProof. (a) The proof is obvious. (b) By M nv we have M/u > an and M’

M[u - Q] for some u O(M), a fl E, and Q > fin. We first consider the case
where there exists v O(N) sch that v < u and N/v f. In this case M[v f] >_
N[v - fl] N holds, so that M’ M[v -- M’/v] > N holds, as claimed. Next
consider the case where there exists no v O(N) such that v < u and N/v t. In this
case, by M > N we have

(3) u O(N) A Occ(M, u) Occ(N, u) # f.

Since M/u >_ a and M/u >_ N/u, we have N/u T a, so that N/u T+ a by (3). Thus
N/u by the definition of-. Let N’ N[u fl]. Obviously, N -. N’ and
N’ _< U’ hold, since U’= M[u +- Q] >_ U[u f] >_ N[u - n] N’.

Using this relationship between -nv and --., we will first give a characterization of
It(M), where M is an 9t-term. That is, we will prove Lemma 5.3, which says that for an
f-term M Tn {9t} an occurrence u O(M) (where M/u f) is no index of term,
i.e., u q It(M) if and only if there exist v O(M), where v < u, and N E T such that
(M[u - x])/v --. N and N T+ an for some a LE, where x is a variable and LE is
the set of left-hand sides of E. By using this characterization the term/-problem will be
shown to be decidable. For this purpose we will need some definitions and lemmas.

DEFINITION 5.4. For fl-terms M’, M and an occurrence u O(M’), if M’ >_ M A
M’/u f/ term(M’) TRUE, then we say that M’ witnesses u

_
It(M).

The following technical lemma comprises the if part of Lemma 5.3.
LEMMA 5.2. Let M Tn, and let u O(M), where M/u f. Let M[u .- x] -o N

and N T+ aft, where x is a variable and a LE. Then u ; It(M).
k N for some k _> 0, where N T+ an WeProof. Let M1 M[u x] and M

will prove this lemma by induction on k.
Basis: k O. In this case M N T+ a. Let

(4) Q M U an.

Then Q/u z holds by M/u z. Moreover, note that a contains no variable, so
that by (4), 3u’ < u such that an/u’ f. Thus we have

(5) Q[u

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 123

We now show that Q[u fl] witnesses u

_
It(M), i.e., (i) Q[u f] > M, (ii) Q[u

f]/u f, and (iii) term(Q[u ,-- f]) TRUE. Obviously, (ii) holds. Since Q[u ,-- f] >
M [u f] M holds by (4), (i) holds. It remains to show (iii). By (5) the definition
of nv ensures that Q[u f] n N’ for any N’ > , where a E. Thus
term(Q[u f]) TRUE, i.e., (iii) holds, as claimed.

k--1Induction step" > O. Let Mx M[u z]-, M2 (M[,u, -- c])[v -- flf] ---w
N, where

M[u z]/v T+ n for some v E O(M[u - z])and /3 E E.

Let

(6) Q M[u

There are two subcases: (a) ulv and (b) v < u. Note that u < v is impossible by M[u ,--

k-1 N. So theCase (a): ulv. Note that M2 (M[v
induction hypothesis ensures that there ests Q witnessing u It(M[v fl]), i.e.,

(7) Q M[v] A Q/u A term(Q) TRUE.

Using (6) and (7), we can show that Q[v Q] witnesses u lt(M) for Q in (6), i.e.,
(i) Qx[v Q] M, (ii) Ql[V Q]/u , and (iii)term(Q[v Q]) TRUE.
Note that
M[v] M[v] by (7). Since Q[v Q]/u Q/u by (7), (ii) holds.
It remains to show (iii). Note that Qx/v fl holds by (7) and Q holds by
(6), where fl E. So the definition of v ensures that Q v Q1/v. Thus
Q[v Q] nv Q[v Q1/v] Q holds. Since term(Q) TRUE by (7), it follows
that term(Q [v Q]) TRUE, i.e., (iii) holds, as claimed.

Case (b): v < u. In this case M[u z]/v- (M/v)[u’], where vu’-u. By
M[u z]/v T + , the proof of the basis case of k 0 ensures that there ests
witnessing u’ It(M/v), i.e.,

(8) Q’ M/v A Q’/u’ A term(Q’) TRUE.

Obviously, there ests a term M0 in T such that M0 M. tM M0 Iv Q’]. Then
we can prove that M’ witnesses u lt(M), i.e., (i) M’ M, (ii) M’/u , and (iii)
term(M’) TRUE. Obviously, (i) holds, since M’ Mo[v Q’] M[v Q’] M
by (8), and (ii) holds, since M’/u Q’/u’ by (8). Moreover, since M0 T
and term(Q’) TRUE by (8), (iii) holds, that is, term(M’) term(M0[v Q’])
TRUE.

We are now ready to prove the main lemma in this section.
LEM 5.3. Let M be an -te, and let u O(M), where M/u . Then

u lt(M) if and only if there exist v O(M), where v < u, and N T satising
thefollowing condition:

(9) M[u z]/v o N and N T+ af for some a E LE where z is a variable.

Proof: ifpart. Note that M[u z]/v (M/v)[u’ z], where u vu’. So by
Lemma 5.2 there exists M’ T witnessing u’

_
lt(M/v), i.e.,

(10) M’ >_ M/v A M’/u’ f A term(M’) TRUE.

124 MICHIO OYAMAGUCHI

It follows that there exists Q Tfl such that Q witnesses u

_
lt(M), because, for ex-

ample, we can take Mo[v M’] as Q, where M0 is a term in T such that M0 > M.
(Note that Q Mo[v - M’] > M, Q/u M’/u’ f, and term(Q) TRUE by (10).)
Hence u It (M).

Proof: only-ifpart. Since u . It(M), there exists Q T such that

(11) Q _> M A Q/u f A term(Q) TRUE.

So there exists a reduction sequence

’ Qn,7 Q-Q1 --nv Q2 -nv nv

where Q, E T and ui is the redex occurrence of Qi "---nv Qi+l, 1 _< < n. In this
reduction sequence 7 note that there exists u, 1 _< i < n, such that u < u, since
Q/u f and Qn E T. Let j(1 < j < n) be the smallest number satisfying uj < u. Let
v uj, and let u’ satisfy vu’ u. Note that

(12) Q/v v Q/v A Q/v >_ ca

for some c 6 LB and that occurrence u’ is safe for this reduction Q/v v Q/v, so
that Q/vu’ f. Let Q/v (Q/v)[u’ z] and Q/v (Q/v)[u’ z]. Then

(13) O/v v O./v and O./v > o,

since Qj/v > Qj/v > cn by (12). Note that by (11)

(14) Q/v- (Q/v)[u x] > (M/v)[u’ x] M[u x]/v.

We can now prove that condition (9) holds, i.e., the only-if part. Since (13) and (14)
hold, by repeatedly invoking Lemma 5.1(b) we have

(15) M[u -- x]/v , Nx A N1 < Q/v for some N1.

By (13) and (15), N1 T c holds. So if N1 - 9t, then N1 T+ c holds, so that condition
(9) holds. If N1 f, then by M[u -- x]/v 9t there exists R T such that M[u
z]/v R N f and R ft. Obviously, R T+ c for some cd LB. (In this
case cd 3’ E and 3/n 9t for some 3’.) In either case condition (9) holds. V1

The following lemma is a direct consequence of Lemma 5.3.
LEMMA 5.4. Let M be an f-terrn, where M 9t, and let u O(M) where M/u f.

Then u t[It(M) ifand only ifthere exist v O(M), where v < u, and RE such that

where x is a variable.
Proof. The only-if part obviously holds by Lemma 5.3. So consider the if part. Let, M[u x]/v o 3. Let u’ satisfy vu’ u. Then, since 3n does not contain x,

some V O(M[zt -- x]/v) such that v < u must be an w-redex occurrence in 3’. Thus
for such a v

M[u X]/VVl -- N and N T+ n
for some N Ta and LB. Hence by Lemma 5.3 u It(M) holds.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 125

We have shown that the condition of Lemma 5.4 is an "if and only if" condition for
ensuring that a given occurrence is no index of term. Now we consider how to check
this condition. We will first construct a new set K(E) of rewrite rules from E such that
K(E) is a quasi-ground TRS, and we will show a close relationship between and
n(E). Next, using this relation, we will prove that in the condition of Lemma 5.4 -can be replaced by n(E), that is, for M e T {f} an occurrence u e O(M) (where
M/u f) is no index of term, i.e., u q[It(M) if and only if there exists v O(M),
where v < u, and/3 6 RE such that M[u +- z]/v c(E) /3. In other words, we will
show that the term/-problem is reducible to the teachability problem for quasi-ground
TRSs. We now define the quasi-ground system K(E) as follows.

DEFINITION 5.5. For a set E of rewrite rules we define a new set K(E) of rewrite
rules as follows:

K(E) {a- n a- E} {f- N IN sub(an),a LE}.
Let K(E) be a usual reduction, i.e., M K(E) N if and only if M/u a(a) and
N M[u a(fl)] for some u O(M),a - K(E), and a :X - Tn. We have
assumed that E is left-linear, so that K(E) is a quasi-ground system. We now show a
relationship between - and

LEMMA 5.5. Let M --. M’, where M, M’ Tfl. Then M -*K(E) M’ holds.

Proof. By M M’ there exist v O(M) and a -./3 E such that

M/v T+ a and M’= M[v
By M/v T+ an let Q M/vt3a. Note that for each u On(M/v) (see Definition

3.3) if u O(an), then Q/u an/u holds and Q U/v[u +- a/u, u On(M/v) fq

O(an)] by definition of . Thus Q is obtained from M/v by replacing f at each occur-
rence u in On(M/v) by an/u, where u O(an). Hence we have M/v --**(E) Q by
applying rewrite rules of form 9t R, where R sub(an). Furthermore, Q -n(E) /3a
holds by Q _> a. Thus M --*(E) M[v +-- fl] M’ holds. [3

LEMMA 5.6. Let M --*n(E) M’ and N <_ M, where M, M, N Tn. Then there exists
N’ ETa such that N N’ and N < M.

Proof. Let v be the redex occurrence Of M n(E) M’. If M/v f, then a rule
of form f R is applied. In this case M < M’ holds, so that N _< M < M’. Thus
this lemma holds if we chooSe N’ N. So consider the case for which M/v f, that
is, M/v >_ a for some a LE and M’= M[v +- /3], where a /3 E. For
N _< M if there exists v’ O(N) such that N/v’ f and v’ _< v, then, obviously,
N <_ M[v - fin] M’ holds by N_< M. So this lemma holds if we choose N’ N.

Consider the case for which there exists no v’ O(N) such that v’ _< v and N/v’
f. In this case, by N _< M we have

(16) v e O(N) A Occ(N, v) Occ(M, v) -Since M/v >_ an and M/v >_ N/v, we have N/v T an, so that N/v T + an by (16).
Hence N/v - by the definition of--*o. So N --- N[v +--/3hi holds. By N[v --fl] < M[v /3] M’ this lemma holds. Vl

LEMMA 5.7. Let M T {f} and u O(M), where M/u f. Then u It(M)
ifand only ifthere exist v O(M), where v < u, and fl RE such that

where x is a variable.

(M[u xl)/v *K(E) a,

126 MICHIO OYAMAGUCHI

Proof. The only-if part obviously holds by Lemmas 5.4 and 5.5. So consider the if
part. Let M[u z]/v .() /3n. By Lemma 5.6 we have the following w-reduction
sequence

7 M[u x]/v --. N for some N _< n.
Let u’ satisfy vu’ u. Note that N does not contain x, since/3n does not contain x. So
some vi O(M[u x]/v), where v < u’, must be a redex occurrence in 7. Thus for
such a Vl

M[ux]/vvQn and QT+n

for some Q E Tn and t /3 E E. Hence by Lemma 5.4 we have u

_
It (M). E]

By Lemma 5.7 the term/-problem is reducible to the reachability problem for quasi-
ground systems, which has been shown to be decidable in [4], [15], [16]. Thus we have
the following theorem.

THEOREM 5.1. It is decidable,foran f-term Mand an occurrence u O(M), whether
u is an index ofterm in M, i.e., u It(M).

Next we discuss the time complexity of algorithms for deciding the term/-problem.
By Lemma 5.7, to decide whether u is an index of term in M we need the reachabil-
ity tests for at most IMI. IIRII pairs (m[u z]/v,/3n). Let A be an algorithm that
takes as input a quasi-ground system E and two terms M, N and decide whether
M * N. For example, as A one can consider an algorithm in [4], [15], [16] Any-
way, it will be natural to consider the input size of A as size(E) + IMI + INI, where
size(E) y lal + I/3 I. Let Tt(n) be the time needed by algorithm A un-
der inputs whose size is n. (We consider Tt(n) as the worst-case time complexity.)
Let n size(E), and let m IM[. Then, for given u, v O(M) and/3 R,
whether M[u z]/v .() /3 can be checked in the order of time T.4(n + m),
since size(K(E)) < n + n. So the total time required to decide whether u is an index of
term in M is bounded by the order of time ran. TA (n + m). By the preceding arguments
we have the following theorem.

THEOREM 5.2. Let E be a left-linear system, and let M T. Let n size(E), and
let m IMI. Let A be an algorithm that solves the reachability problem for quasi-ground
systems and operates in time Tt(k) for inputs of size k. Then, using algorithm we can
decide whether a given occurrence u is an index ofterm in M in time mn Tt(n + m).

Since reachability for quasi-ground systems can be checked in polynomial time (see
[4], [16]), we have the following corollary.

COROLLARY 5.1. The term I-problem can be decided in polynomial time.
Note. At each step of the call-by-need reduction sequence, we must find a needed

redex. Thus consecutive searches for finding needed redexes are made, and it is impor-
tant to consider how to reduce the total cost of computing needed redexes, that is, how
to use useful information obtained from the search of the previous step to efficiently find
a needed redex at each step. In this paper we did not consider this problem, so it will be
the next step following the work of this paper.

6. Decidability of NV-sequentiality. In this section we show that whether a left-
linear TRS E is NV-sequential is decidable. For this purpose we need some lemmas
and definitions. The following three technical lemmas are used later. They state prop-
erties concerning indices of term.

LEMMA 6.1. Let M Tn, and let u, v O(M), where u lv. Then v It(M[u +--

9t]) = v e It(M).

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 127

Proof. By the definition of indices of term, v E lt(M[u f]) if and only if (i)
M[u f]/v f and (ii) N > M[u f] and term(N) TRUE imply N/v f. By
u lv and (i) we have M/v f. Note that N > M implies that N > M[u f], so that
by (ii)v It(M) holds rq

LEMMA 6.2. Let M Ta, and let u O(M). If It(M) , then either It(M[u --f]) or u It (M[u f]).
Proof. Assume that It (M) O and u f[It (M[u f]). Then we can show that

It(M[u f]) 0. Let v O(M) such that M/v fandulv. By It(M)
O, v q[It(M) holds, so that v q[It(M[u -- f]) holds by Lemma 6.1. Thus for all
u’ O(M[u f]) such that M[u f]/u’ f we have u’

_
It(M[u f]), so that

a]) holds.
LEMMA 6.3. Ifuv lt(M), then v It(M/u).
Proof. To the contrary, we assume that v

_
It(M/u). Then by Lemma 5.3 we have

Sw < vSQ TnSa LE

such that

(M/u[v x])/w Q T+

By (Mlu[v xl)lw (M[uv xl)luw and Lemma 5.3 we have uv It(M), a
contradiction, rl

Next we need the following definition.
DEFINITION 6.1. Let h Max{h(a)la L}, i.e., h is the maximal height of

left-hand sides of E. We omit the subscript E where confusion does not occur without
it.

The following lemma says that, for a given f-term M, if some subterm M/u has an
index of term and some f-term N’ satisfying N’ M[v 2] for some v > u also has
an index of term, then the existence of an index of term in M is ensured. That is, this
lemma shows a kind of transitivity result on the index of term and will be used to prove
the main theorem in this section, i.e., to obtain an upper bound of the least size IMI
satisfying It(M) =. if such M in f-normal form exists. (In [12] a result similar to this
lemma is called a partial transitivity result for index propagation.)

LEMMA 6.4. Let M be an gt-term, and let u6v Oa(M), where [61 _> hE. If u6
It(M[u5 9t]) and 5v It(M/u), then u6v It(M).

Proof. To the contrary, we assume that uSv q[It (M). Then by Lemma 5.3

Sw < u6vSQ Tara LE

such that

(17) M[uSv -- x]/w ---o Q T+ ca.

Note that w < u must hold by 5v It(M/u) and Lemma 5.3 (see Fig. 1). Without loss of
generality we can assume that for every occurrence w’, where w <_ w’ < u, w’/w is safe
for the w-reduction sequence (17). Note that by 6v It(M/u), for every occurrence w",
where u <_ w" < u6v, w"/w is also safe for sequence (17). Hence for a term M[u6 x]
we have

M[u5 x]/w --.; Q[uS/w x].

128 MICHIO OYAMAGUCHI

M[U6V / X]/W

X

FIG. 1. w-reduction sequence M[u6v x]/w --- Q.

Moreover, Q[u6/w +-- z] T+ c holds, since Q T+ by (17) and lu6/w > hE holds.
Hence u6

_
It(M[u6 9t]) by Lemma 5.3, a contradiction.

We also need the following functions, the use of which will be explained later.
DEFINITION 6.2. We define some functions on f-term as follows: For M e T and

n>0
(i) o(m), {u o(m) I[ul n}, i.e., o(m), is the set of occurrences ofm with

size n.
(ii)

Pref(M)n / M[u f, u 60(M)n] if O(M) # O,

M otherwise.

We call Pref(M) the f-prefix ofM with height _< n. Note that Pref(M), _< M.
(iii) Yield(M)h {Pref(N)hlM - N}, where h h (see Definition 6.1), i.e.,

Yield(M)h is the set of the ft-prefixes (with height _< h) of ft-terms reachable from M
under --%.

(iv) Env(M, u)2n {Pref(N)2n 37 M[u - f] N such that u O(M) is safe
for 7}, where h h, i.e., Env(M, u)n is the set of the f-prefixes (with height
of -terms reachable from M[u ,-- f] by w-reduction sequences for which occurrence
u O(M) is safe. Env(M, u)n is undefined if u O(M).

Example. Let M (c,f(f,z)), where F,c Fo, x X. Then O(M)I
{1,2}, O(M) {21, 22}, and Pref(M)l f(f, ft), Pref(M)2 f(c, f(f, ft)).

Note. We can show that Yield and Env are computable functions, i.e., we can give
algorithms to compute Yield(M)h and Env(M, u)n for a given f-termM and u O(M).
The proof is omitted because Theorem 6.1 does not need the proof of existence of such
algorithms, but simply upper bounds of IIYield(M)nll and IIEnv(M, u)nll (which are ob-
vious).

Nowwe explain how to use the function Env. For this purpose we need the following
definition.

DEFINITION 6.3. Two f-term M and N have the same environment concerning an
occurrence 6 (where 6 e O(M) fq O(N)) if Env(M, 6)2h Env(N, 6)2h, where h
hE.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 129

X

FIG. 2. M[6 Q[v x]l/u.

The following lemma says that if M and N have the same environment concerning
6, then for any f-term Q if M[6 Q] has an index 6v of term for some v O(Q),
then N[6 +-- Q] has also 6v as an index of term. Thus replacement of M[6 Q] by
N[6 Q] is index preserving in the above sense. This property will be used to prove
the main theorem in this section, i.e., to obtain an upper bound of the least size IMI
satisfying It (M) if such M in f-normal form exists.

LEMMA 6.5. Let M, N Ta and 6 Oa(M) f’l Oa(N), where I1 h. Let M and N
have the same environment concerning 6. Then for any Q Ta and v Oa(Q)

6v It(M[5 +--- Q])ifand only if 6v e It(N[6 Q]).

Proof: ifpart. To the contrary, we assume that 6v

_
lt(M[6 Q]). By Lemma 5.3

2u < 5vP Ta2a LE

such that

(18) M[Q[v +- x]l/u -o P T+ ca.

If u _> 6, then N[6 Q[v xl]/u 42, P T+ aa, so that 6v It(N[6 Q]) by Lemma
5.3, a contradiction.

So consider the case u < 5. Let 61 satisfy u61 (see Fig. 2). Without loss of
generality we can assume that any w < 6 is safe for the co-reduction sequence (18),
so that we can divide (18) into two subsequences, one of which is the subsequence with
co-redex occurrences > 6 and the other of which has co-redex occurrences disjoint from
1"

(19) M[5 Q[v xl]/u (= Q[v +- x]) 4; P/5,

(20) M[5 +- ft]/u ---+; P[51 +- a].

Since M and N have the same environment concerning , by (20) we have

(21) N[5 +- O] 4; P’

130 MICHIO OYAMAGUCHI

for some P’ E T, where

(22) Pref(P’/u)h Pref(P[l

and 6 is safe for this co-reduction sequence (21), so that P’/6 f holds. Thus by (21)
we have

(23) N[6 +-- f]/u P’/u.

Now we combine the co-reduction sequences (23) and (19):

(24) N[6

Note that Pref((P’/u)[6a +- P/61])h Pref(P)h holds by (22), so that

holds by (18). Therefore, 6v

_
It(N[6 Q]) by (24) and Lemma 5.3, which is a contra-

diction.
Proof: only-ifpart. This proof is the same as the above except that M and N are

interchanged.
Now we give the last definitions needed in this section.
DEFINITION 6.4. For

TIh(M) < n}, i.e., T(n) is the set of f-terms of height < n. lg(n) Max{lM[M
T A h(M) < n}, i.e., lg(n) is the maximal size of f-terms of height < n.

DEFINITION 6.5. Let /0, /a,’", 15 be constants defined as follows: Let l0
Max{a(f) lf F} (i.e., l0 is the maximal arity of F), 11 l0h, 12 112T"(2h)ll (i.e., 12
is the cardinality of subsets of Ta(2h)), 13 112(h II, z IIT(h)ll, and 15 nax{IMI
[M NFz A h(M) < h}, where h h.

We are now ready to show the decidability of NV-sequentiality for left-linear TRSs.
The following theorem says that to decide whether a left-linear TRS E is NV-sequential,
we need to check, for only a finite number of f-normal forms, whether there exist indices
of term. In otherwords, this theorem gives an upper bound ofthe least size IMI satisfying
It (M) if such an f-term M in f-normal form exists.

THEOREM 6.1. Let L 1 + h + 15 + 11 12 13 14. Then a left-linear TRS E is
NV-sequential if and only iffor all fbnormal form M in Ta such that IMI < 19(L) and
M T, It(M) # 0 holds.

Proof: only-ifpart. If M is in f-normal form and M T, then term(M) FALSE,
so that It(M) 0 by NV-sequentiality of E.

Proof: ifpart. To the contrary, we assume that there exists an f-normal form M
such that IMI > lg(L), M
term with the least size IMI. By IMI > lg(L) Definition 6.4 of lg(L) ensures h(M) > L,
so that 3v O(M), such that Ivl > L. Let

(25) v-vav2, wherelv2[-15+l.

Note that [va[> h + 11 12.13.14.
Our goal is to show that there exists an Ft-normal form M’ such that [M’[< [M[,

M’ T, and lt(M’) . Thus this contradicts the minimality of the size of M. The

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 131

crucial point in this argument is how to construct such an [2-term M’. We will show that
M’ M[uo M/u] for some Uo, ui O(M) satisfies the above required conditions:

(i) M’

_
T,

(ii) IM’I < IMI,
(iii) M’ is in f-normal form,
(iv) It(M’) O.
The following assertion shows that if we choose u so that U <_ v may hold for v

in (25), then M/u1 . T, so that M’ M[uo M/u1] satisfies condition (i).
ASSERTION 6.1. M/Vl contains f.
Proof. To the contrary, we assume that M/vx E T. Note that M/vl is in normal

form. By (25), v2 O(M/vl) and Ivl > z Max(IMI M NF/ h(M) <_ h), so
that we have h(M/vl > hE. Let

N (M/v)[u -- x, u (Q(M/Vl)h],

where x X. Then clearly N NFE by M/Vl NFE. Note that

(26) INI < IM/vxl and Pref(N)h Pref(MlVl)h.

Let

Then [Mxl < IMI holds by (26). Note that M T by M T and the assumption
M/v T, and M1 is in f-normal form, since M is in f-normal form and replacement of
M/vl byN does not produce any redex by (26). Moreover, we can show that It(M) ,
so that this contradicts the minimality of the size of M.

We now show that It(M) 0. By It(M) 0, for every u E On(M), we have
u

_
It (M), so that by Lemma 5.3

Su’ < uSQ TnSo LE

such that

(27) M[u x]/u’ Q T+ c.

Note that UlVl holds by M/v T and M/u f. There are two cases: (i) u’[v and
(ii) u’ < Vl. In case (i) obviously u

_
It(Mi) by Lemma 5.3, so consider case (ii). Let

6 satisfy u’6 vx. Without loss of generality we can assume that every occurrence
satisfying 6’ < 6 and u’6’ < u is safe for the w-reduction sequence (27) (see Fig. 3). We
want to show that

(28) M[u -- x]/u’ (= M[u +--- x, V +-" Nl/u’) --, Q’ T+ c

for some Q’ e Tn, so that u f[It(M). If any 6’ < 6 is safe for the w-reduction se-
quence (27), then M/v -. Q/6 by the definition of safe, and since M/v NFE by
the assumption, we have

M/Vl QI6.

132 MICHIO OYAMAGUCHI

M[U / X]/U’

X

M/vI

FIG. 3. w-reduction sequence M[u x]/u’ --, Q.

By replacing M/vi with N, we have the following sequence from (27)"

M[u x, Vl +"- N]/u’ , Q[5 N].

(Note that vl/u’ 5.) Then Q[5 N] T+ an holds, since Pref(N)h Pref(M/vl)h
by (26) and Q T+ an by (27), where Q/ M/vl. Hence we have the above w-reduction
sequence (28), where Q’ Q[t +- N]. Otherwise, i.e., if some u" satisfying that u" <
and u’u"lu is an w-redex occurrence in (27), then Pref(M/vl)h Pref(N)h also

ensures the existence of the above w-reduction sequence (28). (In this case Q’ Q
holds.) Hence u

_
It(M1). Thus It(Mx) O, as claimed. [3

Now we explain how to choose occurrences u0 and ux in O(M) to construct M’
M[uo -- M/u1]. We choose ul satisfying ul < vl, so that M’ T by Assertion 6.1.

For each occurrence u such that u <_ vl and lu[< Ivl[h we define tuple(u) as
follows:

tuple(u) (6, env, yield, pref) Nh 2T"(2h) 2T"(h) Ta(h),

where satisfies Il h and u < vl, env Env(M/u,)2h, yield Yield(M/u)h, pref
Pref(M/U)h, and here h hE. Note that the number of different tuples is bounded

by 12 la. 14 (see Definition 6.5).
By]vll > h + 12 13 14 there exist

(29) u, u’ O(M) such that u < u’ < Vl, [Ut[_< [Vll- h, and tuple(u)- tuple(u’).

Let

(3O) tuple(u) (5, env, yield, pref) tuple(u’), u0 u5, and U ’.

Note that u’5 _< Vl, SO that M’ M[uo M/u1] satisfies condition (i), M’ T, by
Assertion 6.1. Our goal is to show the remaining three conditions.

Condition (ii), IM’I < [Ml, holds, since by (29) u < u’, so that IM/uol > IM/ull
follows.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 133

Condition (iii), that M’ is in f-normal form, also holds. Since M is in f-normal
form, M/u1 is also in f-normal form. Moreover, since Pref(M/uo)h Pref(M/ul)h

pref holds by (30), M[uo M/ul](= M’) has no redex. Thus it remains to show
condition (iv).

Proofof (iv). lt(M’) . We will show that any occurrence v in On(M’) is not an
index of term so that It(M’) O.

Let v E On(M’). Then there are two cases: (a) vluo and (b) u0 < v.
Case (a). vluo. In this case v On(M) holds by M’ M[uo M/ul]. Since

v

_
It (M), Lemma 5.3 ensures that

(31) Sw < vSQ TnSa LE such that M[v

There are two subcases: (al) wluo and (a2) w < uo.
Case (al). wluo. In this case M[v x]/w is a subterm of M’[v x], so that

v /t(M’) by Lemma 5.3.
Case (a2). w < u0. This proof is a slight generalization of that of Assertion 6.1. Let

fo satisfy wS0 u0. Without loss of generality, we can assume that every occurrence
satisfying ’ < 50 and wf < v is safe for (31). We want to show that

Q(32) M’[v x]/w T+ c
for some Q’ Tn, so that v

_
It(M’). If any 5 < 0 is safe for (31), then

M/ ,o

holds. Since Yield(M/uo)h Yield(M/u)h yield by (30), we have

(33) M/u P and Pref(P)h Pref(Q/50)h

for some P T. Hence by (33) and (31) we have

M[v x, uo - M/ux]/w Q[6o P].

(Note thatu0/w 50.) ThenQ[50 P] T+ an holds, sinceQ T+ an by (31)
and Pref(P)h Pref(Q/0)hE by (33). Hence we have the sequence (32), where
Q’ Q[60 P]. Otherwise, i.e., if some 6’ satisfying 6’ < 60 and w6’lv is an w-redex
occurrence in (31), then Yield(M/uo)h Yield(M/u)h (by (30)) also ensures the
existence of the above w-reduction sequence (32). (In this case Q’ Q holds.) Hence
v

_
It(M’), as claimed.
Case (b). u0 < v. Let v’ satisfy v uov’. Note that

(34) v’ O,(M/ul)

by M’/uo M/u. Thus uv’ On(M) holds. We can show the following assertion
that Sv’

_
It(M/u’). Note that u u’ by (30). By using this result it will be shown that

v

_
It(M’).
ASSERTION 6.2. v’

_
It(M/u’).

Proof. To the contrary, we assume that v It(M/u’). Then we can show that

(35) u’3 9 It(M[u’3 f]),

because if u’3 It(M[u’3 f])and 3v’ It(M/u’), then/t(M) = 0 would hold by
Lemma 6.4, a contradiction. However, since Lemma 6.2 says that if It(M) O, then
either It(M[u’3 f]) or u’3 e It(M[u’3 f]), and (35)ensures that

(36) It(M[u’ f])

134 MICHIO OYAMAGUCHI

Since IM[u’6 f]l < IMI and M[u’6 f] is in f-normal form, (36) contradicts the
minimality of size of M. Thus Assertion 6.2 holds. [3

Using Assertion 6.2 6v’ It(M/u’), we can show that

(37) 6v’

It follows that u6v’(= v)

_
It(M’) by Lemma 6.3, as claimed.

Thus it remains only to show (37). We first note that

(38) Env(M/u, 6)zh Env(M/u’, 6)zh env

holds by (30). By Definition 6.3 (iv) of Env,

Env(M/u, 6)2h Env(M/u[6 f], 6)h,

Env(M/u’, 6) Env(M/u’[6 ,-- f], 6)zh.

Thus Env(M/u[6 f], 6)2h Env(M/u’[6 f], 6)9.h holds by (38), i.e., M/u[6 f]
and M/u’[6 f] have the same environment concerning 6. Hence byLemma 6.5 we
have

(39) 6v" E It(Mini6 - Q]) if and only if 6v" It(M/u’[6 ,- Q])

for any Q 6 Tn and v"
_
On(Q). Let Q M/u’5(= M/u1), and let v" v’. Note that

v’ Oa(M/u) by (34). Then (39) is

(40) 6v’ It(M/u[6 ,- M/u]) if and only if 6v’ It(M/u’[6 ,-- M/u]).

Since M/u’[6 - M/u1] M/u’ and v’

_
It(M/u’) by Assertion 6.2, the right-hand

side of (40) is false, so that the left-hand side is false: 6v q[It(M/u[6 ,- M/ux]), i.e.,
6v’

_
It(M’/u) by M/u[6 M/u] M[u6 M/ux]lzt M’/z. Thus (37) holds, as

claimed.
By the above arguments we have shown that any v in O(M’) is not an index of term,

so that It(M’) O.
Hence M’ satisfies all the conditions (i)-(iv), so that we have a contradiction. Thus

this theorem holds.
Note. In the proof ofTheorem 6.1 we have chosen u and u’ satisfying tuple(u) (6,

env, yield, pref) tuple(u’). The sameness of the first, second, and third components
(i.e., 6, env, and yield) was used in the proof of (iv), and that of the fourth component
prefwas used in the proof of (iii). Note that the use of the same 6’s was necessary to use
Lemma 6.5.

Note. Our concern was mainly to give a simplified proof of the decidability of NV-
sequentiality. It remains open whether there exists an efficient algorithm to decide NV-
sequentiality.

By Theorem 5.1 it is decidable whether lt(M) for f-normal form M Tfl.
Thus by Theorem 6.1 we have the following theorem.

THEOREM 6.2. It is decidable whether a left-linear TRS E is NV-sequential.

CALL-BY-NEED COMPUTATIONS IN TERM-REWRITING SYSTEMS 135

Acknowledgments. The author is grateful to the referees for their critical reading
of the earlier versions of this paper and their many subsequent helpful comments. He
is also grateful to M. Broy, H. Hussman, P. Padawitz, and M. Wirsing for their helpful
comments, and to N. Honda, T. Fukumura, and the members of the theoretical computer
science group Jodankai in the Tokai area for their earnest discussions and advice.

REFERENCES

1 H. E BARENDREGT, Functionalprogrammingand lambda calculus, in Handbook of Theoretical Computer
Science, Vol. B, J. van Leeuwen, ed., North-Holland, Amsterdam, 1990, pp. 321-363.

[2] ., The Lambda Calculus, Its Syntax and Semantics, 2nd ed., North-Holland, Amsterdam, 1984.
[3] J.A. BERGSTRAAND J. W. KLOP, Conditional rewrite rules: confluence and termination, J. Comput. System

Sci., 32 (1986), pp. 323-362.
[4] M. DAUCHET, S. TISON, T. HEUILLARD, AND P. LESCANNE, Decidability of the confluence offinite ground

term rewriting systems and ofother related term rewriting systems, Inform. and Comput., 88 (1990), pp.
187-201.

[5] C. M. HOFFMAN AND M. J. O’DONNELL, An interpreter generator using tree pattern matching, in Proc. 6th
ACM Symposium on the Principles of Programming Languages, 1979, pp. 169-179.

[6] ., Implementation of an interpreter for abstract equations, in Proc. 11th ACM Symposium on the
Principles of Programming Languages, 1984, pp. 111-121.

[7] G. HUET, Confluent reductions: abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821.

[8] G. HUETAND J.-J. LEVY, Call by need computations in non-ambiguous linear term rewriting systems, Rap-
port de Recherche No. 359, Institut National de Recherche en Informatique et en Automatique,
Le Chesney, France, 1979; Computations in orthogonal rewriting systems and II, in Computational
Logic: Essays in Honor ofAlan Robinson, J.-L. Lassez and G. Plotkin, eds., MIT Press, Cambridge,
MA, 1991, pp. 395-443.

[9] G. HUETAND C. OPPEN, Equations and rewrite rules: a survey, in Formal Language Theory: Perspectives
and Open Problems, R. V. Book, ed., Academic Press, New York, 1980, pp. 349-393.

10] G. KAHNAND O. B. MACQUEEN, Coroutines and networks ofparallelprocesses, in International Federation
ofInformation Processing Societies 77, B. Gilichrist, ed., North-Holland, Amsterdam, 1977, pp. 993-
998.

[11] G. KAHNAND G. PLOTKIN, Domaines concrets, Rapport Laboria No. 336, Institut de Recherche en Infor-
matique et en Automatique, Le Chesney, France, 1978.

[12] J.W. KLOPAND A. MIDDELDORP, Sequentiality in orthogonal term rewriting systems, J. Symbolic Comput.,
12 (1991), pp. 161-195.

[13] D. KNUTH AND P. BENDIX, Simple word problems in universal algebras, in Computational Problems in
Abstract Algebra, J. Leech, ed., Pergamon Press, Elmsford, NY, 1970, pp. 263-297.

[14] M.J. O’DONNELL, Computing in systems described by equations, Lecture Notes in Computer Science 58,
Springer-Verlag, Berlin, New York, 1977.

[15] M. OVAMAGUCHI, The reachability problem for quasi-ground term rewriting systems, J. Inform. Process., 9
(1986), pp. 232-236.

[16] ,On the wordproblemfor right-ground term-rewriting systems, Trans. IEICE Japan E, 73 (1990), pp.
718-723.

17] ,Sufficient sequentiality: a decidable conditionforcall-by-need computations in term rewritingsystems,
Tech. Report, Mie University, Tsu-shi, Japan, 1986.

18] J. E. STOY, Denotational Semantics, the Scott-Strachey Approach to Programming Languages, MIT Press,
Cambridge, MA, 1977.

[19] Y. SUGIYAMA, I. SUZUKI, K. TANIGUCHI, AND T. ISAMI, Efficient execution in a class of term rewriting
systems, Trans. IECE Japan, J65-D (1982), pp. 858-865.

[20] S. THATrE,A refinement ofstrong sequentiality for term rewriting with constructors, Inform. and Comput.,
72 (1987), pp. 46-65.

[21] D.A. TURNER,A new implementation technique for applicative languages, Software Practice and Experi-
ence, 9 (1979), pp. 31-49.

[22] J. VUILLEMIN, Correct and optimal implementation ofrecursion in a simpleprogramming language, J. Com-
put. System Sci. 9 (1974), pp. 332-354.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 136-146, February 1993

() 1993 Society for Industrial and Applied Mathematics
011

ASPACE(o(log log n)) IS REGULAR*
KAZUO IWAMAt

Abstract. One of the common results of resource bounded Turing machines is the log log n lower bound
for the space usage of deterministic and nondeterministic Turing machines that accept nonregular languages.
In this paper this result is extended to alternating Turing machines: It is proved that if f(n) o(log log n),
then f(n)-space-bounded (off-line) alternating Turing machines can accept only regular sets. The problem
has been open for a decade.

Key words, space lower bounds, alternating Turing machines

AMS(MOS) subject classifications. 68Q05, 68Q15, 68Q68

1. Introduction. One of the common results regarding resource-bounded Turing
machines (TMs) [5] is that there is a nontrivial, tight lower bound, log log n, for the
space usage of both deterministic TMs (DTMs) and nondeterministic TMs (NTMs) that
accept nonregular languages. In this paper we extend this result to alternating TMs
(ATMs); we prove that if f(n) o(log log n), then f(n)-space-bounded (off-line) ATMs
can accept only regular sets. The problem was first considered by Sudborough in [11],
and the log log n lower bound was proved under the strong definition of space bounds
(see below). In [1] the log log log n lower bound is proved under the standard definition,
and the log log n bound for on-line ATMs is also proved. The log log n bound for off-line
ATMs was once claimed to be proved [3], but the claim was later corrected [4]. Thus the
problem was still open.

There are two distinct definitions of space complexity measurement for nondeter-
ministic (and alternating) space-bounded TMs: (i) All computations must satisfy the
space bound (strong definition). (ii) It is enough that at least one accepting computa-
tion on each acceptable string satisfies the bound (standard definition). For small space
bounds, such as log log n, the distinction is important because we cannot use the common
technique of marking off the work tape in advance and then finishing the computation
as rejection if the head goes outside the bound. Definition (ii) is more reasonable ac-
cording to the principle of nondeterminism (existence of a single good computation is
enough) and is clearly more standard (used in most papers, e.g., [2], [7], [9]).

It should be noted that there are a number of facts that might mislead us into feeling
that the lower bound that we are currently interested in can differ between NTMs and
ATMs:

(1) There exists a (regular) language for which m states by deterministic finite au-
tomata (DFAs), log m states by nondeterministic finite automata (NFAs) and log log m
states by alternating finite automata (AFAs) are necessary and sufficient [2]. There also
exists a (nonregular) language for which log n space by DTMs and log log n space (stan-
dard definition) by NTMs are necessary and sufficient (see 2). Can the latter statement
be extended to encompass log log log r space byATMs by the analogy of finite automata?

(2) Not surprisingly, log log n space-bounded (standard definition) ATMs are more
powerful than the same space-bounded NTMs; this is demonstrated by using a rather
simple language in the Appendix.

(3) Using a language similar to that of fact (2), we can also show that log log n space-
bounded (standard definition) off-line ATMs are more powerful than their on-line coun-

Received by the editors August 14, 1991; accepted for publication (in revised form) January 8, 1992.
tDepartment of Computer Science and Communication Engineering, Kyushu University, Hakozaki,

Fukuoka 812, Japan (+/-raama@csce. kyushu-u, ac. jp).

136

ASPACE(o(log log n)) IS REGULAR 137

FIG. 1. Computation subtrees.

terparts (see Appendix). Thus we cannot rule out the possible reduction of the known
log log n lower bound for on-line ATMs.

(4) There does exist a complexity measure whose lower bound for NTMs is different
from that for ATMs. In [6] it is shown that the (tight) lower bound of the reverse (or
cross) complexity of single-read-write-tape TMs is log log n for NTMs but log log log n
for ATMs of even a single alternation and becomes as small as log* n for general ATMs.

In this paper TMs are those machines having a read-only input tape and a read-write
work tape. They are said to be on-line if the input head can move only from left to right
(and can stay there) and off-line if it can move in both directions. We will call a triple
(w, h, s) of the nonblank portion w of the work tape, the work-tape head position h, and
the state s of the finite control a global state. A configuration consists of the input string,
the input head position, and the global state. A computation (tree) P for an input z is
a tree of the following structure: (i) The root is associated with the initial configuration
denoted always by Iinit. (ii) If a vertex v is associated with an existential configuration cr

(i.e., its state is existential), then v has exactly one child that is one of the possible succes-
sors of or. (iii) If a vertex v is a universal configuration, then v has the children that are
the set of all possible successors of tr. The computation P is said to be k-space bounded
if at any vertex of P at most k work-tape cells are used. P is said to be accepting if it is
finite and all of its leaves are associated with accepting configurations. (We assume that
TMs never write the blank symbol on the work tape. Then, since the length of the non-
blank portion increases monotonically, "at any vertex of P" in the above definition can
be replaced by "at any leaf of P" if P is an accepting computation.) AnATMM is called
f(n)-space bounded if for any input string of length n that is accepted by M there is an
f(n)-space-bounded accepting computation. Besides the (complete) computation tree
described above, we often consider a computation subtree; its root is associated with an
arbitrary (not necessarily initial) configuration, and all of its paths end (are cut forcibly)
by some condition, e.g., when the input head crosses some boundary of the tape (see Fig.
1). All TMs described in this paper accept their inputs when the input heads are at the
right end.

2. Basic tools. This section demonstrates two fundamental techniques that are im-
portant in proving the main theorem. Before that proof, we first take a look at how the
strong and standard definitions are different in our current situation.

PROPOSITION 1 [11]. Ifan ATM uses an unbounded numberofwork-tape cells under
the strong definition ofspace usage, then it must use at least c log log r cells infinitely often
for some c > O.

138 KAZUO IWAMA

Proof. Let M be an ATM. We can construct the NTM M’ from M by replacing each
universal state of M by an existential state with the same set of choices. Then, if M has
a computation path Q (not the whole tree defined previously but a single path from the
root to some leaf) that uses k work-tape cells, then M’ has (the same) computation path
Q that uses k work-tape cells for the same input. This concludes the proof since the
statement is known to be true for NTMs [10].

Now let us return to the standard definition. We can no longer claim this proposition.
First of all, we do not have to count the space usage if the above computation path Q
is not accepting. Even if it is accepting (i.e., it ends with an accepting configuration),
any computation tree ofM including Q may not be accepting. In other words, "the same
input" above, which must be accepted by the NTM M’, is not necessarily accepted by the
ATM M, and we again do not have to consider such an input when measuring the space
usage of M. Furthermore, if there is an accepting computation tree of M including Q,
we still cannot rule out the existence of a better computation tree for the same input.

We shall next review the convenient tool to prove small resource bounds, generally
called cut-and-paste, by using the following well-known bounds for on-line TMs.

PROPOSITION 2. Let fl(n) o(logn), i.e., sup(fl(n)/logr) 0, and let f(n)
o(log log n). Then any f (n)-space-bounded on-line DTMor f2 (n)-space-bounded on-line
NTM can accept only a regular set.

Proof. We shall show that if a gl (n)-space-bounded DTM M accepts a nonregular
language, then t/l(n) _> c log n for an infinite number of n’s and for some fixed constant
c determined by M. Clearly, t/l(n) is not bounded by any constant. Then one can see
that there exists an arbitrary large integer k for which there is a string v such that (i) v
is accepted by M, and (ii) for all strings z that are accepted by M and are shorter than
v, there is a computation that uses less than k space. Intuitively, v is the shortest string
that needs k space.

Recall that we are now discussing on-line TMs. For strings z and 11 let tx;u denote M’s
global state (w, h, 8) that M, on the input z11, is in when its input head crosses (only once)
the boundary between z and 11 (";" indicates the boundary). Now select an arbitrary pair
of v and k mentioned above. If v is written as v z11z (!1 e), then tx;yz and ty;z must
be different. (The reasoning is as follows: Suppose that tx;uz tu;z. Then one can see
that (i) zz is also accepted and (ii) M also needs k space to accept zz since both z11z and
zz lead M to the same accepting configuration, which determines the space usage. That
contradicts the assumption that z11z is the shortest string that needs k space.) Note that
if the computation is k-space bounded, Iwl < k at any boundary. Thus the number of all
different triples (w, h, s) is bounded by c for a constant c. In order that tx.,uz
for any two boundaries, c > Izzl n or k _> c log n for a constant c2.

The same argument may also be applied when M is an NTM by replacing t;y with
T;u that is the set of all global states t (w, h, s) such that M can reach t at the bound-
ary. Now suppose that T;u Tu;z. Then we can claim that

(*) if z11z is accepted with k, but not less space, then
zz is also accepted with k, but not less, space.

(Note that (*) is equivalent to the statement that x11z is accepted with k space if and only
if xz is accepted with k space. Again, recall that the space usage of a computation path
is determined by that of its final configuration. If tinit - t t -- t3 is an accepting
computation path with k space, then, since t that appears in Txu; on the above path
is also in T;uz, tinit - t2 _L ta is also such a path. Note that tx may differ from t.

ASPACE(o(log log n)) IS REGULAR 139

Conversely, suppose that tini t5 - t6 is a path with k’ space, which means that t5 is
in T;. Clearly, T; coincides with T;u, and, since T;u Tu; by the assumption,
there must be t4 that constructs the path tinit - t4 t t6, which clearly uses the
same space. That is enough to claim the statement (*).) A crucial point is that we can get
the same conclusion if the assumption T;uz Tu; is relaxed to k Tu;,k where;yz

Tk; is the subset of T;y such that Iwl <_ k. Thus we can conclude that kTwz should differ
from Tu; for any y e. Now a simple evaluation of the size of the power set is enough
to achieve the goal. [:1

It turns out that these lower bounds are tight: Let bin(i) denote the string over 0 and
i whose reverse is the binary representation of the integer i. For example, bin(6) 011.
Now let

BIN {bin(O)bin(1) bin(n) n >_ 0},

and let BIN {0, 1, }* -BIN. Then it is not difficult to see [5] that BIN is recognized by
a (log n)-space-bounded ((log log n)-space-bounded, respectively) on-line DTM (NTM,
respectively).

Now we must determine how we can apply the cut-and-paste method to ATMs. If
ATMs are on-line, we have the following answer.

PROPOSITION 3 [1]. Let f(n) o(log log n). Then any f(n)-space-bounded on-line
ATM M can recognize a regular set.

Proof. We could simply extend the above proof for NTMs by replacing a computa-
tion path with a set of computation paths. The idea is that at each boundary the machine
M is universally in a set Sx of global states (corresponding to one computation tree) or
is universally in set Se (another computation tree), and so on. Thus this extension would
force us to enumerate sets of sets of global states, or we would obtain only a log log log n
lower bound.

The following proof is considerably modified from [1] in order to prepare ourselves
for the main theorem. It should be noted that T;u, introduced in Proposition 2, depends
on x but not at all on y. To attain the same goal as before, we can develop a similar
construct that does not depend on x but does depend on y. Namely, we define S;u as
the set of global states t, at the boundary between x and y, that is led to acceptance by y.
Then it is not difficult to see that S;uz Su; implies that xyz is accepted if and only if
xz is also. A difficulty is that the claim (*) on the space usage in the proof ofProposition 2
no longer holds for the following reason: Suppose that there is an accepting computation
path tinit -’ tl t2 t3. Since S;u Su;, there must be te in S;u. However,
there may not be a computation (sub)path tinit - t2. (Note that S;u requires only that
the machine can go to an accepting configuration if we assume that it is in some global
state in S;u at the boundary between x and yz.) There should exist the accepting path
tinit tl - t4, but it may need less space than before.

With this problem in mind, we define S;u as follows: Let (t, j) be a pair of a global
state and an integer. Then Sk;u contains all (t, j)’s such that (i) j < k and (ii) if M is in t
at the boundary, then t leads to acceptance while using j space but does not do so while
using j 1 space or less (i.e., there is an accepting computation subtree of the described
space bound whose root is associated with the global state t and the input head being on
the leftmost symbol of y). This introduction ofpairs of a global state and space, unlike
the conventional onlyglobal states, is important, especially for proving the main theorem.

Let P be a computation subtree of M on input xy such that its root is Iinit and all
paths end when the input head crosses the boundary between x and y. We also define

140 KAZUO IWAMA

SEC;v(P as the set of all global states that M, following P, is in when it crosses the
boundary. A key fact (whose proof is easy and is omitted) is that there is an accepting
computation tree of k-space bound for M on input xy if and only if there is this kind of
computation subtree P such that

SECw(P c_ {tl (t,j e S)w }.

Now suppose that the ATM M accepts input xyz and uses k, but not less than k, space
k kand that S; S;z. Then we can conclude by the following reasoning that (i) xz is

also accepted while using k space and (ii) that it is not accepted while using less than k
space: The assumption means that there is an accepting k-space-bounded computation
tree for xyz. By this and the preceding fact there is a computation subtree P0 whose
root is Iinit and all of whose paths end at the boundary between x and yz such that

kSEC;(Po) c_ {tl (t,j e Sw}.
Note that sk;y k Sk S;k (because both k kS; and S; depend onSu; means ;u
only z), and therefore the computation subtree P0 also satisfies

kSEC;z(Po) c_ {tl (t,j S;}.
Again by the fact ("if" part), there is an accepting computation tree of k-space bound for
xz. Thus statement (i) is correct. As for (ii), we can similarly show that if xz is accepted
and uses less than k space, then xyz is also.

We are now ready to carry out the same enumeration as that of Proposition 2. The
number of all different (t, j)’s such that t (w, h, s) and Iw[<_ j <_ k is a bit larger than
before, but it is still bounded by ck for some constant c.]

3. Main result. It should be noted that the weaker log log log n lower bound proved
in [1] can also be proved by modifying the transition matrix in [5] from r r to 2 2.

THEOREM 1. Let f(n) o(loglogn). Then any f(n) space-bounded off-line ATM
M can recognize a regular set.

Proof. With the boundary between strings z and y we associate S;u as before. This

time, according to the alternation from on-line to off-line, S;u is not a simple set but is
an array such as

Sk;y (Sk;y(1), sk;y(2), skx;y(P)),
where the value p will be given later. We need a few more notations: Let P be a compu-
tation subtree whose root is associated with a global state t and an input head position
T. In what follows we often focus our attention to some boundary, say, the boundary
between x and y of the input xy. If r is on the rightmost symbol of x (leftmost symbol
of y, respectively), then we say that P has root (t, x; y, L), where L stands for the left of
the boundary (respectively, (t, x; y, R), where R stands for the right of the boundary).
CRS;(P) denotes how many times M’s input head, following P, crosses the boundary.
(The number of crosses can differ according to each path of P. We take the largest value
as CRS;y(P).) SP(P) denotes the space P uses.

Now we define skw(i). Suppose that is odd. Then skw(i) contains all the pairs
(t, j) of a global state t and an integer j _< k satisfying the following conditions: (i)
There is an accepting computation subtree P (see Fig. 2) such that P has root (t, x; y, R),
CRS;(P) 1, and SP(P) j. (ii) There is no accepting computation subtree P
such that P has the same root (t, x; y, R) and the same CRS;(P) i 1 but for which

ASPACE(o(log log n)) IS REGULAR 141

FIG. 2. Accepting computation subtrees P to construct S;y (3).

SP(P) < j. (iii) If there is a pair (t, j’) in Sk;u(i’) for some odd i’ < i, then j’ > j.
If i is even, then P has root (t, x; y, L) instead of (t, x; y, R) and "odd" above should
be replaced by "even" Intuitively speaking, the fact that (t, j) exists in Sk (i) means
that the global state t can lead to acceptance while using j space and 1 crosses most
economically: If t can lead to acceptance while using j space and i 3 (or fewer) crosses
or while using j 1 (or less) space and i crosses, then (t, j) does not appear in Sk;(i).
Let us observe more about this. Suppose, for example, that (a, 8), (b, 3), and (c, 5) are
in sk; (3) for global states a, b, and c. Then we know that M needs 8 space to go from
global state a to acceptance. However, we cannot rule out the possibility that M needs,
for example, only 5 space to do the same if we allow M to cross the boundary more:
There may be a computation subtree Q such that it has root (a, x; y, R) and all paths
end when M crosses the boundary not from right to left (the first cross) but from left to
right (the second cross) and such that SECx;y(Q) {b, c}. If that is the case, then (a, 5)
should be in Sk;y(5).

Thus Sk;y seems to depend on both sides of the boundary, both x and y of the input
xy. However, this is not desirable for attempting to apply the cut-and-paste. One can
see that the proof of Proposition 3 fully depends on the fact that Sk;u is determined by
only the right side of the boundary. It is for this reason that the next claim is important.

CLAIM 1. If is odd, then Szk;u (i) is determined by the tight-side string y ofthe boundary
and by S;u(2), S;u(4), S;y(i 1). If is even, then S;u(i is determined by the left-
side string z and by S;u(1), S;u(3),... S;u(i 1).

Proof. By the definition, S;y(1) contains all (t,j) such that the global state t,
which M is in when crossing the boundary from left to right, leads to acceptance while
using j (not less) space and never coming back to the boundary. (Note that it does not
matter whether M can actually reach the boundary in tl from Iini.) Thus S;u(1 clearly
depends only on y.

Next it is shown that S;u (2) can be constructed from z and S;u(1). For each global
state tg. (w, h, s) (Iwl _< k) we construct, if there are any, all computation subtrees Pz
such that (i) P has root (t2, ; y, L) and every path ends when it crosses the boundary
from left to right for the first time (see Fig. 3) and (ii) SECx;u(P2 c_ {tl(t,j S;y(1)},
where SEC;u(P denotes, as before, the set of all global states M is in when it crosses
the boundary. For such a subtree as P2 we also define SP(P) as

SP(P2) max{jilt s.t. t e SEC;y(P2) and (t,j) e sk;y(1)}.

142 KAZUO IWAMA

P, sEc(P,)

FIG. 3. Computation subtree

Note that there are, in general, many such P2’s for a single t.. We select from among
them one such that SP(P) is minimum (= j) and (tz,j) is included in Sk;u(2). Note
that we used only z and s’k;u (1) for this construction.

Now suppose that we have constructed sk;y(1) through kS;u(for an even i. To
obtain S;u (i + 1), we first let

k kMINSk;u(i) {(t,j) (t,j) c Sk;u(2) U S;u(4 U... U S;y(z) and

(t, j’) Sk;u(2) U Sk;u(4) U... U sk;y(i)if j’ < j}.

Thus the fact that (t, j) is in MINSk;u(i) means that the global state t at the left side of
the boundary (on the rightmost symbol of x) can lead to acceptance with j (but not less)
space if it can cross the boundary i- 1 orfewer times. Now, as before, for each global state

ti+ we construct all computation subtrees P+I such that (i) Pi+ has root (ti+l, x; y, R)
and every path ends in acceptance directly (without coming back to the boundary) or
ends when it crosses the boundary from right to left for the first time (Fig. 4) and (ii)
SECz;y(Pi+x) C {t (t,j) MINSkz;y(i)}. (It should be noted that SEC;u(P+ in-
cludes several global states, each ofwhich may need different crosses before ending with
an accepting configuration. That is whywe introduced MINSk;u(i).) SP(P+) is defined
as

SP(Pi+I) max{j (i) Bt s.t. t e SECx;y(Pi+l) and (t,j) e MINS;u(i)
or (ii) path from the root directly to acceptance while using j space}.

Among all the subtrees thus constructed, we select a subtree Pi+l such that SP(Pi+I) is
minimum (= ji+). Thus obtained, (ti+l,ji+) is not included in Sk;u(i + 1) uncondi-

tionally, however. It is included in Sk;u(i + 1) if (t,j), such that t t+l and j _< ji+,
is not in MINSkw(i 1). MINSkw(i 1) is defined in the same way as MINSkw(i), but

sk;u (2)U sk;u (4)U U sk;u (i) is replaced by sk;u (1) U sk;u (3)U U S;k (. 1). (Note
that we do not violate the dependency of the construction, kS;u (z 1), for example,
was determined by y and Sk (2),... Sk;y(i 2).) Intuitively speaking, (ti/ ji+) isx;y

added to Sk;u(i + 1) if either (i) ti+ absolutely needs at least crosses before reaching
accepting configurations regardless of its space usage or (ii) although it is already in, say,
Sk (i 3), we can save space if we allow it more crosses.x;y

ASPACE(o(log log n)) IS REGULAR 143

FIG. 4. Computationsubtree P+I.

The argument is almost the same for an odd i and is therefore omitted. It may also
be omitted in the formal justification of the construction.

CLAIM 2. If k is fixed, then: (i) there exists an integer i such that Sw(i , and (ii)
if Sk;u(i) , then Skw(i + 1) Sk;y(i + 2) .

Proof. Part (i) is almost obvious by the restriction that all (t, j) in S;y(i) satisfy j _< k
and by definition (iii) of sk;u(i) (ii) If Sk (i) , then by the definition MINSk;u(i)x;y

MINSk;u(i 2). One can see that if some (t, j) were in kSx;u(/ 1), then they would also
be in Skw(i 1), which contradicts definition (iii) of Skw(i) again. Iq

Now we define Sk;v. Fix some input string xy that is accepted by M and integer k.
Then by Claim 2 the sequence Sk;v(1), Sk;v (2), becomes empty at some moment and
remains empty after that. Let Sk (p) be the last member of the sequence that is notx;y

empty. Then Sk;u is defined as (Sk;v (1), Sk (2) Sk;v (p))x;y

CLAIM 3. Let xyz be an input stdng. Then Sz;y Sy;zk implies k Sy;zkx;yz

Proof. By Claim 1 both k kSxu; (1) and S;(1) depend only on z, and therefore they
must be the same. Then

Sk;z(1) k kS;(1)=S;z(1)
by the assumption. This and Claim 1 imply that (2) S;z(2) and therefore that

kx;yz
k

We can continue this argument step by step until we get to

+ + + .
k k Then ifATM M accepts input xyz using k, butCM4. Suppose that S;y Sy;z.

not k 1 or less, space, then it also accepts xz using k, but not k 1 or less, space.
Proof. The proof is ve similar to the last portion of the proof of Proposition 3 (see

Fig. S).

MINS;v ((t, j) (t, j) e S;y (i) for some odd i p and

S;v(for any odd p if j’ < j).

The definition means that if (t, j) is in MINS;v, then the global state t at the right side
of the bounda can lead to acceptance with j (k), but not with j 1 or less, space.

144 KAZUO IWAMA

Iinit

(p

)

:

FIG. 5. Cut-and-paste in off-line ATMs.

Now suppose that M accepts xyz using k space. Then one can see that there is a
computation subtree P0 (having root Iinit and for which all paths end when the input
head crosses the boundary for the first time) such that

SECwz(Po) c_ (tl (t,j) e MINSk;}.
We next consider the input xz. Since S;w Sx;yz Sx;z by Claim 3. Then it isxy;z

clear from the definition that kMINS;yz MINSk;z. Hence the computation subtree P0
introduced above satisfies the condition that

SEC z Po c_ {t t j e MINSk }

which says that xz is also accepted while using k space.
Similarly, we can show that if xz is accepted while using k’ space, then xyz is also

k kaccepted while using k’ space under the condition that S;u Su;. That is enough to
prove the claim.

Nowwe are ready to carry out the enumeration. Suppose that v xyz is the shortest
string accepted by M while using k space. Then by Claim 4 Sv;z mustS;z and be
different for any y # e. Recall that k k Sk k(Sx;u(1 (2) (p)) Each),

ASPACE(o(log log n)) IS REGULAR 145

Sk;uz (i) consists of pairs like (t, j) of a global state and an integer < k. The number of
all different such pairs is bounded by ck for a constant c, and therefore the number of
all different k ’SSx;uz (i)’s is bounded by 2c A key fact is that our construction of k

guarantees that Sk kx;u(i) and S;u (i2) are disjoint if i and i2 are both odd (or even).
Since kS;u (i) is a subset of the (at most) ck different elements, it follows that

p/2 ck.

Thus the number of different kS;u is bounded by

for some constant d, which is enough to claim the theorem.

Appendix. t EXBIN be the language that contains strings of the form

UoVoUlVl UiVi nVnUV
such that (i) n 0 and vi bin(i) (see 2 for bin(i)), (ii) ui is any string over (0, 1}
and luil lvil, and (iii) for some j, u uy and v vj. As for Theorem 2 below, a
different language that is based on the prime-number theo and plays the same role as
BIN is found in [3]. However, the current language would give us a more intuitive
image of the difference of abilities beeen small space-bounded NTMs and ATMs as
well as beeen on-line ATMs and off-line ATMs (Theorem 3).

EOREM 2. (i) EXBIN needs log n nondeteinistic space (off-line). (ii) log log n
alternating on-line space is enough for the same lanage.

Proof. (i) Intuitively, log logn space-bounded NTMs can check conditions (i)
and (ii) but not condition (iii). In what follows, eve string satisfies all the conditions
above except for condition (iii). Suppose that there is a k-space-bounded off-line
NTM M that recognizes EXBIN. We focus our attention on the bounda beeen
uobin(O)... unbin(n) and uv of each string. The left-side portion is determined
by uo, u,..., Un, which we denote by le(uou Un). Suppose that M, if it crosses that
bounda in global state t from right to left (i.e., enters left(uou... Un) from right),
can come back to the same bounda (ets left(uou... Un)) in global state s. Then let
St (uo...u) denote the set of all such global states s. (Note that more than one such s
may est since M is nondeterministic.) so let

S(Uo Un) (S0(0’’’Un) s (O un), s (uO n)),

where So(uo... Un) is the set of all the global states s in which M can get to the boundaw
for the first time from/init, and tl through tp are all different global states in some ed
order. Note that p is bounded by ck for some constant c.

Now suppose that uou u UoU u Then S(uou Un) must be different
Consider ofrom S(uu... u) (The reason is as follows: Suppose that u u.

strings

z lefl(uo u u)uibin(i),
z2 lefl(u u Un)uibin(i)

Since z is in EXBIN, M accepts it. Then one can see that if S(uo... Un) S(u... u),
then M also accepts z2, a contradiction.) Note that the number of different UoUl "’’Un
is at least 2N/d for some constant d and for the length N of the input. On the other hand,
the number of different S(uo... Un) is bounded by

146 KAZUO IWAMA

(2

Then to satisfy S(uo... ,) =/= S(uo u,) for every two strings u0 and u ,,
we need the condition 2 > 2N/a or

k _> el logN

for some constant Cl.

(ii) It is not difficult to see that condition (iii) can now be checked by using log log n
space. The details are omitted.

THEOREM 3. Let EXBINR {x z E EXBIN}. Then (i) there is a log log n space-
bounded off-line ATM that recognizes EXBIN, but (ii) at least log n is necessary (and
sufficient) to recognize the same language by on-line ATMs.

Proof. Part (i) is obvious by Theorem 2. (ii) It is now difficult for log log n space-
bounded ATMs to check condition (iii). Again we look at the boundary between y
vuR and x bin(n)RuR... bin(O)RUoR. Now recall Proposition 3. Let S be
the set of all global states at the boundary between y and x that lead to acceptance. By
the same line of observation as for Theorem 2 one can see that at least 2N/d different
S’s, each of which corresponds to a different x above, are necessary. Suppose that a
k-space-bounded on-line ATM M recognizes EXBINR. Then

2 > 2N/d

should be met, which implies k _> (31 log N for some constant t31 [’-]

Remark. Recall that all the results in this appendix assume the standard definition.
However, they also hold under the strong definition except for the sufficient part in (ii) of
Theorem 3. Under the strong definition log n is probably not sufficient since, intuitively,
the on-line ATM should hold thevu portion of the input in its work tape before it
knows whether the following portion is correct (i.e., whether it is exponentially longer
than vRu).

REFERENCES

[1] M. ALBERTS, Space complexity ofalternating Turing machines, in Lecture Notes in Computer Science, 199,
Springer-Verlag, Berlin, New York, 1985, pp. 1-7.

[2] A. CHANDRA, D. KOZEN, AND L. STOCKMEYER,Alternation, J. Assoc. Comput. Mach., 28 (1981), pp. 114-
133.

[3] J. CHANG, O. IBARRA, B. RAVIKUMAR, AND L. BERMAN, Some observations concerning alternating Turing
machines using small space, Inform. Process. Lett., 25 (1987), pp. 1-9.

[4] ,Erratum, Inform. Process. Lett., 27 (1988), p. 53.
[5] J. HOPCROFTAND J. ULLMAN, FormalLanguages and TheirRelation toAutomata, Addison-Wesley, Read-

ing, MA, 1969.
[6] K. IWAMA, Low-level tradeoffs between cross and alternation, Tech. Report, Kyoto Sangyo University, Ky-

oto, Japan, 1986.
[7] R. KANNAN, Towards separating nondeterminismfrom determinism, Math. Systems Theory, 17 (1984), pp.

29-45.
[8] R. LADNER, R. LIPTON, AND L. STOCKMEVER,Alternatingpushdown andstackautomata, SIAM J. Comput.,

13 (1984), pp. 135-155.
[9] W. Ruzzo, Tree-size bounded alternation, J. Comput. System Sci., 21 (1980), pp. 218-235.

[10] R. STEARNS, J. HARTMANIS, AND P. LEWIS, Hierarchies of memory limited computations, in Proc. IEEE
Symposium on Switching Circuit Theory and Logical Design, 1965, pp. 191-202.

[11] I. SUDBOROUGH, Efficient algorithms for path system problems and"applications to alternating and time-
space complexity classes, in Proc. 21st IEEE Symposium on Foundations of Computer Science, 1980,
pp. 62-73.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 147-156, February 1993

() 1993 Society for Industrial and Applied Mathematics
012

THE COMPLEXITY OF MALIGN MEASURES*
PETER BRO MILTERSENf

Abstract. This paper analyzes the concept of malignness, which is the property of probability ensembles
making the average case running time equal to the worst case running time for a class of algorithms. The au-
thor derives lower and upper bounds on the complexity of malign ensembles, which are tight for exponential
time algorithms, and which show that no polynomial time computable malign ensemble exists for the class
of polynomial time algorithms. Furthermore, it is shown that for no class of superlinear algorithms a poly-
nomial time samplable malign ensemble exists, unless every language in P has an expected polynomial time
constructor.

Key words, average case complexity, malignness

AMS(MOS) subject classifications. 68Q15, 68Q30

1. Introduction. The average case time complexity of specific algorithms has for a
number of years been an active area of research, often showing significant improvement
over the worst case complexitywhen specific distributions of the inputs were assumed. Li
and Vitfinyi [4] studied the Solomonoff-Levin measure rn and found thatwhen the inputs
to any algorithm are distributed according to this measure, it holds that the algorithm’s
average case complexity is of the same order of magnitude as its worst case complexity.
More precisely,

e > O" m(x)
er,)---yer m(y)TA (x) >_ c :er,max TA (x).

In this paper, we use the term malign for such a measure.
The result seems significant for the following reason: Li and Vitfinyi argue in [5] that

the Solomonoff-Levin measure should be used as the a priori probability in Bayesian rea-
soning because, in a certain sense, it lies close to any recursively enumerable measure
(it dominates them multiplicatively). Similarly, they argue in [4] that if inputs are given
from a natural source, the result implies that with high probability the average case time
will be close to the worst case time, so that no improvement is possible. This would make
worst case complexity the significant way to measure the cost of computation, and aver-
age case considerations with respect to, e.g., the uniform distribution much less relevant.

However, since the Solomonoff-Levin measure is not even recursive, the result
has no immediate implications for the complexity theory of average case complexity,
founded by Levin in [3] and extended in [2] and [1]. In Levin’s approach to average case
complexity, the distribution function of the input measure is required to be polynomial
time computable. Thus, it is natural to ask if some kind of time bounded version of Li
and Vitfinyi’s result can be derived.

In this paper, we analyze from a complexity-theoretic perspective the property of
malignness. We restate Li and Vitfinyi’s result and give a simple proof. It seems that
the surprising property of malignness is dependent upon an exponential time pattern,
which in our view makes the above interpretations less obvious. We present a number of

Received by the editors November 28, 1990; accepted for publication (in revised form) November 21,
1991. A preliminary version of this paper appeared in the Proceedings of the 6th Structure in Complexity
Theory Conference, Chicago, Illinois, June 1991. The work was partially supported by the ESPRIT II Basic
Research Actions Program of the European Community under contract 3075 (project ALCOM).

Computer Science Department, Aarhus University, Ny Munkegade, Building 540, DK-8000 Aarhus C,
Denmark.

147

148 PETER BRO MILTERSEN

results that support this intuition. Our results pose a limit on the results achievable in the
average case direction by the time bounded versions of the Solomonoff-Levin measure,
which are also discussed in [4]. In general, they suggest that if inputs are produced by a
polynomial time adversary, phenomena like the above will not arise.

2. Notation.
We consider the fixed binary alphabet E {0, 1}. E* is the set of binary strings

with the usual ordering, first by length and then lexicographically, and En is the set of
strings of length n. By z 1 we denote the string preceding z, and by z + 1 the string
following z. The empty string is denoted A. The length of the string z is denoted by
(., .) denotes a polynomial time bijective pairing function E* * E* with polynomial
time projections.

A measure I on a finite or countable set M is a function from M to the real num-
bers, with/(z) _> 0 for all x. Given a subset A c_ M, we define

I(A) t(x).
xA

Aprobability measure is a measure with 2zeM/l(x) 1. Given a measure/ on E* or
En, we denote by/* its distribution function/* (x) i({yly < x}). If/(E’) 0, the
nth derived measure of/ is the probability measure on En defined by

#n(X)

A function f E* - R is called polynomial time computable if there exists a
polynomial time Turing machine transducer, which on input (x, 1i) produces the binary
notation of a number t with

If(x) t < 2-i.

In general, if the machine runs in time at most g(Ixl, i), we say that f is computable in
time g(lxl, i).

Our model for algorithms is, for concreteness, multitape Turing machines. The re-
suits are easily transferred to other models. An algorithm takes one input x, and it always
halts. Algorithms cannot be effectively enumerated of course, but the Turing machines
are assumed enumerated A1, A2,... such that simulation, including stepcounting, etc.
of n steps of A on input x can be performed in time polynomial in i, lxl and n.

Given an algorithm A, we define TA (x), x E* to be its running time on the binary
string x. Given a function f N N, we define

ALe(f) {AITA (x) <_ f(Ixl) for all x, except a finite number}.

T(n) maXlzl= TA (x)

is the algorithm’s worst case running time. We denote by WA(n) the lexicographically
least string in En with T(WA (n) T(n).

T(Ix, n) #n (X)TA (X)

is the algorithm’s average case running time with respect to the measure/.

THE COMPLEXITY OF MALIGN MEASURES 149

3. Malign measures. In this section malignness is defined and Li and Vitfinyi’s re-
sult on the Solomonoff-Levin measure is presented. We give a direct proof and skip the
conceptual developments of [4]. We consider the class of Turing machines, where each
machine has three tapes:

A binary input tape, infinite in one direction, with the restriction that the head can
only move in this direction. Thus, the input tape is one-way, one-way infinite;

* A two-way, infinite, work tape;. A one-way, one-way infinite binary output tape.
The input tape and the output tape are started with their heads on the first square, and
a machine must be able to determine by itself when it has read its input. Now consider
an acceptable enumeration M, M,... of the above class of Turing machines, and let U
be a machine universal for the class, i.e., U will on input l0t, where t is an infinite tape,
halt if and only if the machine M on input tape t halts, and U will in that case output
whatever M outputs.

We next consider the input tape of U filled with the results of an infinite sequence
of coin tosses. The Solomonoff-Levin measure m(z) of a string z ’ is then defined
as the probability that U halts, outputting z. Since U of course has a nonzero probability
of not halting, we have that

The Solomonoff-Levin measure was first defined rigorously (for-continuous sample
spaces) in [8]. Intuitively, it gives a large amount of measure to strings with lots of pat-
tern, since these have short programs that have a high probability of appearing. Actually,
it is closely tied to self-delimiting Kolmogorov complexity, since m(z) O(2-n(x)),
where K(z) is the self-delimiting Kolmogorov complexity of z, but we do not need this
result here (see [8] for a proof, and [5] and [6] for general discussions of the properties
of m).

DEFINITION 3.1. A measure/ is malign for an algorithm A if and only if there exists
a c > 0 such that for all sufficiently large n,

It is malign for a class of algorithms A if it is malign for each A E A.
The following is the main result from [4] on average case complexity.

THEOREM 3.1 (Li and Vitfinyi). The Solomonoff-Levin measure rn is malign for all
algorithms.

Proof. Consider the following Turing machine M, of the above kind.

Read the prefix 10, > 0 from the tape.
Simulate U on the rest of the tape.
if U halts then

n := IU’s outputl
simulate A on all inputs of length n, finding the lexicographically

least worst case output, wai (n) (This may not halt.)
output wai (n)

fi

Assume M M in the above enumeration, and assume that is the index of an al-
gorithm, i.e., that A halts on all inputs. If U is started with the tape 1010t, where U,

150 PETER BRO MILTERSEN

started on t, outputs a string of length n, U will output WA, (n). The events of reading
lk01i0 and reading t are independent. But this means that for all n,

But then

Ta m(wa,(n))TW 2-k-i-2rwAi (m,) _>
m(n Ai (rt) _> Ai (n). []

Observe that the proof uses that the worst case input to A of length n can be described
in the following way: "The worst case input to A of length n." Thus wa, (n) has a short
description, i.e., lots of pattern. The problem with the pattern "The worst case input to
A of length n" is that it may take at least exponential time to get from the description to
the result. Thus, the pattern is computationally difficult. The main object of this paper
is to establish that this is the way it has to be. In general it does not hold that inputs that
are slow to process have an easy pattern. To make this more precise, we want to answer
questions of the following kind: Suppose t is malign for a class of algorithms ,4. What
complexity does have?

If the complexity of a measure is defined in a suitable way, it is our belief that natural
input sources are unlikely to have exponential complexity. Indeed, we would not expect
the source to have resources that are exponentially larger than the resources of the al-
gorithm to which it supplies inputs. This motivates searching for lower bounds on the
complexity of malign ensembles. As in the theory of Average-NP [3], [2], [1], it seems
natural to take the computational complexity of the distribution function * as the com-
plexity of tt. However, if we put no further restrictions on it, this does not seem to be
the correct approach, as the following theorem shows.

THEOREM 3.2. For each general recursive function f there exists a measure It that is
malign for ALG(f and whose distribution function it* is polynomial time computable.

Proof. The idea of the proof is to let the jth digit of #, (x) be 1 if and only if x is
the lexicographically least worst case input of Aj. In order to remain within the time
bounds, we let tt(E’) vanish rapidly. Define

T(x, i, t) min(TA, (x), t).

w(n, i, t) min{y e ElVx e E’: T(y, i, t) >_ T(x, i, t)},

i.e., w(n, i, t) is the lexicographically least worst case input of Ai of size n, when Ai is
restricted to run for at most t time steps. Let 9 be a time constructible function with
g(n) > f(n) for all n. Define

v(n,i) =w(n,i,g(n)).

Observe that v(n, i) can be computed in time t(n, i) q(2’p(n, i, g(n))), where p and q
are polynomials, by simulating Ai on all inputs of length n. Put

By choosing p and q appropriately (sufficiently large), u can be made time constructible.
We can without loss of generality assume that u(n + 1) > u(n) + n. Now define

THE COMPLEXITY OF MALIGN MEASURES 151

0

b(x,i)
1

0

,(x) (, 1-.
i--1

Since v(n, j) ’, we have

if/< u(Ixl),
if u(Ixl)< u(Ixl)+ Ixl
if u(Ixl) < i < u(Ixl)+ Ixl
if u(Ixl)+ Ixl < i,

u(n)-n

and v(lxl,i u(Ix[) : x,

and v(Ixl, i u(Ixl)) x,

,(r)= -’<2-()
i=u(n)+

Fix an algorithm Aj E ALG(f). We have that v(n, j) WAj (n) for sufficiently large n.
But then

b(WAj (n), u(n) -if- j) 1 forn >_j

and, therefore,

IJt(WA (Tt)) >_ 2-u(n)-j

n(WAj (?Z)) U(WA (n)) _j

tt(E, > 2

TaA(/t,n) >_ #n(WAj (n))TA (WA (n)) > 2-JT (n)

Thus tt is malign for ALG(f). It remains to show that tt* is polynomial time computable.

The ith binary digit ofj<Ixl/(EJ) is 1 if and only if there exists an rn E {0,..., Ixl- 1}
so that u(m) < i < u(m)+m. This can be decided in time polynomial in Ixl and i, since u
is time constructible. For the second term, observe that the ith binary digit of tt({yl lyl
Ixl/ y _< x) is i if and only if u(Ixl) < _< u(Ixl) + Ixl and v(Ixl, i u(Ixl)) _< x. The
inequality u(Ixl) < _< u(Ixl) + Ixl can be checked in polynomial time and if it is found
to hold, the calculation of v(Ixl, i u(Ixl)) can be done in time

t(Ixl, i u(Ixl)) t(Ixl, Ixl) u(Ixl) < i. [3

Of course, the theorem (and in particular its proof) suggests that the complexity of the
measure tt itself is not particularly relevant when we are interested in properties such as
being malign for a class. This is no big surprise, since we only use the derived probability
measures #,. The time bound is achieved by letting tt(E’) vanish very rapidly, so that
the nonzero digits of tt(x) appear so late that we have a sufficient amount of time to
compute them. The fact that t is not necessarily normalized, i.e., that tt(E’) may not
be 1, thus seems to be giving us an unreasonable advantage in the computation of tt*. If
we instead look at the time required to compute the normalized #1"1 (x), no such trick
will work. It is, therefore, still reasonable to conjecture that it requires time exponential
in x to compute this number, since the computation of a digit seems to require running
an algorithm on all inputs of size Ixl. Consequently, from now on we require that the
measures we consider are normalized.

152 PETER BRO MILTERSEN

4. Malign ensembles.
DEFINITION 4.1. A probability ensemble (or merely ensemble) is a function/z

E* --, [0, 1], with/z(En) i for all n.
Thus, if/, is an ensemble,/z(z) =/zlx (z) for all z.
DEFINITION 4.2. An ensemble tt is called polynomial time computable if and only

if its family of distribution functions z - /Zl*l (z) is polynomial time computable. We
denote by PE the class of polynomial time computable ensembles. In general, we say
that an ensemble is computable in time f([zl, i) if #1"1 is computable in time f(Izl, i), in
the sense of 2.
This definition relativizes in the obvious way.

We can, through the use of essentially the same technique as in the proofs of The-
orems 3.1 and 3.2, construct malign ensembles and hence provide upper bounds for the
time required to compute malign ensembles for certain classes of algorithms.

THEOREM 4.1. There exists a polynomial p so thatfor any time constructiblefunction
f there exists an ensemble #, computable in time p(21xlf(lzl) i) so that I is malign for
ALG(f).

Proof. Define

T(x, i) min(TA, (x), f(Ixl)).

By our assumptions on the enumeration A, T(x, i) can be computed in time pl(f(Ixl), i),
where pl is a polynomial, which, by the time constructibility of f, does not depend upon
f. Define

w(n,i) min(x e nlVy e n T(y,i) <_ T(x,i)}.

The function w can be computed in time p2(2n,p(f(n), i)), i.e., in time p3(2’f(n), i).

b(x, i) { 01 otherwise,ifw(Ixl, i) x,

#ll (x) Z b(x, i)2-i.
i--0

/ is a probability ensemble. It can be computed in the required time because the ith
binary digit of #1"1 (x) is 1 if and only if w(Ixl, i) _< x. It only remains to show that it is
malign for ALG(f). But for this we observe that if Aj is such an algorithm, T(x, j)
TAj (x) for sufficiently large Ixl, and for these x, b(x, j) i if x is the lexicographically
least worst case input of size Ixl for Aj. But then

Ta 2-JTj(n)Aj (I"1’, n)

for sufficiently large n.]

Of course, if f E 2n(n), the factor 211 can be omitted from the stated time, i.e., for
classes of exponential time algorithms, we can compute the ensemble almost as fast as
the algorithms run.

COROLLARY 4.1. There exists an ensemble Iz, computable in time p(21l, i), where p is
a polynomial, so that # is malign for the class ofpolynomial time algorithms.

Theorem 4.1 and the corollary reflect our intuition from the proof of Theorem 3.1:
Malignness can be obtained if we are willing to use exponential time. By using the same
technique, we can provide a recursive measure that is malign for classes of algorithms

THE COMPLEXITY OF MALIGN MEASURES 153

with some recursive upper bound on their running time. It won’t provide us with a re-
cursive measure for the class of all algorithms, and, as is proved below, no such thing
exists. We now turn to a negative result, complementing Theorem 4.1.

THEOREM 4.2. There is an (5 > 0 and a polynomial p, such thatfor all nondecreasing
time constructible functions f with f 9t(p), there is no ensemble It, malign for ALG(f)
and computable in time f(Izl)’h(i), where h is anyfunction.

Proof. The idea of the proof is the following: Given an ensemble tt, we can find a
string with low re-value by binary search. We can then construct an algorithm A for
which tt is not malign by making sure A runs for a long time on the input .

Given a nondecreasing, time constructible function 9, 9 6 ft(n) and any function
h, consider an ensemble tt, computable in time 9(Izl)h(i). We may assume that h is
recursive, since h(i) otherwise can be replaced with maXn Ttt (n, i), which is recursive.
We may furthermore assume that h is time constructible, strictly increasing, and tends
to infinity, since any general recursive function is dominated by such a function. Define

h(n) min(max(1, mmx{jlh(j < log(n)}),n).

By h’s time constructibility, h can be computed in polynomial time. Furthermore, the
polynomial time bound does not depend upon h. Consider the following algorithm, B:

input x
y:--A
for := 1 to h(x]) do

Vl a 2-i-approximation to #lxl(Zlz < y01xl-i+l }
vg a 2-i-approximation to/Zlx (y011xl-i)
v3 a 2-i-approximation to/zlx (yllzl-i+ 1)
if vg. v _< v3 v2 then

y := y0
else

y :-- yl
fi

od
y := y01xl-lul
if x y then

idle for q(g(lxl) log(Ixl)) 2 time steps (q being specified below)

The function q should be a polynomial such that q(9(Izl)log(Izl)) is an upper bound
for the running time of the algorithm when z : y. Observe that q can be picked in-
dependently of t, 9, and h. We may assume that q is of the form q(t) t. Put

Putting 9(n) f(n), we have that B halts on almost all inputs in time(5
3c"

2
q(log(Ixl)f(lx])’) 9 log(Ixl)2’f(lx]), which is less than f(Ix]) for almost all Ix]. Thus,
B E ALG(f). By an easy induction, the invariant

3)
i-3

holds at the end of the ith cycle of the for loop, so the y found by the for loop has

"11 ()-<

154 PETER BRO MILTERSEN

We then have

T$(n) < - T(n) + (n).

But this is smaller than cT(n), for any c > 0, for sufficiently large n, i.e., tt is not malign
for B, which was to be proved.

For exponential time algorithms the lower bound matches the upper bound of The-
orem 4.1 within a polynomial. The theorem implies that no recursive measure is malign
for the class of all algorithms and thus that the Solomonoff-Levin measure is not recur-
sive (of course, this can be proven in more elementary ways, see [6]). For polynomial
time algorithms, we have the following.

COROLLARY 4.2. No ensemble lz E PE is malign for the class ofpolynomial time
algorithms.

5. Malign ensembles for classes of last algorithms. Corollary 4.2 still leaves some-
thing to be desired. After all, most algorithms we are likely to run will be in, e.g.,
ALG(n4). It still seems that exponential time is required to compute malign ensem-
bles for such classes, even if our lower bound is much smaller. However, we are not
likely to be able to prove these intuitions correct because the following theorem tells us
that in order to show that superpolynomial time is necessary, we would have to prove
P NP. We are reusing the technique from the previous constructions.

THEOREM 5.1. Forall k, an ensemble Iz PE exists, which is malignfor ALG(nk).
Proof. Put f(n) nk in the proof of Theorem 4.1. This makes T(x, i) polynomial

time computable. Observe that the ith binary digit of #l*zl (x) is 1 if and only if

2y -]n VZ ’n [y < X A T(z, i) < T(y, i)],

and this is a -problem.
It thus seems that we will have to concentrate on merely making the existence of such

a PE-ensemble unlikely, instead of trying to prove that it does not exist. We will indeed
do this, by deriving from it a complexity-theoretic equality that seems unreasonable,
although it is a lot weaker than P NP. For this, we need a result on sampling.

DEFINITION 5.1. An ensemble/ is polynomial time samplable if a polynomial time
probabilistic Turing machine exists, which on input (1n, 1i) produces a string of length
n, M(n, i) such that for all x

IPr(M(n, i) x) #n(X)[2-.
Thus, the polynomial time samplable ensembles are those ensembles that can be ap-
proximated as the output distributions of polynomial time probabilistic algorithms. A
similar definition and an analogy to the following theorem can be found in [1]. Note
that we cannot demand that the strings are produced with the exact probability, since it
is easy to see that no probabilistic machine with a worst case time bound can produce a
string with an irrational probability. Thus, demanding exact sampling would make the
following theorem false.

THEOREM 5.2. Every ensemble pt in PE is polynomial time samplable.
The proof is essentially equal to the one in [1] and is, therefore, omitted. We might

note that the converse result holds if and only if P PP.
DEFINITION 5.2. Given a language L. An expected polynomial time constructor

for L is a probabilistic algorithm that on input in produces an x L fq n in expected
polynomial time if one exists and otherwise fails to halt.

THE COMPLEXITY OF MALIGN MEASURES 155

This is a natural generalization of the deterministic constructors defined and studied
by Sanchis and Fulk in [7]. A useful equivalence is the following.

LEMMA 5.1. Every L E P has an expected polynomial time constructor ifand only if
every L DTIME(n) has one.

Proof. Suppose every L DTIME(n) has a constructor. Let J be a language in P.
There is a constant c, such that J DTIME(nC)_. Define ff {xl0Ixlc [x J}. It is _easy
to see that ff DTIME(n), so, by assumption, J has a constructor, (. By running C on
input 1n+l+’c and extracting the first n digits of the output if halts, we get a string in
L f) En.

THEOREM 5.3. Suppose apolynomialtime samplable ensemble I is malignfor ALG(f),
where f is a time constructible function with n o(f). Then every L P has an expected
polynomial time constructor.

Proof. By Lemma 5.1, we need only to show that every L DTIME(n) has a con-
structor. Consider the following algorithm AL:

Input x
Decide if x E L.
If it is not, halt immediately.
If it is, wait f(n)/2 time-steps before halting.

AL is an ALG(f)-algorithm, so there exists a c so that T(l, n) > cT(n). We will
show that for sufficiently large n,

L rn # u.(L r) >_ -.
Assume not, i.e., #, (L N En) < c/2. Then

E #n(X)Ta(x)< -T%(n).
xLfqE

We also have that for sufficiently large n:

E #n(X)TA(x) <_ n.

xE\L

But then
c

-T(n) + n >_ T(, n) > cT(n).

IfLNE :/- 0, the algorithm will run for f(n)/2 time steps for some value of x. Therefore,

cf()c
n > ,TW(n] >

2 4

which is a contradiction for sufficiently large n. Let M be a polynomial time sampler for
/. Bythe definition ofsampling, if LfOEn , then Pr(M(n, - log] +n) LfOEn) >_
(c/2) (c/4) c/4. Thus, running M several times on input < 1’, 1 [-Xog l+n > until
an element of L is produced, is a construction of such an element in expected polynomial
time. U

The following theorem (an analog to Proposition 4.1 in [7]) makes expected poly-
nomial time constructors for all languages in P unlikely.

DEFINITION 5.3. Let RE be the class of languages L for which there exist a prob-
abilistic Turing machine, running in time 2clxl on input x, rejects if x t/L, and accepts

lifxL.with probability at least 7

156 PETER BRO MILTERSEN

Thus, RE is for E t2>_oDTIME(2’) what RP is for P. Hence, RE should be
considered a rather small extension of E, and RE NE, where NE Uc>_oNTIME(2c’)
must be considered only slightly more plausible than E NE. Actually, by standard
arguments RE NE if and only if there are no tally languages in NP RP.

THEOREM 5.4. Ifevery L E Phas an expectedpolynomial time constructor, then RE
NE.

Proof. Let L be a language in NE, and let M be a nondeterministic machine, running
in time 2c’ and recognizing L. We can represent the nondeterministic computations
of M on input x as binary strings of length at most 2lxl, where the bits represent the

the lexicographically ith string of size n.nondeterministic choices of M. Denote by x
Define f E* N by f(x) 2n + i. The function f is clearly injective, provided
c _> 1, which we may assume. Now consider

L {y[3x -[y[f(x) and y codes an accepting computation of Mon x}.

Clearly L E P and has, therefore, by assumption, an expected polynomial time con-
structor, C. Let p(n) be an upper bound on C’s expected running time on inputs of size
n. If we simulate C on lf(X) for 2p(f(x)) time steps and accept if an element has been
produced by then and reject otherwise, we have an RE-acceptor for L. q

COROLLARY 5.1. Ifan ensemble I PE is malign for ALG(f), where f is time con-
structible and n o(f), then RE- NE.

Thus, if we assume RE NE, we get a superpolynomial lower bound on ensembles
malign for this class of algorithms. By making the stronger assumption that there are
tally sets in NP, which cannot be recognized in subexponential randomized time, the
same technique gives an exponential lower bound, essentially matching the upper bound
of Theorem 4.1.

Acknowledgments. Thanks to Joan Boyar for her helpful supervision on the thesis
on which this paper is based and to Sven Skyum for useful comments and suggestions.
Lane A. Hemachandra and Paul M.B. Vitinyi pointed out some errors in the original
manuscript.

REFERENCES

1] S. BEN-DAVID, B. CHOR, O. GOLDREICH, AND M. LUBY, On the theory ofaverage case complexity, in Proc.
21st Annual ACM Symposium on Theory of Computing, Seattle, WA, May 1989, pp. 204-216.

[2] Y. GUREVICH, Complete and incomplete randomized NPproblems, in Proc. 28th Annual Symposium on
Foundations of Computer Science, Los Angeles, CA, October 1987, pp. 111-117.

[3] L.A. LEVlN, Average case completeproblems, SIAM J. Comput., 15 (1986), pp. 285-286.
[4] M. LI AND P. M. B. VIT,NYI, A theory of learning simple concepts under simple distributions and average

case complexity for the universal distribution, in Proc. 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, NC, October 1989, pp. 34-39.

[5] ., Inductive reasoning and Kolmogorov complexity, in Proc. 4th Annual Structure in Complexity
Theory Conference, June 1989, pp. 165-185.

[6] M. LI AND E M. B. VIT,dIYI, Kolmogorov complexity and its applications, in Handbook of Theoretical
Computer Science, Jan van Leeuwen, ed., Elsevier Science Publishers B. V., Amsterdam, 1990, pp.
187-254.

[7] L.A. SANCHIS AND M. A. FULK, On the efficient generation of language instances, SIAM J. Comput., 19
(1990), pp. 281-296.

[8] A. K. ZVONKIN AND L. A. LEVIN, The complexity offinite objects and the development of the concepts of
information and randomness by means ofthe theory ofalgorithms, Russian Math. Surveys, 25 (1970),
pp. 83-124.

SIAM J. COMI’Lrl:
Vol. 22, No. 1, pp. 157-174, February 1993

() 1993 Society for Industrial and Applied Mathematics
013

SCAN-FIRST SEARCH AND SPARSE CERTIFICATES: AN IMPROVED PARALLEL
ALGORITHM FOR k-VERTEX CONNECTIVITY*

JOSEPH CHERIYANt, MING-YANG KAO$, AND RAMAKRISHNA THURIMELLA

Abstract. Given a graph G (V, E), a certificate of k-vertex connectivity is an edge subset E’ C E such
that the subgraph (V, Et) is k-vertex connected if and only if G is k-vertex connected. Let n and m denote
the number of vertices and edges. A certificate is called sparse if it contains O(kn) edges.

For undirected graphs, this paper introduces a graph search called the scan-first search, and shows that a
certificate with at most k(n 1) edges can be computed by executing scan-first search k times in sequence on
subgraphs of G. For each of the parallel, distributed, and sequential models of computation, the complexity
of scan-first search matches the best complexity of any graph search on that model. In particular, the parallel
scan-first search runs in O(log n) time using C(n, m) processors on a CRCW PRAM, where C(n, m) is the
number of processors needed to find a spanning tree in each connected component in O(log n) time, and
the parallel certificate algorithm runs in O(k log n) time using C(n, m) processors. The parallel certificate
algorithm can be employed to test the k-vertex connectivity of an undirected graph in O(k9 log n) time using
knC(n, kn) processors on a CRCW PRAM. For all combinations of n, m, and k > 3, both the running time
and the number of processors either improve on or match those of all known deterministic parallel algorithms.

This paper also obtains an online algorithm for computing an undirected graph certificate with at most
2kn edges, and a sequential algorithm for computing a directed graph certificate with at most 2kZn edges.

Key words, parallel algorithms, PRAM, vertex connectivity, graphs

AMS(MOS) subject classifications. 05C40, 68Q22, 90B12

1. Introduction. Graph connectivity is one of the most fundamental properties in
graph theory [4]. Given a positive integer k, an undirected (or directed) graph G
(V, E) with at least k + I vertices is called k-vertex connected if the deletion of any k 1
vertices leaves the graph connected (respectively, strongly connected). A certificate for
the k-vertex connectivity of G is a subset E’ of E such that the subgraph (V, E’) is k-
vertex connected if and only if G is k-vertex connected. Let n IvI and m IEI. Note
that kn/2 is a trivial lower bound on the number of edges in a certificate for a k-vertex
connected graph. For general k, it is not obvious that there is any upper bound strictly
less than m on the number of edges in a certificate for k-vertex connectivity; however,
nonconstructive results of Mader imply an upper bound of O(kn) for undirected graph
certificates [5]. We call a certificate for k-vertex connectivity sparse if it has O(kn) edges.
For instance, a spanning tree is a sparse certificate for the 1-vertex connectivity of a
connected undirected graph.

Sparse certificates have applications in diverse areas ofcomputer science. For exam-
ple, they can be used for message-efficient fault-tolerant protocols in distributed com-
puting [20], [21]. Also, they are useful for improving existing graph k-vertex connectivity
algorithms. The k-vertex connectivity of a graph can be tested in two stages. Stage 1

Received by the editors June 29, 1990; accepted for publication (in revised form) December 5, 1991.
Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada N2L-3G1.

This author’s work was done at Cornell University, Ithaca, New York, and at the University of the Saarland,
Saarbriicken, Germany. His research was supported in part by the National Science Foundation, the Air Force
Office of Scientific Research, and the Office of Naval Research, through National Science Foundation grant
DMS-8920550, and by the ESPRIT II Basic Research Actions Program of the EC under contract 3075 (project
Algorithms and Complexity).

tDepartment of Computer Science, Duke University, Durham, North Carolina 27706. The research of
this author was supported in part by National Science Foundation grant CCR-9101385.

Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208.
This work was done while this author was with the Institute for Advanced Computer Studies (UMIACS),
University of Maryland, College Park, Maryland 20742.

157

158 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

computes a sparse certificate of the input graph. Stage 2 applies a given k-vertex con-
nectivity algorithm to the certificate obtained in Stage 1. Because a certificate preserves
the k-vertex connectivity of the input graph, Stage 1 ensures the correctness of the test.
Stage 2 canpotentially improve the complexity of the test by reducing the size ofthe input
to the given k-vertex connectivity algorithm.

For sequential computing, Nagamochi and Ibaraki have presented an algorithm for
sparse undirected graph certificates that runs in O(m + n) time [27]. For testing the k-
vertex connectivity of undirected graphs, this gives sequential running times of O(k2n2)
for k < and of O(kan1") for k > when their sparse-certificate algorithm is
combined with Galil’s k-vertex connectivity algorithm [17]. Independently, another se-
quential algorithm for k-vertex connectivity with the same complexity for k < was
reported in preliminary versions of this paper [9], [8], the stated bound being achieved in
the latter [8]. It is now clear that the work of Nagamochi and Ibaraki [27] was the earlier
result, although unknown to us at the time of our work.

We present an algorithm for finding sparse certificates for undirected graphs, using
a new graph search procedure called the scan-first search. This search procedure has
surprisingly efficient implementations in the parallel, distributed and sequential models
of computation. Consequently, our certificate algorithm also has efficient implementa-
tions in all these three models. Below we list the complexity of scan-first search on the
three models. Note that the complexity of scan-first search on each model matches the
best complexity of any graph search on that model.

Parallel computing. Scan-first search runs in O(log n) time using C(n, m) pro-
cessors on a CRCW PRAM, where C(n, m) is the number of processors used to com-
pute a spanning tree in. each connected component in O(log n) time. For determinis-
tic algorithms, Cole and Vishkin have shown [11] that C(n, m) O((m + n)a(n, m)/
log n), where a(n, m) is the inverse of Ackerman’s function and has an extremely slow
growth rate [12]. For randomized algorithms, Gazit has shown [18] that C(n, m) achieves
the optimal bound of O((m + n)/log n).

Distributed computing. Scan-first search runs in O(dlog3 n) time using O(m +
n log3 n) messages, where d is the diameter of the input graph.

Sequential computing. Scan-first search runs in O(m + n) time.
The advantage of scan-first search over the two most well-known graph search pro-

cedures is easy to see. Depth-first search runs in optimal linear time on the sequential
model [28] but has no known parallel implementation that is efficient [1], [2]. Breadth-
first search runs efficiently on the sequential and the distributed models [14], [3]. How-
ever, currently the best parallel implementation is no more efficient than matrix multi-
plication [19].

For undirected graphs, we show that a sparse certificate can be computed by exe-
cuting scan-first search k times in sequence on subgraphs of G; moreover, the resulting
certificate has at most k(n 1) edges, only a factor of two away from the trivial lower
bound (see Theorem 2.4). Combining this result with the above implementations of
scan-first search shows that the complexity of our sparse-certificate algorithm on the
three models is as follows: O(k log n) time using C(n, m) processors on the parallel
model, O(kn loga n) time using O(k(m + n logn)) messages on the distributed model,
and O(k(m + n)) time on the sequential model.

Consider the problem of testing an undirected graph for k-vertex connectivity. Us-
ing the method sketched above, our certificate algorithm can be used as a preprocessing
step, both with Khuller and Schieber’s parallel algorithm [24], and with Even’s sequential
algorithm [13].This gives a parallel running time of O(k2logn) using knC(n, min{kn, m})

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 159

processors, and sequential running times of O(k2n2) when k < x/ and of O(k3n1"5)
when k > x/-.

For general k, there are no previous parallel or distributed algorithms for sparse
certificates. The best previous parallel algorithm for (undirected) k-vertex connectivity,
due to Khuller and Schieber [24], runs in O(k2 log n) time and uses knC(n, m) proces-
sors. For m > kn, our algorithm uses fewer processors than their algorithm. For dense
graphs and for k O(1), our algorithm runs in O(log n) time and has a time-processor
product that is within an alpha-factor of the trivial lower bound of f(n2).

We also obtain the following results. For undirected graphs, we give an online algo-
rithm that computes a certificate with at most 2kn edges. This algorithm is parallelized
to run probabilistically in O(log n) time using raP(n, m) processors, where P(n, m) is
the number of processors needed to find a maximum matching in O(log n) time with
high probability. Currently, the best value known for P(n, m) is O(mna’as) [26]. For
directed graphs, we show that a certificate with at most 2k2n edges can be computed in
O(km max{n, kx/-}) sequential time.

The above discussion has highlighted the results ofthis paper. The following sections
proceed to detail those results. Section 2 discusses scan-first search and the algorithm
for computing undirected graph certificates in the three models. Section 3 presents the
online algorithm for undirected graph certificates and its parallelization. Section 4 de-
scribes the sequential algorithm for directed graph certificates. Section 5 concludes the
paper with open problems.

2. Scan-first search and sparse undirected graph certificates. The main result of
this section is that a sparse certificate for undirected k-vertex connectivity can be found
by iteratively performing k scan-first searches on subgraphs of the input graph.

Section 2.1 defines scan-first search and discusses how to perform the search effi-
ciently in the parallel, distributed, and sequential models of computation. Section 2.2
states the main certificate theorem based on scan-first search and discusses its algorith-
mic implications. Sections 2.3 and 2.4 prove the main certificate theorem, and 2.4 gives
a generalization of the theorem.

2.1. Scan-first search. Given a connected undirected graph and a specified vertex,
a scan-first search in the graph starting from the specified vertex is a systematic way of
marking the vertices. The main marking step is called scan: to scan a marked vertex
means to mark all previously unmarked neighbors of that vertex. At the beginning of the
search, only the specified starting vertex is marked. Then, the search iteratively scans a
marked and unscanned vertex until all vertices are scanned.

A scan-first search in a connected undirected graph produces a spanning tree defined
as follows. At the beginning ofthe search, the tree is empty. Then, for each vertex z in the
graph, when z is scanned, all the edges between z and its previously unmarked neighbors
are added to the tree; the edges between x and its previously marked neighbors are not
added to the tree.

For an undirected graph that may or may not be connected, a scan-first search can
be performed by applying the above search procedure to each connected component (as
well as to each isolated vertex). The search produces a spanning forest with a spanning
tree in each connected component.

Notice that scan-first search is more general than sequential breadth-first search
[14]. In other words, all sequential breadth-first search trees are scan-first search trees,
but some scan-first search trees are not breadth-first search trees. For example, let C be
an undirected graph consisting of a five-vertex cycle x, x, x, x4, x. Let e denote the

160 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

edge (xi, xi+l}. Then, C- {e2}, C- (e3}, C {ea} are the scan-first search trees of C
rooted at xl. However, C {ea} is the only breadth-first search tree rooted at x.

Subroutine PARALLEL SCAN-FIRST SEARCH
Input: a connected undirected graph G (V, E) and a vertex r.
Output: a scan-first search spanning tree T of G rooted at r.
begin

Find a spanning tree T’ of G rooted at r;
Assign a preorder numbering to the vertices in T’;
For each vertex v E T’ with v r, let b(v) denote the neighbor of v in G with
the smallest preorder number;
Let T be the tree formed by the edges {v, b(v)} for all v r;

ella.

FIG. 1. Computing a scan-first search spanning tree in parallel.

THEOREM 2.1. For an undirectedgraph with n vertices andre edges, a scan-first search
spanningforest can befound in O(log n) time using C(n, re)processors on a CRCWPRAM,
where C(n, m) is the number ofprocessors used to compute a spanning tree in each con-
nected component in O(log n) time.

Proof. Let G be the input graph. Without loss of generality, assume that G is con-
nected. Let r be a given starting vertex in G. To prove the theorem, Fig. 1 describes an
algorithm for finding a scan-first search spanning tree T of G rooted at the vertex r.

T is a scan-first search spanning tree of G rooted at r for the following reasons. T
corresponds to a scan-first search in G starting at r with the preorder of T’ being the
scanning order. 7" is a spanning tree because every vertex except r has a neighbor with a
smaller preorder number in T’.

7" can be found in O(log n) time using C(n, m) processors on a CRCW PRAM as
follows. By the definition of C(n, m), 7"’ can be found in O(log n) time using C(n, m)
processors. By standard parallel algorithmic techniques [23], the preorder numbers and
the neighbors b(v) in Figure 1 can be computed in O(log n) time using O((n+m)/log n)
processors. Because C(n, m) f((n + m)/log n), the total complexity is O(log n) time
using C(n, m) processors. [3

To find a scan-first search tree on the distributed model, we use the best distributed
breadth-first search algorithm currently known, that of Awerbuch and Peleg [3].

THEOREM 2.2. For an undirected graph with diameter d, n vertices, and m edges, a

scan-first search spanningforest can befound in O(d loga n) distributed time using O(m +
n loga n) messages.

Proof. The distributed breadth-first search algorithm ofAwerbuch and Peleg [3] runs
in O(dloga n) distributed time using O(m + n loga n) messages. We first execute their
algorithm, and then modify the resulting breadth-first search forest to give a scan-first
search forest within the same complexity bounds. [3

THEOREM 2.3. Foran undirectedgraph with n vertices and m edges, a scan-first search
spanningforest can befound in O(n + m) sequential time.

Proof. The proof is easy. D

2.2. The main certificate theorem and its algorithmic implications. The next theo-
rem shows that sparse certificates for the k-vertex connectivity of undirected graphs can
be computed efficiently.

THEOREM 2.4 (The main certificate theorem). Let G (V, E) be an undirected
graph and let n denote the numberofvertices. Let k be apositive integer. For i 1, 2,..., k,
let Ei be the edge set ofa scan-first search forest in the graph Gi_ (V, E (E t3...

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 161

Ei-1)). Then E1 tO tO Ek is a certificate for the k-vertex connectivity of G, and this

certificate has at most k(n 1) edges.
Theorem 2.4 has algorithmic consequences for the parallel, distributed and sequen-

tial models of computation.
THEOREM 2.5. Foran undirectedgraph with n vertices and m edges, a sparse certificate

for k-vertex connectivity with at most k(n 1) edges can befound in O(k log n) time using
C(n, m) processors on a CRCW PRAM.

Proof. The proof is obtained by Theorems 2.4 and 2.1.
The next theorem improves on the best previous parallel algorithms for testing the k-

vertex connectivity of undirected graphs, namely, the algorithm in Khuller and Schieber
[24] and the one in the preliminary version of this paper [10].

THEOREM 2.6. For an undirected graph with n vertices and m edges, the k-vertex con-
nectivity can be tested in O(k2 log n) time using knC(n, kn)processors on a CRCWPRAM.

Proof. The k-vertex connectivity is tested in two steps. Step 1: Compute a sparse
certificate for the k-vertex connectivity ofthe input graph via Theorem 2.5. Step 2: Apply
the k-vertex connectivity algorithm of Khuller and Schieber [24] to the certificate found
in the first step. Step 1 runs in O(k log n) time using C(n, m) processors. Step 2 runs
in O(k2 log n) time using knC(n, kn) processors. Because knC(n, kn) >_ C(n, m), the
total complexity is as stated.

The main certificate theorem also gives an efficient algorithm on the distributed
model of computation. For general k, the first distributed algorithm for undirected
sparse certificates was presented in the preliminary version of this paper [10]. For k 2,
Itai and Rodeh have previously given a distributed algorithm for undirected sparse cer-
tificates [21].

THEOREM 2.7. Foran undirectedgraph with n vertices and m edges, a sparse certificate
for k-vertex connectivity with at most k(n- 1) edges can befound in O(kn log3 n) distributed
time using O(k(m + n log3 n)) messages.

Proof. This proof follows from Theorems 2.4 and 2.2. For > 1, notice that the
diameter of Gi-1 may increase to f(n).

For sequential computation, linear-time algorithms for sparse certificates for the 2-
vertex connectivity and the 3-vertex connectivity of undirected graphs have been given
by Itai and Rodeh [21] and Cheriyan and Maheshwari [7], respectively. For general k,
Nagamochi and Ibaraki have recently given a linear-time algorithm for sparse certifi-
cates for undirected graphs [27]. The main certificate theorem gives a slower sequential
algorithm for general k.

THEOREM 2.8. Foran undirectedgraph with n vertices and m edges, a sparse certificate
for k-vertex connectivity with at most k(n- 1) edges can befound in O(k(m+n) sequential
time.

Proof. The proof is obtained by Theorems 2.4 and 2.3.
For testing the k-vertex connectivity of undirected graphs, sequential running times

of O(k2n2) for k < x/ and of O(k3n1"5) for k > have been reported in Nagamochi
and Ibaraki [27]. The main certificate theorem gives the same sequential complexity,
when combined with Even’s k-vertex connectivity algorithm [13].

THEOREM 2.9. The k-vertex connectivity ofan n-vertex undirected graph can be tested
in O(k2n2) sequential timefor k < v/- and in O(k3n1"5) sequential timefor k >

Proof. First use Theorem 2.8 to find a sparse certificate. Then run the k-vertex
connectivity algorithm of Even [13], [14].

COROLLARY 2.10. For k O(1), the k-vertex connectivity of an n-vertex undirected
graph can be tested in O(n2) sequential time.

162 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. The proof follows from Theorem 2.9. []

2.3. The proof of the main certificate theorem. The main certificate theorem states
that a certificate with at most k(n 1) edges can be computed by successively finding
the edge set E1 of a scan-first search spanning forest of G0 G, the edge set E2 of a
scan-first search spanning forest of G1 (V, E El),..., the edge set Ek of a scan-first
search spanning forest of Gk-1 (V, E (El U U Ek-1)), and taking their union
E1 U... U Ek_l.

For 1,..., k, let Fi denote the spanning forest computed by the ith scan-first
search (i.e., Fi has edge set Ei), and let Hi denote the subgraph (V, (El U... U Ei)). See
Fig. 2 for an example illustrating the definitions of Gi, Fi and Hi. Clearly, the theorem
holds if H is k-vertex connected. To prove the theorem by contradiction, suppose that
Hk is not k-vertex connected, and that G is k-vertex connected. Then there is a subset
S of at most k 1 vertices such that H S is disconnected, by Menger’s theorem.
The next lemma shows that at least one tree of the last scan-first search forest Fk must
contain vertices of two or more connected components ofH S.

Go =G

G=G-F

G Go

H F F

H3 F1UFUF

FIG. 2. An example illustrating the definitions of Gi, Fi, and Hi when G is Ks.

LEMMA 2.11. Suppose that Hk & not k-vertex connected, and that G is k-vertex connected.
Then the following two statements hold:

1. There is a subset S c V with ISl < k such that Hk S is disconnected;
2. Fk contains a simple tree path Pk whose two endpoints are in different connected

components ofHk S.
Proof. Focus on the second statement. By the k-vertex connectivity of G, the graph

G S obtained by deleting S from G is connected because S contains k 1 or fewer
vertices. Because Hk S is disconnected and G S is connected, there exists an edge

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 163

e in G whose endpoints are in two different connected components of Hk S. The
edge e is not in Hk, and so is not in E1 tO... tO E_I. Hence the edge e is in G_I
(V, E (E t_J tO E_)), and so the two endpoints of e are in the same connected
component of G-I. Because F is a scan-first search forest in Gk_l, the forest F has
a spanning tree for the connected component in G-I that contains e. Therefore, F
contains a simple tree path P between the two endpoints of e. This shows that the
second statement holds. [3

To finish the proof of Theorem 2.4, the following discussion proceeds to show that
the path Pk of Lemma 2.11 cannot exist, yielding the desired contradiction.

A few definitions are in order. Let o denote the size of S. The proof of Theorem
2.4 makes crucial use of the following indexing scheme of S. Let s1,..., s,o denote the
vertices of S such that si is the first vertex in S {sl,..., si_ } that is scanned by the
ith search. Because co < k by the first statement of Lemma 2.11, this indexing scheme is
well defined and establishes a one-to-one onto correspondence between the vertices in
S and the forests F1,..., F.

For each si in S, the home component of si is defined as follows. In the forest Fi, let
r be the root of the tree that contains s. There are three cases.

Case 1. If r S, then the home component of si is the connected component in
H S that contains r.

Case 2. If r S and r s, then the home component of s is the home component
oft.

Case 3. If r s, then s has no home component.
Figure 3 illustrates the definition of home components. The next lemma shows that

the definition is consistent.

deedge

back \ ...’/

edg:s

FIG. 3. Illustration ofthe definitions ofhome components and offorward, back, and side edges (ofvertex si).

LEMMA 2.12. For each si E S, if si satisfies Case 1 or Case 2 ofthe above definition,
then the home component of si is a connected component ofH S. If si satisfies Case 3,
then si has no home component.

Proof. The lemma is obviously true if si satisfies Case 1 or Case 3 of the definition.
For Case 2, the lemma is shown by induction on the indices of S.

Induction Hypothesis: For all j < i, if sj satisfies Case 2 of the above definition,
then the home component of sj is a connected component ofH S.

Induction Step: The goal is to show that s has a home component. Because s
satisfies Case 2, the root of the tree in F that contains s is some sh S.

CLAIM 1. h < i.

164 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. Note that h because sh si by the definition of Case 2. To prove this
claim by contradiction, assume that h > i. Then, sh E S {s1,..., si_l}. Moreover,
because s is a descendant of sh in F, the ith search scans the vertex sh before s. Thus,
the vertex s should not have been indexed i. This is a contradiction. Consequently, h
must be smaller than i. This finishes the proof of Claim 1. q

CLAIM 2. No tree of Fh has sh as its root.

Proof. To prove this claim by contradiction, assume that sh is a root in Fh. Then the
edges in G that are adjacent to sh and are not in F1,..., Fh_l would all be included in
Fh. Consequently, sh would be an isolated vertex in Gh. Because > h by Claim 1, sh
would be an isolated vertex in Fi. This contradicts the fact that s is a descendant of sh
in F. Therefore, sh is not a root in Fh. This finishes the proof of Claim 2.

To show that s has a home component, by the definition of Case 2, it suffices to
prove that sh has a home component. If Case 1 holds for sh, then by definition, sh has a
home component. If Case 2 holds for sh, then by Claim 1 and the induction hypothesis,
sh has a home component. Case 3 cannot hold for sh by Claim 2. This finishes the proof
of the lemma, rq

To describe the key properties of scan-first search, more definitions are needed. For
each vertex s E S if s has a home component, let hcc(s) denote the home component of
s; if s has no home component, let hcc(s) denote s itself. Moreover, for each v V- S,
let hcc(v) denote the connected component in Hk S that contains v.

Given a forest Fi, a jump of Fi is a simple tree path Q vl,..., Vq of Fi with
hcc(v) hcc(vq).

For each vertex s S, the edges incident with s in G are classified into three types
as follows. The back edges of s are those between s and its home component. The side
edges of s are those between s and S {s}. The rest of the edges incident with s are
theforward edges. Note that if s does not have a home component, then it has no back
edges. Refer to Fig. 5 for an illustration of these definitions.

The next lemma shows a key property of the first scan-first search, and the following
lemma, which is the critical one for the proof of the main certificate theorem, generalizes
the key property to the first scan-first searches for all 1, 2,..., w}.

LEMMA 2.13. The following two statements are true.
1. Everyjump of F1 contains at least one vertex of S.
2. The scan-first search forest F1 contains all the forward edges of s1.

Proof. To prove the first statement by contradiction, assume that F1 has a jump
Q vl,..., vq which contains no vertices from S. Then, Vl, vq V-S. By the definition
of hcc, hcc(vl) and hcc(vq) are connected components in Hk S. By the definition of a
jump, hcc(vl) hcc(vq). In sum, Q is a path in Hk that connects two different connected
components of Hk S. Therefore, Q must contain a vertex from S, contradicting the
assumption of the proof. This finishes the proof of the first statement.

To prove the second statement, note that F1 is a tree because G0 G is connected.
Let r be the root of F1. Then there are two cases: either r E S or r S.

Case 1. r S. By the definition of the indexing scheme of S, r sl. When the first
search scans sl, none of the neighbors of s in G have been marked. Consequently, F1
includes all edges incident with sl in G, and hence the lemma holds for this case.

Case 2. r ,S. Refer to Fig. 4(ii) for an illustration of this case. By definition, sl has
a home component and hcc(r) hcc(sl). To prove this case by contradiction, assume
that there is a forward edge e {sl, x} F1. This can happen only if the first search
marks x before it scans sl. Focus on the tree path, say, Q of F1 from r to x. Because e is
a forward edge, hcc(sl) hcc(x). Therefore, hcc(r) hcc(x) and the path Q is a jump

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 165

of F1. By the first statement of this lemma, Q contains a vertex s S. Because s is an
ancestor of z in F1, the first search scans s before or when it marks z. Hence the first
search scans s before it scans sl. However, this contradicts the definition of the indexing
scheme of S, because st should have received a higher index. This finishes the proof of
case (2) of the second statement, and completes the proof of the lemma, l-]

edge

edge

home home

component,] / comp

of . /

(i) (ii)

home
component

edge sisj

(iii)

FIG. 4. Proofofthe main certificate theorem. (i) Proofof Claim 3 (in Lemma 2.14) and Lemma 2.15. (ii)
ProofofLemma 2.13 and Claim 4 (in Lemma 2.14). (iii)ProofofClaim 5 (in Lemma 2.14).

LEMMA 2.14. For each {1, 2,... ,w}, thefollowing statements are tree.
1. Everyjump of Fi contains at least one vertex in S {S si_ }.
2. F1, Fi contain thefollowing edges ofG

(a) Allforward edges of si, and
(b) All side edges {s, sj} with i > j and hcc(s) # hcc(sj).

Proof. This lemma is proved by induction on i as follows. The base step follows
from Lemma 2.13; note that Statement 2(b) holds vacuously for i 1. The induction
hypothesis is that the lemma holds for t. The induction step shows that the lemma
holds for i t + 1. This is proved by the following three claims.

CLAIM 3. Statement 1 holdsfor i t + 1.
To prove the above claim by contradiction, assume that Ft+ has ajump Q vl, ,

Vq which contains no vertices from S {s,..., st }. Refer to Fig. 4(i) for an illustration.
Let W be the set ofvertices that are in both Q and S. Let U0 be the set of edges in Q that
each have two endpoints in Hk S. Let U1 be the set of edges in Q that each have one
endpoint in W and the other endpoint in Hk S. Let U2 be the set of edges in Q that
each have two endpoints in W. Observe that for all edges {z, V} Uo, hcc(z) hcc(v).
Next, from the assumption of the proof, W c_ {sl,..., st }. Therefore, from statement
2(a) of the induction hypothesis, the edges in U1 cannot be forward edges and hence
for all edges {z, V} U1, hcc(z) hcc(v). Furthermore, because the edges in U2 are

166 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

side edges, from statement 2(b) of the induction hypothesis, for all edges {z, t} U,
hcc(z) hcc(l). Hence, for all vertices z,/ Q, hcc(x) hcc(l). In particular,
hcc(v) hcc(vq), contradicting the assumption that Q is a jump. This finishes the
proof of Claim 3.

CLAIM 4. Statement 2(a)holdsfor t + 1.
To prove the above claim, let T be the tree of Ft+l that contains st+x and let r be

the root of T. Then there are two cases: (1) r st+ or (2) r st+.
Case 1. r St+l. Refer to Fig. 4(ii) for an illustration of this case. By definition,

st+ has a home component and hcc(r) hcc(st+l). To prove this case by contradiction,
assume that there is a forward edge e {St+l,X} Ft+l. This can happen only if
the (t + 1)th search marks x before it scans St+l. From the existence of e, the tree
T contains x. So 7’ contains a tree path Q from r to x. Because e is a forward edge,
hcc(st+l) hcc(x). Therefore, hcc(r) # hcc(x), and Q is a jump of Ft+l. By Claim
3, Q contains a vertex s S {s,..., st}. Notice that x s because x Hk S.
Therefore, s is an ancestor of x in T. Consequently, the (t + 1)th search scans s before
or when it marks x. Thus, the (t + 1)th search scans s before it scans st+i. Therefore,
St+l should not have been indexed by t + 1, contradicting the indexing scheme of S. This
finishes the proof of Case 1 of Claim 4.

Case 2. r St+l. Notice that when the (t + 1)th search scans st+, none of the
neighbors of St+l in Gt have been marked. So Ft+ includes all edges incident with

st+i in Gt. Consequently, F1,... ,Ft+l include all edges incident with St+l in G and
statement 2(a) holds for Case 2. This finishes the proof of Case 2 of Claim 4 and the
proof of Claim 4.

CLAIM 5. Statement 2(b)holdsfor t + 1.
To prove the above claim, let T be the tree of Ft+l that contains st+, and let r be

the root of T. Then there are two cases: (1) r st+ or (2) r St+l.
Case 1. r st+. Refer to Fig. 4(iii) for an illustration of this case. By definition,

st+i has a home component and hcc(r) hcc(St+l). To prove this case by contradiction,
assume that there is a side edge e {St+l, sy } Ft+ such that t+ 1 > j and hcc(St+l)
hcc(sj). This can happen only if the (t + 1)th search marks s before it scans St+l. From
the existence of e, the tree T contains s. So T contains a tree path Q from r to s.
Notice that hcc(r) hcc(st+l) hcc(sj). Therefore, Q is a jump of Ft+l. Next, let W
be the set of vertices that are in both S and Q. Notice that sy W. Also, s is a proper
descendant of all vertices in W {sy}, and the (t + 1)th search scans W {sy} before
it marks sy. In sum, the (t + 1)th search scans W {sy} before it scans st+. Then, by
the indexing scheme of S, W {sy } c_ {s1,..., st }. By the assumption of the proof,
s {Sl,..., st }. Hence, W c_ {Sl,..., st }; by Claim 3, this contradicts the assumption
that Q is a jump of Ft+1. This finishes the proof of Case 1 of Claim 5.

Case 2. r St+l. This case is exactly the same as case (2) of Claim 4. This finishes
the proof of case (2) of Claim 5, the proof of Claim 5, and the proof of the induction
step. [3

To complete the proof of the main certificate theorem, recall our assumption thatH
is not k-vertex connected, while G is k-vertex connected. Then Lemma 2.11 shows that
F must contain a path P whose endpoints are in two different connected components
of H S, where S is a subset of V with SI < k whose deletion disconnects H. The
next lemma shows that the path P cannot exist, using the same argument as in the proof
of Claim 3 in Lemma 2.14, and thus completes the proof of Theorem 2.4.

LEMMA 2.15. Thepath P ofthe second statement ofLemma 2.11 cannot exist.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 167

Proof. To prove the lemma by contradiction, assume that Pk exists. Let Pk
vl,..., vq. Refer to Fig. 4(i) for an illustration. Because the two endpoints of P are
in two different connected components of H S, hcc(vl) hcc(vq) and the path Pk
is a jump of Fk. Let W be the set of vertices that are in both Pk and S. Let U0 be the
set of edges in P that each have two endpoints in Hk S. Let U be the set of edges
in P that each have one endpoint in W and the other endpoint in H S. Let U2 be
the set of edges in P that each have two endpoints in W. Observe that for all edges
{z,/} E Uo, hoe(z) hcc(/). Next, because W c_ S {s,...,s,}, by statement
2(a) of Lemma 2.14, the edges in U cannot be forward edges and hence for all edges
{z, 1} U, hcc(z) hcc(l). Furthermore, because the edges in U2 are side edges, from
statement 2(b) of Lemma 2.14, for all edges {z, /} Ug., hcc(z) hcc(/). In sum, for
all vertices z, / P, hcc(z) hcc(/). In particular, hcc(vl) hcc(vq), contradicting
the assumption that Pk is a jump. This finishes the proof of Lemma 2.15. [3

2.4. A generalization of the main certificate theorem. This section gives a general-
ization of the main certificate theorem, and discusses its applications.

For two distinct vertices z and /in G, the local connectivity of z and /, denoted
ec(z, /), is the maximum number of internally vertex-disjoint paths between z and /in
G. A certificate of local connectivity k for G is a subset E’ of E such that for every two
distinct vertices z and /, ec’(z, /) > min{k, ec(z, /)}, where ’(z, /) denotes (z, /) for
the subgraph (V, E’). A certificate of local connectivity k is said to be sparse if it has
0(kn) edges.

THEOREM 2.16 (The generalized certificate theorem). Let G (V, E) be an undi-
rected graph, and let n denote the number of vertices. Let k be a positive integer. For
i 1, 2,..., k, let Ei be the edge set of a scan-first search forest in the graph Gi_

(V, E (El 12... 12 Ei-1)). Then E t2 (3 Ek is a certificate oflocal connectivity k for
G, and this certificate has at most k(n 1) edges.

Proof. The proof is essentially the same as that of the main certificate theorem. Let
Hk be the subgraph (V, (E t3...t2 Ek)), and let k(x, y) denote (x, y) for Hk. To prove
the theorem by contradiction, assume that k(u, w) < min{k, (u, w)} for some two
vertices u, w E V with u : w.

Although Lemma 2.11 does not apply now because it supposes that G is k-vertex
connected, we first show that the two statements in Lemma 2.11 hold under the assump-
tion that k(u, w) < min{k, n(u, w)} for some two vertices u, w V with u w. By

WMenger’s theorem, there exist two vertices u, E V and a set S c_ V {u, w}
such that (1) ISI nk(u, w), (2) u’ and w’ are in different connected components of
Hk S, and (3) u and w’ are in the same connected component of G- S. By properties
(1) and (2), there is a subset S c V with ISI < k such that Hk S is disconnected.
By property (3), there exists an edge e in G S whose endpoints are in two different
connected components of Hk S. Clearly, the edge e is not in Hk, and hence e is in
Gk- (V, E- (El t_l.., tO Ek-1)). So the two endpoints of e are in the same connected
component of Gk-. Because Fk is a scan-first search forest in Gk-1, the forest Fk has a
spanning tree for the connected component in Gk- that contains e. Therefore, Fk con-
tains a simple tree path Pk whose two endpoints are in different connected components
of Hk S. This finishes the proof of the two statements in Lemma 2.11.

With the two statements in Lemma 2.11 proven, we can complete the proof of this
theorem by using Lemmas 2.13, 2.14, and 2.15 to show that the above path Pk cannot
exist. V

The next corollary is useful for computing the k-separators of a graph. For a positive
integer k, a k-separator of G is a set S of k vertices such that G S has more connected

168 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

components than G.
COROLLARY 2.17. For a positive integer k < n andfor all {1,..., k 1}, G and

Hk (V, (El U tO Ek)) have the same i-separators.
Proof. The proof is straightforward by Theorem 2.16.
Some of the recent algorithmic research on k-connected graphs has focussed on

highly efficient parallel algorithms for finding k-vertex connected components and k-
separators for small k, namely, k 2, 3, and 4. Theorem 2.16 and Corollary 2.17, when
combined with Theorem 2.5, yield immediate improvements to several of these algo-
rithms.

An undirected graph is said to be bridge-connected if for each edge the deletion
of that edge leaves the graph connected. For a bridge-connected graph, Fussell and
Thurimella [16] have given an algorithm for finding an open ear decomposition for each
biconnected component on an O(x//log n x/-/log n) mesh of trees architecture in
O(log3 n) time. We improve the running time to O(log2 n) by first finding a sparse cer-
tificate of local connectivity 2 for the input graph, and then running their algorithm on
the subgraph induced by the certificate. The main bottleneck of the original algorithm
[16] is to compute, for a given spanning tree T of the input graph, the nearest common
ancestor in T of all nontree edges. Note that by executing their algorithm on a sparse
certificate, the worst-case number of nontree edges decreases from f(n2) to O(n).

THEOREM 2.18. Let G (V, E) be a bridge-connected graph, and let n denote the
number ofvertices. An open ear decomposition for each biconnected component ofG can
befound on an O(v/-/ log n x//log n) mesh oftrees architecture in O(log n) time.

Fussell, Ramachandran, and Thurimella [15] have given an algorithm for comput-
ing the triconnected components of an undirected graph in O(log n) time with a time-
processor product of O((m+ n) log log n). We obtain the following improvement by first
finding a sparse certificate of local connectivity 3 for the input graph, and then running
their algorithm on the subgraph induced by the certificate.

THEOREM 2.19. Let G (V, E) be an undirected biconnected graph, and let n and m
denote the number of vertices and edges. The 3-vertex connected components of G can be
found on an ARBITRARY-CRCWPRAM in O(log n) time with a time-processorproduct
of +

For an undirected triconnected graph, Kanevsky and Ramachandran [22] have given
an algorithm for finding a compact representation of all the 3-separators. Their algo-
rithm runs in O(logz n) time with a time-processor product of O(n2 log n). We obtain
the following improvement in two steps. First, find a sparse certificate E of local con-
nectivity 4 for the input graph G (V, E). Then, for each vertex v, use the algorithm of
Fussell, Ramachandran, and Thurimella [15] to find all the 2-separators of (V, E’) {v}.

THEOREM 2.20. Let G (V, E) be an undirected triconnected graph, and let n denote
the number ofvertices.An O(n) representation for all the 3-separators ofG can be found
on an ARBITRARY-CRCW PRAM in O(log n) time with a time-processor product of
O(n2 log log n).

The algorithm of Kanevsky and Ramachandran [22] also tests the input graph for
4-vertex connectivity in O(log2 n) time using O(n2) processors. Note that for testing 4-
vertex connectivity, our Theorem 2.6 gives a running time ofO(log n) using 4nC(n, 4n)
O(nec(n, 4n)/ log n) processors.

3. An online algorithm for sparse undirected graph certificates and its paralleliza-
tion. We first present a sequential online algorithm for finding sparse certificates for the
k-vertex connectivity of undirected graphs. Then we parallelize the algorithm to obtain
a randomized NC algorithm with a complexity independent of k.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 169

Let G (V, E) denote the input undirected graph to our online certificate algo-
rithm. Let n and m denote the numbers of vertices and edges of G. G is given one edge
at a time; the input order el,..., e, of the edges is arbitrary. Upon receiving an edge
ei, the online certificate algorithm must decide whether to include ei in the final cer-
tificate F c_ E. Once an edge is included, it cannot be deleted from F at a later step;
similarly, if an edge is not included, it cannot be added to F later. Initially, F is empty.
Our online algorithm incrementally updates F by examining each input edge {v, w} and
including {v, w} in F if and only if the subgraph induced by the current F has at most
k I vertex-disjoint paths between v and w.

The detailed description of our online certificate algorithm is given in Fig. 5. For an
example, refer to Fig. 6. The next lemma shows that the F output by the online certificate
algorithm is indeed a certificate of k-vertex connectivity.

Subroutine ONLINE CERTIFICATE
Input" the edges of an undirected graph G (V, E) given one at a time in an arbitrary
order el,..., era.
Output" a sparse certificate F c_ E for the k-vertex connectivity of G.
begin

F O;
for := I to m do

begin
Lt v and w denote the endpoints of e;
Let k denote the maximum number of vertex-disjoint paths between v
and w in (V, F);
if ki < k then F := F tO {ei } else F remains unchanged;

end
end.

FIG. 5. Computing a sparse certificate online.

el

e6

F F

FIG. 6. Using the online algorithm to find a certificate for 2-vertex connectivity. The edge ordering is
ex,e2,... ,elO. F does not contain eT, for example, because in F6 {ex,e2,... ,e6} there are two vertex-
disjointpaths between the endpoints of eT.

LEMMA 3.1. IfG (V, E) is k-vertex connected, then thefinal subgraph (V, F) is also
k-vertex connected.

170 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Proof. To prove the lemma by contradiction, suppose that (7 is k-vertex connected
but (V, F) is not k-vertex connected. Then, there is a set S’ of less than k vertices such
that (V, F) S is disconnected. Let I be a connected component of (V, F) S. Since
G S is connected, G has an edge {v, w} with v I and w V (I t3 S). Because
(V, F) has at most ISI vertex-disjoint paths between v and w and because ISI < k, the
online certificate algorithm would have added the edge {v, w} to F when it examined
{v, w}. This contradicts the assumption of the proof. Thus the lemma is true.

Next we prove that the final F has at most 2kn edges by combining the following
lemma with a theorem due to Mader.

LEMMA 3.2. Thefinal subgraph (V, F) does not contain any subgraph that is (k + 1)-
vertex connected.

Proof. To prove the lemma by contradiction, suppose that (V, F) contains a (k + 1)-
vertex connected subgraph J. Let e {v, w} be the edge with the largest index among
all the edges in J. In other words, e is the last edge added to J by the online certificate
algorithm. Then J {e} has k vertex-disjoint paths between v and w because J {e}
is k-vertex connected. Therefore, when the algorithm examined e, it would not have
added e to F. This contradicts the assumption of the proof and finishes the proof the
lemma.

THEOREM 3.3 (Mader [5]). For an integer k > 1, ifan undirected graph has at least
2k 1 vertices and at least (2k- 1)(n- k) + i edges, where n denotes the number ofvertices,
then it contains a k + 1)-vertex connected subgraph.

LEMMA 3.4. Thefinal F has at most 2kn edges.
Proof. If n > 2k 1, then the lemma follows from Lemma 3.2 and Theorem 3.3. If

n < 2k 1, then F contains at most n(n 1)/2 edges, which is less than 2kn.
The next theorem summarizes the discussion of the online certificate algorithm.
THEOREM 3.5. Let G be an n-vertex undirected graph. Assume that the edges ofG are

given one at a time. Then a certificate for the k-vertex connectivity of G with at most
edges can be computed on line in O(kn) timeper input edge.

Proof. The correctness of the online certificate algorithm follows from Lemmas 3.1
and 3.4. As for the running time, note that for each edge e, the algorithm attempts
to find k vertex-disjoint paths between the endpoints of e in (V, F). This takes time
proportional to k times the size of (V, F) [14]. Therefore, the running time for examining
one edge is O(kn).

Afast parallel version ofthe online certificate algorithm can be obtained by a parallel
greedy method as follows. Let E0 . For i 1,..., m, let E denote the edge set
{el, e:,..., ei }. For 1,..., m, test in parallel whether the graph (V, Ei_) has at least
k vertex-disjoint paths between the endpoints of e. The certificate F contains exactly
those edges e that fail the test.

Notice that the main difference in the computations executed by the above parallel
algorithm and the online one is that the maximum number of vertex-disjoint paths be-
tween the endpoints of ei is found in the subgraph (V, Ei-1) by the parallel algorithm
and in (V, F) by the online algorithm. The next lemma shows that this difference does
not affect F.

LEMMA 3.6. The online certificate algorithm and its parallel version compute the same
final F.

Proof. For t 1,..., m, let Ft denote the F found by the online algorithm after it
processes et, and let F0 denote the empty set. Also, let Cp and Cq denote the final F
computed by the parallel algorithm and the online algorithm, respectively. The goal is
to show that Cq Cp. Observe that Cp c_ Cq because/7t_1 c_ ’t-1 for all t. Thus, to

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 171

prove the lemma by contradiction, it suffices to assume that there exists an edge ei
{v, w} Cq Cp. Then, by definition, there are at least k vertex-disjoint paths between
v and w in (V, Ei_l) and there are less than k vertex-disjoint paths between v and w in
(V, Fi_l). Therefore, there exists a set S c_ V {v, w} with ISI < k such that (1) v
and w are disconnected in (V, Fi_) S, and (2) there exists an edge e Ei- Fi-t
whose endpoints are in two different connected components of (V, Fi_)- S. Notice that
j < i- I because ej E Ei_l. Moreover, ej Fj because ej Fi- and F c_ Fi_. On
the other hand, observe that (V, Fi-) contains less than k vertex-disjoint paths between
the endpoints of e. Then, because F-I c_ Fi_l, (V, F_) also contains less than k
vertex-disjoint paths between the endpoints of e. But then the online algorithm would
have included e in F. This contradicts the earlier conclusion that e F. Therefore,
the assumption of the proof is incorrect and the lemma is correct.

The next theorem summarizes the discussion of the parallelization of the online
certificate algorithm. Let P(n, m) denote the number of processors needed to find a
maximum matching in O(log2 n) time with high probability. Currently, the best value
known for P(n, m) is O(m.n3"as) [26].

THEOREM 3.7. Given an undirected graph with n vertices and m edges, a certificate
for k-vertex connectivity with at most 2kn edges can befound by a randomized algorithm in
O(log2 n) time using m P(n, m) processors on a CRCW PRAM.

Proof. The correctness ofthe above parallel algorithm follows from Lemmas 3.6, 3.1,
and 3.4. As for the complexity, to test in parallel for the existence of k vertex-disjoint
paths between two vertices, we use the well-known method of transforming this problem
to the maximum matching problem [6].

4. A sequential algorithm for small certificates for directed graphs. The main re-
sult of this section is stated in the following theorem.

THEOREM 4.1. Let G (V, E) be a directed graph with n vertices and m edges.
A certificate for the k-vertex connectivity of G with at most 2k2n edges can be found in
0(k.m. max{n, kv/d}) sequential time.

Notice that the running time of our directed graph certificate algorithm is the same
as the best time complexity known for testing directed k-vertex connectivity [17]. Mader
has shown an O(kn) upper bound for the minimum size of a certificate for directed k-
vertex connectivity [25]. For k > 1, our directed graph certificate algorithm is the best
algorithm known for finding a certificate of size at most n. k().

Our proof of Theorem 4.1 is based on the next lemma. It allows certain edges of a
vertex to be deleted without affecting the connectivity elsewhere. For a directed graph
G and for every two distinct vertices x, y G, let (x, y) denote the maximum number
of internally vertex-disjoint directed paths from x to y in G.

LEMMA 4.2. Let G (V, E) be a directed graph. Let z, u, v be vertices in G. Let e be
an incoming edge ofu in G. Let H (V, E {e}). If e;H (Z, U) k and (z, v) >_ k, then
(z, v) > .

Proof. To prove the lemma by contradiction, assume that nH(Z, v) < k. Then, to
derive a contradiction by Menger’s theorem, it suffices to show that for every vertex
subset S c_ V {z, v} with ISI < k, there exists a directed path in H S from z to v.

Because (z, v) >_ k, G contains k internally vertex-disjoint directed paths P,...,
Pk from z to v. Because H(Z, v) < k, the edge e must be in one of the P’s. Without loss
of generality, assume that e is in Pk. Let L be the subpath of P from u to v. Note that
L is a directed path in H. Also, note that because the P’s are internally vertex-disjoint,
PI,..., Pk- cannot contain e and therefore remain directed paths in H.

There are two cases based on whether L and S intersect.

172 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

Case 1. L S . Note that IS L[_< k 2. Because P1,..., P- are internally
vertex-disjoint in H, at least one of those Pi’s does not contain any vertices from S, and
remains a directed path from z to v in H S. This is a desired contradiction and thus
completes the proof of Case 1.

Case 2. L S 0. Note that L is directed path in H S from u to v. Because
nil(z, u) >_ k, H contains k internally vertex-disjoint directed paths Q,...,Q from z
to u. Because Q1,..., Q are internally vertex-disjoint and ISI < k 1, at least one Q
does not contain any vertices from S. Then Q remains a directed path from z to u in
H S. Therefore, the directed path formed by Q and L is a directed path from z to v
in H S. This is a desired contradiction and thus finishes the proof of Case 2. [3

The next lemma uses Lemma 4.2 to compute an important subset of a desired cer-
tificate for a directed graph. In the lemma, let G (V, E) be a directed graph with n
vertices and m edges. Let z be a vertex in G.

LEMMA 4.3. Assume that nG (z, v) > kforall v E V- {z}. Then there exists a subgraph
H (V, E’) computable in O(k.m.n) time with thefollowingproperties:

1. For all v V {z}, nil(z, v) k;
2. The indegree of z in H is zero; and
3. For all v V {z}, the indegree ofv in H is exactly k.

Note that because of the indegree constraints, H is a minimum-size subgraph with
nil(Z, V) kfor all v V {z}.

Proof. H can be computed by the algorithm FIND-H given in Fig. 7. Note that delet-
ing the incoming edges of z does not affect n(z, v). Then, the correctness of FIND-H
follows directly from repeated applications of Lemma 4.2. As for the time complex-
ity, each iteration of the do loop takes O(k.m) time [14]. So the total runing time is
O(k.m.n).

Subroutine FIND-H
Input: a digraph G (V, E) and a vertex z V with riG(Z, v) >_ k for all v @ V {z}.
Output: a minimum-size subgraph H (V, E) with nH(Z, v) k for all v E V (z}.
begin

Let E be obtained from E by removing all incoming edges of z;
Let v, v,..., v_ be the vertices in V {z};
for i 1 to n- 1 do

begin
Find k internally vertex-disjoint directed paths from z to vi in the sub-
graph (V, E’);
Delete from E’ all incoming edges of v except the k incoming edges in
the k paths just found above;

end
end.

FIG. 7. Computing a subgraph H ofLemma 4.3.

Our directed graph certificate combines the subroutine FIND-H and the classic k-
vertex connectivity algorithm of Even [14]. The certificate algorithm computes a certifi-
cate F for the input graph G in five steps as follows.

1. Test the k-vertex connectivity of G. If G is not k-vertex connected, then let F 0
and stop; otherwise, continue the computation.

2. Pick k arbitrary vertices z1,..., zk V. For all z and z with i < j, compute k
internally vertex-disjoint directed paths in G from z to z and k internally vertex-disjoint
directed paths from z to z. Let E0 denote the set of the edges in all those paths.

SPARSE CERTIFICATES AND k-VERTEX CONNECTIVITY 173

3. Let G+ be the graph constructed by adding to G a new vertex z and 2k new edges
(z, zx),. (z,z) and (z, z),..., (z,z).

4. Use FIND-H to find a subgraph H1 (Vto {z}, El) for G+ and z. Symmetrically,
find a subgraph H2 (V to {z}, E2) for G+ and z with respect to the reverse edge and
path directions.

5. Let the final certificate F be E0 to E tO E without the edges incident with z.
The next two lemmas show the correctness of the above certificate algorithm.
LEMMA 4.4. If G is k-vertex connected, then the subgraph (V, F) computed above is

k-vertex connected.
Proof. Let C (V, F). Let C+ (V to {z}, Eo tO E1 tO E2). Note that C+ is the

graph constructed by adding to C the vertex z and the 2k edges (z, z),..., (z, z) and
(zt, z),..., (z, z). Next, because E tOE2 is included in C+, by Lemma 4.3, c+ (z, v) >_
k and c+ (v, z) >_ k for all v V. Because E0 is included in C, for all zi and z with
< j, c(zi, z) >_ k and nc(z,zi) >_ k. Therefore, by the classic argument of Even

for his k-vertex connectivity algorithm, (V, F) is indeed k-vertex connected. [3

LEMMA 4.5. IFI <_ 2k2n.
Proof. If G is not k-vertex connected, then IF] 0. Otherwise, the upper bound of

IF] follows from the facts that IEll IE21 kn and IEol < k(k 1)(n 2 + k). [3

The next lemma finishes the proof of Theorem 4.1.
LEMMA 4.6. The above certificate algodthm runs in O(km max{n, kx/-}) time.

Proof. Testing k-vertex connectivity takes O(kmmax{n, kv/-}) time [14]. Com-
puting E0 takes O(k2m min{k, v/-}) time. By Lemma 4.3, computing E1 and E2 takes
O(kmn) time. These three steps dominate the time complexity. Therefore, the total
running time is O(km max{n, kv/-}). U

5. Conclusions and open problems. Designing graph search procedures that are ef-
ficient in several major models of computation is an important issue in algorithmic graph
theory. We have shown that scan-first search can be performed extremely efficiently in
the parallel, the distributed, and the sequential models. Based on this unusual efficiency,
it is worth further research to find other applications for scan-first search.

We conclude with two open problems concerning graph connectivity. The first is
whether the k-vertex connectivity of an n-vertex directed graph can be tested in k(1)n2
sequential time. The second is whether a sparse certificate for the k-vertex connectivity
of an n-vertex undirected graph can be found deterministically in time polylogarithmic
both in k and n, using a number of processors polynomial both in k and n.

Acknowledgments. The authors wish to thank Martin Farach, Hillel Gazit, Samir
Khuller, Sandeep Sen, and lva Tardos for helpful discussions.

REFERENCES

[1] A. AGGARWAL AND R. J. ANDERSON, A random NC algorithm for depth first search, Combinatorica, 8
(1988), pp. 1-12.

[2] A. AGGARWAL, R. J. ANDERSON, AND M. Y. KAO, Parallel depth-first search in general directed graphs,
SIAM J. Comput., 19 (1990), pp. 397-409; also appeared in the Proceedings of the 21st ACM
Symposium on Theory of Computing, Seattle, WA, May 15-17, 1989, pp. 297-308.

[3] B. AWERBUCH AND D. PELEG, Network synchronization with polylogarithmic overhead, in Proceedings of
the 31th Annual IEEE Symposium on Foundations ofComputer Science, 1990, Vol. II, pp. 514-522.

[4] C. BERGE, Graphs, second revised ed., North-Holland, New York, 1985.
[5] B. BOLLOB/S, Extremal Graph Theory, Academic Press, London, 1978.

174 J. CHERIYAN, M.-Y. KAO, AND R. THURIMELLA

[6] A. BORODIN, J. VON ZUR GATHEN, AND J. HOPCROFT, Fastparallel matrix and gcd computations, in Pro-
ceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, 1982, pp.
65-71.

[7] J. CHERIYAN AND S. N. MAHESHWARI, Finding nonseparating induced cycles and independent spanning
trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507-537.

[8] J. CHERIYANAND R. THURIMELLA, Finding sparse spanning subgraphs efficiently, preprint, August 1990.
[9] ,On determining vertex connectivity, Tech. Report UMIACS-TR-90-79 CS-TR-2485, Institute for

Advanced Computer Studies, University of Maryland, College Park, MD, June 1990.
[10] ,Algorithms for parallel k-vertex connectivity and sparse certificates, in Proceedings of the 23rd

Annual ACM Symposium on Theory of Computing, 1991, pp. 391-401.
[11] R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree and

graphproblems, in Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science, 1986, pp. 478-491.

[12] T.H. CORMEN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1990.

[13] S. EVEN,An algorithm for determining whether the connectivity ofa graph is at least k, SIAM J. Comput.,
4 (1975), pp. 393-396.

[14] ,Graph Algorithms, Computer Science Press, New York, 1979.
[15] D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA, Finding triconnected components by local replace-

ments, in Proceedings of the 16th International Colloquium on Automata, Languages, and Pro-
gramming, 1989, pp. 379-393; SIAM J. Comput., 22 (1993), to appear.

16] D. FUSSELLAND R. THURIMELLA, Successive approximation inparallelgraph algorithms, Theoret. Comput.
Sci., 74 (1990), pp. 19-35.

[17] Z. GALIL, Finding the vertex connectivity ofgraphs, SIAM J. Comput., 9 (1980), pp. 197-199.
[18] H. GAZlT, An optimal randomized parallel algorithm forfinding connected components in a graph, Pro-

ceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, 1986, pp.
492-501.

19] H. GAZITAND G. L. MILLER,An improvedparallelalgorithm that computes the BFS numberingofa directed
graph, Inform. Process. Lett., 28 (1988), pp. 61-65.

[20] V. HADZILACOS, Connectivity requirements for byzantine agreement under restcted types offailures, Dis-
tributed Comput., 2 (1987), pp. 95-103.

[21] A. ITAAND M. RODEH, The multi-tree approach to reliability in distributed networks, Inform. Comput., 79
(1988), pp. 43-59.

[22] A. KANEVSKYAND V. RAMACHANDRAN, Improved algorithms forgraph four-connectivity, J. Comput. Sys-
tem Sci., 42 (1991), pp. 288-306.

[23] R. KARPAND V. RAMACHANDRAN,A survey ofparallel algorithms for shared-memory machines, Tech. Re-
port. UCB/CSD 88/408, Computer Science Division, EECS, University of California at Berkeley,
March 1988; in the Handbook of Theoretical Computer Science, North-Holland, Amsterdam, to
appear.

[24] S. KHULLER AND B. SCHIEBER, Efficient parallel algorithms for testing connectivity andfinding disjoint s-t
paths in graphs, in Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer
Science, 1989, pp. 288-293.

[25] W. MADER, Minimal n-fach zusammenhangende Digraphen, J. Combin. Theory, B38 (1985), pp. 102-117.
[26] K. MULMULEY, U. V. VAZIRANI, AND V. V. VAZIRANI, Matching is as easy as matrix inversion, Combina-

torica, 7 (1987), pp. 105-114.
[27] H. NAGAMOCHIAND Z. IBARAKI, Lineartime algorithmsforfinding k-edge-connected and k-node-connected

spanning subgraphs, Algorithmica, 7 (1992), pp. 583-596.
[28] R. TARJAN, Depth-first search and lineargraph algorithms, SIAM J. Comput., 1 (1972), pp. 146-160.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 175-202, February 1993

() 1993 Society for Industrial and Applied Mathematics
014

DECOMPOSING FINITE-VALUED TRANSDUCERS
AND DECIDING THEIR EQUIVALENCE*

ANDREAS WEBEIt

Abstract. In this paper finite-valued finite transducers are investigated in connection with their inner
structure. The following results are shown: A finite-valued nondeterministic generalized sequential machine
(NGSM) M can be effectively decomposed into finitely many single-valued NGSMs M1,..., MN such that
the transduction realized by M is the union of the transductions realized by M1,..., MN. Using this decom-
position, the equivalence of finite-valued NGSMs is decidable in deterministic double exponential time. By
reduction, both results can be generalized to normalized finite transducers.

Key words, finite transducer, valuedness, finite valued, equivalence problem

AMS(MOS) subject classification. 68Q75

Introduction. A finite transducer M is a finite automaton with output. Informally,
M may be regarded as a finite directed labeled graph. The vertices and edges of that
graph represent the states and transitions of M, respectively. The label of an edge is the
pair ofinput/outputwords consumed/produced by the corresponding transition ofM. As
usual, these input words are required to have length 0 or 1. The resulting nondetermin-
istic model for M is the normalized finite transducer (NFT) or the nondeterministic
generalized sequential machine (NGSM) if only length 1 appears. The successful com-
putations in M are represented by those paths (called accepting) in the above graph that
lead from an initial to a final state (i.e., vertex). Along the edges of such a path an input
word z is "transduced" into an ouput word, which is called a value for z in M. The val-
uedness ofM is the maximal number of different values for an input word, or is infinite,
depending on whether or not a maximum exists. In the former case, M is called finite
valued. M is called single valued if its valuedness is at most 1. Two finite transducers
are called equivalent if the transductions (or relations) realized by them coincide, i.e., if
every input word has the same set of values in both transducers.

The valuedness is a structural parameter of the transduction realized by a finite
transducer that received attention in connection with the equivalence problem. This
problem is undecidable for NGSMs (see [G68], [I78], [L79b], and [L83]) but decid-
able for finite-valued NFTs [CK86]. The equivalence problem for single-valued NFTs is
PSPACE-complete (see [Sch76], [BH77], [AL78], [GI83], and [HW91]). It is decidable
in polynomial time whether or not an NFT is finite valued (see [W87], [W90]). Given
any fixed integer d, it can be tested in polynomial time whether or not the valuedness of
an NFT is greater than d [GI83]. For further background on finite transducers we re-
fer to Berstel’s. textbook [B79] and to excellent survey papers by Karhumiki (see [K86],
[K87]), and Culik [C90].

The basic result of this paper is the following decomposition theorem (see 2).
(1) A finite-valued NGSM M can be effectively decomposed into finitely many

single-valued NGSMs M1,..., Mv such that the transduction realized by M
is the union of the transductions realized by M1,..., Mv.

Received by the editors April 2, 1990; accepted for publication (in revised form) August 22, 1991. A
preliminary version of this paper appeared under the title ’A decomposition theorem for finite-valued trans-
ducers and an application to the equivalence problem" in the Proceedings of MFCS 1988. A full revision was
done while the author was supported by a Postdoctoral Fellowship of the Japan Society for the Promotion of
Science.

tFachbereich Informatik, Johann Wolfgang Goethe-Universit/it, Postfach 111 932, W-6000 Frankfurt am
Main 11, Germany.

175

176 ANDREAS WEBER

In this theorem, N is of exponential order, which is optimal in certain cases. Each
Mi has double exponential size and can be constructed in double exponential time. Intu-
itively, the theorem (1) states that a "difficult" (i.e., finite-valued) NGSMM is equivalent
to some effectively constructible "disjoint union" of "easy" (i.e., single-valued) NGSMs
M1,..., Mv. We want to point out that the main problem for the machines M1,..., Ms
is that the model of a "disjoint union" does not allow any communication among them.
Given an input word z, each Mi has to decide autonomously which of the values for z in
M it should produce as its own value. The theorem (1) directly implies two fundamen-
tal results of [W87] and [W90]; that is, an upper bound for the valuedness of a finite-
valued NGSM and a characterization of the infinite valuedness of an NGSM, which can
be tested in polynomial time (see 2).

In 3 we present a combinatorial word lemma. This lemma allows to use the above
decomposition theorem in order to decide the equivalence of finite-valued NGSMs. Our
results are as follows.

(2) The noninclusion oftransductions realized by finite-valued NGSMs (and, hence,
the nonequivalence of finite-valued NGSMs) can be detected by a witness of
double exponential length.

(3) The inclusion of transductions realized by finite-valued NGSMs (and, hence,
the equivalence of finite-valued NGSMs) is decidable in deterministic double
exponential time.

Note that (2) alone implies a deterministic triple exponential time algorithm for
(3). The witness length in (2) is necessarily of exponential order [N79] and the decision
problems in (3) are PSPACE-hard [GJ79], even if the NGSMs in question are single
valued and have only one output symbol. It is an open problem regarding whether or
not the upper bounds for the witness length in (2) and for the time complexity in (3) can
be improved to bounds of exponential order (see 3).

By reduction, the results (1)-(3) can be generalized to NFTs (see 4).
A noneffective version of (1) was stated in [Sch76] without complete proof. The

methods used here differ from those in [Sch76]. Another attempt to establish a proof
of (1) and a (nonefficient) decision procedure for (3) failed because of a fatal proof
error (see [AL78], [L79a]). Our algorithm underlying (3) is quite different from the
procedure by Culik and Karhum/iki [CK86] deciding the equivalence of finite-valued
NFTs. The latter procedure uses an algorithm by Makanin as a "subroutine"; it is proved
to be recursive by employing a generalization of the (recently confirmed) Ehrenfeucht
Conjecture. As far as I know, a time analysis for this procedure does not exist.

The above-mentioned word lemma generalizes a lemma by Schiitzenberger [Sch76]
and may be of own interest. From similar work by Lisovik (see [L79a], [L80]) it can be
obtained that the theorem (1) and Schiitzenberger’s lemma imply (2). In order to derive
(2) and (3) from (1) the above-mentioned word lemma can be replaced by a "machine-
oriented" approach due to Gurari and Ibarra [GI81] or by an "algebraic" approach due
to Turakainen (see [T88], [T89], and 3).

Our proof of (1) is based on a classification of accepting paths. To each accepting
path in an NGSM M we attach a set of specifications. Given any such specification
(altogether there are exponentially many), we effectively construct an NGSM realizing
nothing but all pairs of words which appear as input/output along those accepting paths
in M, that have the given specification. If M is finite valued, then the thus constructed
NGSMs turn out to be single valued, and the union of the transductions realized by them
coincides with the transduction realized by M. In order to prove this, we work on the
basis of methods and technical lemmas presented in [W87] and [W90].

DECOMPOSING FINITE-VALUED TRANSDUCERS 177

In a finite transducer, instead of counting different values it is quite natural to con-
sider only their lengths. This leads from the valuedness to another parameter called
length-degree [W92a]. Indeed, variants of (1)-(3) hold true when the valuedness of an
NGSM is replaced by its length-degree [W92a]. In particular, the equivalence of NFTs
with finite length-degree is recursively decidable. Another result similar to (1) is pub-
lished in [W92b].

The work presented in this paper and a part of its sequel as described above was
recently generalized by Seidl to bottom-up finite state tree transducers [$90].

1. Definitions and notations.

1.1. General notations. We use the following notations: Af, Z, and Q denote the
sets of all nonnegative integers, integers, and rationals, respectively. IN and [m] denote
the sets Af\{0} and {1,..., m}, respectively, [i,j] denotes the set {t Z li < t < j}
(m Af, i, j Z). Let A be some nonempty, finite set. A-<t denotes the set of all words
in A* having length at most (1 A/’). Let z A* and j [[z[], then z(j) A denotes
the jth letter of z. Let z, z A* and j [min{lzl,]zl}]. We say that z and z2 differ
atposition j if z (j) and zz(j) are distinct. Without further mention we assume that the
model of computation for all our algorithms is the deterministic random access machine
(RAM) without multiplications and divisions using the uniform cost criterion (see, e.g.,
[AHU74]).

1.2. Finite transducers. Our model of a finite transducer is the normalized finite
transducer (NFT). Formally, an NFT is a 6-tuple M (Q, E, A, 6, Qx, QF) where Q, E,
and A denote nonempty, finite sets of states, input symbols, and output symbols, respec-
tively, Qx, QF

_
Q denote sets of initial and final (or accepting) states, respectively, and

6 is a finite subset of Q (E t_J {e}) A* Q. E (A) is called the input (output) alphabet,
6 is called the transition relation. Each element of 6 denotes a transition. Of course, M is
nondeterministic. M is called a nondeterministic generalized sequential machine (NGSM)
if 6 is a finite subset of Q E A* Q. In this paper we mainly deal with NGSMs.

The mode of operation ofM is described by paths. Apath 7r (of length m) is a word

(ql,Xl,Zl)... (qm, Xm, Zm)qm+l (Q x (E t_J {}) x A*)m. Q

so that (ql, Xl, zl, q2),..., (qm, Xm, Zm, qm+) are transitions. 7r is said to lead from q to
q,+, to consume x := Xl x, E*, to produce z := z... z, A*, and to realize
(x,z) E* A*. 7r is called accepting if ql Qz and q,+ QF. Whenever convenient
we identify a transition (p, a, z, q) with the path (p, a, z)q of length I and vice versa. We
define := { (p, x, z, q) Q x E* x A* x Q[(x, z) is realized by some path in M leading
from p to q}. IfM is an NGSM, then 5 equals fqQ x E x A* x Q. In this case we rename
by 5. Let 71" 71" ql and 7r2 7rq be paths in M leading from pl to ql and from p: to

q, respectively. If ql and pu coincide, then we define the path 7r o 7r2 :- 7rTrq. Note
that the operation "o" on paths is associative.

The transduction (or relation) realized by M, denoted by T(M), is the set of pairs (in
E* x A*) realized by all accepting paths in M. The language recognized by M, denoted
by L(M), is the domain of T(M), i.e., the set ofwords (in E*) consumed by all accepting
paths in M. Two NFTs are equivalent if the transductions realized by them coincide.

If (x, z) E* x A* belongs to T(M), then z is called a value for x in M. The
valuedness of x E* in M (short form: valM(x)) is the number of all different val-
ues for x in M. The valuedness of M (short form: val(M)) is the supremum of the set
{valM(x)]x E*}. Note that, for a given x E*, valM(x) may be infinite (see 4),

178 ANDREAS WEBER

whereas it is clearly finite if M is an NGSM. M is called infinite valued (finite valued,
single valued) if its valuedness is infinite (finite, at most 1, respectively).

A state of M is called useful if it appears on some accepting path; otherwise, this
state is called useless. Useless states are irrelevant to the valuedness in M. If all states
of M are useful, then M is called trim. A state p of M is said to be connected with a

state q of M (short form: p q) if some paths lead from p to q and from q to p. An
equivalence class with respect to the relation "M" is called a strong component of M.

Let M0 (Q0, , A, 0, Qz,0, QF,0) be another NFT. We define some local struc-
tural parameters of M and M0: val(6) is defined as the minimal kl > 1 such that, for
all (p, a, q) E Q x (EtA {e}) Q, #{z E A* I(P, a, z, q) 6} is at most kX. diff(6, 60)
is defined as the minimal k2 _> 0 such that, for all pairs ((p, a, z, q), (/5, a, ,)) of tran-
sitions in M and M0 consuming the same a Z] U {e}, Ilzl I11 is at most k2. We
set diff() := diff(, 6). im() is the set of e and of all words z A* produced by any
transition of M. We set iml() max{Iz[z im(6)}.1

The size of 6, denoted by I111, is defined as 1 plus the sum of 1+ Izl over all transitions
(p, a, z, q) of M. The size of M, denoted by IIMI], is defined as the sum of #Q, #E, #A,
and I111.

Note. val(6) _< #im(6) _< min{ll6ll, /(A-<iml(6))}, diff(6,6o) _< max{iml(6),
iml(6o)}, and diff(6) _< iml(6) _< [16[[- 1.

In the rest of this subsection we assume that M (Q, E, A, 6, Q, QF) is an NGSM.
Let x xl...Xm * (XI,...,Xm). The graph of acceptingpaths in M

consuming x (short form: GM(X)) is the directed graph (V, E) where

V {(q, j) e Q x {0,..., m}lqz e QI SqF e QF Szl, ze e A*"
(qi, xl ...xj,zl,q) 5 (q, xj+l ...Xm, Z2, qF) E 5}, and

E {((p,j-1),(q,j))eY2[je[m] & zeA*’(p, xj,z,q) eS}.

Note that the set of all paths in GM(X) leading from QI x {0} to QF {m} corresponds to
the set of all accepting paths in M consuming x projected to their Q- and E-components.
Each vertex of GM(X) is situated on such a path.

Let M0 (Q0, E, A, 0, Qi,o, QF,O) be another NGSM. Let x xl... x, E E*
(x,... ,x, E). Let

rr (ql,xl,zl) (qm, Xm, Zm)q,+l and (1,xl,51)... (m,X,Sm)m+l

be paths in M and M0, respectively, both consuming x. We define

diff(Tr,-) := max{[[zl...zt[[51...5t1[[0 < < m}.
Note that diff (Tr, #) is at most m. diff(, 0).

1.3. Criteria for finite transducers. Let M (Q, E, A, , QI, ,F) be an NFT. The
following criteria (IV1) and (IV2) were introduced in [W87] and [wg0] in order to
characterize the infinite valuedness of M.
(IV1) There are useful states p, ql, q2, q3, q Q such that, for some words u, v, w

E* and 21, 22, 23, 1, 2, 3, Zl, z2, ’/3 A*, the following holds: 1 and 2
have distinct lengths, (p, u, 1, ql), (ql, v, 1, ql), (ql, w, zl, p) e , (p, u, 22, q2),
(qz, v, , q), (q, w, z2, q) , and (q, u, 2, qz), (q3, v, , q3), (q3, w, z3, q)

1iml(6) is denoted by length(6) in [W87] and [W90].
2Note that (IV1) appears as (IV3) in [W87] and as (IV1) in [W90], whereas (IV2) slightly differs from

(IV2) in [W87], appears as (IV2) in [W90], and is equivalent to (IV2) there [W90, Lem. 2.3(i)].

DECOMPOSING FINITE-VALUED TRANSDUCERS 179

wlrt ult

FIG.

(IV2) There are useful states p, q E Q such that, for some words v E E*, 1 A+
and 2, a, 4 A*, 2 and a differ at some position j [min{[l, I1}], and
(p, v, 1, P), (P, v, 2, q), (P, v, 3, q), (q, v, ’4, q) ((.

FIG. 2

1.4. Finite automata. Our model of a finite automaton is the nondeterministicfinite
automaton with e-moves (e-NFA). Formally, an e-NFA is a 5-tuple M (Q, E, 6, Q1, Q)
whose components Q, E, 6, QI, andQ have the same meaning as for an NFT (Q, E, A, 6,
Qz, Q) except that 6 is a subset of Q x (E t_J {e}) Q. Each element of 6 denotes atran-
sition. M is called a nondeterministicfinite automaton (NFA) if 6 is a subset of Q x E x Q.
M is called a deterministicfinite automaton (DFA) if it is an NFA such that #Qz I and
(p, a, ql), (P, a, q2) E 6 implies ql q2.

A path 7r (oflength m) in M is aword (ql, Xl)... (qm, X,)qm+l (Q (Eto{e}))".
Q so that (ql, x1, q2), (qm, Xm, qm+ are transitions. 7r is said to lead from ql to qm+
and to consume x := xl Xm E*. 7r is called accepting if ql Q and qm+l QF.
We define := { (p, x, q) E Q 3" QI x is consumed by some path in M leading from
p to q}. If M is an NFA, then equals d fq Q E Q. In this case we rename $ by 6.
Let 7rl 7rql and 7r2 7rq2 be paths in M leading from pl to ql and from p2 to q2,

180 ANDREAS WEBER

respectively. If ql and p2 coincide, then we define the path 7rl o 7r2 7q7r2q2. Note that
the operation "o" on paths is associative.

The language recognized by M, denoted by L(M), is the set of words consumed by
all accepting paths in M. Two e-NFAs are equivalent if the languages recognized by them
coincide.

The size of M, denoted by IIMII, is defined as the sum of #Q, #E, and 1 + #6.
2. Decomposing finite-valued NGSMs. In this section we prove the following de-

composition theorem.
THEOREM 2.1. Let M be an NGSM, which does not comply with any of the criteria

(IV1), (IV2). Then, O(2plyIIMII many single-valued NGSMs M1,..., MN --each ofsize
O(22inllMII effectively exist such that T(M) equals T(M1) t2 t2 T(MN). In detail, let
M (Q, E, A, , Qr, QF) and n := #Q, then N is at most

(51/2 32/3) n4"(n-). 2(n-1)’(n+3). (#im(6))n-

(1 + diff())’-. A2"(n3-1)’diff(8) if #A > 1,

(51/2. 34/3)n. 6.(n--1). 2(n--1).(n+2). (#im())n-1
(1 + diff())e’(n-) if #A 1,

and each M (i IN]) has at most 2n’(e"++e) (1 + diff(3)). (2 + iml())states and size
at most 2’(2"++4) [IM[[5.

Using a variant ofthe construction for Theorem 2.1 we obtain the following theorem.
EOREM 2.2. Let M (Q, E, A, , Qz, QF), n, N and M,..., MN be as in The-

orem 2.1. Then, NFAs M,...,M each of size O(22i"t effectively exist such
that, for all [N], M recoizes E*L(Mi). In detail, each M[(i IN]) has at most

2n’(2++8) 22ns’(l+diff(6))’(2+iml(6)) states (and more states than Mi) and size at most
2n.(2+2+17). 25ns.llMll z.

A time analysis of the constructions for the Theorems 2.1 and 2.2 yields:
EOREM 2.3. Let M be an NGSM as in the Theorems 2.1 and 2.Z The NGSMs

M MN and the NFAs M M ofthese theorems can be constmcted in DTIME

According to Lemma A.1 in the Appends, the Theorems 2.1-2.3 apply to finite-
valued NGSMs as well. Intuitively, Theorem 2.1 therefore states that a finite-valued
NGSM M can be effectively decomposed into finitely many single-valued NGSMs. By
reduction, Theorem 2.1 can be generalized to Ns (Theorem 4.1).

Let M be an NGSM as in the Theorems 2.1-2.3. It turns out that the quite large and
a little complicated NGSMs M,..., MN and NFAs M,...,M constructed for M in
these theorems, while consuming the same word, need the greater part of their capabili
in order to car out exactly the same "basic work." Intuitively spoken these machines
are doing so because the model of a "disjoint union" of finite transducers does not allow
any communication among them. The author believes that this missing communication
is the main reason why M,..., MN and M,...,M are so large and complicated.

In 3 we use the Theorems 2.1-2.3 in order to decide the equivalence of finite-
valued NGSMs. Here, using Lemma A.1, we state the following immediate corollar-
ies of Theorem 2.1.

COROLRY 2.4. Let M be an NGS M is finite valued ifand only iffinitely many
single-valued NGSMs M,..., MN effectively exist such that T(M) equals T(M)

DECOMPOSING FINITE-VALUED TRANSDUCERS 181

COROLLARY 2.5 (see [W90, Thm. 2.1]). Let M (Q, E, A, 6, Qz, Qv) be a finite-
valued NGSM with n states. Then, the valuedness ofM is not greater than the upper bound
for N stated in Theorem 2.1.

COROLLARY 2.6 [W90, Thm. 2.2]. Let M be an NGSM. M is infinite-valued if and
only if it complies with at least one ofthe criteria (IV1), (IV2).

Note that, unless n 1, the upperbound for the valuedness ofa finite-valued NGSM
stated in [W90, Thm. 2.1] is smaller than the upper bound in Corollary 2.5 and the up-
per bound for N in Theorem 2.1. The Theorems 4.1 and 4.2 of [W90] imply that each
improvement of any of these bounds has to stop above Ana’diff(6)/343 if #A > 1 and
at 2’-1 if #A 1. Thus, if #A > i and dill(6) > 0, all these bounds are asymptotically
optimal apart from a constant factor in the exponent.

It is decidable in polynomial time whether or not an NGSM complies with (IV1) or
(IV2) (see [W90, 3]). Therefore, Corollary 2.6 implies: It is decidable in polynomial
time whether or not an NGSM is infinite valued [W90, Thm. 3.1].

In the rest of this section we prove the Theorems 2.1-2.3, successively.
Proof of Theorem 2.1. Let M (Q, E, A, 6, QI, Q) be an NGSM with n states,

which does not comply with any of the criteria (IV1), (IV2). We may assume that M is
trim. The set of accepting paths in M is denoted by II. Let Q1,..., Q be an order of
the strong components of M so that for all i, j [k] the following holds.

6nQ x p* x,5* x Q O :=:, <_j.

Letn := #Q (i 1,...,k).
Our proof of Theorem 2.1 consists of the following steps.
(1) We define a set S of potential path specifications having cardinality at most

5n/2 32n/3. 2(n+3)’(n-1). na.(n-1). (#im(())n-1

(1 q-diff(i))n-1. #m2"(n3-1)’diff(6)

5n/2 34n/3. 2(n+2)’(n-1). n6.(n-1), n-1

(1 + gift(6))

if#A> 1,

if#A 1.

(2) We define a mapping " II 2s\(}, such that every a (Tr) acts as a
specification of the path 7r H, and the following holds: If 7r, 7r’ II realize
(z, z), (z, z’) 6 * x A*, respectively, and if (Tr) (’) is nonemp, then z
and z’ coincide.

(3) For all g S we effectively construct an NGSMM realizing the transduction
{(z, z) * x A*[(z, z) is realized by some H so that a 6 ()}. Each
(S) has at most 2("++). (1 + diff(6)) (2 + iml(6)) states and size

at most 2’("++4) [IM[[5.
From (1)-(3) it follows that T(M) equals esT(), and that each (g 6 S)

is single valued. Therefore, the steps (1)-(3) prove the theorem. Note that N #S and
the NGSMs (g S) are playing the role of M1,..., MN.

In order to car out step (1) we need the following proposition.
PROPOSITION 2.7. Let n i1 ni, where nl,..., nk G . Then,i ni 3n/a

and H,(n + 1) 5n/2.
Proof. It is easy to show by induction on j that, for each j if, ja 5 3 and

k k /a 3n/3 k(je + 1) 5y. In turn, this implies: i=1 ni i=1 3’ & i=l(n+ 1)
H 5n’/ 5n/:"

182 ANDREAS WEBER

Execution ofstep (1). We define a set S of potential path specifications:

Using Proposition 2.7, we can prove the announced upper bound for the cardinality
of S as follows.

#S
l>_O l<_io<...<Q<_k O<j<...<jt<2n+

’=iX- ni-1).diff(8))
=1

2+(2. (n2. ni 1). diff(5) + 1). ni). nixl. #(QF n Q,)

2

10 lio<...<itk O<j <...<jt<2n+ &=0

-<E E
l_>0 l_<io<...<Q

ix
2 l. 21 n41[2(n+l)"" (H nix)" (#im(5)) (H(E hi)). (1 + diff(5))’

,k--0 A--1

5n/2.32n/3.2(n+3)’(n-1). n4.(n-1). (#ira(5))n-

(1 + diff(6))n-. #t2"(na-1)’diff(5)

5n/2.34n/3. 2(nT2)’(n-1)./t6"(n-1). (#im(())n-1

(1 + diff(5))2"(’-)

if #A > 1,

if#A= 1.

DECOMPOSING FINITE-VALUED TRANSDUCERS 183

Note. Proposition 2.7 implies

k

H n’x 1-I(n + 1)- 1 _< 5/- 1.
l>_O l<_io<...<Q<_k),=0 i=1

Execution ofstep (2). Let x Xl... Xm E * (Xl,..., Xm }-]). Consider GM(X)
(V,E). Let # e {0,...,m}. We define set(x,#) := {q e Q l(q,#) V). set(x,#)
denotes the set of states at column # in GM(X). Consider the uniquely determined
A1,..., Ad+ 2Q and y,..., Yd * such that x y... Yd, d is odd and the fol-
lowing holds (see Fig. 3).

’j 1,...,d+ 1" Aj set(x, lyl...yj_ll)
/j 1,...,d" j odd

I(Y... Yj-)YjI max{0 </z < m A set(x,/z)}
/j 1,...,d" j even =: y E.

Thus, for each odd j [d], Ai+l is the "last occurrence" of Aj in the sequence set(x, 0),
set(x, 1),...,set(x,m). Clearly, d < 2n+- 1. Note: If x L(M), then d 1 and
A Az =0.

Assume that 7r E II is an accepting path consuming x and producing some z A*.
We shall define the set (r) C_ S of specifications of 7r, and we shall show that this set is
nonempty.

Consider the uniquely determined paths 7rl,..., 7ra and the uniquely determined
z Zd A* andp’ q’1, p, q Q such that 7r 7rl o... o 7rd and, for each
j 1,..., d, 7rj realizes (yj, zj) and leads from p to qj (see Fig. 3). By construction,
z Zl...Zd, p’ A1 C_ QI, q-i -Pj Aj (j 2,...,d), qd Ad+I C_ QF, and
{z[j [d], even} c_ im(i). We define

J := {j e [d] [-(p q)}.
Let {0,...,k-1} and 1 < j < < jt < dsothat J {jl,...,jt}. Let
1 < io < i <... < it < k so thatp E Q/o,px Qix_l, qx Qix (A 1,...,/), and

ix
qd Qi (see Fig. 3). For each j := jx J set hj ’i=ix-1

Let j e lN, and let 7to be a path in M realizing some (Yo, z0) e E* A* and leading
from some p Q to some q Q. Let 1 _< i(p) < i(q) < k so thatp Qi(p) and q E Qi(q).
Set h := z_i=i(p) hi. We define qj(Tro) 2A*ZQ::

j(Tro) := {Zo}, ifj is even or IZo[is at most (n:. h 1). diff(5), and else,

y(Tr0) :: {(t,/,) Z QUilt _< (n2 h 1) diff(i) & /5 ----qM35 A* 3 a path # in M realizing (Y0, 5) and leading from i5 to
diff(Tro,) < (n3 1). diff(5) & t Izol-

We are now ready to define (Tr) 2s:

A--1

Next, we prove that (Tr) is nonempty, i.e., we have to show that, for all j J, j (Try)
is nonempty. Let j := jx J such that zj (Trj). Then, j is odd and Izyl is greater

184 ANDREAS WEBER

gu (x)" (d=7)
(j:=)

y Y Ya Y4
I"

"1

qe

L J L .I L .J L J

A1 AI Ae Aa As Aa

r" -i i- "1

’-7I r;:

(js’= 5) (jz’= 7)
Y5 Ya Y7

’q7

L J L .J L d L .I

As As=A A AT=As

FIG. 3

than (n2 hj 1) diff(6). Since j is odd and yj e, we can apply Lemma A.2 in the
Appendix to A := A A+I, y := y, p’ := p A, and q’ := qj A, which yields

(.) There arep, q Z, pl,p2,p3,p4 Q, 11,12 > 0 and z1),..., z(1), z6(1),..., z9
A* so that (p, yll, zl), p), (Pl, Y, z1) P2), (P2, Yt, Z3

(1) P) 6, (p, y’, Z4
(1) p’),

(q’, yt, z6(1), q) and (q, yt, z7(1), P3), (P3, Y, zs(1), p4), (p4, yt:, z9(1), q) 6.

Recall that ry realizes (y, zj) and leads from p’ to q’, and that p’ Qi,_ and q’
Qi,. Select i5 "= pl, := p2, 5 z2(1), and t := Izl 15 I. Let # be an arbitrary
path realizing (y,) and leading from i5 to t. Since M does not comply with the criterion

iix_l --1 ilix --1(IV1),wecanapplyLemmaA.3 in the Appendix to Ux := w=i Q,U ,.,=,,_ Q,
k ff qU3 := Qi, u4 I..Ji=ix+l Qi A, y, AfqU2, AfqU3, the assertion (.), 7r, and #.

Lemma A.3 implies: diff(Trj, #) _< (n2 .by- 1). diff(6). Thus, (t,/5,) belongs to
Assume that 7r, 7r’ e H are accepting paths consuming x and producing some z, z’

A*, respectively, such that qa(Tr) fqqa(Tr’) is nonempty. We shall show that z and z’ coincide.
Consider the uniquely determined paths 7rl,..., 7rd, 7r,..., 7r and the uniquely de-

termined zl, .,Zd, Ztl, Z’ A* andp1), (1) (2)qj2)a qj ,pj Q(j=l,...,d) suchthat
7r 7rl o... o 7rd, 7r’ 7r o... o 7r and, for each j 1,..., d, 7r realizes (yy, z) and
leads from pl) to q)l) and 7r) realizes (yj, zj) and leads from p2) to qj2). By construction,
z zl...Zd and z z...z. We define

j (j [d]l_(pl) M ql))) and

DECOMPOSING FINITE-VALUED TRANSDUCERS 185

:= (j e

Since o(Tr) fq qg(Tr’) is nonempty, we know: J J’, p =: 1, --: Pj,

qJ) qJ2) =: q (j 6 J), q() q(dz) =: q. Let 6 {0,..., k 1) and 1 _< j <... <
jt _< d so that J {j,...,jt}. Let 1 <_ io < i < < it <_ k so that p Qo,
pj Qi_, q Q (1,..., 1), and qd Q, (see Fig. 3). For each j j J
set hj i=i_ n-

Set jo := 0, jt+ d + 1, q p] and Pd+’ qd" Let A {0,..., 1}. By construc-
Z6 and (qx,y, Zjx+ _,tion, for some y E*, (q,y, zjx+ ...Zjx+_l,pjx+ X+l

Pjx+ 5. Since M does not comply with any of the criteria (IV1), (IV2), and since q
is connected with z (see Fig. 3).p)+, this implies: zyx+l...zy+-i zj+l +_

Let j ja e J. Since q(Tr) (Tr’) is nonempty, we know that (Try)
Ifj is even or Izjl is at most (n2.hj-1).diff(5), then {zj} (Try) qj (Try) {z}, i.e.,

zj z. Otherwise, consider (t,/%) Z Q2 so that (t,/%) j(Trj)fq (Try). Since
M does not comply with any of (IV1), (IV2), and since/5 is connected with , there is
exactly one 5 A* such that (/% yy, 5,) . Hence, we know: Izyl-151 t
i.e., I jl- Iz l,

Since j is odd and Yi , we can apply Lemma A.2 to A Ai Ai+l, y
p’ := p E A, and q’ :-- q E A, which yields (.). Let # be an arbitrary path realizing

(y, z1)) and leading from pl to p2. Since M does not comply with (IV1), we can apply
liX_l --1 ilia --1 kLemma A.3 to U1 := = Qi, U2 ,..,i=ix_ Qi, u3 := Qix, Ua i=ix+l Qi,

A, y, p’ A U2, q’ A fq U3, the assertion (.), 7ri, and #. Lemma A.3 implies:

I’lzi] Iz2(1)11 < (n2. hi 1). diff(). Thus, we know in addition to (.)

(p’, y, zj, q’), (p’, y, z, q’) 5 & Izj

Since M does not comply with (IV2), this implies: zi zj. In summary, we have shown
that z and z’ coincide.

Execution of step (3). Let a S. We will effectively construct an NFT M
(Q,,A, 6,Qx,,QF,), which realizes the transduction {(x,z) E * x A* (x,z)
is realized by some 7r II so that cr (Tr) }, and which has the property that any path in
M consuming e also produces e. It is easy to see thatM is equivalent to the (effectively
constructible) NGSMM (Q, E, A, 6, Qz,o, QF,) where

{q e Qlpe Qz,," (p,e,e,q) e ()} and

{(p,a,z,q) e Q x x A* x Qo r e Q"
e e

Having constructed M, we prove that it works as stated above. Finally we observe that
#Q and IIM are bounded as desired.

Let/ _> 0, 1 < i0 <... < it < kand0 < jl < < jt < 2’+lsothata
(jz(qI, (jl,Pjl, crjl, q)),. ’Pit, ai, q)), qF) where qi e QI fq Qio, Px e Qix_, qx e

Qix (,k 1,...,/), and qF QF fq Qi,. For each j := j {j,...,jt} set hi :=

,i=ix_ ni. Define J-- {j,... ,jr} J1 J2 where J1 {j E J lzi ai A*}
and J2 := {j J (ti,/5i, (i) cri Z Qe}. Let j J. If j E J1, then zi im(6) or

Izl is at most (ne. hi 1). diff(). Otherwise, Itl is at most (n2. hi 1). diff(6), and
/5i is connected with j.

186 ANDREAS WEBER

By construction of we know: If, for some j d2, j is even or iL for some j dl, j
is odd and Izl > (n2 .h 1). diff(6) or j is even and z im(6), then a does not belong
to p(II). In this case we can select M, so that T(M) 0. Let us therefore assume that,
forallj d2, j is odd and that, for all j d, either j is odd and lzjl < (n2.hj-1).diff(6)
or j is even and zj im(6).

Before we construct M in detail, we explain the desired mode of operation of an
arbitrary accepting path 7to in this machine. Assume that 7r, realizes (z, z) E*
A*. Let x,... ,x, E so that x Xl... x,. Consider GM(X) (V, E). Let #
{0,..., m}. We define

att(x, #) :=

der(x, #) :=

{s Q st Q z A*: (r,l... /z, Z, 8) (

{r Q]Ss QFSz A*: (r,x,+ ...xm, z,s) (5};
and

att(x, #) and der(x,/) denote the set of states attainable from Q with x... xu and
the set of states derivable to QF with Xu+l... x,, respectively. In step (2), set(x, #) was
defined as the set of states at column # in GM(X). Clearly, this set equals att(x, #)
der(x, #). The reader may further recall from step (2) the definition of A,..., Aa+l
2Q and of y,..., Yd * (where x yl Yd and d is odd and at most 2n+l 1).

The path 7r consists of five components that correspond to five components of Q.
Roughly spoken, the first four components of 7r provide the index j [d] of the word
yj currently consumed by 7r. These components are independent of a and z. The fifth
component of 7r guesses an accepting path 7r II realizing (x, z) and uses the basic
information provided by the first four components in order to verify "on line" that a
belongs to q(Tr). Note that 7r inherits z from

The first component of 7r constantly contains (A,..., A2,+) (2Q)2"+, where
A,..., Ad+ are as above and Ad+2,..., A2,+ are arbitrary. (A,..., A2+) is guessed
at the beginning of 7r. Note that we need Ad+2,..., A2,+ only in order to make Q
"well typed."

The next three components of 7r drive a nondeterministic process, which verifies
the correctness of A,..., Ad+I and uses these sets in order to provide the index j [d]
of the word yy currently consumed by 7r. Assume that, for some
has consumed x... x,. Then, the second (deterministic) and third (nondeterministic)
components of 7r contain art(x, #) and der(x, #), respectively.

The fourth component of 7r contains some (j, a) [d+ 1] [3] so that the following
holds: If a 1, then either j < d and 7r can, after one transition realizing (,), begin
to consume the letters of yj or 7r guesses that j d + 1 and accepts. In the latter case,
of course, j is even and greater than jr. If a {2, 3}, then j < d. If a 2, then j
is even and 7r is ready to consume the only letter of yj. If a 3 and j is even, then
yj has been completely consumed. If a 3 and j is odd, then either 7r is ready to
consume the next letter of yj or yj has been completely consumed, depending on the
guess of 7r. Whenever all letters of a yj have been consumed, 7to increments j by 1 on
a transition realizing (,). At the beginning of 7r its fourth component contains (1, 1).
The distinction between the values 2 and 3 for a is needed in order to ensure that lYyl 1
for all even j [d].

The second and third component of 7r is used to check that, for each j [d + 1],
Aj set(x, lYl.-. Yj-ll) and that, for each odd j [d], Aj+I is the "last occurrence"
of Aj in the sequence set(x, 0), set(x, 1),..., set(x, m). Therefore, these components
contribute to the verification of the first and the fourth component of 7r.

DECOMPOSING FINITE-VALUED TRANSDUCERS 187

For the fifth component of zr we first of all need, for all j J, an NGSM M,
realizing the transduction

T,j {(yo, zo) E E* x A* (yo, zo) is realized by some path

7to in M leading from p to q so that aj E i (Tro)}.

Informally spoken, an accepting path in M,,, simply guesses (in its first component) a
path 7r0 in M leading fromp to q), realizes the same (y0, z0) E* A* as 7r0 and verifies
(on its three other components) that a belongs to (Tr0). The verification procedure
directly arises from the definition of j in step (2). The detailed construction of M, is
given below.

The fifth component of 7r verifies that, for some 7r II realizing (z, z), a belongs
to (Tr). Following the definition of this component operates as follows: For all A
{0,..., l}, while 7rr consumes y+l,..., Yx+l-1, one after another, it guesses and veri-
fies a path in M consuming y+l yj+l-1, producing some z+l,..., z+_l A*,
one after another, and leading from q to p’. (where j0 0, jt+l := d + 1, q qz,

P/+I := qF). For all j := j E J (A [/]), while 7r consumes y, this component guesses
and verifies an accepting path in M, consuming yj and producing some z A*. The
index j [d] of the word y currently consumed by 7r is read from its fourth component.
7r inherits z zl za A* from the combination of the above paths.

Let j E J. We construct the NGSM M, (Q,o, Z, A, 6,, Qz,,,.4, QF,a,j):

ifj J"

Qz,,
QF,a,j

Q x Q x [-(na- 1). diff(5), (na- 1). diff(5)]
x [0, max{iml(), 1 + (n3 1). diff(5)}],

{(p},p}, o, o)},
{ (q, q, O, lzj l) },
{((p,p,O,T),a,z,(q,q,O,T’)) Q,o x x A* x Q,o (p, a, z, q) 5

ifj Je"

Qi,a,j :=

QF,a,j :=

a,j :=

o, o)},
{(q}, j, tj, T) e Q,o IT > (n2" hj 1). diff()},
{((p,,t,T),a,z,(q,,t’,T’)) e Q,0 X X A* x Q,o (p, a,z, q) e

7-’- min{T + Izl, 1 + (n3 1). diff(5)}}.

QF,

Now we are ready to construct the NFTM (Q, E, A, 5, Qi,o., QF,o.)"

(2Q)2+ 2Q 2Q [2n+lx x x x [3]) x Q,,,o,
{((A1,...,A2,+),B1,B2, (1, 1), (qI, qI, O,O)) e Q
(Vl<_j<j2<_2n+l: Ajl =Ai. j2=jl+1
&, BI QI &, BI VI B A1},
{((AI,...,A2,+),B1,B2,(j, 1),(qF, qF, O,O)) Qal
B=QF j even & j>jt},

jl odd)

188 ANDREAS WEBER

di(1) 12 5(2) t_J 6(3), where
:= {(((A1,...,A2.+l),B1,B2,(j, 1),(q,q,O,O)),e,e,

((A,...,A.+),B,Be, (j,a), (q, , 0, 0))) 6 Q x {e} x (e} x Q
(jodd ’=a) & (jeven ’-2) &
(j J q=) & (j g (q,,0,0)Qz,,y)},

:= {(((A,...,A2.+x),B,B2,(j,),(p,p,t,T)),a,z,
((A,...,Ae.+),B,B,(j,),(q,,t,T))) Q x A* x QI
B (s Q r B z A*" (r,a,z’,s) } &
Be {r Q lSs B z’ A*" (r,a,z’,s) } &
BB{A,...,Aj_I} & (jodd -’-3) &
(jeven (,’)-(2,3)) & (jg (p,a,z,q) e &
(p,,t,T) (p,p,O,O) (q,,t’,T’) --(q,q,O,O))
(j e J ((p,,t,T),a,z,(q,,t’,T’)) e ,j)},

:= {(((A,...,A2.+),B,B2,(j, 3),(q,,t,T)),e,e,
((A,..., Ae+), B, Be, (j + 1, 1), (q, q, 0, 0))) e Q {e} {e} x Q
B B2 Aj+ (j g (q,,t,T) (q,q, 0,0)) &
(j J (q,,t,) Q,,)}.

FACT 2.8. For all j E J, the NGSM Ma,j realizes the transduction T,y.
Proof.
Case 1. j J1, i.e., cry zj A*. Then, we have: T,j {(Yo, zy) E* A*

(Yo, zy) is realized by some path 7to in M leading fromp to qj } T(M,y). Note that for
the first equality we have used our assumption that j is even or Izjl <_ (n2j 1). diff(5).

Case 2. j J2, i.e., ay (tj,fiy,j) Z Q2. Then, we have: T,j {(y0, zo) E
E* A* [there are paths 7to and in M realizing (yo, zo) and (yo, 5), for some 5 A*, and
leading fromp to q and from/Sy to j, respectively, so that diff(Tro, -) < (n3-1).diff(5),
tj Iz01- I1, and Iz01 > (n2"j- X).difr()) T(M,j). Note that for the first equality
we have used our assumption that j is odd. [3

The NFTM works as desired above. Thus, using Fact 2.8, it is easy to establish that
this NFT realizes the transduction { (x, z) E* A* (x, z) is realized by some 7r II
so that a (Tr)}.

Note that, for each transition (r, a, z, s) of M, either (a, z) (e, e) or there are
p, q E Q such that (p, a, z, q) is a transition of M. Any path in M consuming e has
length at most 4 and also produces e. Of course, the construction ofM is effective (see
Theorem 2.3 for details). The following fact states upper bounds for #Q and IIMII
and for some other useful parameters of M,y (j J), M and M.

FACT 2.9. Thefollowing assertions are true.
(i) #Q,0 < 2n8" (1 + diff(5)). (2 + iml(5)).
(ii) For all j J: II,jll-< #Q,0" I111, IIM,jll _< ://:Q,o" IIMII _< 4n16" IIMII 5.
(iii) #Q < 2’(++) (1 + diff(6)). (2 + iml(6)).
(iv) dr(S) dfr() <_ af(), m(-) -m() c_ m(), m() m() _<

iml(5), 1111 _< :#:Q" (1 + I111), I111 _< :#:Q" I111, IIMII _< :#:Q" (1 + IIMII),
lintel[_< #Q" IIMII _< 2(2/+4) IIMII 5.

(v) Let Mo (Qo, E, A, 6o, Qi,o, QF,O) be another NGSM. Then, diff(5, 6o) _<
diff(6, 6o).

DECOMPOSING FINITE-VALUED TRANSDUCERS 189

Proof. The assertions (i) and (ii) are obvious from the definition of M,j (j E J).
The assertions (iii)-(v) follow from the definition of M and M. Note that for the
proof of (iii) we apply (i) and the estimation ns < 3s’/a < 2’ (cf. proof of Proposition
2.7). Yl

This completes the proof of Theorem 2.1. F

Proofof Theorem 2.2. Let M (Q, E, A, 6, Q1, QF) and n #Q be as in Theorem
2.1. Let S and M,M (a E S) be as in the proof of this theorem. The NGSMs M
(a S) are playing the role of M1,..., MN in Theorem 2.1, where N #S. Therefore,
all we have to do here is to construct effectively, for each a S, an NFAM recognizing
E*\L(5:/) E*\L(M,,) and having at most 2’’(2n+1+8) 22ns’(l+diff(6))’(2+iml(6)) states
and size at most 2’(zn++17) 25ns’llMll2.

Let a S. Following the main lines ofthe construction ofM in step (3) ofthe proof
of Theorem 2.1, we will effectively construct an e-NFA M (Q, E, 6, Qi,a, QF,a)
which recognizes E*\L(M), i.e., the language {z E* there is no 7r E II consuming z
so that a o(Tr) }. It is easy to see thatM is equivalent to the (effectively constructible)
NFA -’ -M[, (Q’,,, E, 6,,, Qi,a, QF,a where

O, := {q e Q’,, [Sp e Q’z,,," (p,e,q) e (5’)} and

’ := {(p,a,q) eQ’EQ’10reQ’" (p,a,r) eS’ & (r,e,q) e(5’)}.

Having constructed M, we will see that it works as stated above. Finally we observe
that ://:Q and [[M are bounded as desired.

Let a (qi, (jx, PI aye, q), (jt,p aj,. q.), qF) S and J, J1, J2, hj (j E J),
zj (j Jl) and (tj,/5, j) (j J2) be given as in step (3) of the proof of Theorem 2.1.
Following this proof we also assume here that, for all j J2, j is odd and that, for all
j J1, either j is odd and Izjl < (n2. hj 1). diff(6) or j is even and zj E im(6).

We recall from step (3) of the proof of Theorem 2.1 the NGSM M,j (Q,0, , A,
5a,j, QI,a,j, QF,a,j) (j J) realizing the transduction T,j. Let j J. Using the well-
known subset constructionwe obtain from M,j the following DFAM’,j (Q’,0, , 5’,,
Q,,j, Q,,j recognizing the language *\L(M,j).

2Q,o

:= {Q,,i},
2Q,,o\QF,,,,,
{(B, a, B’) e Q’,o E Q’,o
B’ {s e Q,o 2r e Bz e A*" (r,a,z,s) e ,y}).

According to the definition of T,,,g, L(M,j) {y0 E*[there is no path 7r0 in M
consuming Y0 and leading from p to q so that ag g (Tr0)}.

Before we construct M in detail we explain the desired mode of operation of an
in this machine. Assume that % consumes x E E Letarbitrary accepting path

Xl,..., Xm E so that x xl... Xm. From step (2) of the proof of Theorem 2.1 the
reader may recall the definition of Yl,..., yd E* (where x yl... yd and d is odd and
at most 2’+1 1). We further ask once again to recall the main lines of the construction
ofM (Q,, E, A, 6, QI,,,, QF,a) in step (3) of this proof.

consists of five components that correspond to five components of Q’.The path
operates exactly as an accepting path in M,Concerning the first four components,

consuming x. In particular, the value (j, a) [d + 1] x [3] of the fourth component

190 ANDREAS WEBER

if j < d, determines the index j of the word yj currently consumed byof
the beginning respectively end of 7r’ its fourth component contains (1, 1) respectively

to accept z is that at its end d / 1 < jr. Let us assume here(d + 1, 1). One reason for
that jt < d + 1.

verifies that there is no 7r II consuming z such thatThe fifth component of
a belongs to o(Tr). Following the definition of o this component verifies that (a) or
(b), depending on its guess, holds: (a) For some (guessed) , {0,..., l} there is no
path in M consuming Yj+I Y+I and leading from q to p+l’ (where j0 "= 0,
jt+l := d+ 1, q qz, Pa+x := qF). (b)For some (guessed)j jx J (, [/])there is
an accepting path in M’, consuming yi. Of course, condition (a) is verified (as described
below) while 7r consumes y+,..., yx/_, one after another, and condition (b) is
verified by simulating M’,i while 7r,, consumes yj. The index j [d] of the word y

is read from its fourth component.currently consumed by
contains some (B /) Q’,0 x [3]. The setTechnically the fifth component of 7r,

Q’,0 is needed for the simulation of M’, (j J). The value for/ can never decrease
is about to verify (a) or (b)./ 1 (/ 3) means that thisalong 7r./3 2 means that 7r

verification still has to be done (is already completed, respectively). If/3 { 1, 3}, then
has consumedis about to verify (a) for A 6 {0,..., 1}, and ifB3 @. If/3 2, if

the prefix y ofyyx+ ...yy+x_l, then B3 { (q, q, 0, 0) Sz’ A*: (qx,y,z’,q) 6}.
Now we construct the e-NFA M’ (Q’, E, 6’, Qr,, QF,)"

(2)2"+x 2Q 2Q ([2’+] [3]) (Q’,o x [3]),
{((A1,... ,A2,+),B1,B2, (1, 1), (B3,/3)) e Q’I
(V 1 _< jl < j2 < 2’+" Ajl Aj. 6 j2 j + 1

& BI=Qz & BIB2=A1
& (B3,/3) e {(@, 1), ({(qi, qI, 0, 0)}, 2)}},

& jl odd)

{((A,... ,A2,+),BI,B2, (j, 1), (B3,/)) G Q’l
B2=QF & jeven & (j_<jt V (B3,/3)=(q),3)
V (B3,/3)e 2Q’’\{(qf’qf’O’O)} x {2})},
a) U) U),where

{(((A1,..., A.),,e, (, 1), (,)), ,
((A1,..., A.), el,, (, ’), (;, ’))) e O; {} O2
(jodd a’=3) & (jeven
[(Ba, fl) (B,fl’) {(0,1),(0,3)} V

(J (,) -(;, ’) e O;,0 x {}) v

(j e (a,) e e,oX(5,;,0,0 x {} (, y) (, a))
v (j e (a,)= (, 1) (;,’) e QI,, x {})]},
{(((A1,... ,A+),B1,B, (j,a), (B3, fl)), a,

((Ax,...,A+),B,B, (j, a’), (B, fl)))

n ; {A1,..., A_}
(jodd a=a’=3) & (jeven

DECOMPOSING FINITE-VALUED TRANSDUCERS 191

B {(q,q, 0,0)12 (p,p, 0,0) e B32z’ e A*. (p,a,z’,q) e }
& /3=2) V (jcJ & (Ba, a,B)C6’o.,. & /3=2)]},
{(((A1,... ,A2.+,),B1,B2, (j, 3), (B3, fl)), e,

((A,..., A2,+x), B, S2, (j + 1, 1), (S, ’))) e Q x {e} x Q
B S2 Aj+x & [(B3,fl)= (B,fl’) e {(,1),(,3)} V

(jJ & (B3,)=(S,’)eQ,0x{2}) V

B(jeJ (Bz,)=(,l) & (z,fl’)=({(q q, 0, 0)}, 2))
B’(jeg (Bz,)eQF,,x{2} z, fl’)=(0,3))]}

The e-NFA M’ works as desired above. Thus, it is easy to establish that this e-NFA
recognizes the language {x E E* there is no 7r E H consuming x so that a (Tr)}. Of
course, the construction of M’ is effective (see Theorem 2.3 for details). The following
fact states upper bounds for #Q’ and IIM’ II and for some other useful parameters of
M’, (j J), M’ and M’.

FACT 2.10. Thefollowing assertions are true.

(i) =/=Q’,0 2#O,o <_ 22nS’(l+diff(8))’(2+iml(8)).

(ii) For all j J: #di,j #Q,0" #E, [[M,j[I -< 2. #Q,0" JIM[[_< 23ns’llMIl.
(iii) #Q <_ #Q’ <_ 2’’(2++8) 22ns’(l+diff(8))’(2+iml(i)).
(iv) < (1 + <

max{llM’[I, II/f/’ll} _< 2. (Q)2. [[M[[_< 2n’(2’+2+17) 25ns’IIMII.
Proof. The assertions (i)..and (ii) follow from the definition of M’,j (j J) and from

Fact 2.9(i). Using (i), the assertions (iii) and (iv) are obvious from the definition of M’
and

This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. Let M (Q, ,A, , QI, QF) and n #Q be as in the

Theorems 2.1 and 2.2. Let S and A:/, A:/’ (a S) be as in the proofs of these theorems.
The NGSMsM (a S) and the NFAs M’ (a E S) are playing the role of M1,..., MN
in Theorem 2.1 and of M,..., Mv in Theorem 2.2, respectively, where N #S
O(2plylIMII). Therefore, all we have to do here is to show that S and each/17/ and M-
(a S) can be constructed in DTIME(22inllMII).

We recall from the proof of Theorem 2.1 the definition of Q1,..., Qk and of ni "=

#Qi (i [k]). In order to prepare the construction of S and h:/, M-’ (a S) we have
to carry out the following procedure.

ALGORITHM 1.
1. Remove all useless states from M. Let without loss of generality M be trim.
2. Compute QI,..., Q and hi,..., n.
3. Compute im(6), iml(6), diff(6) and (n 1). diff(6).
4. Compute QI fq Qi, QF CI Qi (for all I _< i _< k) and (n2 -i=ix ni 1). diff(6)

(for all 1 < il < i2 < k).
Note that in 1 and 2 we apply depth-first search, the computation of strongly con-

nected components and topological sort (see [AHU74]) to directed graphs attached to
M. It is easy to see that Algorithm 1 can be realized in O(polyllMl[time. Using the
results of Algorithm 1, all members of the set S can be generated in O(#S. polyllMII
time.

Let a e S. Let a (qI, (j, P) ai, q)), (jt,p ai q)), qf and J, J, J2,
hj (j E J), zj (j J) and (t, 15, t/j) (j J2) be given as in step (3) of the proof of
Theorem 2.1. We recall from there the NGSM M,j (Q,0, E, A, 6,j, Qi,a,j, QF,a,j)

192 ANDREAS WEBER

(j E J) and the NFT M (Q, E, A, 6, Qz,, QF,). We recall from the proof of
Theorem 2.2 the DFA M,j (Q=,0, E, di=,j, Q QF,,,,i J) and the e-NFA
M’ (Q’, E, di’, Q,,, QF,).

In order to construct M,,,j (for all j J), M andM we may proceed as follows.
ALGORITHM 2.

1. Generate all members of Q,0.
2. For all j J do the following:

(a) Generate all members of QI,,j and QF,a,j.

(b) For all (r, s) Q,0 and for all (p, a, z, q)

3. Using Q,0, generate all members of Q, Qz,, and QF,a.
4. Using M, (j J), decide for all (r, s) Q whether (r, e, , s) 5, and for

all (p, a, z, q) 5 whether (r, a, z, s) E 5.
5. Using M, construct the NGSM M.

Note that in 5 we apply again depth-first search. Recall that #J < n and
O(polylIMll (j J). It is easy to see that Algorithm 2 can be realized using O(#Q,o.
polylI/ll time for 1-2, O(:#:Q. poly(211Ull)) time for 3-4, and O(polylIMall time for
5. According to Fact 2.9, all these bounds areof order O(2z’llll).

In order to construct M’,j (for all j J), M’ and M’ we may proceed as follows.
ALGORITHM 3.

1. Using Q,0, generate all members of Q’,0.
2. For all j J do the following.

(a) UsingM j generate all members of Q,,j and Q’F,a,j"
(b) Using 5,, determine for all (B, a) Q’,0 E the unique B’ E Q’,0 so

that (B, a, B’) 5’,j.
3. Using Qo,0, generate all members of Q’, Q’z,, and QF,’
4. Using M’,j (j g), decide for all (r,a,s) Q’ (E t3 {e}) Q’ whether

(r,a,s)
5. Using M’, construct the NFA M’.

Note that in 5 we apply again depth-first search. Recall that #J < n, [IM,I[
O(poly[IMl[and IIM,jll O(2pylIMII) (j E g). It is easy to see that Algorithm 3
can be realized using O(#Q’,o polyllMll time for 1-2, O((#Q’)9. 2plyll/ll time for
3-4, and O(polyllM’ II) time for 5. According to Fact 2.10, all these bounds are of order

O(22’inHMll).
This completes the proof of Theorem 2.3.

3. Deciding the equivalence of finite-valued NGSMs. Let M0 and M be NGSMs
with coinciding input (and output) alphabets so that M is finite valued. Applying the
Theorems 2.1-2.3 to M we can construct in DTIME(IIM011:1111 a nondeterministic
finite 1-turn 2N-counter machine (see [GI81]), where N O(2plylIMll is as in Theorem
2.1, which has O(llM0ll’’*) transitions, and which recognizes the language L0
{x L(M0) there is a value z for x in M0 so that (x,z) T(M)}. Applying a result of
Gurari and Ibarra [GI81] to this counter machine we obtain the following.

(1) If T(Mo) is not included in T(M), then there is an x L0 such that Ixl is of
order O(llM011’"’11).

(2) It is decidable in DTIME(IIMoIIzllMII whether or not T(Mo) is included in
T(M).

DECOMPOSING FINITE-VALUED TRANSDUCERS 193

(1) means: Noninclusion of T(Mo) in T(M) can be detected by a witness of length
O(llM011=’’), We remark that the bounds in (1) and (2) are rather "machine ori-
ented." It seems lengthy to analyse them exactly.

In this section we present a combinatorial word lemma (Lemma 3.6), which yields,
together with the Theorems 2.1-2.2, an exact version of (1) (see Theorem 3.1). From
this and from the Theorems 2.1-2.3 a proof of (2) can be easily derived (see Theorem
3.2).

The main result of this section is the following theorem.
THEOREM 3.1. Let Mo and M be NGSMs with coinciding input (and output) alpha-

bets so that M is finite valued. If T(Mo) is not included in T(M), then there is a wit-

ness (x, z) E T(Mo)\T(M) such that Ixl is of order O(llM01l 22P’YlIMII). In detail, let
Mo (Qo, E, A, o, Qz,o, QF,o), no := #Q0, M (Q, r, A, 6, Qz, Qv), and n := #Q,
then Ixl < e N! no N, where

N<

(51/2 32/3)n n4"(n--1). 2(n--1).(n-t-3).

(1 + diff(6))n-l- #2"(n3-1)’diff(6)

(51/2 34/3)n n6"(n--1). 2(n--1).(n+2). (#im())n-1

(1 + diff(5))2"(-)

if#A> 1,

if#A- 1,

and < 2n’(2’+1+8) 22ns’(l+diff(5))’(2+iml(t)).
We will also show that the Theorems 2.1-2.3 and 3.1 imply the following theorem.
THEOREM 3.2. Let Mo andM be NGSMs with coinciding input (and output) alphabets

so that M is finite valued. It is decidable in DTIME ([[M0 2pylIMII whether or not T(Mo)
is included in T(M).

We want to point out that the basic problem of the Theorems 3.1 and 3.2 is to verify
that some (x, z) T(Mo) does not belong to T(M). By reduction, the Theorems 3.1
and 3.2 can be generalized to NFTs (Theorems 4.2 and 4.3). Going with the title of this
section we state the following immediate corollary to Theorem 3.2.

THEOREM 3.3 (see [CK86]). Let Mo and M befinite-valued NGSMs with coinciding
input (and output) alphabets. It is decidable in DTIME (22Ey(IIMII+IIMII) whether or not

Mo and M are equivalent.
Note. Theorem 3.1 alone implies a

DTIME (2 [[M[[9p’ylIMII) and DSPACE ([[/0ll 2pIylIMII)

algorithm for the decision problem in Theorem 3.2. This algorithm just tests all

O(211M011
plylIMII

candidates (x, z) with "small" Ixl, as proposed by Theorem 3.1, on membership in T(Mo)
\T(M).

In [N79] Nozaki constructed for any given n >_ 6 two nonequivalent NFAs having n
states and 4 input symbols such that the shortest word in the symmetric difference of the
languages recognized by them has length at least 2’-4 + 1. From this follows that each
improvement of the upper bound for Ixl stated in Theorem 3.1 has to stop at 2n-4 + 2,
even if #A 1 and M0 and M are single valued. If #A 1, then we conjecture that
the upper bound for Ix[in Theorem 3.1 can be improved to O(2Ply(IIMII+IIMI[)).

194 ANDREAS WEBER

Since the equivalence problem for NFAs is PSPACE-complete (see [GJ79]), the de-
cision problems in the Theorems 3.2 and 3.3 are PSPACE-hard, even if M0 and M are
single valued and have only one output symbol. It is an open question whether these de-
cision problems can be solved in DTIME (2ply(IIM II/IIMII)), even in the case of a unitary
output alphabet.

In order to prove the Theorems 3.1 and 3.2 we first of all introduce a little Ramsey
theory including an upper bound for certain Ramsey numbers (Proposition 3.4). After
that, we will establish a combinatorial word lemma (Lemma 3.6), which generalizes a
word lemma by Schiitzenberger [Sch76] (Lemma 3.5) and may be of interest. Finally,
we will use the Theorems 2.1-2.3 and Lemma 3.6 in order to prove the Theorems 3.1
and 3.2, successively.

For a general background on Ramsey theory we refer to [GRS80]. Let A c_ IN, then
(2A) denotes the set {B c_ A I#B 2}. Let N E IN, then the Ramsey number R(3; N)
denotes the minimal E IN having the following property.

(.) Given any mapping . ([]) -- [U], there is a set A c_ [/] such that #A 3

and, for some 6 [N], ((A)) {i}.
By Ramsey’s theorem, such an exists. Note that every > R(3; N) has property

(.) and that, for every N’ _> N, R(3; N’) > R(3; N). As exact values, it is only known
that R(3; 1) 3, R(3; 2) 6, and R(3; 3) 17 (see [Be79, Chap. 19.3]). In general,
R(3; N) >_ (3N + 3)/2 (see [GRS80, Chap. 4.5]). Here, we need the following upper
bound for R(3; N).

PROPOSITION 3.4. Let N IN. Then, R(3; N) _< 1 + N! NE=o(lli!) < [e. N!I.
Proof. See [Be79, Chap. 19.3]. [3

LEMMA 3.5 (Schiitzenberger [Sch76]). Let A be some nonemptyfinite set. Let zl, z2,

z, z, z; z z’ ix*3, z4 e such that zl z4 ZlZ zz2z4 zz2’ z and zz3z4 zz3z4
Thenzlz2z3z4 Ztl z2 z3z4.

Proof. Because of symmetry we may assume that [z[_> Iz I. zz4 zz implies
that, for some z A*, zl zz and zz4 z4 Thus, zz2 zz and zz3 zz. In
summary, we know: zz2z3z4 zzz2z3z4 zz2zzz4’ zz zzz4 zz2z3z [3

LEMMA 3.6. Let A be some nonemptyfinite set, and let K be a nonemptyfinite subset of
IN. Let l>_ R(3; #K), let " ([]) 2K\{O}, and let zi,j A* (i K U {0}, j [1 + 1])
such that, for all i < jl < j2 <_ andfor all ({jl, j2 }),

Z0,1 ZO,j1Z0,j2/I Z0,//I Zi,1 Zi,ji Zi,j2+l Zi,l/l.

Then,for some io K, zo, z0,z+ Zio,1 Zio,l+l.
Proof. According to the definition of R(3; #K), there are io K and I < jl <

je < jz < such that io 6 ({j,j}) ({j, jz }) fq ({j, jz }). Thus, we can apply
Lemma 3.5 to Zl zo, ...zo,j, z2 zo,yl+ ...zo,j., zz zo,j2+ ...zo,j3, z4
zo,y3+ zo,l+l and z Zio, Zio,yl, z := Zio,y+... Zio,y., z Zio,j+... Zo,y,
z := Zo,j+... Zo,t+l, which yields

2:0,1 ZO,//I 2;12;22;32;4 2;12;22;32;4 Zio,1 Zio ,l/

Proof of Theorem 3.1. Let Mo (Qo, E, A, 6o, Qi,o, QF,O) and M (Q, E, A, 6,
QI, QF) be NGSMs with no and n states, respectively, so that M is finite valued. If
L(Mo) = L(M), then the well-known subset construction (see, e.g., [HU79]) applied
to an NFA recognizing L(M) yields a witness (z, z) T(Mo)\T(M) such that [z] is
smaller than n0 2. Thus, we may assume that L(Mo) c_ L(M). By Lemma A.1 we
can apply the Theorems 2.1 and 2.2 to M. Let M1,..., MN and M,..., Mv be the
NGSMs and NFAs, respectively, the existence of which is claimed in these theorems.

DECOMPOSING FINITE-VALUED TRANSDUCERS 195

Let M (Q, E, A, , Qz,, QF,), n := #Q, M (Q, E, 5, Q’,, Q’F,), n #Q,
N), and let h max{hi,.. N} Then, MI, MNni max{hi,hi} (i 1,.

are single valued, T(M) equals T(M) tO... tO T(MN), M recognizes E*\L(Mi) (i
1,..., N), and N and are bounded as desired.

Using Proposition 3.4, the theorem follows from the assertion (,).
(,) If T(M0) is not included in T(M) and if (x,z) T(Mo)\ j.u,= T(Mi) such that

Ix[is minimal, then Ix is smaller than (R(3; N) 1) .no- I-LN=I h.
Proofof ,). Let (x,z) be as in (,). We assume that [x[> (R(3; U)- 1).n0. I-Iv= hi.

Define K-- {i [U][x L(Mi)} and K’ [N]\K. Since x L(Mo) c_ L(M), K
is nonempty. Eet 7r0 be an accepting path in M0 realizing (x, z). Let 7ri (for all i K)
and 7ri’ (for all i K’) be accepting paths in Mi and M’i, respectively, all consuming x.

Since]xl _> (R(3; N) 1) .no 1-IN_ i, there are at least R(3; N) different prefixes
Yl, YY2,..., Yl... Yt of x y... YlYl+I and states qi Qi (for all K U {0}) and
q Q (for all i K’) such that the following holds.

For each K tO {0}" Consider the uniquely determined paths 7ri,1,..., 7ri,z+
in Mi consuming yl,..., Yt+, respectively, such that 7ri 7r, o... o 7r,+1.
Then, each of the paths 7ri,2,..., 7r,t leads from q to q.

in MFor each K’: Consider the uniquely determined paths 7r,,...,
Then,consuming ,..., t+, respectively, such that 7r 7r, 7r,t+.

leads from q to q.each of the paths 7r,2,..., 7r,
For all (i, j) (Kt_J{0}) [/+ 1] let z, A* be the word produced by 7r,. Consider

the mapping " (I21) 2, where for all 1 < j < j <

({j,j2}) {i e K lzo,.., zo,yzo,y+ Z0,/+l Zi,1. Zi,jZi,j2-4-1. Zi,l+l}.

Since Ix[is minimal and M,... ,MN are single valued, each ({j,j2}) is nonempty.
Thus, we can apply Lemma 3.6 to K, l, q, and to zi,j A* (i Kto {0}, j I1 + 1]), which
yields an io K such that (x,z) (x, zo,1 ...zo,t+) (x, Zio, ...Zio,+l) T(Mio)
(Contradiction!) Therefore, Ix[is smaller than (R(3; N) 1). no. HNi--1 i. [-]

Note that in previous versions ofthe proofofTheorem 3.1 (see [W88]) Ramsey num-
bers were used only in an implicit way. We want to point out that from work by Lisovik
([L79a, Lem. 1.1], see also [L80, Thm. 1]) it can be derived that Schiitzenberger’s lemma
(Lemma 3.5) implies the above assertion (,) with the upper bound 3. N!.no. I-IiU=
for [x[. Lisovik’s proof methods are basically similar to ours. The above assertion (,)
can be also proved using an approach due to Turakainen [T89], which is based on some
results on Q-rational languages [T88, 2]. By this alternative proof, the upper bound for
Ix[in Theorem 3.1 can be improved to 3N .no N.

eroofof Theorem 3.2. Let Mo (Qo, E, A, 6o, Q,o, QF,O) and M (Q, E, A, 6,
QF) be NGSMs with no and n states, respectively, so that M is finite valued. If L(Mo)
L(M), then T(Mo)

_
T(M). The above condition is decidable in DTIME

2linllMII) (see, e.g., [HU79]), so we may assume that L(Mo) c_ L(M). By Lemma A.1
we can apply the Theorems 2.1 and 2.2 to M. Let M1,..., MN and M,..., Mv be the
NGSMs and NFAs, respectively, constructed by these theorems. Let Mi (Q, E, A,

max{hi, hi} (iQt,, QF,), n #Q, M (Q, E, 6, Q’,, QF,), n --/#Q, :=
1,..., N), and let max{hi,..., N}. Then, M,..., MN are single valued, T(M)
equals T(M1) to... to T(MN), M recognizes E*\L(Mi) (i 1,... ,N), the quantities
N O(2plylIMII) and O(22lillMll ar bounded as in Theorem 3.1, and, for each

[N], im(6i) is included in im(6) and diff(6i, 0) is at most diff(5, 0). The last two
properties are stated in Fact 2.9.

196 ANDREAS WEBER

Using Proposition 3.4, the assertion (.) in the proof of Theorem 3.1 implies
(#) T(Mo) is not included in T(M) if and only if there is an accepting path 7to in Mo

realizing some (z, zo) E* A* and there are subsets K, K1, K2 of [N] such
that the following assertions are true.

K=KlUK2andKINK=0.
For each e K: There is an accepting path 7r in M and a word z e A*
so that 7r realizes (x, z), diff(Tr, 7to) is at most 3. N!. no. N. diff(6, dio),
Izl is distinct from Izol (if e K) and z and zo differ at some position
j min{Iz, I, Iol} (if/ K2).

in M consuming x.For each [N]\K: There is an accepting path 7ri
Note. (#) remains true if we omit all upper bounds for diff(Tr, 7r0).
We will transform the assertion (#) into a simple characterization of the noninclu-

sion at issue, which is based on graphs. For this, let us consider K, K, K, K’ c_ IN]
so that K K1 U K2, K1 n K2 0 and K’ [N]\K. Then, following [W90, 3], we
construct the directed graph GK1,K. (V, E) (for comments see below):

V :--

E

Qo 1-I (Q z) 1-I (Q (A {1,2}) z) II Q,
iK iK2 iK

where Zi :: {t e Z lltl 3. N[.no. g. diff(6i, 60)} (i e g),
{((P0, ((Pi, ti))iK1, ((Pi, hi, ti))iKz, (P)iK’),
(qo, ((q,t))Kx, ((q,b,t))K, (q)K’) V
aE (z)(o A*"

[W (0" (p,, a,z,, q,) 5,] [W " (p, a, q)
[i Kx" t- t + Izl- Iz01] [i K"

(b=X [Izl]" b-z()
(b-X [Izol]" b=zo()
(b,=b t=t,-Iz01>0) V

((b,t) [Izol] b zo(t) (b,t) (2, 0))
((b,-t) [Izl] b z(-t) (b, t)- (2, 0))

(b, t) (, 0)) V (b, b t, t 0)]}.

t ti + j -Izol > 0) v
t-t/lz,l-j <o) v

The construction of GK,K2 requires some explanation.
First of all, a path 7r in GK,K2, regarding its behavior on the Qi- and Q-components

of V, yields an (N + 1)-tuple of paths 7ri in M (i K U {0}) and 7r in M (i K’), all
consuming the same word in *. Let z A* be the word produced by 7r (i K U {0}).
Let K. Assume that, on the Zi-component of V, the given path 7r leads from t Z
to t Z. Then, t- t- Izil- Izol. Leti K2. Assume that, on the (AU {1, 2})
component of V, 7r leads from (1, 0) to (2, 0). Then, z and zo differ at some position
j min{lzl, Izol}. In order to verify this, the path 7r "guesses" a position j [Izl] (or,
alternatively, a position j [Izol]), remembers the letter zi(j) (respectively, zo(j)) until
the jth letter of zo (respectively, z) can be seen, and verifies that zi(j) and zo(j) are
distinct.

DECOMPOSING FINITE-VALUED TRANSDUCERS 197

Conversely, let us consider an (N + 1)-tuple ((Tri)icgu{0} (Tr)icg,) of paths in Mi
and in M (as above), all consuming the same word in E*. Let zi A* be the word
produced by 7ri (i E K tA {0}). Assume that, for all K, diff(i, 0) is at most 3.
NI.no N. diff(6, 60) and that, for all i K,
min{Izi[, Iz01}, Then, the given (N + 1)-tuple of paths induces a path in Gr,u as
follows: e behavior of on the Qi- and Q-components of V is inherited from the
given paths. On the Zi-component of V (i K) leads from 0 to Izl Iz01. On the
(A {1,2}) x Z-component of V (i K) leads from (1,0) to (2,0); the detailed
behavior of on this component is as above.

We define the sets V,,n, V,r,r V as follows.

V,,: Q,,o X (Q,,, z {o}) z (Q,,,z{(1,o)}) Q’I,i
i@K i@K2 i@K’

Q ,o H
iK1 iK2 iK

Then, the above discussion shows that (#) implies
() T(Mo) is not included in T(M) if and only if, for some K, K2 IN] with

K1 K2 0, there is a path in GK,K2 leading from VI,K,K2 to VF,KI,K2.
Note. #Y (6.N!)N’n+l’N’(N+l)’(l+diff(5,5o))N’(2+#A)N and #E #Y2,

i.e., #Y and #E are of order
We sketch an algorithm that decides according to () whether or not T(Mo) is in-

cluded in T(M):
1. Construct the NGSMs M1,..., MN and the NFAs M,..., M.
2. For each K1, K2 IN] with K1 K2 0 do the following:

(a) Construct GKI,K2, VI,K,K2 and VF,K,K2.
(b) Decide whether or not there is a path in GK,K2 leading from YI,g,g2 to

VF,K1 K2
Note that in step 2(b) we apply depth-first search (see [U74]) to GK,K2. Ac-

cording to Theorem 2.3, step 1 of the above algorithm requires DTIME (22i....). The
loop in step 2 is passed 3N times. t K1, K2 IN] such that K1 K2 0, and let
GK,K2 (V, E). Step 2 for (g, K2) can be realized using O(poly(#Y+]]Mo]].]]M]g))
time for 2(a) and O(poly(#V + #E)) time for 2(b). l these bounds are of order

o(]lM0).
This completes the proof of Theorem 3.2.

4. Normalized finite transducers. In this section we generalize the main results of
this paper (Theorems 2.1-2. and 3.1-3.2) to Ns. The outcome is stated in the Theo-
rems 4.1.3.

EOREM 4.1. Let M (Q, E, A, 5, QI, QF) be a finite-valuedN with n states.
The, O(2ply]]M]]) many single-valued Ns M1,..., MN and -NFAs M,...,M
each ofsize O(22i..Mtt --effectively exist such that T(M) equals T(M1) ... T(MN)
and M recoizes E*L(Mi) (i 1,... ,N). In detail, N is at most

(51/2 32/3)n ?Z4"(n-1). 2(n-1)’(n+3). (#im())n-1

(1 + iml(5))-. #A2"(’-)’im()

(5/2 34/3)n n6.(,-). 2(-).(n+2). (#im(5))n-

(1 + iml(5))2"(’-)

if #A > 1,

if#A= 1.

198 ANDREAS WEBER

The NFTs M,...,MN, and the e-NFAs M,....,MN, can be constructed in

DTIME (2illull).
THEOREM 4.2. Let Mo and M be NFTs with coinciding input (and output) alpha-

bets so that M is finite valued. If T(Mo) is not included in T(M), then there is a wit-

ness (x,z) T(Mo)\T(M) such that Ixl is of order O(llMoll 22P1111). In detail, let
Mo (Qo, , A, 60, Q,o, QF,o), no #Qo, M (Q, , A, 6, Q, QF), and n #Q,
then Ixl < e N! no , where

(51/2 32/a)n na.(n-). 2(n-).(n+a). (#ira(6))n-

(1 4- iml(6))’-. A2"(na-1)’iml(6) if :]/:A > 1,
N<

(5/u. 3a/a)n n.(n-1). 2(,-).(n+). (:#:ira(6))-(1 + iml(6))’(’-) if #A 1,

and < 2’’(’++s) 22ns’(2/iml(6)).
THEOREM 4.3. Let Mo and M be NFTs with coinciding input (and output) alphabets

so that M is finite valued. It is decidable in DTIME (llM0 yllll whether or not T Mo
is included in T(M).

We prove the Theorems 4.1-4.3 by reduction to the Theorems 2.1-2.3 and 3.1-3.2.
For this reduction we adopt from [W90, 5] the criterion (e-IV) and the two subsequent
propositions.

Let M (Q, , A, 6, Q, QF) be an NFT. The criterion (e-IV) reads as follows.
(e-IV) There is a useful state q Q such that, for some word A+, (q, e, , q) .

PROPOSITION 4.4 (see [W90, 5]). Let M (Q, E, A, 6, Q, QF) be an NFT with n
states. Then, the following assertions are true.

(i) IfM complies with (e-/V), then some word in E<u.(n-) has infinite valuedness in
M.

(ii) IfM complies with (e-IV), then it is infinite valued.
(iii) It is decidable in DTIME (polyllMII), whether or not M complies with (e-IV).
Proof. If M complies with (e-IV), then (u, 2), (w, z) E* x A* and A+ exist

such that uw has length at most 2. (n 1) and, for all Af, 2iz is a value for uw
in M. Thus, Pal(M) valM(uw) . This implies (i) and (ii). For assertion (iii) we
refer to the proof of Theorem 5.3 in [W90]. [3

PROPOSITION 4.5 (see [W90, Lem. 5.5]). Let M (Q, , A, 6, Qz, QF) be an NFT
with n states, which does not comply with (e-IV). Then, an NGSM M’ (Q, E’, A, 6’, Q
QF), where ’ (2 {ao }, effectively exists such that thefollowing assertions are true.

(i) im(6’) im(6), diff(6’) _< iml(6’) -iml(6),
I1 11 _< I1 ’11 _< I1 11 IIMII < IIM’II _< IIMII / n / 1.

(ii) M’ has the same valuedness as M.
(iii) Vm Af Vx,...,Xm E VA1,...,Am+I Jf Vz

(aoXX... ao Xmao-’+ z) e T(M’) == (x Xm, z) e T(M).
(iv) Vm Af Vx,...,Xm Vz A* V/l,...,/m+l _> n- 1"

Am m-{-(x...Xm, Z) e T(M) = (aoX ...ao :mao ,z) e T(M’).
(v) M’ can be constructed in DTIME(polyI[MII).
Proof. We construct the NGSM M’ (Q, ’, A, 6’, QI, QF):

’ :--]t(ao},
6’ := (6FQ x 3 x A* x Q) U{(p, ao, z,q) l(p,e,z,q) e 6}

U{(q, ao,e,q) Iq e

DECOMPOSING FINITE-VALUED TRANSDUCERS 199

The assertions (i), (iii), and (v) are obvious. The assertion (iv) can be proved as Claim 2
in the proof of Lemma 5.5 in [W90]. The assertion (ii) immediately follows from (iii)
and (iv).

Proofof Theorem 4.1. Let M (Q,)2, A, 6, QI, QF) be a finite-valued NFT with n
states. By Proposition 4.4(ii), M does not comply with (e-IV). Let M(1) (Q,)2(1), A,
6(1), QI, QF), where)2(1) .=)2 j {a0} be the finite-valued NGSM of size O([[M[[)
which is attached toM in Proposition 4.5. M(1) can be constructed in DTIME (polyllMII).
Applying the Theorems 2.1 and 2.2 to M(1) we obtain single-valued NGSMs MI),...,
M(and NFAs M2),..., M(--each of size O(22’"

’(’ ")-- such thatT(M()) equals
T(M)) ... T(M()), M[2) recognizes (r.())*\L(M[)) (i 1,... ,N), and N is

bounded as desired. By Theorem 2.3, MI),..., M(and M2),..., M(can be con-

structed in DTIME (22i="’<1)").
Let i [N]. We attach to M/(I (QI E(I A 61 r)(l O(1)

I,i, "F,/) the NFT Mi
(Qi, , A, 5i, Qi,i, QF,i), where Qi "= QI) x {0,... n 1}, QI,i := Q(1)i,i {0}, QF,
Q(1) (n 1} andF,i X

{((p,n-- 1), a,z, (q, O)) a e)2, (p,a,z,q)e 61)} t2

{((p,j- 1),e,z, (q,j)) IJ e [n- 1], (p, ao, z,q) e 6}1)}.
We attach to M[) (QZ))2(1) 6z) c)() c)(:)

,I,i,WF,i)thee’NFAMi (Q,)2,6i, QI,i, Q,i),
() "=Q(Z) {n-1),andwhere Q := Q2) x {0, ,n- 1}, Q,i := ,i x {0}, QF, F,i X

{((p,n- 1),a, (q, 0))la e E, (p,a,q) e 52)) U

{((p,j- 1),e, (q,j))IJ e In- 1], (p, ao, q) e 52)).
Obviously, IIMII _< n. IIM[1)II and IIM$11 <_ n. IIM[2)II. Thus, Mi and M are of size

O(22n=nM"). Given M[1), Mi can be constructed in DTIME (poly(n + IIM[x) II)). Given
M/(), M[can be constructed in DTIME (poly(n + IIM[2)II)). Thus, MI,...,MN and

M,..., Mv can be constructed in DTIME (29’i’’’").
Proposition 4.5 and the definition of M1,..., MN and M,..., Mv yields for all

Xl,...,Xm E E, z A* andi [N]"

(Xl... Xm, z) T(M)

(Xx Xm, Z) T(Mi)

xl ...Xm e

From this follows that M1,..., MN are all single valued, T(M) equals T(M1) t_J t3
T(MN), and M recognizes)2*\L(Mi) (i 1,..., N).

Proofofthe Theorems 4.2 and 4.3. According to Proposition 4.4, we may assume that
Mo (Qo,)2, A, 60, Qi,o, QF,O) and M (Q,)2, A, 6, QI, QF) are NFTs with no and n
states, respectively, so that M is finite valued and Mo and M do not comply with (e-IV).
Define h := max{n, no}. Let M’ (Q, ’, A, 6’, QI, QF), where)2’ :=)2 t3 {a0}, be
the finite-valued NGSM of size O(IIMII) which is attached to M in Proposition 4.5. M’
can be constructed in DTIME (polyllMl[).

200 ANDREAS WEBER

We attach to Mo the NGSM M (Q E’ A, 6 Qz,o, QF,O) where Q Qo
{0,... ,h- 1}, Q,o := Qx,o (0}, Q,o := QF,o {h- 1}, and

(((p,h- 1),a,z,(q,O))lae , (p,a,z,q) e 60} tO

{((p,j- 1),ao, z, (q,j))IJ e [h- 1] z
((p,e,z,q) e o V (p,z) (q,e) e Qo x A*)}.

Note that IIM[I " (llM011 + no). M can be constructed in DTIME (poly(llM011
+IIMII)). By definition, M only recognizes words of the form a-lXl.., a-ix,ao-,
where xl, Xm E .

Recall that M0 does not comply with (e-IV). Proposition 4.5 and the definition of
M yields for all x1,..., Xm .E and z A*:

(x Xm, z) T(M)
(x... Xm, z) e T(Mo)

(a -ix.1 ..aOh-Ixma &
-lxl ..aOh-lxma -lO z) e

This implies that T(M) C_ T(M’) if and only if T(Mo) c_ T(M). Thus, Theorem 3.2
applied to M and M yields Theorem 4.3.

In order to prove Theorem 4.2, let us assume that T(Mo) is not included in T(M),
i.e., T(M) is not included in T(M’). Applying Theorem 3.1 to M and M’, we obtain
a witness (x’, z) T(M)\T(M’) such that Ix’ < e. N!. (no. h)-N and N and

h-lxma-in are bounded as desired. Let x,..., x, E so that x a-x.., ao
Then, by the above properties ofM and Mo, (xl... Xm, z) belongs to T(Mo)\T(M) and
Ix...Xml m < Ixrl/h < e. g!.no, fiN.

A. Appendix. For the sake ofcompleteness, we state here three lemmas from [W90],
which are fundamental for our proof of Theorem 2.1.

LEMMA A.1 [W90, Lems. 2.4 and 2.3(i)]. Let M be an NGSM. IfM complies with at
least one ofthe criteria (IV1), (IV2), then it is infinite valued.

LEMMA A.2 [W90, Lem. 2.9]. Let M (Q, E,A, 6, QI, QF) be an NGSM. Let
A 2Q\(O}andy + suchthatthefollowingholds:Forallr Athereares Aandz
A* so that (r, y, z, s) e 6, andfor all s A there are r A and z A* so that (r, y, z, s). Letif, qr A. Then, thefollowing assertion is true: There are p, q A, Pl, P2, P3, p4 E Q,
l,12 > 0, and z, ,z4, z6, ,z9 A* so that (p, yt z pl),(p y, z2 p2),(p2 yt
z3,p) 6, (p, yll,z4,pr), (qr, yl,z6, q) 6,and (q, ytl,zT,p3), (pa, y, zs,p4), (p4, y,z9, q)
6.

LEMMA A.3 [W90, Lem. 2.10]. Let M (Q, E, A, 6, QI, QF) be a trim NGSM with
n states, which does not comply with the criterion (IV1). Let U, U2, U3, U4 E 2 so that
Q U1 (.J U2 (-J U3 (-J U4 and, for all 1 <_ < j <_ 4, 6 Uj E* A* Ui O.
Let A 2\{0}, y E+, p’ A U, and q’ A Ua such that the assertion of
Lemma A.2 is true. Let p, pe Q be taken from this assertion. If 7r and r arepaths in M
consuming y and leadingfrom p’ to qr andfrom p to pe, respectively, then diff(Tr, #) is at
most ((#U+:/:U2). (#U2 +#Ua). (://:Ua+#U4) 1). diff(6). Inparticular, if7r, rproduce
some z, 5 A*,respectively, then [[z[-15[[_< diff(Tr, ’) _< (ne.(#Ue + #Ua) 1)-diff(6).

Acknowledgment. During all stages of my work on this paper Helmut Seidl acted as
an inexhaustible source for useful stimulations and valuable comments. The proposals
by one of the referees led to an improved presentation. I highly appreciate all this help.

DECOMPOSING FINITE-VALUED TRANSDUCERS 201

[AHU74]

[AL78]

[Be79]
[B79]
[BH77]

[C90I

[CK86]

[GJ79]
[GRS80]
[G68]

[GI81]

[GI83]

[HW91]

[HU79]

[178]

[K86]

[K87]

[L79a]

[L79b]

[L80]
[L831

[N79]

[Sch76]

[$90]

[T88]

[T89]
[W87]

[w88]

[W90]

REFERENCES

A. AHO, J. HOPCROFT, AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

A.V. ANISIMOV AND L.P. LISOVIK, Equivalence problems forfinite-automaton mappings into free
and commutative semigroups, Cybernetics, 14 (1978), pp. 321-327.

C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1979.
J. BERSTEL, Transductions and Context-Free Languages, Teubner, Stuttgart, 1979.
M. BLATINER AND T. HEAD, Single-valued a-transducers, J. Comput. System Sci., 15 (1977), pp.

310-327.
K. CULII II, New techniques forproving the decidability ofequivalence problems, Theoret. Com-

put. Sci., 71 (1990), pp. 29-45.
K. CULIK II AND J. KARHUMArd, The equivalence of finite valued transducers (on HDTOL

languages) is decidable, Theoret. Comput. Sci., 47 (1986), pp. 71-84.
M. GAREY AND D. JOHNSON, Computers and Intractability, Freeman, San Francisco, CA, 1979.
R. GRAHAM, B. ROTHSCHILD, AND J. SPENCER, Ramsey Theory, Wiley, New York, 1980.
T. GRIFFITHS, The unsolvability ofthe equivalenceproblemfor A-free nondeterministic generalized

machines, J. ACM, 15 (1968), pp. 409-413.
E. GURARI AND O. IBARRA, The complexity ofdecision problems forfinite-tum multicounter ma-

chines, J. Comput. System Sci., 22 (1981), pp. 220-229.
A note on finite-valued and finitely ambiguous transducers, Math. Systems Theory, 16

(1983), pp. 61-66.
T. HEAD AND A. WEBER, Deciding code related properties by means offinite transducers, Proc.

SEQUENCES 1991, to appear.
J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
O. IBARRA, The unsolvability of the equivalence problem for e-free NGSM’s with unary input

(output) alphabet and applications, SIAM J. Comput., 7 (1978), pp. 524-532.
J. KARHU, The equivalence ofmappings on languages, Proc. 4th IMYCS, 1986, in Lecture

Notes in Comput. Sci., 281, Springer-Verlag, Berlin, Heidelberg, 1987, pp. 26-38.
On recent trends in formal language theory, Proc. 14th ICALP, 1987, in Lecture Notes in

Comput. Sci., 267, Springer-Verlag, Berlin, Heidelberg, 1987, pp. 136-162.
L.E LISOVIK, Equivalenceproblem forfinitely ambiguous finite automata over semigroups, Cyber-

netics, 15 (1979), pp. 463-467.
The identityproblemfor regular events over the directproduct offree and cyclic semigroups

(in Ukrainian and Russian), Dopovidi Akad. Nauk Ukrain. RSR Ser. A, 1979, No. 6, pp.
410-413.

Strict sets andfinite semigroup coverings, Cybernetics, 16 (1980), pp. 13-17.
Minimal undecidable identity problem for finite-automaton mappings, Cybernetics, 19

(1983), pp. 160-165.
A. NOZAKI, Equivalenceproblem ofnon-deterministicfinite automata, J. Comput. System Sci., 18

(1979), pp. 8-17.
M.E SCHOTZENBERGER, Sur les relations rationnelles entre mono[des libres, Theoret. Comput.

Sci., 3 (1976), pp. 243-259.
H. SEIDL, Equivalence offinite-valued bottom-up finite state tree transducers is decidable, Proc.

CAAP 1990, in Lecture Notes in Comput. Sci., 431, Springer-Verlag, Berlin, Heidelberg,
1990, pp. 269-284.

P. TURAKAINEN, On some transducer equivalence problems for families of languages, Intern. J.
Comput. Math., 23 (1988), pp. 99-124.
,personal communication.
A. WEBER, Ober die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducem,

dissertation, Goethe-Universit/it, Frankfurt am Main, Germany, 1987.
,A decomposition theorem forfinite-valued transducers and an application to the equiva-

lence problem, Proc. MFCS 1988, in Lecture Notes in Comput. Sci., 324, Springer-Verlag,
Berlin, Heidelberg, 1988, pp. 552-562.
,On the valuedness offinite transducers, Acta Inform., 27 (1990), pp. 749-780.

202 ANDREAS WEBER

[W92a]

[W92bl

A. WEBER, On the lengths ofvalues in afinite transducer, Acta Inform., 29 (1992), to appear (see
also, Proc. MFCS 1989, in Lecture Notes in Comput. Sci., 379, Springer-Verlag, Berlin,
Heidelberg, 1989, pp. 523-533).

Decomposing a k-valued transducer into k unambiguous ones, Proc. Latin 1992, in Lec-
ture Notes in Computer Science, 583, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 503-
515.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 203-210, February 1993

() 1993 Society for Industrial and Applied Mathematics
015

ONE MORE OCCURRENCE OF VARIABLES MAKES
SATISFIABILITY JUMP FROM TRIVIAL TO NP-COMPLETE*

JAN KRATOCHVLt, PETR SAVICKt, AND ZSOLT TUZA

Abstract. A Boolean formula in a conjunctive normal form is called a (k, s) formula if every clause
contains exactly k variables and every variable occurs in at most s clauses. The (k, s)-SAT problem is the
SATISFIABILITY problem restricted to (k, s)-formulas. It is proved that for every k > 3 there is an integer
f(k) such that (k, s)-SAT is trivial for s < f(k) (because every (k, s)-formula is satisfiable) and is NP-
complete for s > f(k) + 1. Moreover, f(k) grows exponentially with k, namely, [2k/ekJ < f(k) < 2-1

2k-4- 1 for k > 4.

Key words, satisfiabilty, Boolean formula, conjunctive normal form, NP-completeness

AMS(MOS) subject classifications. 68Q15, 68Q25, 05CXX

1. Introduction. A Boolean formula in conjunctive normal form is called a (k, s)-
formula if every clause contains exactly k distinct variables and every variable occurs in
at most s clauses. A (k, s)-formula is called a (k, s)-formula if every variable occurs
in exactly s clauses. We denote by (k, s)-SAT (respectively, (k, s)-SAT) the SATIS-
FIABILITY problem restricted to (k, s)- (respectively, (k, s)-) formulas, namely,

(k, s)-SAT (k, s)-SAT
Instance: A (k, s)-formula . Instance: A (k, s)-formula .
Question: Is satisfiable? Question: Is satisfiable?

Tovey [T] proved that every (3, 3)-formula is satisfiable, but (3, 4)-SAT is NP-
complete. Thus considering (3, s)-SAT as a decision problem parametrized by s, the
problem is either trivial (i.e., one can output the affirmative answer without computa-
tion) for s < 3 or NP-complete for s >_ 4. Such a sudden jump from triviality to NP-
completeness occurs for every k > 3.

THEOREM 1.1. For every k >_ 3, there is an integer f(k) such that
(i) every (k, s)-formula with s < f(k) is satisfiable;
(ii) (k, s) SAT is NP-completefor every s >_ f(k) + 1.
The proof of this result, presented in 2, extends the basic ideas of the argument

given by Tovey [T] for k 3. The main task of this article is to derive reasonable bounds
on f(k). Note that obviously f(k) max{s every (k, s)-formula is satisfiable}, and
we may extend the definition of f(k) to k 1, 2 in this way. We will also prove the
following strengthening of part (ii) of Theorem 1.1 in 2.

THEOREM 1.2. The (k, s)-SATproblem is NP-complete for every k >_ 3 and s >
f(k) + 1.

As a nice application of Hall’s marriage theorem, Tovey [T] proved that f(k) > k
for every k. He also conjectured that every (k, 2k-1 1)-formula is satisfiable. The
following result disproves this conjecture. It also shows, however, that the exponential
upper bound 2k- is essentially best possible, apart from a factor linear in k.

THEOREM 1.3. For every k > 4, < f(k) < 2k- 2k-4 1.

Received by the editors July 23, 1990; accepted for publication (in revised form) September 24, 1991.
Department of Algebra, Charles University, Sokolovskfi 83, 186 00 Prague, Czechoslovakia.
tDepartment of Logic, Faculty of Philosophy, Charles University, Nfim. J. Palacha 1, 100 00 Praha 1,

Czechoslovakia.
Computer and Automation Institute, Hungarian Academy of Sciences, Kende u. 13-17 H-1111 Budapest,

Hungary.

203

204 J. KRATOCHVL, P. SAVICKr, AND Z. TUZA

The lower bound given in this theorem is proved in 3. The upper bound is re-
lated to the existence of nonsatisfiable formulas. We show in 4 that every nonsatisfiable
(k, oc)-formula has at least 2k clauses. We also show that every nonsatisfiable (k, f(k)+
1)-formula contains more than log2 f(k) (and hence more than k- log2 k- log e) vari-
ables that occur in exactly f(k) + i clauses. Finally, the upper bound on f(k) is proved
in 5.

In the subsequent sections, we use the following convention. Formulas and 9
are called SAT-equivalent if either both are satisfiable or both are nonsatisfiable. The
number of clauses of a formula that contain a variable c (positive or negative) is called
the degree of z and it is denoted by degz. Formulas are called disjoint if their variable

__k--1sets are disjoint. If a clause c contains a variable z, say, c (z’/Xz1A...x_ (where
ei e {1,-1} and x x and x- x), then c- x is the clause (x A... A Xk_).
For a real t, we denote by t] (respectively, [tJ) the least integer not smaller than t
(respectively, the greatest integer not exceeding t).

2. Thejump. In this section, we prove Theorems 1.1 and 1.2. The following concept
will play an important role.

DEFINITION 2.1. A (k, s)-formula containing a variable x is called an x-implying
(k, s)-formula if

(i) the variable x occurs in at most s 1 clauses of ,
(ii) x receives the value TRUE in every satisfying truth assignment for I,,
(iii) is satisfiable.
LEMMA 2.2. If k > 3 and s are such that an x-implying (k, s)-formula exists, then

(k, s)-SAT is NP-complete.
Proof. We show that k-SAT o (k, s)-SAT, provided an x-implying (k, s)-formula

exists. In our terminology, k-SAT is (k, oc)-SAT (i.e., SATISFIABILITY restricted to
formulas with exactly k variables per clause, but with an unbounded number of occur-
rences of variables) and it is known to be NP-complete for every fixed k >_ 3 [GJ].

Let be an x-implying (k, s)-formula and let 9 be an instance of k-SAT. We will
show how to reduce the degrees of variables in 9 using disjoint copies of , i.e., we will
construct a (k, s)-formula 9 SAT-equivalent to 9.

Let y be a variable of 9 that occurs in more than s clauses, say, in the clauses
cl, c2,..., Cm, m > s (if 9 has no such variables, we are done). Let ,j, 1 < < m,
1 < j < k- 2, be disjoint copies of the formula , with the variable z of being renamed
as zi,j in i, (thus each i, is an zi,-implying (k, s)-formula, and these formulas and
the formula 9 have pairwise disjoint sets of variables).

A formula 9’ is defined as a result of a local replacement in 9 in the following way.
The variable//is replaced by m new variables /1, /,..., y,, where each / replaces /in
the clause c (so that// c in 9’ if and only if// c in 9 and -// c in 9’ if and only
if -/1 ci in 9). In addition, 9’ contains the formulas i,j, 1 < _< m, 1 _< j _< k- 2 and
the clauses d (y V -y+ V -x, V -x,2 V... V x,k-2), 1 < i < m (the subscripts
of yi are read modulo m).

Obviously, 9’ has fewer variables of degree greater than s. We claim that 9’ is sat-
isfiable if and only if 9 is satisfiable. Suppose ’ {variables of 9’} {TRUE,FALSE}
is a truth assignment that satisfies 9’. By the definition of , (x,j) TRUE for all
1 < i < m and 1 _< j < k- 2. Hence the clauses {di[1 < < m} are satisfied by the
variables {yll _< _< m}. It follows that ’(yi) have the same value, say, ’(yi) E
{TRUE,FALSE} for all 1 < i < m. Then { variables of 9} {TRUE,FALSE}

DEGREE THRESHOLD FOR SATISFIABILITY 205

defined by

/,

) if x y
(z)

’(x) if x y

is a truth assignment that satisfies . Conversely, if is satisfiable, a satisfying truth
assignment for is guaranteed by condition (iii) of Definition 2.1.

If contains more variables of degree greater than s, we repeat the construction
above letting each of these variables play the role of y, until finally a (k, s)-formula
SAT-equivalent to I, is obtained. Note that if contains k variables and he clauses
and contains k, variables of degree < s, n variables of degree greater than s (say, of

ndegrees rex, m2,..., m,) and hv clauses, then contains k, +]=x m(1 + k(k
2)) variables and hv +]=1m(1 + h(k 2)) clauses, and it is thus constructible in
polynomial time. E]

LEMMA 2.3. If k > 3 and s are such that a nonsatisfiable (k, s)-formula exists, then
there exists an x-implying (k, s)-formula as well.

Proof. Let be a minimal nonsatisfiable (k, s)-formula (i.e., ifC is the set of clauses
of , then for every C C, Ac is satisfiable). Choose a variable x and a clause
c which contains x (or -x). Define C (C \ {c}) U {c-"}, with " (c x) U {5}, where
5 is a new extra variable not occurring in (5 is positive in c--’). We claim that is an
5-implying (k, s)-formula.

Since 5 occurs in just one clause, obviously is a (k, s)-formula and condition (i)
of Definition 2.1 holds in (note that s > 2 follows from the nonsatisfiability of if). If

is satisfied by a truth assignment , then (5) TRUE (otherwise
as well, contradicting the nonsatisfiability of). On the other hand, it follows from the
minimality of that ’ A(c \ (c}) is satisfiable, and hence so is . l-1

Proofof Theorem 1.1. Put m f(k) and the statement follows directly from Lem-
mas 2.2 and 2.3.

ProofofTheorem 1.2. We will prove that (k, s)-SAT x (k,- s)-SAT. Let a formula
with a set C of clauses over a set X of variables be an instance of (k, s)-SAT. The

purpose is to construct a (k,- s)-formula SAT-equivalent to . This can be done
by adding new clauses to to complete the degrees of variables of , together with
new variables that guarantee that the new clauses can always be satisfied. The explicit
construction is as follows.

We begin with s disjoint copies 1, 2,..., 8 of the formula . We use the fol-
lowing notation. Each formula has clause set Ci {clc E C} and variables X
{xlx X}, so that x c if and only if x c and -x c if and only if -x c. For
each x E X, consider s degv(x) formulas ’Ix,, x,e,..., ’I,8-dc9.(), where

b,i (xj V yi, V Yi,2 V V Yi,k-1)
j--1

(the variables xy are the same as those occurring in the formulas , while Yd are new
extra variables). Straightforwardly,

s-deg (x)

A
i=1 xX i=1

is a (k, s)-formula and it is satisfiable if and only if is satisfiable.

206 J. KRATOCHVL, P. SAVICK@, AND Z. TUZA

23. The lower bound. In this section we prove that f(k) [j for all k > 1. Of
course, this inequality is trivial for k < 3; and for k < 7, it follows from f(k) >_ k, which
Tovey [T] proved. We will use the following variant of a lemma of Erd6s and Lovfisz
[EL] (frequently referred to as Lovfisz’s Local Lemma).

LEMMA [S]. Let 1,9,..., , be events in a probability space (t2, Prob). A graph
F with vertex set 1, 2,..., is called an event graph of 1, 2,’’’, n if its edges express
dependencies between the events so that each event i is independent ofany combination of
events nonadjacent to ,. Suppose there exist reals 7,, 0 < 7, < 1, 1, 2,..., n satisfying

for i 1, 2,..., n. Then

Prob(,) <_ "7, H (1- 7j)
E(r)

Prob(l A -2 A... A -n) > 0.

Set g(k) [kJ and consider any (k, g(k))-formula (I) with clauses el, C2,..., am
over variables xl, x2,..., x,. We prove that (I) is satisfiable.

Let x (xl,x2,... ,x,) be a random truth assignment of the variables, i.e., x, E
{TRUE,FALSE}, each x, equals TRUEwith probability 7, and the random variables x,
are independent. Denote by j the event that cj is not satisfied by x. Then Prob(j)
2-k for j 1, 2,..., m.

The graph F ({,ll < i < m}, {,1, and share a variable}) is an event
graph for ,, 1 < < m. Since each variable occurs in at most g(k) clauses, and each
clause contains just k variables, every j has degree at most k(g(k) 1) in F. Put 7,
e Prob(,) e2-k for each i. By our assumptions,

Prob(i) 1-I (1- 7j) -> e(1- k([]-l) > e(1- -) -7--1 > ee-1 1.

eE(r)

Thus

Prob(-l A "2 /’’’ A n) > 0

follows by the local lemma. Consequently, (x) =TRUE holds with a positive proba-
bility. This fact implies that is satisfied by some suitably chosen truth assignment.

4. Nonsatisfiable formulas. In this section we prove lower bounds on two other pa-
rameters of nonsatisfiable formulas--the number of clauses and the number ofvariables
with degree f(k) + 1. In the following proposition clauses are not necessarily of the same
size.

n 2_s,ze(cPROPOSITION 4.1. If b A,n=I c, then at least n -]i=1 clauses can be
satisfied simultaneously (here size(c) is the number ofvariables occurring in c).

Proof. We use the random truth assignment as in 3 and we define random variables
..i, i 1, 2,..., n by

if ci is satisfied by x,

otherwise.

Then

E Ei Prob(c, is satisfied) n 2
i=1 i=1 i=1

DEGREE THRESHOLD FOR SATISFIABILITY 207

n 2_size(cwhich means that at least n -=1), clauses are satisfied by a suitable truth
assignment. []

COROLLARY 4.2. If(A=I ci and ’i= 2-Size(c’) < 1, then is satisfiable.
COROLLARY 4.3. Every nonsatisfiable (k, oc)-formula has at least 2k clauses.
We remark that Corollary 4.3 is the best possible, since for every k, the formula

consisting of all the 2k possible k-clauses over variables zl, x2,..., z is nonsatisfiable.
Proposition 4.1 was actually proved in [J] (though Johnson only states the result for the
case of (k, oc)-formulas). The proof presented there is algorithmic, and we decided to
include our probabilistic argument, which we believe is more transparent.

PROPOSITION 4.4. If is a nonsatisfiable (k, oc)-formula, then at least one of its
2clauses shares variables with at least -7 other clauses.

Proof. Follows from the local lemma and is similar to the proof in 3. D
By the definition of f(k), we know that nonsatisfiable (k, f(k) + 1)-formulas exist.

We show that such formulas are rich in variables occurring in f(k) + 1 clauses.
THEOREM 4.5. Let b be a nonsatisfiable (k, f(k) + 1)-formula, k > 4. Then at least

[log2 f(k)J / 1 ofthe variables of(occur in f(k) + I clauses.
Proof. Let xl, x2,..., xt be the variables that occur each in f(k) + 1 clauses of a

(k, f(k) + 1)-formula (I). We prove that (I) is satisfiable, provided t < log2 f(k). The
idea is to construct a (k, f(k))-formula SAT-equivalent to (I) by taking 2 disjoint
(and slightly modified) copies of (I). Then is satisfiable by the definition of f(k) and
the satisfiability of (I) follows.

Here is the explicit construction of. For each x, choose a clause, say c, of (I) which
contains xi (respectively, -xi). Consider t new variables y, y2,..., yt and 2 disjoint
copies (I) of (I), indexed by Boolean vectors u (u, u2,..., ut), ui E {0, 1}. For a
variable x and a clause c of (I), let their copies in (I) be denoted by x and c, respectively.
For each u E {0, 1}t, let (I) be the formula obtained from (I), by replacing the occurrence
of x’ in c’ by y (respectively, -yi) if u 0 (respectively, ui 1). Finally, we put

The degrees of the variables x’ in drop by one compared to their degrees in
(I), the degrees of other variables do not change, and the degrees of the variables y
are equal to 2 _< f(k). Thus is a (k, f(k))-formula. Let {variables of}
{TRUE,FALSE} be a truth assignment that satisfies I,. Consider u (Ul, u,..., ut)
with ui 0 (respectively, ui 1) if (yi) =FALSE (respectively, (yi) =TRUE). Then

u4no clause ci in , is satisfied by yi, and hence all clauses of (I), are satisfied by the
variables x. Therefore, (I) is satisfiable. D

The bound given by Theorem 4.5 is probably not the best possible. On the other
hand, the result cannot be extended straightforwardly to (k, s)-formulas with s > f(k)+
1, because of the following.

PROPOSITION 4.6. For every k, there exists a nonsatisfiable (k, oc)-formula that con-
tainsjust one variable with degree greater than f k).

Before proving this observation, we need one auxiliary result that is also interesting
on its own.

LEMMA 4.7. Thefunction f(k) is strictly increasing.
Proof. We prove that for every k, there exists a nonsatisfiable (k, f(k+ 1))-formula.

Let (I) be a nonsatisfiable (k + 1, f(k + 1) + 1)-formula. Obviously, every formula ob-
tained from (I) by deleting some variables from some clauses (while retaining the occur-

208 J. KRATOCHVL, P. SAVICK, AND Z. TUZA

rences in other clauses) is nonsatisfiable. It only remains to show that one may obtain a
(k, f(k + 1))-formula in this way.

Suppose the formula has a set C of clauses over a set X of variables, and let
zl, z2,..., z, be the variables of that occur in f(k + 1) + 1 clauses. For i 1, 2,..., n,
we put Ci {clc E C and c contains zi or -zi} and we consider the set system C
{Cill < < n}. For every A c {1, 2,..., n}, we have

f((k + 1) + 1)IAI-- I{(x, c)lc e C and i e A}I < (k + 1)1 U Cil,

and, hence,

UciI> y(k+l)+l
k + 1 IAI > IAI

iEA

(note that f(k + 1) > k + 1). Using Hall’s theorem, it follows that there are distinct
clauses c, i 1, 2,..., n such that each c contains either x or -x.

Nowwe let ff be a formula obtained from by deleting the occurrence of xi from c
for i 1, 2,..., n and deleting arbitrary variables from the remaining clauses, one from
each. Consequently, ff is a nonsatisfiable (k, f(k + 1))-formula and f(k) < f(k + 1)
follows. [3

ProofofProposition 4.6. Suppose k _> :2 (for k 1, () A (-) is a desirable
formula). Let be a nonsatisfiable (k 1, f(k 1) + 1)-formula with a set C’ of clauses
over a set X of variables, and consider two disjoint copies 1, 2 of (has clause set

{clc C} and variable set Xi {1 X}). Let//be a new extra variable. Then

is a (k, c)-formula with just one variable (namely, //) occurring in more than f(k)
clauses (all other variables occur in at most f(k 1) + 1 < f(k) clauses). Obviously,
is nonsatisfiable, since//cannot satisfy simultaneously both I,1 and .

5. The upper bound. We first present a recursive inequality for f(k).
LEMMA 5.1. For every k, we have f k + 1) < 2f k + 1.

Proof. Let be a nonsatisfiable (k, f(k) + 1)-formula with a set C of clauses over
a set X of variables. For each c C, let zc be a new extra variable. Consider

A v (c v

The degrees of the variables of I, are doubled in , while the new variables zc, c C
have degree 2. Thus, I, is a (k + 1, 2(f(k) + 1))-formula. To see that it is nonsatisfiable,
recall that for each clause c of , (c V zc) A (c V -z) is SAT-equivalent to c.

Therefore, f(k + 1) + 1 <_ 2f(k) + 2 and the statement follows.
PROPOSITION 5.2. We have f(4) < 6.
Proof. Let a, b be variables. We first construct an auxiliary (4, 7)-formula I’a,b such

that every truth assignment satisfying I,a,b satisfies a b. Then we use disjoint copies
of this formula to reduce the degrees of variables in a nonsatisfiable (4,)-formula in
analogy to the proof of Lemma 2.2.

DEGREE THRESHOLD FOR SATISFIABILITY 209

We put

’o,b (U V : V U V) / (,., V ",: V " V Z) / (, V X V , V)
/(: V V , V) / (U V--,Z V ,., V) / (V-,., V V)

(, v , v - v) (- v , v , v -) (- v , v v -).

It is straightforward to check that deg,,.u deg,,.x deg,,.y deg,,.z
4, degca, v deg,,,w 7, and deg,.,a deg,.b b 3. One can also check easily
that every truth assignment satisfying a,b satisfies a = b as well, and on the other hand,
every truth assignment to a, b that satisfies a = b can be extended to a truth assignment
satisfying (I)a,b.

In the forthcoming construction, we will use copies of this formula. Let the con-
vention be such that (I),Z is a copy of (I)a,b with a (respectively, b) being renamed as a
(respectively, fl), the other variables u, x, y, z, v, w of (I)a,b are renamed so that these new
variables do not occur in other copies of (I)a,.

Finally, let be a nonsatisfiable (4, c)-formula, and suppose a variable x occurs in
n _> 8 clauses, say, Cl, c2,..., Ca. We replace x by n new variables xl, x2,..., x, (xi re-
places x in ci), and we add formulas (I)x,x+l, 1, 2,..., n (Xn+I Xl). The resulting
formula ’ is again nonsatisfiable, since any satisfying truth assignment of ’ would
satisfy xi = xi+l, 1, 2,..., n, and would induce a truth assignment satisfying in
an obvious way. Note that each variable x occurs in 7 clauses of ’. Applying this con-
struction to all variables of degree greater than 7 in ’, we finally obtain a nonsatisfiable
(4, 7)-formula . FI

The above construction can be straightforwardly generalized to k > 4. This leads,
however, to the upper bound f(k) <_ 2k-x 2, which is worse than the one in Theo-
rem 1.3.

Proofofthe upper bound ofTheorem 1.3. The inequality follows by an easy induction
on k, using Proposition 5.2 and Lemma 5.1. E]

6. Concluding remarks.
6.1. The behavior of f(k). We have defined the function f(k), showed that it is

strictly increasing, and proved exponential bounds for it. Undoubtedly, it would be very
interesting to find an exact formula for f(k), but that might be a rather tough problem.

in the lower bound inWe would be satisfied whether one can eliminate the factor
Theorem 1.3.

Let us define the function

Theorem 1.3 yields

g(k) log2(f(k + 1) k.

log2 e log2 k < g(k) < log2 7 4

and Lemma 5.1 implies

g(k+l) log2(f(k+l)+l)-(k+l)<log2(2(f(k)+l))-k-1
1 + log2(f(k + 1) k- 1 g(k),

and thus g(k) is monotone. Hence, the limit g limk--,o g(k) exists, and therefore, we
propose the following open problem.

210 J. KRATOCHVL, P. SAVICK’, AND Z. TUZA

PROBLEM. Determine whether 9 > -c. Find reasonable bounds for 9 in case ofan
affirmative answer, or determine the asymptotic behavior of9(k) if9

Note that if 9 > -, then f(k) behaves asymptotically as 2k+g, whereas if 9
then for every arbitrarily large positive constant M, f(k) < 2- for every k > kM.

6.2. Computation of f(k). Another tough problem may be to determine the exact
values of f(k), even for small k. We only know f(1) 1, f(2) 2 and f(3) 3, but
already for k 4, we know nothing better than 4 _< f(k) < 6. The problem is that no
bound on the size of a minimum nonsatisfiable (4, f(4)+ 1) (and in general (k, f(k)+ 1)-
for k _> 4)-formula is known.

6.3. Decision versus search. We have called the (k, s)-SAT problem trivial when
s < f(k). One should keep in mind that this concerns decision problems. The com-
panion search problem (i.e., given a (satisfiable) (k, s)-formula with s < f(k), find a
satisfying truth assignment) is much harder. For s < k, one can find a satisfying truth as-
signment via matching theory, but for k < s < f(k), no polynomial algorithm is known.
This is just another example of a problem where the existence of a solution is guaranteed
by a nonconstructive argument, but it is not known how difficult it is to find one. (On the
other hand, in Proposition 4.1 our probabilistic approach gives exactly the same result
as the polynomial search algorithm derived in [J].)

Note added in proof. Recently we became aware of a paper of Dubois [D] who was
apparently the first to disprove the conjecture of Tovey. By a rather technical construc-
tion, he proves that f(4) <_ 5 and f(5) _< 10. It then follows from our Lemma 5.1 that
f(k) < 11.2k-5 1 2-1 2-3 2-5 1, which is better than the upper bound in
our Theorem 1.3. Dubois also raised a conjecture which, in our setting, is equivalent to

lim f(k+l) 2. This is strongly supported by the lower bound in our Theorem 1.3,f()
f(+) 2. More precisely, it follows that for everywhich directly yields lira sup_, f()

e > 0, the set A, {k[f(k+) < 2 } has zero density, i.e., lim,_ IA’n(’2 ,)l 0Y() ,
(andeven IA’n(’2 ,01 < O(Og2’)).

A recent paper ofBeck [B] provides a significant breakthrough to the decision versus
search metaquestion for applications of Lovfisz’s Local Lemma. Beck gives a polynomial
search algorithm which, however, does not apply to the full range of the Local Lemma.
Namely, for the restricted SATISFIABILITY problem, his method enables to find a

satisfying truth assignment to a given (k, s)-formula if s < 27+ + 1. A parallelized
version of the Beck’s algorithm is presented in a paper of Alon [A].

REFERENCES

[A] N. ALON,A parallel algorithmic version ofthe Local Lemma, Random Str. Alg., 2(1991), pp. 367-378.
[B] J. BECK,An algorithmic approach to the Lovdsz LocalLemma I, Random Str. Alg., 2(1991), pp. 343-365.
[D] O. DuaoIs, On the , s-SATsatisfiabilityproblem anda conjecture ofTovey, Discr. Appl. Math., 26(1990),

pp. 51-60.
[EL] P. ERD0S AND L. LovAsz, Problems and results on 3-chromatic hypergraphs and some related questions, in

Infinite and Finite Sets, A. Hajnal, L. Lovfisz, and V. T. S6s, eds., Colloquia Mathematica Societatis
Jfinos Bolyai 10, North-Holland, Amsterdam, 1974, pp. 609-627.

[GJ] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Harry Freeman, San Francisco, 1979.

[J] D.S. JOHnSON, Approximation algorithms for combinatorialproblems, J. Comput. System Sci., 9(1974),
pp. 256-278.

[S] J. SPENCER,Asymptotic lower boundsfor Ramseyfunctions, Discrete Math., 20(1977), pp. 69-76.
[T] C.A. TOVEY,A simplified satisfiabilityproblem, Discrete Appl. Math., 8(1984), pp. 85-89.

SIAM J. COMPUT.
Vol. 22, No. 1, pp. 211-219, February 1993

() 1993 Society for Industrial and Applied Mathematics
016

ROUNDS IN COMMUNICATION COMPLEXITY REVISITED*

NOAM NISANt AND AVI WIGDER,SON*

Abstract. The k-round two-party communication complexity was studied in the deterministic model by [P.
H. Papadimitriou and M. Sipser, Proc. of the 14th STOC, 1982, pp. 330-337] and [E Duris, Z. Galil, and G.
Schnitger, Proc. of the 16th STOC, 1984, pp. 81-91] and in the probabilistic model by [A. C. Yao, Proc. of the
24th FOCS, 1983, pp. 420-428] and [B. Halstenberg and R. Reischuk, Proc. ofthe 20th STOC, 1988, pp. 162-
172]. This paper presents new lower bounds that give (1) randomization is more powerful than determinism in
k-round protocols, and (2) an explicit function which exhibits an exponential gap between its k and (k 1)-
round randomized complexity.

This paper also studies the three-party communication model, and exhibits an exponential gap in 3-round
protocols that differ in the starting player.

Finally, this paper shows new connections of these questions to circuit complexity, that motivate further
work in this direction.

Key words, communication complexity, information, rounds, monotone circuits

AMS(MOS) subject classifications. 68, 94, 94A05, 94A17, 94C99

1. Introduction.

1.1. The two-party model. Papadimitriou and Sipser [14] initiated the study of how
Yao’s model [19] of communication complexity is affected by limiting the two players
to only k rounds of messages. They considered the following natural problem gk: each
of the players A and B is given a list of n pointers (each of log n bits), each pointing to
a pointer in the list of the other. Their task is to follow these pointers, starting at some
fixed v0 E A, and find the kth pointer. This can easily be done in k rounds and complexity
O(k log n): A starts and the players alternately send the value of the next pointer. It is
not clear how to use less than n log r bits if only (k 1) rounds are allowed or in fact with
k-rounds but player B starts. Indeed, Papadimitriou and Sipser [14] conjectured that the
complexity is exponentially higher (for fixed k), namely, that there is a strict hierarchy,
and proved it for the case k 2. The general case was resolved by Duris, Galil, and
Schnitger [4], who gave an f(n/k2) lower bound on the (k 1) round complexity of

It is not difficult to see that allowing randomness gk can be solved with high prob-
ability in (k 1) rounds using only O((n/k) log n) communication bits. Another log n
factor in the complexity can make this a Las Vegas (errorless) algorithm. This raises
the question, What is the relative power ofrandomness over determinism in k-round pro-
tocols? Without limiting the number of rounds, Mehlhorn and Schmidt [12] showed a
quadratic gap between Las Vegas and Determinism, and allowing error, the gap can be
exponential.

We use simple information theoretic and probabilistic arguments to strengthen the
lower bound of [4] in two ways. First we improve their (k 1)-round deterministic lower
bound on gk to f(n) (for k < n/log n), thus showing that randomness can be cheaper
by a factor of k log2 n for k-round protocols. This result also provides the largest gap

*Received by the editors February 21, 1991; accepted for publication November 25, 1991. This work
was partially supported by the Wolfson Research Awards (both authors) and the American-Israeli Bina-
tional Science Foundation grant 89-00126 (first author), administered by the Israel Academy of Sciences and
Humanities.

Department of Computer Science, Hebrew University, Jerusalem, 91904 Israel.
*Department of Computer Science, Princeton University, Princeton, New Jersey 08544-2087.
In fact, they and [4] considered the stronger "arbitrary partition" model, but known simulation results of

[4], [6], [9], [10] allow us to use Yao’s standard "fixed partition" model without loss of generality.

211

212 NOAM NISAN AND AVI WIGDERSON

known for k > log n in the deterministic model the previous one was obtained in [4]
via counting arguments. The fact that the simulation of McGeoch [10] is constructive
gives the same gap in the arbitrary partition model for an explicit function, resolving an
open question of Duris, Galil, and Schnitger [4].

Second, we prove that the probabilistic upper bound above is not very far from op-
timal- we give an f(n/k2) lower bound, establishing an exponential gap in the proba-
bilistic setting between k and (k- 1)-round protocols for an explicitly given function. The
existence of such functions (with somewhat larger gap) was proven by Halstenberg and
Reischuk [6], via complicated counting arguments. The only previous exponential gap
for an explicit function was shown for k 2 by Yao [20]. We stress the simplicity of our
proof technique, in contrast to that of Halstenberg and Reischuk [6]. We have recently
learned that similar techniques were used by Smirnov [16] to prove an f(n/(k(log n)k))
lower bound on gk, which is much weaker than our bound, but establish an exponential
gap as well.

Finally, we use the communication complexity characterization of circuit depth of
Karchmer and Wigderson [8] to establish gk as a complete problem for monotone depth-
k Boolean circuits. (This result was independently discovered by Yannakakis [18].) Thus,
a simple deterministic reduction enables us to derive the monotone constant-depth hier-
archy of Klawe, Paul, Pippenger, and Yannakakis [7] from the constant-round hierarchy
of Duris, Galil, and Schnitzer [4]. (The reverse direction was proven in [7].) We spec-
ulate that our new probabilistic lower bound may serve to extend the monotone circuit
hierarchy result to depth above log n, via probabilistic reductions (as was done by Raz
and Wigderson [15]).

1.2. The multi-party model. Chandra, Furst, and Lipton [2] devised the multi-party
communication complexity model. Here t players P1, P2,..., Pt are trying to compute
a Boolean function g(xl,z,... ,zt), where z E {0, 1}’’. (Until now all work in this
model considered equal length inputs, i.e., n n for all i.) The twist is that every player
P sees all values zj for j % i. This model turns out to capture diverse computational
models. Chandra, Furst, and Lipton [2] used it to prove that majority requires super-
linear length constant width branching programs. Babai, Nisan, and Szegedy [1] gave
ft(r/2t) lower bounds for explicit functions g, and used it for Turing machine, branching
program, and formulae lower bounds, as well as efficient pseudorandom generators for
small space. Recently, Hstad and Goldmann [5] used the results in [1] to prove lower
bounds on constant-depth threshold circuits.

We consider only the 3-player model, and within it we allow three rounds of com-
munciation: one per player. We exhibit a function z whose complexity is ft(x/-) if P3 is
the first to speak, but O(log n) otherwise. The proof uses properties of universal hash
functions developed in [13] and [11]. It is interesting that u acts on different size argu-
ments; u: {0, 1}2n {0,1} {0, 1}lgn --- {0, 1} SO nl,n2 O(n), but n3 logn.
The following connection to circuit complexity makes such functions important. We
show that improving our lower bound to f(n) for some explicit function g of this form
would give the following size-depth trade-off: the function f {0, 1 }O(n) {0, 1 }’ de-
fined by f(x, x)x3 g(x, x, xz) cannot be computed by Boolean circuits of size O(n)
and depth O(log n) simultaneously. This result is obtained via Valiant’s [17] method of
depth reduction in circuits.

2. The two-party model. The four subsections of this section give the definitions, re-
suits, technical lemmas, and some proofs, respectively, in the two-party communication
complexity model.

ROUNDS IN COMMUNICATION COMPLEXITY REVISITED 213

2.1. Definitions. Let g XA X XB --+ {0, 1} be a function. The players A, B re-
ceive, respectively, inputs ZA E XA, ZB XB. A k-round protocol specifies for each
input a sequence of k messages, ml, m2,..., mk sent alternately between the players
such that at the end both know 9(za, ZB). The cost of a k-round protocol is -i1 [mil
(where Im, is the binary length of mi), maximized over all inputs (za, ZB). Denote by
CA’k (9) (respectively, CB,k (9)) the cost of the best protocol in which player A (respec-
tively, B) sends the first message, and Ck(g) min{Ca’k(g), cB’k(g)}.

Let T XA XB (0, 1} be the function computed by the two players follow-
ing a protocol T. We introduce randomization by allowing T to be a random variable
distributed over deterministic protocols. The cost is simply the expectation of the associ-
ated random variable. We say that randomized protocol makes e-error if Pr[T(xa, XB)
g(XA, XB)] < e for every input (XA, XB) XA XB. Denote by Ck (g) the cost of the
best k-round e-error protocol for g and similarly define Ca,k C,B,k. The case e 0
(e.g., C0k (g)) denotes Las Vegas (errorless) protocols.

Finally, if we leave T a deterministic protocol and choose the input uniformly at
random, we can define the e-error distributional complexity D,k (g) to be the cost of the
best k-round protocol for which Pr[T(xa, XB) g(Xa, XB)] < e, under this distribution.
The following lemmas are useful.

LEMMA 1 [20]. For every g, e > 0 D,(g) <_ 2C(g).
LEMMA 2. For all constants 1/2 >_ e > e’ > 0 ck,, (g) O(Ck (g)).

2.2. Results. Let VA, VB be two disjoint sets (ofvertices) with IWal IVBI n and
V= V3 Vn. Let

FA= {fA VA-* {ft VA}

and

f (fA, fB) V --, V

defined by

f(v)={ fA (v) v VA

f v

For each k _> 0 define f(k)(v) by f()(v) v, f(k+l)(v) f(f(k)(v)).
Let vo VA. The function we will be interested in computing is gk FA FB - V

defined by gk(fA, fn) f(k)(Vo).
Remark. In the following theorems note that the number of input bits to each player

is n log n and that they hold for every value of k. We also note that one can make 9k a
Boolean function by taking the parity of the output vertex. All our upper and lower
bounds apply to this Boolean function as well.

THEOREM 1 [141. cA’k(gk) O(klogn).
THEOREM 2. CB,k (gk) f(n k log n).

t. B,kTHEOREM 3. "-’1/3 (gk) 0((1) log n), Cg’k(9k) O((lk)og:).
THEOREM 4. 1/3 (gk) (- k 1og).
Remark. At the end of the proofs of Theorems 2 and 4 we explain why the "ugly"

term -k log n in these lower bounds can be essentially ignored.

214 NOAM NISAN AND AVI WIGDERSON

In the remainder we show the completeness of gk for monotone depth k circuits.
Let gk gk,, to stress that each player gets n vertices.

DEFINITION. For a Boolean function h define Le(h) to be the size of the minimal
rnonotoneformula of depth d and unbounded fanin that computes h. Define LSe(k, n) to
be the maximum of Le(h) over all functions h that can be computed by monotone circuits
of unbounded fanin depth k and total size n. Define LFe(k, n) to be the maximum of
Le(h) over all functions h that can be computed by a formula of depth k and fanin n at
each gate.

THEOREM 5.

log LSd(k, n) < Cd(gk,) < log LFd(k, n).

The left inequality was proven in [7], and allowed them to deduce a lower bound on
gk from their circuit lower bound. The right inequality was independently discovered
by Yannakakis [18]. It allows us to recover the tight hierarchy theorem of [7] from the
lower bound on gk.

Let hk be the complete function for depth k-circuits, i.e., an altrnatin and-or tree
of depth k and fanin n1/k at each gate.

COROLLARY (see Klawe et al. [7]). Any monotone circuit of depth k 1 for hk
requires size 2n(’/

2.3. Probability, measure, and information theory. Let f be a finite set (universe),
X c_ f. Denote by #(X) the density of X in f, #(X) IXI/llo t x --, [0, 1]
a probability distribution on X, and z X a random variable distributed according
to P. The probability of any event Y c_ X is denoted Prp[Y], and the subscript P is
usually omitted. For y E X, we write Pr[{y}] Py. Then the entropy H(P) H(z)
]uex Pu log Pu. The information on X (relative to f), is I(x) log If l H(x). If P
is the uniform distribution U on X, then H(x) log IXI, and l(x) log #(X).

The following lemmas will be useful to us.
LEMMA 3. Let x (xl, x2,.. x,) be a random variable (so f

and xi distributed over fi), then I(x) >i I(xi).
The next lemma (from [15]) shows that if I(x) is very small, one can get good bounds

on the probability of any event under P in terms of its probability under the uniform
distribution U.

LEMMA 4 [15]. For Y C_ X, let q Pru[Y]. Assume

Then

LEMMA 5. If

then

IPrP[Y] ql < qA.

1
X=f={0,1}, I(x) <_ <_ ,

1

ROUNDS IN COMMUNICATION COMPLEXITY REVISITED 215

2.4. Proofs.
Proofof Theorems 1 and 3. CA’k (gk k log n follows easily, since in round t the

right player knows f(vt-1) vt and can send these log n bits to the second player.
The idea in beating the deterministic 2(n) lower bound when the wrong player/3

starts is as follows: First/3 chooses a random subset U c_ VB with IUI 1On and sends
to A {fB(u) u U}. Now it is A’s turn and they start sending each other v, v2,...

as above, but lagging one round "behind schedule." However, with probability > 2/3,
one of the vi’s will be in U, which allows them to save two rounds, and "finish on time."
This gives c,B’k(gk) O((k + n/k)log n). This algorithm can be made Las Vegas with
an extra factor of O(log n) in the complexity.

Proofof Theorems 2 and 4. Let f fA fB E FAX FB be the input. Let T’ be a
deterministic k-round protocol for gk in which/3 sends the first message. Note that at
any round t > 1, if it is/3’s turn to speak, then vt-1 f(t-1) (v0) EVA, and vice versa. It
will be convenient to replace T’ by a protocol T in which in any round t _> 1, we replace
the message m by the message (m, vt-). By induction on t, this is always possible for
the player whose turn it is. In particular, it implies that _> log n bits are sent per round.
Thus, if T’ uses C bits, T uses < C + k log n bits. We will assume T uses en/2 bits, (e will
be chosen later) and obtain a contradiction.

Every node z of the protocol tree T can be labeled by the rectangle F x F$ of
inputs arriving at z. By the structure of T, if z is at level t > 1 (the root is at level 0),
then v0, Vl,..., Vt-1 are determined in F x F.

We shall assume the input is chosen uniformly at random from FA x Fn, so in fact
we shall bound from below the distributional complexity. Thus the probability of arriving
at z is #(F x F), and given that the input arrived at z, it is uniformly distributed in

F x F. The main lemma below intuitively shows that if the input arrived at z and
the rectangle at z has nice properties, then with high (enough) probability the input will
proceed to a child w of z, which is equally nice. Nice means that both F, F are large
enough and that the player not holding Vt-1 has very little information on vt f(vt-1).

Denote by c the total number of bits sent by the players before arriving at z. As-
sume without loss of generality that A speaks at z. Let f and f be random variables
uniformly distributed over F and F, respectively. Recall that T uses _< n bits, and
let 6 satisfy 6 Max {4v 400 e}. Define z to be nice if it satisfies:

1. I(f) < 2c,
2. I() _< 2c
3. I(y(vt_)) < .
MAIN LEMMA. If z is nice, and w a random child of z, then Pr[w not nice] < 4x/7+

Proof. Assume A sends bits at z. Let ao be the length of the message, which leads
to the child w. Thus, c0 Cz + ao for all children w of z. We will now give upper bounds
separately on the probability of each of the three properties defining nice being false at
a random child w.

Claim 1. Pr[I(f) > 2co] O.
Proof. B sent nothing, so Vw F F and

I(f) I(f) <_ 2cz < 2cw.

Claim 2. Pr[I(f) > 2co] _< 1.

216 NOAM NISAN AND AVI WIGDERSON

Proof. A child w is chosen with probability #(F)/#(F). Also note that the for
every w ao _> log n (by our assumption on the protocol) and they satisfy Kraft’s inequal-
ityo 2-a < 1 (where the sum is over all children of z). Thus we have

Pr[I(/) > 2co] _< Pr[#(F) < 2-2]

/ 1< Pr[#(F%) #(F) < 2-2a’] < ; 2-aw ["]
n

W

Claim 3. Pr[I(f(vt)) > 6] < 4v/.
Proof. We may assume now that I(f) < 2c < e n. The random variable f is a

vector of random variables f(v) for all v VA. Thus, by Lemma 3, ,vev I(f.(v)) <
I(f.) < en. So ifvtwaschosenuniformlyfrom VA, Pru[I(f(vt)) > 6] < } byMarkov’s
inequality. But vt f3(vt-1), so vt is distributed with I(vt) I(f3(Vt_l)) <_ 6 as we
assumed z was nice. By Lemma 4 (and our choice of t),

Pr[I(f, (vt)) > 51 <_ - 1 + <_ 4x/-.

Now we can conclude the proofs of Theorems 2 and 4 from the main lemma. Con-
sider any nice leaf of the protocol tree T, labeled by an answer (0 or 1). Say A spoke on
the last round k. Then I(vk) l(feB(Vk_l)) < 6. So by Lemma 5, even if the algorithm
gives one bit (say, parity) of the answer, it is correct with probability < 1/2 + 2v.

Conclusion of Theorem 2. Take e 10-4. The root of T is nice, so by the main
lemma and induction we have a positive probability (> 2-k) of reaching a nice leaf,
contradicting the fact that the protocol never errs. This proves only CB,k (g) f(n
k log n), since we augmented an arbitrary T’ to a nice protocol T.

Getting rid ofthe -k log n term, achieving the lower bound CB,k (gk) f(n) (which
is stronger when k >)requires a more delicate argument that we sketch below. The
idea is to follow the same steps of the proof with the following changes.

(1) We stay with the original protocol T’, as we cannot afford the players sending
log n bits per round as in the nice protocol T.

(2) We still fix the vertex vt-1 by the player sending the message at round t, but
avoid paying log n bits for this information by removing this vertex from our universe.
Thus, the information I is measured relative to a smaller set of pointers at every round.

(3) We prove a weaker main lemma, which is clearly sufficient in the deterministic
case, namely, that every nice node z has at least one nice child w. The details are left to
the interested reader.

Conclusion ofTheorem 4. Pick e 10-4. k-2 Thus the probability of not reaching
a nice leaf is < k +/- and the probability that the protocol answers correctly is25k 25

2 1DB,kless than 5 + (+ g--) < 0.95. Thus we get from Lemmas 1 and 2 that ’i/2o(gk)
k

This bound is f(n/k2) for all k < (n/log n) 1/3. For larger k one can use the trivial
lower bound k, which applies to every k-round protocol. Note that when k >_ n1/3 this
trivial bound is larger than n/k2.

ProofofTheorem 5. As mentioned above, the left inequality was proven in [7], so we
prove only the right inequality. The proof is based on the Karchmer and Wigderson char-
acterization of circuit depth in terms of communication complexity, which can be stated

ROUNDS IN COMMUNICATION COMPLEXITY REVISITED 217

as follows. For every monotone function h on n variables with minterms Min(h) and
maxeterms Max(h) define a communication search problemR c Min(h) Max(h) [hi
in which player A gets a minterm S Min(h), player/3 gets a maxterm T Max(h), and
their task is to find an element in S fq T. Then monotone formulae for h and protocols
for R are in 1-1 correspondence via the simple syntactic identification of V gates with
player A’s moves and A gates with player B’s moves. In particular, depth corresponds to
the number of rounds and logarithm of the size to the communication complexity.

In view of the above, all we need to give now is a reduction from computing g, to
the computation ofR for some function h, which has a depth k formula of fanin n at
each gate. Once this is done, the players can solve R and hence, g,, in d rounds and
log LFa(k, n) communication by simulating the guaranteed depth d circuit for h.

Let h be defined by a formula that is a complete n-ary tree of depth k, alternating
levels of V and A gates (say, with V at the root), and distinct n variables at the leaves.
The players agree on a fixed labeling of the nodes of this tree in which the root is labeled
v0, the children of every V gates labeled by V, and children of every A gate labeled by
VA. Let fA and fn be the inputs to players A, B, respectively. Player A constructs sets Si
of nodes from the ith level inductively as follows. S0 contains the root. If level contains
V gates, then for every gate in Si labeled v he adds to Si+ the unique child of this gate
labeled fA (v). If level contains A gates, then for every gate in S he adds all its children
to Si+. In a similar way (exchanging the roles of gates) player B constructs his sets Ti.
It is easy to verify that S is a minterm of h, T is a maxterm of h, and that they intersect
at a unique leaf whose label is f()(v0). This completes the reduction, and hence the
proof.

3. The three-party model. Let g {0, 1} {0, 1}- {0, 1}’ {0, 1} be
a function. Players P1,P,P3 are given (xg.,x3), (z,z3), (x,x2), respectively, with
x {0, 1}n’ and compute g from this information by exchanging messages according
to a predetermined protocol. We consider only 3-round protocols in which each player
speaks once. Let M (g) denote the communication complexity when player P speaks
first (and then the other two in arbitrary order), and Ms (g) the complexity when they
all speak simultaneously (an oblivious protocol). Clearly, for all {1, 2, 3} M(g) <_
M(g)

Let u (0, 1}2n (0, 1} (0, 1}lgn - (0, 1} be the followin function. Interpret
the first string x as a 2-universal hash function (see Carter and Wegman [23]) h, mapping
(0, 1 }’ to itself, the second string x2 as an argument y to h, and the third x3 as an index
j E In]. Then, u(h, y, j) h(y)j. The next two theorems exhibit an exponential gap
between 3-round protocols that differ in the order in which players speak.

THEOREM 6. MI(u) M2(u) O(logn).
THEOREM 7. M3 (u) f(V/-).
Proofof Theorem 7. We first recall a fundamental lemma from [11] regarding the

distribution of hash values given little information on the hash function and the argu-
ment.

LEMMA 6 [11]. Let H (h I O} be a collection ofuniversal hash functionsfrom
domain I into range O. Let A c I, B c O, C c H and p BI/IOl. Then

Pr[h(x) e B Ix e A,h e C]-pl <- V/plHI/(IA]ICI)

Restrict the value of j to be j [v/-]. Thus, we consider h (0, 1}’ {0, 1}4-a,
which is still a universal hash function. Assume M3(u) < x/-/5. This means that there
is a new protocol (independent of j) to compute z h(y) in which P3 sends x/-/5 bits,

218 NOAM NISAN AND AVI WIGDERSON

and then players P1 and P2 can compute each bit of z separately, usil,.g altogether n/5
bits.

Let (h, y) be chosen uniformly at random. Simple averaging shows that there are
messages ml,m:, ma of P1, P, Pa, respectively, which under this distribution, satisfy
Pr[ml] _> 2-n/4, Pr[m2] _> 2-n/4, and Pr[m3] _> 2-v/-/4. As mi corresponds to a subset
C of all hash functions (inputs to P1), and m2 corresponds to a subset A of all inputs to
P2, we can use Lemma 6 with [HI/ICI <_ 2n/4, 1/IAI _< 2-3n/4, B {z} and p 2-vr
to obtain

Pr[h(y) z Imp, _< Pr[h(y)

z lml, m2] _< 2v//4 2-/-/2 2-v/4 < 1.

Let f {0, 1}’ {0, 1}’ be an arbitrary function, and for any m’ < m define

gf" {0, 1}m’ x {0, 1}m-m’ x {0,1}lg’ {0, 1}bygf(xi,x2,x3)

f(xl o x2)x3,

where o denotes concatenation. The next theorem gives the relationship of size-depth
trade-offs in circuits to 3-round oblivious protocols.

THEOREM 8. Iff above can be computed by a circuit offan-in 2, size O(n), and depth
O(log n), then MS(gy) O(n/ log log n).

Proofof Theorem 8. Let f {0, 1}’ ---, {0, 1 }n be computed by a circuit C of size
O(n) and depth O(log n). By a result of Valiant [17], there are s O(n/log log n) wires
in C, el,e2,...,e8 with the following property. For every input x E {0, 1}", and every
j E In], f(x)j is determined by the values el (x),..., e,,(x) on these wires, together with
the values of zi, 6 S with 1:51 -< x/-. To compute 9f, note that Pa has access to
z (z o z) (which is the input to f) and, therefore, can compute the values on the
wires. P and Pa, now knowing j za, exchange the necessary bits in S to complete
the computation of f(x)j.

Acknowledgments. We are grateful to the referees for careful reading and many
valuable suggestions.

REFERENCES

[1] L. BABAI, N. NISAN, AND M. SZEGEDY, Multiparty protocols and logspace-hard pseudorandom sequences,
Proc. of the 21st STOC, 1989, pp. 1-11.

[2] A. CHANDRA, M. FURST, AND R. LIPTON, Multi-partyprotocols, Proc. of the 15th STOC, 1983, pp. 94-99.
[3] L. CARTER AND M. WEGMAN, Universal hash functions, J. Comput. System Sci., 18 (1979), pp. 143-154.
[4] P. DURIS, Z. GALIL, AND G. SCHNITGER, Lower bounds of communication complexity, Proc. of the 16th

STOC, 1984, pp. 81-91.
[5] J. I-STAD AND M. GOLDMANN, On the power ofsmall depth threshold circuits, Proc. of the 31st FOCS,

1990, pp. 610-618.
[6] B. HALSTENBERGAND R. REISCHUK, On different modes ofcommunication, Proc. of the 20th STOC, 1988,

pp. 162-172.
[7] M. KLAWE, W. J. PAUL, N. PIPPENGER, AND M. YANNAKAKIS, On monotoneformulae with restricted depth,

Proc. of the 16th STOC, 1984, pp. 480-487.
[8] M. KARCHMER AND A. WIGDERSON, Monotone circuits for connectivity require super-logarithmic depth,

Proc. of the 20th STOC, 1988, pp. 539-550.
[9] T. LAM AND L. RUZZO, Results on communication complexity classes, Proc. of the 4th Structures in Com-

plexity Theory Conference, 1989, pp. 148-157.

ROUNDS IN COMMUNICATION COMPLEXITY REVISITED 219

[10] L.A. McGEOcH,A strongseparation between k and k- 1 roundcommunication complexityfora constructive
language, Tech. Report CMU-CS-86-157, Carnegie Mellon University, Pittsburgh, PA, 1986.

[11] Y. MANSOUR, N. NISAN, AND P. TIWARY, The computational complexity of universal hashing, Proc. of the
22nd STOC, 1990, pp. 235-243.

[12] K. MEHLHORN AND E. SCHMIDT, Las Vegas is better than determinism in VLSI and distributed computing,
Proc. of the 14th STOC, 1982, pp. 330-337.

[13] N. NISAN, Pseudorandom generators for space bounded computation, Proc. of the 22nd STOC, 1990, pp.
204-212.

[14] P.H. PAPADIMITRIOU AND M. SIPSER, Communication complexity, Proc. of the 14th STOC, 1982, pp. 330-
337.

[15] R. RAZ AND A. WIGDERSON, Probabilistic communication complexity of Boolean relations, Proc. of the
30th FOCS, 1989, pp. 562-567.

16] D.V. SMIRNOV, Shannon’s information methodsfor lower boundsforprobabilistic communication complex-
ity, manuscript 1989. (In Russian.)

[17] L. VALIANT, Graph theoretic arguments in low-level complexity, Tech. Report CS 13-77, University of Ed-
inburgh, Edinburgh, UK, 1977.

[18] M. YANrAr,AraS, private communication.
[19] A. C.-C. YAO, Some complexity questions related to distributive computing, Proc. of the 11th STOC, 1979,

pp. 209-213.
[20] ,Lower bounds byprobabilistic arguments, Proc. of the 24th FOCS, 1983, pp. 420-428.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 221-242, April 1993

() 1993 Society for Industrial and Applied Mathematics
001

RECURSIVE STAR-TREE PARALLEL DATA STRUCTURE*
OMER BERKMANt AND UZI VISHKINt*

Abstract. This paper introduces a novel parallel data structure called the recursive star-tree (denoted
"*-tree"). For its definition a generalization of the functional is used (where for a function f f(n)
min{ilf(O(n <_ 1} and f(0 is the ith iterate of f). Recursive *-trees are derived by using recursion in the
spirit of the inverse Ackermann function.

The recursive *-tree data structure leads to a new design paradigm for parallel algorithms. This paradigm
allows for extremely fast parallel computations, specifically, O(a(n)) time (where a(n) is the inverse of the
Ackermann function), using an optimal number of processors on the (weakest) concurrent-read, concurrent-
write parallel random-access machine (CRCW PRAM).

These computations need only constant time, and use an optimal number of processors if the following
nonstandard assumption about the model of parallel computation is added to the CRCWPRAM: an extremely
small number of processors each can write simultaneously into different bits of the same word.

Applications include finding lowest common ancestors in trees by a new algorithm that is considerably
simpler than the known algorithms for the problem, restricted domain merging, parentheses matching, and a
new parallel reducibility.

Key words, parallel algorithms, parallel data structures, lowest common ancestors

C.R. subject classification. E 2. 2

1. Introduction. The model ofparallel computation used in this paper is the concur-
rent-read, concurrent-write (CRCW) parallel random-access machine (PRAM). We as-
sume that several processors may attempt to write at the same memory location only if
they are seeking to write the same value (the so-called Common CRCW PRAM). We
use the weakest Common CRCW PRAM model, in which only concurrent writes of the
value one are allowed. Given two parallel algorithms for the same problem, one is more
efficient than the other if (1) primarily, its time-processor product is smaller and (2) sec-
ondarily (but important), its parallel time is smaller. An optimal parallel algorithm is
an algorithm whose time-processor product matches the sequential complexity of the
problem (which in this paper is always linear). Afully parallel algorithm is a parallel al-
gorithm that runs in constant time and uses an optimal number of processors. An almost
fully parallel algorithm is a parallel algorithm that runs in time cz(n) (the inverse of the
Ackermann function) while using an optimal number of processors.

The notion of a fully parallel algorithm represents an ultimate theoretical goal for
designers of parallel algorithms. Research on lower bounds for parallel computation
(see references later) indicates that for nearly any interesting problem this goal is not
achievable. These same results also preclude almost fully parallel algorithms for the
same problems. Therefore, any result that approaches this goal is somewhat surprising.

Received by the editors April 16, 1990; accepted for publication (in revised form) January 8, 1992. Based
on "Recursive *-Tree Parallel Data-Structure" by O. Berkman and U. Vishkin which appeared in the 30th
Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, October
30-November 1, 1989, pp. 196-202. @1989 IEEE.

tDepartment of Computing, King’s College London, The Strand, London WC2R 2LS, England. Part of
this work was carried out while the author was at the University of Maryland Institute for Advanced Computer
Studies (UMIACS), College Park, Maryland 20742; and the Department of Computer Science, Tel Aviv Uni-
versity, Tel Aviv, Israel 69978. The work of this author was partially supported by National Science Foundation
grant CCR-8906949.

*University of Maryland Institute for Advanced Computer Studies (UMIACS), University of Maryland,
College Park, Maryland 20742; and Department of Electrical Engineering, University of Maryland, College
Park, Maryland 20742; and the Department of Computer Science, Tel Aviv University, Tel Aviv, Israel 69978.
The work of this author was partially supported by National Science Foundation grants CCR-8906949 and
CCR-9111348.

221

222 OMER BERKMANAND UZI VISHKIN

The class of doubly logarithmic optimal parallel algorithms and the challenge of
designing such algorithms is discussed in [BBG+89]. The class of almost fully parallel
algorithms represents an even stricter demand.

There is a remarkably small number ofproblems for which there exist optimal paral-
lel algorithms that run in o(log log n) time. These problems include (a) OR and AND of
n bits; (b) finding the minimum among n elements, where the input consists of integers
in the domain [1,..., n] for a constant c (see [FRW84]); (c) log() n coloring of a cycle,
where log() is the kth iterate of the log function and k is constant [CV86b]; (d) some
probabilistic computational geometry problems [Sto88]; (e) matching a patternostring in
a text string, following a preprocessing stage in which a table based on the pattern is built
[Vis91].

Not only is the number of such upper bounds small, there is evidence that for al-
most any interesting problem an o(log log n)-time optimal upper bound is impossible.
We mention time lower bounds for a few very simple problems. Clearly, these lower
bounds apply to more involved problems. For brevity, only lower bounds for optimal
speed-up algorithms are stated: (a) parity of n bits, for which the time lower bound is
f(log n/log log n), following from the lower bound of [Has86] for circuits in conjunction
with the general simulation result of [SV84] or from [BH87]; (b) finding the minimum
among n elements, for which the lower bound is f(log log n) on a comparison model
[Val75]; (c) merging two sorted arrays of numbers, for which the lower bound is similar
to (b) [an85].

The main contribution of this paper is a parallel data structure called a recursive *-
tree. This data structure also provides a new paradigm for parallel algorithms. There
are two known examples for which tree-based data structures provide a "skeleton" for
parallel algorithms: (1) balanced binary trees, where the depth of such a tree with n
leaves is log n, and (2) "doubly logarithmic" balanced trees, where the depth of such
a tree with n leaves is log log n (each node of a doubly logarithmic tree, whose rooted
subtree has x leaves, has x/ children). Balanced binary trees are used in the prefix-sums
algorithm of [LF80] (perhaps the most heavily used routine in parallel computation)
and in many other logarithmic-time algorithms. [BBG/89] shows how to apply doubly
logarithmic trees for guiding the flow of the computation in several doubly logarithmic
algorithms (including some previously known algorithms). Similarly, the recursive *-tree
data structure provides a new pattern for almost fully parallel algorithms.

To be able to list results obtained by application of *-trees, we define the follow-
ing family of extremely slow-growing functions. Our definition is direct. A subsequent
comment explains how this definition leads to an alternative definition of the inverse
Ackermann function. For a more standard definition see [Tar75]. We note that such
a direct definition is implicit in several "inverse-Ackermann-related" serial algorithms
(e.g., [HS86]).

The inverse-Ackermann function. Consider a real function f. Let f(0 denote the
ith iterate of f. (Formally, we denote f()(n) f(n) and f(i)(n) f(f(i-)(n)) for
i > 1.) Next, we define the (pronounced "star") functional that maps the function f
into another function ,f: ,f(n) min{ilf(O(n) < 1} (we consider only functions for
which this minimum is well defined). (The function log* will thus be denoted log.)

We define inductively a series I of slow-growing functions from the set of inte-
gers that are larger than 2 into the set of positive integers: (i) Ii(n) [n/2 and (ii)
Ik *Ik-1 for k _> 2. The first three in this series are familiar functions: It (n) [n/2],
I2(n) [log n], and I3(n) * log n. The inverse Ackermann function is a(n)
min{i I(n <_ i}.

RECURSIVE STAR-TREE 223

Comment. Ackermann’s function is defined following [HS86] as follows: Al(r)
2n and A(n) A)_ (1) for k > 2.

Note that I is actually the inverse of the kth recursion level of A, the Ackermann
function, namely, I(n) min{i A(i) > n} or l(A(n)) n. The definition of a(n)
is equivalent to the more often used (but perhaps less intuitive) definition:
min{i A(i) > n}.

Applications ofrecursive *-trees.
1. The lowest-common-ancestor (LCA)problem. Suppose a rooted tree T is given

for preprocessing. The preprocessing should enable a single processor to process quickly
queries of the following form: Given two vertices u and v, find their lowest common
ancestor in T.

Results. (i) Preprocessing is in lm (n) time and uses an optimal number of proces-
sors. (The space complexity here and throughout the paper is linear unless otherwise
specified.) Queries will be processed in O(m) time, that is, O(1) time for constant m.
A more specific result is (ii) almost fully parallel preprocessing and O((n)) time for
processing a query. These results assume that the Euler tour of the tree and the level
of each vertex in the tree are given. Without this assumption the time for preprocessing
is O(log n) with an optimal number of processors, and each query can be processed in
constant time. For a serial implementation the preprocessing time is linear and a query
can be processed in constant time.

Our algorithm for the LCA problem is new and is based on an approach that is
completely different from the serial algorithm of Harel and Tarjan [HT84] and the sim-
plified and parallelizable algorithm of Schieber and Vishkin [SV88]. Its serial version is
considerably simpler than these two algorithms. Specifically, consider the Euler tour of
the tree and replace each vertex in the tour by its level. This gives a sequence of inte-
gers. Unlike previous approaches, the new LCA algorithm is based only on an analysis
of this sequence of integers. In particular, answering an LCA query converts to finding
the minimum over some range [i, i + 1,..., j] of the sequence of levels. (We define the
range-minima problem formally and discuss previous results for it in 3.) This provides
another interesting example of the quest for parallel algorithms also enriching the field
of serial algorithms. Algorithms for quite a few problems use an LCA algorithm as a
subroutine. We mention some: (1) strong orientation [Vis85]; (2) computing an open
ear decomposition and st-numbering of a biconnected graph [MSV86] (also, [FRT89]
and [RR89] use as a subroutine an algorithm for st-numbering and thus also the LCA
algorithm); (3) approximate string matching on strings [LV89] and on trees [SZ89] and
retrieving information on strings from their suffix trees JAIL+88].

2. The all-nearest-zero-bitproblem. Let A (a, a,..., a) be an array of bits. For
each bit a find the nearest-zero bit both to its left and right.

Result. The algorithm is almost fully parallel.
A similar problem is considered in [CFL83], where the motivation is circuits.
3. The parentheses-matching problem. Suppose a legal sequence of parentheses is

given. For each parenthesis find its mate.
Result. Assuming the level of nesting of each parenthesis is given, we have an almost

fully parallel algorithm. Without this assumption T O(log n/log log n) if an optimal
number of processors is used.

Parentheses matching in parallel is considered in [AMW89], [BSV88], [BV85], and
[DS83]. We are putting the algorithm for parentheses matching into a later paper
[BV91] to keep the present paper to a reasonable length.

4. Restricted-domain merging. Let A (a,..., a,) and B (b,..., b,) be two

224 OMER BERKMAN AND UZI VISHKIN

nondecreasing lists whose elements are integers drawn from the domain [1,-.., n]. The
problem is to merge them into a sorted list.

Result. The algorithm is almost fully parallel.
Merging in parallel is considered in [Van89], [BH85], [Kru83], [SV81], and [Va175].

We presented the merging algorithm in another paper [BV90], where it is implemented
on the less powerful concurrent-read, exclusive-write (CREW PRAM) model with the
same bounds, and the restricted-domain limitation is somewhat relaxed by using unre-
lated techniques.

5. Almostfullyparallel reducibility. Let A and/3 be two problems. Suppose that any
input of size n for problem A can be mapped into an input of size O(n) for problem/3.
Such a mapping from A to B is an almostfullyparallel reducibility if it can be realized by
an almost fully parallel algorithm.

Given a convex polygon, the all-nearest-neighbors (ANN) problem is to find for each
vertex of the polygon its nearest (Euclidean) neighbor. Using almost fully parallel re-
ducibilities, we prove the following lower bound for the ANN problem: Any CRCW
PRAM algorithm for the ANN problem that uses O(n logc n) (for any constant c) pro-
cessors needs f(log log n) time. We note that this lower bound is proved in [SV90] by
using a considerably more involved technique.

Fullyparallel results. For our fully parallel resultswe introduce the CRCW-bitPRAM
model of computation. In addition to the above definition of the CRCW PRAM, we as-
sume that a few processors can each write simultaneously into different bits of the same
word. Specifically, in our algorithms this number of processors is very small and never
exceeds O(Ia(n)), where d is a constant. Therefore, the assumption strikes us as quite
reasonable from the architectural point ofview. We believe that the cost for implement-
ing a step of a PRAM on a feasible machine is likely to absorb implementation of this
assumption at no extra cost. Nevertheless, we do not advocate adopting the CRCW-bit
PRAM as a theoretical substitute for the CRCW PRAM.

Specific fully parallel results.
1. The lowest-common-ancestorproblem. The preprocessing algorithm is fully par-

allel if we assume that the Euler tour of the tree and the level of each vertex in the tree
are given. A query can be processed in constant time.

2. The all-nearest-zero-bitproblem. The algorithm is fully parallel.
3. The parentheses-matchingproblem. If we assume that the level of nesting of each

parenthesis is given, the algorithm is fully parallel.
4. Restricted-domain merging. The algorithm is fully parallel.
Results 3 and 4 are not explicitly given in [BV91] and [BV90]. However, they can

be derived from the series of fast algorithms in these papers in a fashion similar to the
way the fully parallel algorithm of 4.4 in the current paper is derived from the series of
algorithms of Lemma 4.2.1 below.

We elaborate on where our fully parallel algorithms use the CRCW-bit new assump-
tion. The algorithms workby mapping the input of size n into n bits. Then, given any con-
stant d, we derive a value z O(Ia(n)). The algorithms proceed by forming n/z groups
of z bits each. Informally, our problem is then to pack all z bits of the same group into a
single word and solve the original problem with respect to an input of size z in constant
time. This packing is exactly where our almost fully parallel CRCW PRAM algorithms
fail to become fully parallel and the CRCW-bit assumption is used. We believe that it is
of theoretical interest to determine ways of avoiding such packing and thereby get fully
parallel algorithms on a CRCW PRAM without the CRCW-bit assumption and suggest
this as open problem.

RECURSIVE STAR-TREE 225

A repeating motif in the present paper is putting restrictions on the domain of prob-
lems. This is the case for the all-nearest-zero-bit problem and the restricted-domain
merging problem. Perhaps our more interesting applications concern problems whose
input domain is not explicitly restricted. This is the case for the LCA problem and the
parentheses-matching problem. However, as part of the design of our algorithms for
these respective problems, we identified a few subproblems whose input domains are
restricted: The level of vertices in the Euler tour is the restricted input for the LCA sub-
problem, and the level of nesting of each parenthesis is the input for the parentheses-
matching subproblem. The Euler tour and prefix sums (by which the level of nesting
is computed) are basic techniques for trees and arrays, respectively. A lower bound on
their running times is f(log n/log log n). One of the aims of this paper is to determine
the added difficulty ofeach ofthe two problems, LCAand parentheses matching, beyond
the use of these basic (and simple) techniques.

The rest of this paper is organized as follows. Section 2 describes the recursive *-
tree data structure, and 3 recalls a few basic problems and algorithms. In 4 the parallel
algorithms for LCA and the all-nearest-zero bit are presented. A sequential version
of the LCA algorithm, which is considerably simpler than the parallel version, is also
outlined. The almost fully parallel reducibility is presented in 5, and 6 discusses how
to efficiently compute the functions used in this paper.

2. The recursive *-tree data structure. Let n be a positive integer. We define in-
ductively a series of c(n) 1 trees. For each m, 2 < m < c(n), a balanced tree with
n leaves, denoted BT(m), is defined. For a given m, BT(m) is a recursive tree in the
sense that each of its nodes holds a tree of the form BT(m 1).

The base of the inductive definition (see Fig. 1). We start with the definition of the
*-tree BT(2). BT(2) is simply a complete binary tree with n leaves.

Number of
children
per node

I)(n)/ll)(n) 2

I)(n)/I2)(n) 2

l2)(n)/lZ)(n) 2

Number
of leaves
per node

=-

Level
of the
tree

I(n) +
1,2.(n) +
log +

leaves

FIG. 1. A BT (2) tree.

226 OMER BERKMAN AND UZI VISHKIN

The inductive step (see Fig. 2). For m, 3 < m < a(n), we define BT(m) as follows.
BT(m) has n leaves. The number of levels in BT(m) is ,I,_l(n) + 1 (= 1,(n) + 1).
The root is at level 1, and the leaves are at level ,1,_1(n) + 1. Consider a node v

r(g-1)(n)/I)_ (n)children (weat level 1 < < ,I,_l(n) of the tree. Node v has ,-1
define I(m)-1 (n) to be n). The total number of leaves in the subtree rooted at node v is

-1 (n). We refer to the part of the BT(m) tree described so far as the top recursion
level ofBT(m) (denoted TRL-BT(m) for brevity). In addition, node v recursively con-
tains a BT(m-1) tree. The number ofleaves in this tree is exactly the number ofchildren
of node v in BT(m).

Number of
children
per node

I)- (n)/I)- ()

I)-1 (n)/I)- (tl)

I)-1 (n)/I)-1 (lI)

Number
of leaves
per node

I(m)_l(n)

Level
of the
Lree

leaves

Node recursively
holds a BT(m- 1)
tree with y leaves

FIG. 2. BT (m)--ruth recursive *-tree.

There is one key idea that enables our algorithms to be as fast as they are. When
the ruth tree BT(m) is used to guide the computation, we invest O(1) time on the top
recursion levelfor BT(m)! Since BT(m) has m levels of recursion, this leads to a total
of O(m) time.

Similar computational structures have appeared in a few contexts. See [AS87] and
[Yao82] for generalized range-minima computations, [HS86] for Davenport-Schinzel
sequences, and [CFL83] for circuits.

3. Basics. We need the following problems and algorithms.
The Euler-tour technique. Consider a tree T (V, E) rooted at some vertex r. The

Euler-tour technique enables us to compute several problems on trees in logarithmic

RECURSIVE STAR-TREE 227

time and optimal speedup(see also [TV85] and [Vis85]). The technique is summarized
below.

Step 1. For each edge (v u) in T we add its antiparallel edge (u v). Let H
denote the new graph. Since the in-degree and out-degree of each vertex in H are the
same, H has an Euler path that starts and ends in the root r of T. Step 2 computes this
path into a vector of pointers D of size where for each edge e of H, D(e) gives the
successor edge of e in the Euler path.

Step 2. For each vertex v of H we do the following. Let the outgoing edges of v be
(V ---r U0),’’’, (V "-4 Ud-X). Then D(ui v) := (v - U(i+l)modd) for i 0,..., d- 1.
Vector D now represents an Euler circuit of H. The "correction" D(ud-1 -- r) :-- end-
of-list (where the out-degree of r is d) gives an Euler path that starts and ends in r.

Step 3. In this step we apply list ranking to the Euler path. This results in ranking the
edges so that the tour can be stored in an array. Similarly, we can find for each vertex in
the tree its distance from the root. This distance is called the level ofvertex v. These and
other applications of list ranking appear in [TV85]. This list ranking can be performed
in logarithmic time with an optimal number of processors by the method of [AM88],
[CVS6a], or [CV891.

Comments.
1. In 4 we assume that the Euler tour is given in an already ranked form. There we

systematically replace each edge (u, v) in the Euler tour by the vertex v. We then add
the root of the tree to the beginning of this new array. Suppose a vertex v has children.
Then v appears + I times in our array.

2. We note that while advancing from a vertex to its successor in the Euler tour, the
level may either increase by one or decrease by one.

Findingthe minimumforrestricted-domain inputs. Given an array A (al, a2,’’’, a,)
where each ai is an integer between 1 and n, find the minimum value in A.

Fich, Ragde, and Wigderson [FRW84] gave the following parallel algorithm for the
restricted-domain minimum-finding problem. It runs in O(1) time with n processors.
We use an auxiliary vector/3 of size n, which is all zero initially. Processor i, 1. < <
n, writes one into location B(a). Now the problem is to find the leftmost one in/3.
Partition B into equal-size subarrays. For each such subarray find in O(1) time, using

processors, whether the subarray contains a one. Apply the O(1) time algorithm of
Shiloach and Vishkin [SV81] for finding the leftmost subarray of size containing a
one, using n processors. Finally, reapply this latter algorithm for finding the index of the
leftmost one in this subarray.

Remark 3.1. This algorithm can be readily generalized to yield O(1) time for inputs
between i and pC, where c > I is a constant, as long as p > n processors are used.

Range-minimaproblem. Given an array A (al, a2, , a,) of n real numbers, pre-
process the array so that for any interval [ai, a+l,..., aj] the minimum over the interval
can be retrieved in constant time by using a single processor.

We show how to preprocess A in constant (to be precise, O(1/e)) time with n+"

processors and O(nTM) space for any constant e. The preprocessing algorithm uses the
following naive parallel algorithm for the range-minima problem. Allocate n2 processors
to each interval [ai, a+,..., aj], and find the minimum over the interval in constant
time, as in [SV81]. This naive algorithm runs in constant time and uses n4 processors
and n2 space.

The preprocessing algorithm. Suppose some constant e is given. The output of the
preprocessing algorithm can be described by means of a balanced tree T with n leaves,
where each internal node has n/3 children. The root of the tree is at level one, and the

228 OMER BERKMANAND UZI VISHKIN

leaves are at level 3/e+ 1. Let v be an internal node, and, let Ul, , Un,/3 be its children.
Each internal node v has the following data:

1. M(v), the minimum over its leaves (i.e., the leaves of its subtree);
2. For each 1 < i < j < n/3 the minimum over the range {M(ui), M(ui+l),...,

M(uj)}.
This requires O(n2/3) space per internal node and a total of O(n1+/3) space.
The preprocessing algorithm advances through the levels of the tree in 3/e steps,

starting from level 3/e. At each level each node computes its data by using the naive
range-minima algorithm. Each internal node uses n4/3 processors and O(n2/3) space,
and the whole algorithm uses n1+ processors, O(n1+/3) space, and O(3/e) time.

Reteval. Supposewewish to find the minimum, MIN(i, j), over an interval [ai, ai+l,.., ay]. Let LCA(ai, a) be the lowest common ancestor of leaf ai and leaf aj in the tree
T. There are two possibilities.

(i) LCA(ai, aj) is at level 3/e. The data at LCA(ai, aj) give MIN(i, j).
(ii) LCA(a, a) is at level < 3/e. Let x be the number of edges in the path from a

(or a) to LCA(a, a) (i.e., LCA(a, a) is at level 3/e + 1 x). Using the tree T, we
can represent interval [i, j] as a disjoint union of 2x 1 intervals whose minima were
previously computed. Formally, let r(i) denote the rightmost leaf of the parent of ai in
T, and, let l(j) denote the leftmost leaf of the parent of aj in T. MIN[i, j] is the minimum
among three numbers.

1. MIN[i, r(i)]. The data at the parent of a give this information.
2. MIN[/(j), j]. The data at the parent of a give this information.
3. MIN[r(i) + 1, l(j) 1]. Advance to level 3/e of the tree to get this information

recursively.
Complexity. Retrieval of MIN(i, j) takes constant time: The first and second num-

bers can be looked up in O(1) time. Retrieval of the third number takes O(3/e 1)
time.

Below we review previous results for the range-minima problem. This review is ap-
propriate since the main technical effort of 4 is a parallel algorithm for an instance of
the range-minima problem. [GBT84] gives a linear time algorithm for preprocessing that
allows constant-time query retrieval. We discuss these results further in Remark 4.1. An
O(log log n)-time optimal parallel preprocessing algorithm for the range-minima prob-
lem is given in [BSV88]. The following generalization of the range-minima problem is
considered in [Yao82] and [AS87]. The input array A contains semigroup elements, and
a query over the range [i, j] requests the product ai.ai+l a, where "." is the semi-
group product operator. Both papers give a sequential algorithm for the problem that
runs in O(na(n)) time and allows O(a(n)) time for query retrieval. In addition, they
show that f(a(n)) is needed if only linear time is allowed for preprocessing. [AS87] also
gives a tradeoff between the sequential time needed for preprocessing and the time for
answering a query. The algorithm we give for our instance of the range-minima prob-
lem (given in 4) benefits from this approach. However, a serial implementation of our
preprocessing algorithm needs only linear time.

4. LCA algorithm. The input to this problem is a rooted tree T (V, E). Let n
2IV] 1. We assume that we are given a sequence of n vertices A [al, , a,], which is
the Euler tour of the input tree, and that we know for each vertex v its level, LEVEL(v),
in the tree.

Recall the range-minima problem defined in 3. Below we give a simple reduction
from the LCA problem to a restricted-domain range-minima problem, which is an in-
stance of the range-minima problem in which the difference between each two successive

RECURSIVE STAR-TREE 229

numbersfor the range-minimaproblem is exactly one. The reduction takes O(1) time and
uses n processors. An algorithm for the restricted-domain range-minima problem is
given later, implying an algorithm for the LCA problem.

4.1. Reducing the LCA problem to a restricted-domain range-minima problem.
Let v be a vertex in T. Denote by l(v) the index of the leftmost appearance of v in
A and by r(v) the index of its rightmost appearance. For each vertex v in T it is easy to
find l(v) and r(v) in O(1) time with n processors by using the following (trivial) obser-
vations: l(v) is where at(,,) v and LEVEL(at(v)_1) LEVEL(v) 1; r(v) is where
at(v) v and LEVEL(at(v)+1) LEVEL(v) 1. The claims and corollaries below
provide guidelines for the reduction.

CLAIM 1. Vertex u is an ancestor ofvertex v ifand only if (u) < () < r(u).
COROLLARY 1. Given two vertices u and v, a singleprocessor canfind in constant time

whether u is an ancestor of v.
COROLLARY 2. Vertices zt and v are unrelated (namely, neither is u an ancestor of v

nor is v an ancestor of u) ifand only ifeither r(u) < l(v) or r(v) < l(u).
CLAIM 2. Let u and v be two unrelated vertices. (By Corollary 2 we may assume without

loss ofgenerality that r(u) < l(v).) Then the LCA of u and v is the vertex whose level is
minimal over the interval [r(u),/(v)] in A.

The reduction. Let LEVEL(A) [LEVEL(a), LEVEL(a),--., LEVEL(an)].
Claim 2 shows that after we perform the range-minima preprocessing algorithm with
respect to LEVEL(A), a query of the form LCA(u, v) becomes a range-minimum query.
Observe that the difference between the level of each pair of successive vertices in the
Euler tour (and thus each pair of successive entries in LEVEL(A)) is exactly one and
therefore the reduction is to the restricted-domain range-minima problem as required.

Remark 4.1. In [GBT84] it is observed that the problem of preprocessing an array
so that each range-minimum query can be answered in constant time (this is the range-
minima problem defined in 3) is equivalent to the LCA problem. It gives a linear-time
algorithm for the former problem by using an algorithm for the latter. This does not
look very helpful: We know to solve the range-minima problem on the basis of the LCA
problem, and, conversely, we know to solve the LCA problem on the basis of the range-
minima problem. Nevertheless, using the restricted-domain properties of our range-
minima problem, we show that this cyclic relationship between the two problems can be
broken and thereby lead to a new algorithm.

4.2. The restricted-domain range-minima algorithm. Belowwe define a restricted-
domain range-minima problem that is slightly more general than the problem for
LEVEL (A). The more general definition enables recursion in the algorithm below.
The rest of this section shows how to solve this problem.

The restricted-domain range-minimaproblem. We are given an integer k and an array
A (a, a2,... ,a,) of integers, such that la a+[< k. In words, the difference
between each a, 1 _< < n, and its successor a+ is at most k. The parameter k need
not be a constant. Preprocess the array A (a, ae,..., an) so that any query MIN[i, j],
1 _< i < j _< n, requesting the minimum element over the interval [a,..., ay], can be
processed quickly with a single processor.

Comment 1. We make the simplifying assumption that and all other quantities
needed in the paper are always integers. For example, log n and n/log n are assumed
to be integers. This implies that the root of BT(3) with n leaves has n/log n children,
each with exactly log n leaves in its rooted subtree. To demonstrate that handling the
general case is only a matter of technicality let us consider as an example the *-tree

230 OMER BERKMAN AND UZI VISHKIN

BT(3). When BT(3) is used in the algorithm below with, say, r leaves, we need to store
at each internal node an array that contains all leaves of the node. The space is thus
O(r) per level and O(log*) overall. We sketch how to treat general r: The number
of children of the root of BT(3) will be It/log], each with [log r] leaves. This implies
that additional O(r/log) space is needed for all nodes at level 2 of the tree. At level
3 the additional space needed is O(Iv/log r] [log log r]). Overall, the additional space
required is linear. To facilitate memory access we will allocate to each level of BT(3) an
additional O(r) space, which is more than is actually needed. This will double the space
and number of processors needed by our algorithms but will not change the complexity
in terms of "big Oh."

Comment 2. In case the minimum in the interval is not unique, find the mini-
mum element in [a,..., aO] whose index is smallest ("the leftmost minimum element").
Throughout this section, whenever we refer to a minimum over an interval we always
mean the leftmost minimum element. Finding the leftmost minimum element (and not
just the minimum value) will serve us later.

We start by constructing recursively a series of a(n) I parallel preprocessing algo-
rithms for our range-minima problem.

LEMMA 4.2.1. The algorithmfor 2 <_ m <_ a(n) runs in cm time,for some constant c,
using nI,(n) + x/-nprocessors and o(nI, (n) space. Thepreprocessing algorithm results
in a table. With this table any range-minimum query can be processed in em time with one
processor. In addition, the preprocessing algorithm finds explicitly all prefix minima and
suffix minima. Therefore, there is no need to do any processingforprefix-minima or sujfix-
minima queries.

Our optimal algorithms, whose efficiencies are given in Theorem 4.3.1, are derived
from this series of algorithms. We describe the series of preprocessing algorithms. We
give first the base of the recursive construction and later the recursive step.

The base ofthe recursive construction (the algorithm for rn 2). To provide intuition
for the description of the preprocessing algorithm for rn 2 we present first its output
and how the output can be used for processing a range-minimum query.

Output ofthe preprocessing algorithm for rn 2"
(1) For each consecutive subarray aj og ,+,""", a(+)og , 0 <_ j < n/log n- 1,

we keep a table. The table enables constant-time retrieval of any range-minimum query
within the subarray.

(2) We have array B b,..., bn/og ,, consisting of the minimum in each subarray.
(3) We have a complete binary tree BT(2), whose leaves are b,..., b/oga ,. Each

internal node v of the tree holds an array P. with an entry for each leaf of v. Consider
prefixes that span between l(v), the leftmost leaf of v, and a leaf of v. Array P,, has the
minima over all these prefixes. Node v also holds a similar array S. For each suffix that
spans between a leaf v and r(v), the rightmost leaf of v, array S, has its minimum.

(4) We have two arrays of size n each; one contains all prefix minima and the other
contains all suffix minima with respect to A.

Remark. The reason behind the (seemingly arbitrary) grouping of array A into sub-
arrays of loga n elements each is as follows: The main part ofthe preprocessing algorithm
for rn 2 (which is given below) deals with constructing output element (3). To main-
tain processor count within our desired bounds, the input to this part (which is array B)
must be of size O(n/log n).

LEMMA 4.2.2. Let m be 2. Then I, (n) log n. The preprocessing algorithm runs in
2c timefor some constant c using n log n + s/-nprocessors and o(n log n) space. Retrieval
ofa query MIN[i, j] takes 2c time with oneprocessor.

RECURSIVE STAR-TREE 231

How does one retrieve a query MIN[i,j] in constant time? There are two
possibilities.

(i) a and aj belong to the same subarray (of size logan). MIN(i, j) is computed in
O(1) time by using the table that belongs to the subarray.

(ii) ai and aj belong to different subarrays. Let right(i) denote the rightmost element
in the subarray of ai and let left(j) denote the leftmost element in the subarray of
MIN[i, j] is the minimum among three numbers:

1. MIN[i,right(i)], the minimum over the suffix of ai in its subarray;
2. MIN[left(j), j], the minimum over the prefix of a in its subarray;
3. MIN[right(i)+ 1, left(j)- 1].
The retrieval of the first and second numbers is similar to possibility (i) above. De-

note il [i/loga nq + 1 and denote jl [j/loga nq 1. Retrieval of the third number
is equivalent to finding the minimum over interval [bi ,..., bl in B, which is denoted
MINB[il,jl].

Let x be the lowest common ancestor of b and b, let Xl be the child of x that is
an ancestor of bh, and let x be the child of x that is an ancestor of by1. MINB[il,jl] is
the minimum of two numbers:

1. MINB[il, r(x)], the minimum over the suffix of hi1 in x (we obtain this from
S);

2. MINB[l(x), jl], the minimum over the prefix of bjl in xe (we obtain this from

How to find x, xl, and xe in constant time remains to be shown. It is observed in
[HT84] that the lowest common ancestor of two leaves in a complete binary tree can be
found in constant time with one processor. (The idea is to number the leaves from 0
to n 1. Given two leaves il and jl, it suffices to find the most significant bit in which
the binary representation of and jl are different in order to get their lowest common
ancestor.) Thus x (and thereby also Xl and xe) can be found in constant time. Constant-
time retrieval of the MIN(i, j) query follows.

Thepreprocessing algorithm for m 2.
Step 1. Partition A into subarrays of loga n elements each. Allocate loga n processors

to each subarray, and apply the preprocessing algorithm for range minima given in 3
(for e 1/2). This uses log4 n processors and O(loga n log1/a n) space per subarray and
n log n processors and o(n log n) space overall.

Step 2. Take the minimum in each subarray to build array B of size n/logan. The
difference between two successive elements in B is at most k log3 n.

Step 3. Build BT(2), a complete binary tree whose leaves are the elements of B.
For each internal node v of BT(2) we keep an array. The array consists of the values of
all leaves in the subtree rooted at v. So the space needed is O(n/loga n) per level and
O(n/log n) for all levels of the tree. We allocate to each leaf at each level log n

processors, and the total number of processors used is thus x/n.
Step 4. For each internal node find the minimum element over its array. If the mini-

mum element is not unique, the leftmost one is found. We apply the constant- time algo-
rithm mentioned in Remark 3.1. Consider an internal node of size r. After subtracting
the first element of the array from each of its elements, we get an array whose elements
range between -kr loga n and kr loga n. The size of the range, which is 2kr loga n + 1,
does not exceed the square of the number of processors, which is rvlog n, and the
algorithm of Remark 3.1 can be applied.

Step 5. For each internal node v we compute P (S is computed similarly). That
is, for each leaf bi of v we need to find MIN [/(v), i] (the minimum over the prefix of bi

232 OMER BERKMANAND UZI VISHKIN

in v). For this, the minimum among the following list of (at most) log n + i numbers is
computed. Denote the level of v in the binary tree by level (v). Each level l, level (v) <
< log n + 1, of the tree contributes (at most) one number. Let u denote the ancestor at

level 1 of hi. Let u and u denote the left and right children of u, respectively. If bi
belongs to (the subtree rooted at) u, then level contributes the minimum over zq. If
b belongs to u, then level does not contribute anything (actually, level contributes a
large default value so that the minimum computation is not affected). Finally, b is also
included in the list. This minimum computation can be done in constant time with log n
processors by the algorithm of [SV81]. Note that all prefix minima and all suffix minima
of B are computed (in the root) in this step. We note that since BT(2) is a complete
binary tree, node u (the ancestor at level I of hi) can be easily found in constant time
with one processor ([HT84]).

Step 6. For each a we find its prefix minimum and its suffix minimum with respect
to A in constant time by using one processor. Let bj be the minimum representing the
subarray of size log3 n containing ai. The minimum over the prefix of a with respect to
A is the minimum between the prefix of bj_ with respect to B and the minimum over
the prefix of a with respect to its subarray.

This completes the description of the recursion base: Items (1), (2), (3), and (4) of
the output were computed (respectively) in steps 1, 2, 5, and 6 above. The complexity
of the recursion base is specified by O(1) time by using n log n + x/n processors and
o(n log n) space. Lemma 4.2.2 follows.

The recursion step. The algorithm is presented in away similar to that ofthe recursion
base.

Output ofthe ruth preprocessing algorithm.
(1) For each consecutive subarray x(n)+,’", a(+)i(,), 0 < j < n/I(n)

1, we keep a table. The table enables constant-time retrieval of any range-minimum
query within the subarray. (The notation l(n) means (I,(n))3, where Ira(n) is defined
earlier.)

(2) We have array B bl, , b,/zL (n), consisting of the minimum in each subarray.
(3) We have TRL-BT(m), the top recursion level of (the recursive *-tree) BT(m),

whose leaves are b,..., b,/xL (). Each internal node v ofTRL-BT(m) holds an array
Pv and array Sv with an entry for each leaf of v. These arrays hold (as in the binary tree
for m 2) prefix minima and sufl minima with respect to the leaves of v.

(4) Let ux,..., uu be the children of v, an internal node of TRL-BT(m). Denote
by MIN(u) the minimum over the leaves of node ui, 1 < < /. Each such node v has
recursively the output of the (m- 1)th preprocessing algorithm with respect to the input
MIN(Ul), ., MIN(uv).

(5) We have two arrays of size n each; one contains all prefix minima and the other
contains all suflLx minima with respect to A.

How can we retrieve a query MIN[i, j] in cm time? We distinguish two possibilities.
(i) ai and a belong to the same subarray (of size I(n)). MIN(i, j) is computed in

O(i) time by using the table that belongs to the subarray.
(ii) a and aj belong to different subarrays. Again, let right(i) denote the rightmost

element in the subarray of a, and let left(j) denote the leftmost element in the subarray
of aj. MIN[i, j] is the minimum among three numbers:

1. MIN[i,right(i)];
2. MIN[left(j), j];
3. MXN[right(i)+ 1,1eft(j)- 1].
The retrieval of the first and second numbers is similar to possibility (i) above. De-

RECURSIVE STAR-TREE 233

note il ri/,Z(n)l + 1, and denote jl rj/i3 (n)] 1. Retrieval of the third number
is equivalent to finding the minimum over interval [hi1 ,’", bjl in B, which is denoted
MINB [ix, j].

Let x be the lowest common ancestor of bi and bj in TRL-BT(m), let x(i) be
the child of x that is an ancestor of b, and let xz(l) be the child of x that is an ancestor
of bx. MINB[i, jx] is (recursively) the minimum among three numbers:

1. MINB[il, r(x(i))], the minimum over the suffix of bi in x(i) (we obtain this
from S(,);

2. MINB[I(x()),j], the minimum over the prefix of bj in xZ(j) (we obtain this
from P,>);

3. MINB[r(xz()) / 1, l(x()) 1] (this will be recursively derived from the data
at node x).

The first two numbers are precomputed in TRL-BT(m). The recursive definition of
the third number implies that MINB [i, j] is actually the minimum among 4(m 1) 2
precomputed numbers and can thus be done inm time for some constant i-. Below
we show how to find the nodes x, xz(), and xZ(j) in constant time with one processor.
This (together with the recursive definition of BT(m)) implies that over the retrieval
procedure finding these nodes takesm time for some constant when one processor
is. used. We choose c > +, and the retrieval time is then cm, as required.

We first note that for each leaf of TRL-BT(m), finding the child of the root that
is its ancestor needs constant time if one processor is used: Recall that the number of
leaves of TRL-BT(m)is n/I(n), its root has (n/I(n))/I,_(n/I(n)) children,
and each of these children has I,_(n/I(n)) leaves. Thus the ancestor of a leaf hi,
I <_ i <_ n/I(n), of TRL-BT(m) is the [i/I,_(n/I(n))]th child ofthe root. Given
two leaves of TRL-BT(m), consider their ancestors among the children of the root. If
these ancestors are different, we are done. Suppose these ancestors are the same.

Observe that for TRL-BT(m) the same subtree structure is replicated at each child
of the root. As part of the preprocessing algorithm we build one table with respect to
this generic subtree structure. For each pair of leaves u and v of the generic subtree
structure, we compute three items into a table: (1) their lowest common ancestor z; (2)
the child f ofw that is an ancestor of u; (3) the child g ofw that is an ancestor of v. Since
each child of the root has Im- (n/I3m(n)) <_ Im- (n) leaves, the size of the table is only

How the table is computed remains to be shown. Consider an internal node w of the
generic subtree structure, and suppose that its rooted subtree has r leaves. At node
each pair of leaves t, v is allocated to a processor. The processor determines in constant-
time if w is the LCA of u and v. This is done by finding whether the child of w that is’-
an ancestor of t, denoted f, and the child of w that is an ancestor of v are different. If
they are different, then w, f, and g are as required for the table. The number of internal
nodes of the generic subtree is 0(I,_ (rt)), and each has at most I,_ (n) leaves. Thus
the number of processors needed for computing the table is 0(I_ ()).

Thepreprocessing algorithmfor m. Inductively, we assume that we have an algorithm
that preprocesses the array A (a, a,..., a,) for the range-minima problem in c(m-
1) time, using rtI,_ (rt) + x/n processors and o(nI,_ (n)) space, where c is a constant,
and that after this preprocessing any MIN[i, j] query can be answered in c(m 1) time.
We construct an algorithm that solves the range-minima problem in c + c(m 1) time
for some constant e, using nI, (n) + x/--n processors and o(nI, (n)) space. We have
already shown that a query can be answered in cm time with one processor for some
constant c. Selecting initially c > c and c > c implies that the algorithm runs in crrt

234 OMER BERKMANAND UZI VISHKIN

time, using nI,(n) + x/-n processors and o(nIm(n)) space, and that a query can be
answered in cm time.

Step 1. Partition A into subarrays of1(n) elements each. Allocate I4 (n) processors
to each subarray, and apply the preprocessing algorithm for range minima given in 3
(for e 1/2). This uses I4(n) processors and O(I(n)I/3(n)) space per subarray and
nI, (n) processors and o(nlm (n)) space overall.

Step 2. Take the minimum in each subarray to build array B of size n/I3m (n). The
difference between two successive elements in B is at most kI(n).

Step 3. Build TRL- BT(m), the upper level of a BT(m) tree whose leaves are
the elements of B. The definition of TRL-BT(m) implies that each internal node of
TRL-BT(m), whose rooted tree has r leaves, has r/Im-1 (r) children. For each such
internal node v ofTRL-BT(m) we keep an array. The array consists of the values of the
r leaves of the subtree rooted at v. TRL-BT(m) has *Ira-1 (n/I3(n)) + 1 < I,(n) + 1
levels and thus at most I,(n) internal levels (where internal levels exclude the leaves
but include the root). So the space needed is O(n/I3m (n)) per level and O(n/I2(n)) for
all levels of TRL-BT(m). We allocate to each leaf at each internal level 1 + v/-I2 (n)
processors, and the total number of processors used is thus n/I2 (n) + x/n (which is
less than nI,(n) + x/n).

Step 4.1..For each internal node of TRL-BT(m) find the minimum over its array.
The difference between the minimum value and the maximum value in an array never
exceeds the square of its number ofprocessors, andwe apply the constant-time algorithm
mentioned in Remark 3.1 as in Step 4 of the recursion-base algorithm.

Step 4.2. We focus on internal node v having r leaves in TRL-BT(m). Each of
its r/I,_(r) children contributes its minimum, and we preprocess these minima by
using the assumed algorithm for rn 1. The difference between adjacent elements is at
most klm-1 (r)I3m(n). Thus this computation takes c(m 1) time using r + v/kI(n)r
processors. (To see this, simplify (r/I,_ (r))I,-x (r)+ X/’kI,_x (r)I(n). (r/I,_x (r)),
the processor count term for this problem, into r + v/kI(n) rX/’I,_ (r), which is less
than r+V/kI(n) r processors.) This amounts to n/I(n)+ v/kI(n) n/I(n) per level
or a total of n/I(n) + x/-n/X/’I, (n) processors, which is less than n/I(n) + x/-n.

Step 5. For each internal node v we compute P (S is computed similarly). That is,
for each leaf b of v we need to find MINn [/(v), i], the minimum over the prefix of b with
respect to the leaves of node v. For this, the minimum among the following list of at most
*Im-x(n) + 1 Ira(n)+ 1 numbers is computed: Each level/,level(v) < <_ I,(n)+ 1,
of the tree contributes (at most) one number. Let u denote the ancestor at level 1
of b, and let u,..., uu denote its children, which are at level 1. Suppose uy, j > 1 is
an ancestor of b. We take the prefix minimum over the leaves of u,..., uj_. This
prefix minimum is computed in the previous step (by the assumed algorithm for m 1).
If u is the ancestor of b, then level contributes a large default value (as in Step 5
of the recursion-base algorithm). Finally, b is also added to the list. This minimum
computation can be done in constant time by using I2 (n) processors (by the algorithm
of [SV81]). Note that (1) all prefix minima and all suffix minima with respect to B are
computed (in the root) in this step, and (2) given a leaf b in TRL-BT(m), finding a
node w that is both a child of the root and an ancestor of b in constant time was solved
in the context of the query retrieval. Node u is found similarly.

Step 6. For each a we find its prefix minimum and its suffix minimum with respect
to A by using one processor in constant time. This is similar to Step 6 of the recursion
base.

This completes the description of the recursive step: Items (1), (2), (3), (4), and (5)

RECURSIVE STAR-TREE 235

of the output were computed (respectively) in steps 1, 2, 5, 4.2, and 6 above.
Complexity ofthe recursive step. In addition to application of the inductively assumed

algorithm, Steps 1 through 6 take constant time and use nI,, (n) + /’n processors and
o(nlm (n) space. This totals cm time if nI, (n) + /-n processors and o(nI(n) space
are used. Together with Lemma 4.2.2, Lemma 4.2.1 follows.

From recursion to algorithm. The recursive procedure in Lemma 4.2.1 translates eas-
ily into a constructive parallel algorithm in which the instructions for each processor at
each time unit are available. For such translation, issues such as processor allocation and
computation of certain functions need to be taken into account. Since TRL-BT(m)
is balanced, allocating processors in the algorithm above can be done in constant time
if the following functions are precomputed: (a) I,, (x) for 1 <_ x _< n and (b) I)_l(x)
for 1 < x < n and 1 < i < I(x). Let us illustrate how processor allocation is done
in Step 3 above. We use n/l(n) + /-n processors. The processors are partitioned
into I,, (n) groups of n/I(n) + v/-n/1, (n) processors each. Each group is allocated
to one level. Within a level, the processors in its group are partitioned equally among
the nodes of the level. This will provide a sufficient number of processors to each node.
Some processors are superfluous and simply remain idle. These same functions suffice
for all other computations above. The functions are computed and stored in a table at
the beginning of the algorithm. Section 6 discusses their computation.

4.3. The optimal parallel algorithms. In this subsection we show how to derive a
series of optimal parallel algorithms from the series of algorithms described in Lemma
4.2.1. Theorem 4.3.1 gives a general tradeoff result between the running time of the
preprocessing algorithm and the retrieval time. Corollary 4.3.1 emphasizes results in
cases for which the retrieval time for a query is constant. Corollary 4.3.2 points at an
interesting tradeoff instance in which the retrieval time bound is increased to O(a(n))
and the preprocessing algorithm runs in O(a(n)) (i.e., it become almost fully parallel).

THEOREM 4.3.1. Consider the range-minima problem where k, the bound on the dif-
ference between two successive elements in A, is constant. For each 2 < m < a(n) we
present a parallelpreprocessing algorithm that runs in time O I(n) and uses an optimal
numberofprocessors and optimal linearspace. Query retrieval time is O(m) ifoneprocessor
is used.

COROLLARY 4.3.1. When m is constant thepreprocessing algorithm runs in O(I,(n)
time if n/Im (n) processors are used. Retrieval time is 0(1) ifoneprocessor is used.

COROLLARY 4.3.2. When m c(n) thepreprocessing algorithm runs in O(c(n) time

if n/c(n) processors are used. Retrieval time is O(c(n) ifoneprocessor is used.
We describe below the optimal preprocessing algorithm for m as per Theorem 4.3.1.
Step 1. Partition A into subarrays ofI(n) elements each, allocate I, (n) processors

to each subarray, and find the minimum in the subarray. This can be done in O(I,(n))
time. Put the n/I(n) minima into an array B.

Step 2. Out of the series of preprocessing algorithms of Lemma 4.2.1, apply the
algorithm for m to B, where k’, the difference between two successive elements of B, is
O(I(n)). This takes O(m) time if v/n/I(n) + n/I,(n) processors and o(n/I,(n))
space are used. This can be simulated in O(m) time by using n/I, (n) processors and
o(n/I, (n) space.

Step 3. Preprocess each subarray ofI(n) elements so that a range-minimum query
within the subarray can be retrieved in O(1) time. This is done by using the following
parallel variant of the range-minima algorithm of Gabow, Bentley, and Tarjan (GBT)
[GBT84].

236 OMER BERKMAN AND UZI VISHKIN

Rangeminimum: aparallel variantofthe GBTalgorithm. Consider the general range-
minima problem as defined in 3, with respect to an input array (7 (c, c,..., c,). We
overview a preprocessing algorithm that runs in O(x/-) time using processors, so
that a range-minimum query can be processed in constant time.

(1) Partition array (7 into subarrays C1,..., C’v, each with elements.
(2) Apply the GBT linear time serial algorithm separately to each Ci, taking O(/)

time and using processors.
(3) Let be the minimum over Ci. Apply the GBT algorithm to C (,..., --)

in O(x/-) time, using a single processor.
It should be clear that any range-minimum query with respect to C can be retrieved

in constant time by at most three queries with respect to the tables built by the above ap-
plications of the GBT algorithm. The complexity of the preprocessing algorithm is spec-
ified by 0(I, (n)) time if n/I, (n) processors are used. Retrieval of a range-minimum
query takes O(m + 1) time, which is O(m) time if one processor is used. Theorem 4.3.1
follows.

4.4. The fully parallel algorithms. Consider the restricted-domain range-minima
problem in which k, the bound on the difference between adjacent elements, is constant.
In this subsection we present a fully parallel preprocessing algorithm for the problem on
a CRCW-bitPRAM that provides for constant time processing of a query. Theorem 4.4.1
gives the general result achieved in this subsection, including tradeoffamong parameters.
Corollary 4.4.1 summarizes the fully parallel result.

Let d be an integer 2 < d <_ c(n). The model of parallel computation is the CRCW-
bit PRAM with the assumption that up to Ia(n) processors may write simultaneously
into different bits of the same memory word.

THEOREM 4.4.1. Thepreprocessing algorithm takes O(d) time if nprocessors and lin-
ear space are used. Retrieval ofa query MIN(i, j) takes 0(d) time ifone processor is used.

Remark. Theorem 4.4.1 represents a tradeoffbetween the time for the preprocessing
algorithm and query retrieval, on one hand, and the number of processors that maywrite
simultaneously into different bits of the same memory word, on the other.

COROLLARY 4.4.1. For a constant d the algorithm is fully parallel and query retrieval
can be done in constant time with oneprocessor.

Step 1. Partition A into n/la(n) subarrays of Ia(n) elements each. For each subarray
find the minimum in O(1) time and Ia(n) processors. For this we apply the constant-time
algorithm mentioned in Remark 3.1 as in Step 4 of the recursion-base algorithm. Put the
n/Ia(n) minima into an array B. The difference between two successive elements in B
is at most kIa(n).

Step 2. Out of the series of preprocessing algorithms of Lemma 4.2.1 apply the al-
gorithm for d to B, where k’, the difference between two successive elements of B, is
O(Id(n)). This takes O(d) time when V/-Tn/Id(n) + n processors and o(n) space are
used and can be simulated in O(d) time by using n processors and o(n) space.

Suppose we know to retrieve a range-minimum query within each of the subarrays of
size ld(n) in constant time. It should be clear how a query MIN(i, j) can then be retrieved
in O(d) time. Theorem 4.4.1 would follow. Thus it remains to show how to preprocess
the subarrays of size Id(n) in constant time such that a range-minimum query within a
subarray can be retrieved in constant time. These subarrays are preprocessed in Steps
3.1, 3.2, and 3.3.

Step 3.1. For each subarray subtract the value of its first element from each element
of the subarray. Observe that after this subtraction the value of the first element is zero
and the difference between each pair of successive elements remains at most k. Step 3.2

RECURSIVE STAR-TREE 237

constructs a table with the following information: For any Ia(n)-tuple (cl,..., cxa(,)),
where Cl 0 and the difference between each pair of successive ci values is at most k,
the table has an entry. This entry gives all Ia(n)(Ia(n) 1)/2 range minima with respect
to this la (n)-tuple.

Step 3.2. All n processors together build a table. Each entry of the table corre-
sponds to one possible allocation of values to the Ia(n)-tuple. The entry provides all
Ia(n)(Ia(n) 1)/2 range minima for this allocation. Observe that the number of pos-
sible allocations is (2k(Ia(n) 1) + 1) za(’)-l. To see this we note that each element in
an Ia(n)-tuple assumes an integer value in the range [-k(Ia(n) 1)... k(Ia(n) 1)].
Our table will have t _> (2k(la(n) 1) + 1)za(’)-I entries. It will be more convenient to
defer the statement of the exact value for t to the comment below. By using n processors
(or even fewer) the table can be built in O(1) time. We sketch below how the table is
built. Consider any integer z in the range [1, y], and suppose z is given in binary repre-
sentation. We break the binary (i.e., bit) representation of z into Ia(n) 1 bit strings
of equal length. Each of these bit strings should be long enough to represent integers
in the range [-k(Ia(n) 1), k(Ia(n) 1)] (namely, a range of 2k(Ia(n) 1) + 1 inte-
gers). (It is enough to have log(2k(Ia(n) 1) + 1) bits in each bit string and therefore
a total of (Id(n) 1)([log(2k(Id(n) 1) + 1)]) bits for representing the original value
of x. So y 2(z(’)-x)(rg(2k(Z(n)-)+l)l).) These integers are then put in an array X
(of size Id(n) 1). It is easy to see that for any ld(n)-tuple (whose first entry is fixed to
zero) for which the difference between any two consecutive locations is at most k, there
exists an integer x in the range [1, y] whose array X is equal to locations 2 to Id(n) in
the Id(n)-tuple. For each entry x, 1 < x < y, in our table we compute separately each
range minimum with respect to array X of x. Given a range [i, j] the minimum over
[Xi Xy] is done in constant time with (j i) 2 processors by the algorithm of [SV81].
Since Id(n) < log* n, the n available processors are more than enough for the necessary
computations above.

Step 3.3. The only difficulty is to identify the table, entry for our Id(n)-tuple, c,...,
cZ(n), since once we reach the entry the table already provides the desired range min-
imum. We allocate to each subarray Id(n) processors. For each subarray we have a
word in our shared memory with (Id(n) 1)log(2k(Id(n) 1) + 1)] bits. Processor
i, 1 < < Ia(n), writes ci (which is an integer from [-k(la(n) 1)... k(la(n) 1)])
starting in bit number (i 2) [log(2k(Ia(n) 1) + 1) of the word belonging to its subar-
ray (bit zero is the least significant). As a result, this word has a sequence ofintegers from
the range [-k(Ia(n) 1), k(Ia(n) 1)] that yields the desired entry in our table. Note
that exactly Ia(n) processors write to different bits of the same memory word. Theorem
4.4.1 follows.

4.5. The all-nearest-zero-bit problem. The following corollary of Theorems 4.3.1
and 4.4.1 is needed for 5.

COROLLARY 4.5.1. The all-nearest-zero-bit problem is almost fully parallel. On the
CRCW-bit PRAM the all-nearest-zero-bitproblem is fully parallel.

Proof. Recall that the algorithm for the restricted-domain range-minima problem
computes all suffix minima. Recall also that if the minimum over an interval is not
unique, the leftmost minimum is found. Thus if we apply the restricted-domain range-
minima algorithm (with the difference between successive elements at most one) with
respect to A, then the minimum over the suffix of entry / 1 gives the nearest zero to
the right of entry i. Thus the all-nearest-zero bit is actually an instance of the restricted-
domain range-minima problem (with the difference between successive elements at most

238 OMER BERKMAN AND UZI VISHKIN

one). It follows that the almost fully parallel and the fully parallel algorithms for the
latter apply for the all-nearest-zero-bit problem as well.

4.6. A simple sequential LCA algorithm. In this subsection we outline a sequen-
tial variant of the restricted-domain range-minima problem for which k, the difference
between adjacent elements, is one. Together with the reduction of 4.1, this gives a se-
quential algorithm for the LCA problem.

We first describe two preprocessing procedures for the range-minima problem: (i)
Procedure I takes O(n log n) time for an input array of length n. No assumptions are
needed regarding the difference between adjacent elements. (A similar procedure is
used in [AS87].) (ii) Procedure II takes exponential time. After each of these prepro-
cessing procedures, query retrieval takes constant time. Second, the sequential linear-
time range-minima algorithm is described. Finally, we show how to retrieve a range-
minimum query in constant time.

Procedure I. Build a complete binary tree whose leaves are the elements of the input
array A. Compute (and keep) for each internal node all prefix minima and all suffix
minima with respect to its leaves.

Procedure I clearly runs in O(n log n) time. Given any range [i, j], the range-mini-
mum query with respect to [i, j] can be processed in constant time, as follows. (1) Find
the lowest node u of the binary tree such that the range [i, j] falls within its leaves. This
range is the union of a suffix of the left child of u and a prefix of the right child of u. The
minima over the suffix and prefix were computed by Procedure I. (2) The answer to the
query is the minimum among these two minima.

Procedure II. We use the assumption that the difference between any two adjacent
elements of the input array A is exactly one. A table similar to the table built in Step 3
of 4.4 is built as follows. We assume without loss of generality that the value of the first
element of A is zero (since otherwise we can subtract from every element in A the value
of the first element without affecting the answers to range-minima queries). Then the
number of different possible input arrays A is 2n-1. The table will have a subtable for
each of these 2’-1 possible arrays. For each possible array the subtable will store the
answer to each of the n(n 1)/2 possible range queries. The time to build the table is
O(2’n), and O(2’n) space is needed.

The linear-time range-minima preprocessing algorithm follows.
For each of the subsets ailogn+l,’",a(i+l)logn for 0 <_ <_ n/logn 1, find its

minimum and apply Procedure I to an array of these n log n minima.
Separately, for each of the subsets ai og n+l," ",a(i+l) og n for 0 < <_ n/log n-- 1,

do the following. Partition each such subset into smaller subsets of size log log n, and find
the minimum in each smaller subset; apply Procedure I to these log n/log log n minima.

Run Procedure II to build the table required for an (any) array of size log log n. For
each of the subsets ailoglogn+l,...,a(i+l)log logn for 0 <_ i <_ n/loglogn 1, identify
its subtable.

The time (and space) for each step of the preprocessing algorithm is O(n).
Consider a query requesting the minimum over a range [i, j]. We show how to pro-

cess it in constant time. The range [i, j] can easily be presented as the union of the
following (at most) five ranges" [i, xl], [Xl q- 1, Yl], [Yl + 1, Y2], [Y2 + 1, x2], and [x2 + 1,j],
where (1) [i, x] (and Ix2 + 1, j]) falls within a single subset of size log log nits mini-
mum is available in its subtable, (2) [x / 1, yl] (and [y2 + 1, x2]) is the union of subsets of
size log log n and falls within a single subset of size log nits minimum is available from
the application of Procedure I to the subset of size log n, and (3) [yl + 1, y2] is the union of

RECURSIVE STAR-TREE 239

subsets of size log n--its minimum is available from the first application of Procedure I.
So the minimum over range [i, j] is simply the minimum of these five minima.

5. Almost fully parallel reducibility. We demonstrate how to use the ,-tree data
structure for reducing a problem A to another problem B by an almost fully parallel
algorithm. We apply this reduction for deriving a parallel lower bound for problem A
from a known parallel lower bound for problem B.

Given a convex polygon with n vertices, the all-nearest-neighbors (ANN) problem is
to find for each vertex of the polygon its nearest (Euclidean) neighbor.

THEOREM 5.1. Any CRCWPRAMalgothmforthe ANNproblem that uses O(n logc

n) (for any constant c) processors needs f(log log n) time.
Proof. We give below an almost fully parallel reduction from the problem of merg-

ing two sorted lists of length n each to the ANN problem with O(n) vertices. This re-
duction together with the following lemma imply the theorem.

LEMMA 5.1. Merging two sorted lists of length n each by using O(n logc n) (for any
constant c) processors on a CRCW PRAM requires f(log log n) time.

A remark in [SV90] implies that Borodin and Hopcroft’s [BH85] lower bound for
merging in a parallel comparisons model can be extended to yield the lemma.

Proofof Theorem 5.1 (continued).
The reduction (see Fig. 3). Let A (a, a,..., a,) and B (b, b2,..., b,) be two

increasing lists of numbers that we wish to merge. Assume, without loss of generality,
that the numbers are integers and that a bl, a, b,. (The lower bound for merging
assumes that the numbers are integers.) Consider the following auxiliary problem: For
each 1 < < n find the minimum index j such that bj > a. The position of a in the
merged list is i + j 1, and therefore an algorithm for the auxiliary problem (together
with a similar algorithm for finding the positions of the b numbers in the merged list)
suffices for the merging problem.
(bl, ’) (b2,) (bo-l,-) (bo,,-.4) (bn, 74)

(C1, O)((32,0) (C3, O) (C2i-2, O) (C2i-1, O) (Ck, O)
(where c, a,, 2 c:i-, ai

FIG. 3. Almostfullyparallel reducibility construction.

We give an almost fully parallel reduction from the auxiliary problem to the ANN
problem with respect to the following convex polygon. Let (c, cz, , cz,_) (a, (a+
a2)/2, a2, (a2 +a3)/2,..., an-l, (an-1 +an)/2, an). The numbers Cl, C2,""", C2n--1 form
an increasing list. The convex polygon is (c, 0), (c2, 0),..., (c2,_x, 0), (b,, 1/4), (b,_, 1/4),

1/4).
In [svg0] a similar construction is given, and the lower-bound proof then follows by

(nontrivial) Ramsey theoretic arguments.
Let D[1,..., 2n- 1] be a binary vector. Each vertex (c, 0) finds its nearest neighbor

with respect to the convex polygon (by using a "supposedly existing" algorithm for the
ANN problem) and assigns the following into vector D.

If the nearest vertex is of the form(b, 1/4)
Then D(1) := 0

Else D(1):= 1

240 OMER BERKMANAND UZI VISHKIN

Next we apply to vector D the almost fully parallel algorithm for the nearest-zero-
bit problem of 4.5. Finally, we show how to solve our auxiliary problem with respect
to every element as. We break into two cases concerning the nearest neighbor of (as, 0)
(= 0)).

Case (i). The nearest neighbor of (as, 0) is a vertex (ha, 1/4). Then the minimum index
j such that bj > as is either c or c 4- 1. A single processor can determine the correct
value of j in O(1) time.

Case (ii). Otherwise, then D(2i 1) 1. The nearest-zero computation gives the
smallest index k > 2i 1 for which D(k) 0. Let the nearest neighbor of (c, 0) be
(b, 1/4). Then j c is the minimum index for which bj > as. [3

6. Computing various functions. We need to compute certain functions in our al-
gorithms. For each 2 < m _< a(n)we need I)_l(n)for all 1 <_ < I,(n). Fortu-
nately, the function parameters that we are actually concerned with are small relative to
n. For instance, to compute I3(n) log* n, it is enough to compute log* (log log n) since
log* n log* (log log n) + 2.

We show only how to compute Ira(n) for each 2 _< m _< a(n). Computation of

I()- 1 (n) for 2 < m < a(n) and all i < i <Im(n) is similar. Our computation works by
induction on m.

The inductive hypothesis. Let x log log n. We know how to compute the following
values in O(m- 1) time by using o(n/a(n)) processors: (1) I,-l(n) and (2) I,_(y)
for all 1 _< y _< log log n.

We show the inductive claim (the claim itself should be clear) by assuming the in-
ductive hypothesis. The inductive base is given later. First, we describe (informally)
the computation of I,(x) in O(1) (additional) time using o(n/o(n)) processors. Con-
sider all permutations of the numbers 1,..., x. The number of these permutations is
(much) less than n. The idea is to identify a permutation that provides the sequence
ix, -1 (x),..., I(mk)_l (x) 1,...]. So if I,-1 (p) pi+l for all 0 <_ i < k 1,
we conclude that I, (x) k. We can check this condition in O(1) time with x processors
per permutation by using the ability of the CRCW PRAM to find the AND of x bits in
O(1) time. The total number of processors is o(n/c(n)). We make two remarks: (1)
Computing Im(y) for all i <_ y <_ log log n, the rest of the inductive claim, in O(1) time
with o(n/c(n)) processors is similar; (2) there are easy ways for finding all permutations
in O(1) time by using the number of available processors.

We finish by showing the inductive base. We compute log n in O(1) time and with
o(n/c(n)) processors as follows. If n is given in a binary representation, then the index
of the leftmost one is log n. Following [FRW84], this can be computed in O(1) time by
using as many processors as the number of bits of a number. By iterating this we obtain
log(2) n. Finally, we find log y for all 1 < y _< log log n. The number of processors used
for this computation is o(n/((u)).

Acknowledgments. We are grateful to Pilar de la Torre and to Baruch Schieber for
fruitful discussions and helpful comments.

[AIL+88]

[AM88]

REFERENCES

A. AVOSTOLICO, C. ILIOPOULOS, G. M. LANDAU, B. SCHIEBER, AND U. VISHKIN, Parallel construc-
tion ofa sufftr tree with applications, Algorithmica, 3 (1988), pp. 347-365.

R. J. ANDERSONAND G. L. MILLER, Deterministicparallel list ranking, in Lecture Notes in Com-
puter Science 319, Springer-Verlag, Berlin, New York, 1988, pp. 81-90.

RECURSIVE STAR-TREE 241

[AMW89]

[AS871

[BBG+89]

[BH85]

[BH87]

[BSV88]

[BV851

[BV90]

[BV91]

[CFL83]

[CV86a]

[CV86b]

[CV89]

[DS83]

[FRT89]

[FRW84]

[GBT84]

[Has86]

[HS86]

[HT841

[Kru83]

[LF80]

[LV891

[MSV86]

[RR89]

R. J. ANDERSON, E. W. MAYR, AND M. K. WARMUTH, Parallel approximation algorithms]’or bin
packing, Inform. and Comput., 82 (1989), pp. 262-277.

N. ALON AND B. SCHIEBER, Optimal preprocessing for answering on-line product queries, Tech.
Report TR 71/87, Moise and Frida Eskenasy Institute of Computer Science, Tel Aviv Uni-
versity, Tel Aviv, Israel, 1987.

O. BERKMAN, D. BRESLAUER, Z. GALIL, B. SCHIEBER, AND U. VISHKIN, Highly-parallelizable
problems, in Proc. 21st Annual ACM Symposium on Theory of Computing, 1989, pp. 309-
319.

A. BORODIN AND J. E. HOPCROFT, Routing, merging, and sorting on parallel models ofcomputa-
tion, J. Comput. System Sci., 30 (1985), pp. 130-145.

P. BLAME AND J. HASTAD, Optimal bounds.for decision problems on the CRCW PRAM, in Proc.
19th Annual ACM Symposium on Theory of Computing, 1987, pp. 83-93.

O. BERKMAN, B. SCHIEBER, AND U. VISHKIN, Some doubly logarithmic optimalparallel algorithms
based on finding nearest smaller values, Tech. Report UMIACS-TR-88-79, University of
Maryland Institute for Advanced Computer Studies, College Park, MD, 1988; also IBM
Res. Report, Computer Sciences, RC 14128 (#63291); J. Algorithms, to appear.

I. BAR-ON AND U. VISHKIN, Optimalparallel generation ofa computation tree form, ACM Trans.
Prog. Lang. and Systems, 7 (1985), pp. 348-357.

O. BERKMAN AND U. VISHKIN, On parallel integer merging, Tech. Report UMIACS-TR-90-15.1
(revised version), University of Maryland Institute for Advanced Computer Studies, Col-
lege Park, MD, 1990; Inform. and Comput., to appear.

O. BERKMAN AND U. VISHKIN, Almost fully parallel parentheses matching, Tech. Report
UMIACS-TR-91-103, University of Maryland Institute for Advanced Computer Studies,
College Park, MD, 1991.

A. K. CHANDRA, S. FORTUNE, AND R. J. LIPTON, Unboundedfan-in circuits and associativefunc-
tions, in Proc. 15th Annual ACM Symposium on Theory of Computing, 1983, pp. 52-60.

R. COLEAND U. VISHKIN, Approximate and exactparallel scheduling with applications to list, tree
andgraphproblems, in Proc. 27th IEEE Annual Symposium on Foundations of Computer
Science, 1986, pp. 478-491.
,Deterministic coin tossing with applications to optimal parallel list ranking, Inform. and

Control, 70 (1986), pp. 32-53.
,Faster optimalparallelprefix sums and list ranking, Inform. and Comput., 81 (1989), pp.

334-352.
E. DEKELAND S. SAHNI, Parallelgeneration ofpostfix and treeforms, ACM Trans. on Prog. Lang.

and Systems, 5 (1983), pp. 300-317.
D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA, Finding triconnected components by local

replacements, Lecture Notes in Computer Science 372, Springer-Verlag, Berlin, New York,
1989.

E E. FICH, P. L. RAGDE, AND A. WIGDERSON, Relations between concurrent-write models ofpar-
allel computation (preliminary version), in Proc. 3rd ACM Symposium on Principles of
Distributed Computing, 1984, pp. 179-189; also SIAM J. Comput., 17 (1988), pp. 606-627.

H. N. GABOW, J. L. BENTLEY, AND R. E. TARJAN, Scaling and related techniques for geometry
problems, in Proc. 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 135-
143.

J. HASTAD, Almost optimal lower bounds for small depth circuits, in Proc. 18th Annual ACM
Symposium on Theory of Computing, 1986, pp. 6-20.

S. HARTAND M. SHARIR, Nonlinearity ofDavenport-Schinzelsequences andgeneralizedpath com-
pression schemes, Combinatorica, 6 (1986), pp. 151-177.

D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338-355.

C. P. KRUSrL, Searching, merging, and sorting in parallel computation, IEEE Trans. Comput.,
C-32 (1983), pp. 942-946.

R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27
(1980) pp. 831-838.

G. M. LANDAU AND U. VISHrdN, Efficient parallel and serial approximate string matching, J. Al-
gorithms, 10 (1989), pp. 157-169.

Y. MAON, B. SCHIEBER, AND U. VISHION, Parallel ear decomposition search (EDS) and st-

numbering in graphs, Theoret. Comput. Sci., 47 (1986), pp. 277-298.
V. RAMACHANDRAN AND J. H. REIF, An optimal parallel algorithm for graph planarity, in Proc.

30th IEEE Annual Symposium on Foundations of Computer Science, 1989, pp. 282-287.

242 OMER BERKMAN AND UZI VISHKIN

[Sto88]

[SV81]

[SV84]

[sv88]

[SV90]

[SZ89]

[Tar75]

[TV85]

[Va175]
[Van89]

[Vis85]
[Vis911

[Yao82]

Q. E STOUT, Constant-time geometry on PRAMs, in Proc. International Conference on Parallel
Processing, 1988, pp. 104-107.

Y. SHILOACHAND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel computa-
tion model, J. Algorithms, 2 (1981), pp. 88-102.

L. STOCKMEYER AND U. VISHKIN, Simulation ofparallel random access machines by circuits,
SIAM J. Comput., 13 (1984), pp. 409-422.

B. SCHIEBER AND U. VISHKIN, On finding lowest common ancestors: Simplification and paral-
lelization, SIAM J. Comput., 17 (1988), pp. 1253-1262.

Finding all-nearest neighborsforconvexpolygons in parallel: A new lower bound technique
and a matching algorithm, Discrete Appl. Math., 29 (1990), pp. 97-111.

D. SHASHAAND K. ZHANG,Newalgorithmsforthe editing distance between trees, in Proc. 1stACM
Symposium on Parallel Algorithms and Architectures, 1989, pp. 117-126, to appear in J.
Algorithms as Fast algorithmsfor the unit cost editing distance between trees.

R. E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. Assoc. Comput. Mach.,
22 (1975), pp. 215-225.

R. E. TARJAN AND U. VISHKIN,An efficientparallel biconnectivity algorithms, SIAM J. Comput.,
14 (1985), pp. 862-874.

L. G. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.
A. VAN GELDER, PRAMprocessor allocation: A hidden bottleneck in sublogarithmic algorithms,

IEEE Trans. Comput., 38 (1989), pp. 289-292.
U. VISHKIN, On efficientparallelstrongorientation, Inform. Process. Lett., 20 (1985), pp. 235-240.

Deterministic sampling-a new technique forfastpattern matching, SIAM J. Comput., 20
(1991), pp. 22-40.

A. C. YAO, Space-time tradeofffor answering range queries, in Proc. 14th ACM Symposium on
Theory of Computing, 1982, pp. 128-136.

SIAM J. COMPI.FE.
Vol. 22, No. 2, pp. 243-260, April 1993

() 1993 Society for Industrial and Applied Mathematics
002

APPROXIMATE BOYER-MOORE STRING MATCHING*
JORMA TARHIOtAND ESKO UKKONENt

Abstract. The Boyer-Moore idea applied in exact string matching is generalized to approximate string
matching. Two versions of the problem are considered. The k mismatches problem is to find all approximate
occurrences of a pattern string (length m) in a text string (length n) with at most k mismatches. The gen-
eralized Boyer-Moore algorithm is shown (under a mild independence assumption) to solve the problem in
expected time O(kn(1/(m- k) + (k/c))), where c is the size of the alphabet. A related algorithm is developed
for the k differences problem, where the task is to find all approximate occurrences of a pattern in a text with
< k differences (insertions, deletions, changes). Experimental evaluation of the algorithms is reported, show-
ing that the new algorithms are often significantly faster than the old ones. Both algorithms are functionally
equivalent with the Horspool version of the Boyer-Moore algorithm when k 0.

Key words, string matching, edit distance, Boyer-Moore algorithm, k mismatches problem, k differences
problem

AMS(MOS) subject classifications. 68C05, 68C25, 68H05

1. Introduction. The fastest known exact string matching algorithms are based on
the Boyer-Moore idea [BoM77], [KMP77]. Such algorithms are "sublinear" on the av-
erage in the sense that it is not necessary to check every symbol in the text. The larger
the alphabet and the longer the pattern, the faster the algorithm works. In this paper
we generalize this idea to approximate string matching. Again the approach leads to
algorithms that are significantly faster than the previous solutions of the problem.

We consider two important versions of the approximate string matching problem. In
both, we are given two strings, the text T tit2.., tn and thepattern P plp2 p, in
some alphabet E, and an integer k. In the first variant, called the k mismatchesproblem,
the task is to find all occurrences of P in T with at most k mismatches, that is, all j such
that pi tj-m+i for i 1,..., m except for at most k indexes i.

In the second variant, called the k differences problem, the task is to find (the end-
points of) all substrings P’ ofTwith the edit distance at most k from P. The edit distance
means the minimum number of editing operations (the differences) needed to convert
P’ to P. An editing operation is either an insertion, a deletion, or a change of a char-
acter. The k mismatches problem is a special case with the change as the only editing
operation.

There are several algorithms proposed for these two problems; see, e.g., the sur-
vey [GAG88]. Both can be solved in time O(mn) by dynamic programming [Sel80],
[Ukk85b]. A very simple improvement giving O(kn) expected time solution for random
strings is described in [Ukk85b]. Later, Landau and Viskin [LaV88], [LaV89], Galil
and Park [GAP89], Ukkonen and Wood [UkW90] have given different algorithms that
consist of preprocessing the pattern in time O(m) (or O(m)) and scanning the text in
worst-case time O(kn). For the k differences problem, O(kn) is the best bound cur-
rently known if the preprocessing is allowed to be at most O(m). For the k mismatches
problem Kosaraju [Kos88] gives an O(nv/-- polylog(m)) algorithm. Also see [GAG86],
[GrL89].

We develop a new approximate string matching algorithm of Boyer-Moore type
for the k mismatches problem and show, under a mild independence assumption, that
it processes a random text in expected time O(kn(1/(m k) + (k/c))) where c de-

Received by the editors April 11, 1990; accepted for publication (in revised form) October 22, 1991.
Department of Computer Science, University of Helsinki, Teollisuuskatu 23, SF-00510 Helsinki, Finland.

243

244 JORMA TARHIO AND ESKO UKKONEN

notes the size of the alphabet. A related but different method is (independently) de-
veloped and analyzed in [Bae89a]. We also give an algorithm for the k differences prob-
lem and show in a special case that its expected processing time for a random text is
O(c/(c 2k)kn(k/(c + 2k2) + (l/m))). The preprocessing of the pattern needs time
O(m + kc) and O((k + c)m), respectively. We have also performed extensive experi-
mental comparison of the new methods with the old ones, showing that Boyer-Moore
algorithms are significantly faster, for large m and c in particular.

Our algorithms can be considered as generalizations of the Boyer-Moore algorithm
for exact string matching because they are functionally identical with the Horspool ver-
sion [Hor80] of the Boyer-Moore algorithm when k 0. The algorithm of [Bae89a]
generalizes the original Boyer-Moore idea for the k mismatches problem.

All these algorithms are "sublinear" in the sense that it is not necessary to examine
every text symbol. Another approximate string matching method of this type (based on
totally different ideas) has recently been given in [ChL90].

The paper is organized as follows. We first consider the k mismatches problem for
which we give and analyze the Boyer-Moore solution in 2. Section 3 develops an ex-
tension to the k differences problem and outlines an analysis. Section 4 reports our
experiments.

2. The k mismatches problem.

2.1. Boyer-Moore-Horspool algorithm. The characteristic feature of the Boyer-
Moore algorithm [BoM77] for exact matching of string patterns is the right-to-left scan
over the pattern. At each alignment of the pattern with the text, characters of the text
below the pattern are examined from right to left, starting by comparing the rightmost
character of the pattern with the character in the text currently below it. Between align-
ments, the pattern is shifted from left to right along the text.

In the original algorithm the shift is computed using two heuristics" the match heuris-
tic and the occurrence heuristic. The match heuristic implements the requirement that
after a shift, the pattern has to match all the text characters that were found to match
at the previous alignment. The occurrence heuristic implements the requirement that
we must align the rightmost character in the text that caused the mismatch with the
rightmost character of the pattern that matches it. After each mismatch, the algorithm
chooses the larger shift given by the two heuristics.

Since the patterns are not periodic on the average, the match heuristic is not very
useful. A simplified version of the method can be obtained by using the occurrence
heuristic only. Then we may observe that it is not necessary to base the shift on the text
symbol that caused the mismatch. Any other text character below the current pattern
position will do as well. Then the natural choice is the text character corresponding to
the rightmost character of the pattern as it potentially leads to the longest shifts. This
simplification was noted by Horspool [Hor80]. We call this method the Boyer-Moore-
Horspool or the BMH algorithm.

The BMH algorithm has a simple code and is in practice better than the original
Boyer-Moore algorithm. In the preprocessing phase the algorithm computes from the
pattern P pp.., p, the shift table d, defined for each symbol a in alphabet E as

d[a] min {sis m or (1 < s < m and Pm-8 a)).
For a text symbol a below p,, the table d shifts the pattern right until the rightmost a in
Pl p,-i becomes above the a in the text. Table d can be computed in time O(m + c),
where c Irl, by the following algorithm.

APPROXIMATE BOYER-MOORE STRING MATCHING 245

ALGORITHM 1. BMH-preprocessing.
for a in E do d[a] := m;
for i := 1,..., m 1 do d[pi] := m i.

The total BMHmethod [Hor80] including the scanning ofthe text T tit2.., t, is given
below.

ALGORITHM 2. The BMH method for exact string matching.
call Algorithm 1;
j := m; {pattern ends at text position j}
while j < n do begin

h "= j; i m; {h scans the text, i the pattern}
while i > 0 and th p do begin

:= i 1; h := h 1 end; {proceed to the left}
if i 0 then report match at position j;

j j + d[tj] end {shift to the right}

2.2. Generalized BMH algorithm. The generalization of the BMH algorithm for
the k mismatches problem will be very natural: for k 0 the generalized algorithm
is exactly as Algorithm 2. Recall that the k mismatches problem asks for finding all
occurrences of P in T such that in at most k positions of P, T and P have different
characters.

We have to generalize both the right-to-left scanning of the pattern and the compu-
tation of the shift. The former is very simple; we just scan the pattern to the left until
we have found k + 1 mismatches (unsuccessful search) or the pattern ends (successful
search).

To understand the generalized shift it may be helpful to look at the k mismatches
problem in a tabular form. Let M be a m n table such that for 1 < i < m, 1 < j < n,

j]=
0 ifp=tj,
1 ifp tj.

There is an exact match ending at position r ofT if M[i, r m + i] 0 for i 1,.. m,
that is, there is a whole diagonal of O’s in M ending at M[m, r]. Similarly, there is an
approximate match with _< k mismatches if the diagonal contains at most k l’s. This
implies that any successive k + 1 entries of such a diagonal have to contain at least one
O.

Assume then that the pattern is ending at text position j and we have to compute
the next shift. We consider the last k+ 1 text characters below the pattern, the characters
t-k, t_k+l,..., t. Then, suggested by the above observation, we glide the pattern to
the right until there is at least one match in tj_, t_+x,..., t. The maximum shift is
m k. Clearly this is a correct heuristic: A smaller shift would give an unsuccessful
alignment because there are at least k / 1 mismatches, and a shift larger than m k
would skip over a potential match.

Let d(tj_, tg_+,..., tj) denote the length ofthe shift. Thevalues ofd(t_k,..., tg)
could be precomputed and tabulated. This would lead to quite heavy preprocessing of
at least time O(c). Instead, we apply a simpler preprocessing that makes it possible to
compute the shift on-the-fly with small overhead while scanning.

In terms ofM the shifting means finding the first diagonal above the current diagonal
such that the new diagonal has at least one 0 for t_, t_+,..., tj.

246 JORMATARHIO AND ESKO UKKONEN

For example, consider table M in Fig. 1, where we assume that k 1. We may shift from
the diagonal of M[1, 1] directly to the diagonal of M[1, 3], as this diagonal contains the
first 0 for characters ta a, t4 a. Hence d(a, a) 2 for the pattern abbb. Also note
that t4 alone would give a shift of 3 and ta a shift of 2, and d(ta, t) is the minimum over
these component shifts.

P

T
ab a a cbb a bbb a

a 0 10(Q)O 1 i’i 0 ’i 1 1 0
o o o o o

o(D (Doo ooo
o o o o

FIG. 1. Determining ofshift k 1).

In general, we compute d(tj_k,..., tj) as the minimum of the component shifts for
each t_k,..., t. The component shift for th depends both on the character th itself and
on its position below the pattern. Possible positions are m k, m k + 1,..., m. Hence
we need a (k + 1) x c table dk defined for each i m k,..., m, and for each a in E, as

dk[i, a] min {s[s m or (1 < s < m andp_ a)}.

Here the values greater than m- k are not actually relevant. Table d is presented in this
form, because the same table is used in the algorithm solving the k differences problem.

Table d can be computed in time O((m + c)k) by a straightforward generalization
of the BMH-preprocessing, which scans k + 1 times over P, and each scanning creates
a new row of d.

A more efficient method needs only one scan, from right to left, over P. For each
symbolp encountered, the corresponding updates are made to d. To keep track of the
updates already made, we use a table ready[a], a in E, such that ready[a] j if d[i, a]
already has its final value for i m, m 1,..., j. Initially, ready[a] m + 1 for all a,
and d [i, a] m for all i, a. The algorithm is as follows.

ALGORITHM 3. Computation of table d.
1. for a in E do ready[a] := m + 1;
2. for a in E do

3. for i m downto m k do

4. a [i, a] m;
5. for i := m- i downto i do begin
6. for j "= ready[p] I downto max(i, m k) do
7. dk[j, Vii j i;

8. ready[pi] .=max(i, m- k) end

The initializations in steps 1-4 take time O(kc). Steps 5-8 scan over P in time O(m)
plus the time of the updates of dk in step 7. This takes time O(kc) as each dk[j, Pi] is
updated at most once. Hence Algorithm 3 runs in time O(m + kc).

We now have the following total method for the k mismatches problem.

APPROXIMATE BOYER-MOORE STRING MATCHING 247

9.

10.
11.

ALGORITHM 4. Approximate string matching with k mismatches.
1. compute table dk from P with Algorithm 3;
2. j := m; {pattern ends at text position j}
3. while j _< n + k do begin

4. h "= j; i := m; neq:= 0; {h scans the text, i the pattern}
5. d := m k; {initial value of the shift}
6. while i > 0 and neq <_ k do begin

7. if i > m k then d "=min(d, dk[i, th]);
{minimize over the component shifts}

if th Pi then neq :=neq +1;
i i 1; h := h 1 end; {proceed to the left}

if neq < k then report match at position j;

j "= j + d end {shift to the right}

2.3. Analysis. First recall that the preprocessing of P by Algorithm 3 takes time
O(m + kc) and space O(kc). The scanning of T by Algorithm 4 obviously needs O(mn)
time in the worst case. The bound is strict for example for T a’, P a’.

Next we analyze the scanning time in the average case. The analysis will be done
under the random string assumption which says that individual characters in P and T
are chosen independently and uniformly from . The time requirement is proportional
to the number of the text-pattern comparisons in step 8 of Algorithm 4. Let Co(P)
be a random variable denoting, for some fixed c and k, the number of such comparison
for some alignment of pattern P between two successive shifts, and let Ctoc(P) be its
expected value.

LEMMA 1.

(c)Ctoc(P) < + 1 (k + 1).
c-1

Proof. The distribution of Cto(P) (k + 1) converges to the negative binomial
distribution (the Pascal distribution) with parameters (k + 1, 1 (1/c)) when m o,
because Cto(P) (k + 1) is the number of matches until we find the k + 1st mismatch;
the probability of the mismatch is I (1/c). As the expected value of Cto(P) increases
with m, the expected value (k + 1)/(c- 1) of this negative binomial distribution (see,
e.g., [Fe165]) would be an upper bound (and the limit as m) of Co(P) (k + 1).
This, however, ignores the effect of the fact that after a shift of length d < m k we
know that at least one and at most k / 1 of characters Pm-a-,..., Pm-a will match.
Hence to bound CZoc(P) (k + 1) properly, it surely suffices to add k + 1 to the above
bound that gives

k+lCzoc(P) (k + 1) < + k + 1,
c-1

and the lemma follows.
Let S(P) be a random variable denoting the length of the shift in Algorithm 4 for

pattern P and for some fixed k and c when scanning a random T. Moreover, let P0 be a
pattern that repeatedly contains all characters in E in some fixed order until the length
of P0 equals m. Then it is not difficult to see that P0 gives on the average the minimal

248 JORMA TARHIO AND ESKO UKKONEN

shift, that is, the expected values satisfy S(Po) < S(P) for all P of length m. Hence a
lower bound for S(Po) gives a lower bound for the expected shift over all patterns of
length m (cf. [Bae89b]).

LEMMA 2. (P0) > 1/2 min(c/(k + 1), m- k). Moreover, (Po) > 1.

Proof Let t min(c- 1, m k 1). Then the possible lengths of a shift are
1, 2,..., t / 1. Therefore,

3(o) e (s(Po) >
i=0

where Pr(A) denotes the probability of event A. Then

Pr(S(Po) >i)= (c-i)
because for each of the k / i text symbols that are compared with the pattern to deter-
mine the shift (step 8 of Algorithm 4), there are i characters not allowed to occur as text
symbols. Otherwise the shift would not be > i. Hence

(P)=(1- -ci)
+

i=0

which is clearly > 1, because t > 0 as we may assume that c > 2 and that k < m.
We divide the rest of the proof into two cases.
Case 1. m k < c/(k + 1). Then t m k 1, and we have

m-k--l(k+l)(P) -> E 1- .i
i--O

k+l (m-k-1)(m-k)m-k-
c 2

>_ (m-k) (1- k+c I m-k) > l(m_k
C --Case 2. m- k > c/(k + 1). Then t > [c/(k + 1)] 1, and we have

r+..------c -1 k+l -’-"i -1

(P)>-E (1-) _> E (1 k+lc i)
i=0 i=0

[c] k+X 1 [c] (I c 1_1)k+l c "" kq-1 k+l

[c] (1_1 k+X c) 1 [c 1-> k+l " c "k+l - k+l

Consider finally the total expected number ’(P) of character comparisons when Algo-
rithm 4 scans a random T with pattern P. Let f(P) be the random variable denoting the
number of shifts taken during the execution, and let f(P) be its expected value. Then
we have

C(P) f(P) Cto(P).

APPROXIMATE BOYER-MOORE STRING MATCHING 249

To estimate f(P), we let S be a random variable denoting the length of ith shift. At
the start of Algorithm 4, P is aligned with T such that its first symbol corresponds to the
text position 1, and at the end P is aligned such that its first symbol corresponds to some
text position <_ n m+ k + 1, but the next shift would lead to a position > n m/ k/ 1.
Hence new shifts are taken until the total length of the shifts exceeds n m / k. This
implies that f(P) equals the largest index such that

-Si <n-m+k.
i=1

Assume now that the different variables Si are independent, that is, the shift lengths
are independent; note that this simplification is not true for two successive shifts such
that the first one is shorter than k / 1. Then all variables S have a common distribution
with expected value (P) _> (P0). Under this assumption,

is, in fact, apure renewalprocess within interval [0, n-m+k] in the terminology of [Fe166,
Chap. XI]. Then the expected value of is (n m + k)/S(P) for large n m + k (see
[Fe166, p. 359]). Hence

and by Lemma 2,

f(P) O (n- re + k)S(Po)

f =O max .(n-re+k)
c m-k

Recalling finally that C(P) f(P). Cto(P) and applying Lemma 1, we obtain that

((k+X 1)C(P) < O max --, (n m + k) +1 (k + l)
c m-k c-1

which is

O + asn >>m.

Hence we have the following.
THEOREM 1. The expected running time ofAlgothm 4 is O(nk((k/c) + 1/(m- k)), if

the lengths ofdifferent shifts are mutually independent. Thepreprocessing time is O(m+ kc),
and the working space is O(kc).

Removing the independence assumption from Theorem 1 remains open.

3. The k differences problem.

3.1. Basic solution by dynamic programming. The edit distance [WaF75], [Ukk85a]
between two strings, A and/3, can be defined as the minimum number of editing steps
needed to convert A to B. Each editing step is a rewriting step of the form a e (a
deletion), e b (an insertion), or a --. b (a change) where a, b are in E and e is the
empty string.

250 JORMATARHIO AND ESKO UKKONEN

The k differences problem is, given pattern P pip2... Pm and text T t t2...
and an integer k, to find all such j that the edit distance (i.e., the number of differences)
between P and some substring of T ending at tj is at most k. The basic solution of the
problem is by the following dynamic programming method [Sel80], [Ukk85b]: Let D be
an m+ 1 by n+ 1 table such that D(i, j) is the minimum edit distance between pp2...
and any substring of T ending at tj. Then

D(O,j)=O, O_<j_<n;

D(i- l, j)4- 1,
D(i, j) min D(i 1, j 1) + ifpi tj then 0 else 1,

D(i, j 1)+ 1.

Table D can be evaluated column-by-column in time O(mn). Whenever D(m, j) is found
to be < k for some j, there is an approximate occurrence of P ending at t with edit
distance D(m, j) < k. Hence j is a solution to the k differences problem.

3.2. Boyer-Moore approach. Our algorithm contains two main phases: the scan-
ning and the checking. The scanning phase scans over the text and marks the parts that
contain all the approximate occurrences of P. This is done by marking some entries
D(0, j) on the first row D. The checking phase then evaluates all diagonals of D whose
first entries are marked. This is done by the basic dynamic programming restricted to
the marked diagonals. Whenever the dynamic programming refers to an entry outside
the diagonals, the entry can be taken to be oc. Because this is quite straightforward we
do not describe it in detail. Rather, we concentrate on the scanning part.

The scanning phase repeatedly applies two operations: mark and shift. The shift
operation is based on a Boyer-Moore idea. The mark operation decides whether or not
the current alignment of the pattern with the text needs accurate checking by dynamic
programming and in the positive case marks certain diagonals. To understand the oper-
ations we need the concept of a minimizing path in table D.

For every D(i, j), there is a minimizing arc from D(i 1, j) to D(i, j) if D(i, j)
D(i-l, j)+l, from D(i, j-1) to D(i, j) if D(i, j) D(i, j-1)/l, and from D(i-l, j-1)
to D(i,j) if D(i,j) D(i- 1,j- 1) whenp t orif D(i,j) D(i- 1,j- 1)+ 1 when
p # ty. The costs of the arcs are 1, 1, 0, and 1, respectively. The minimizing arcs show
the actual dependencies between the values in table D. A minimizingpath is any path
that consists of minimizing arcs and leads from an entry D(0, j) on the first row of D to
an entry D(m, h) on the last row of D. Note that D(m, h) equals the sum of the costs of
the arcs on the path. A minimizing path is successful if it leads to an entry D(m, h) < k.

A diagonal h of D for h -m,..., n, consists of all D(i, j) such that j h. As
any vertical or horizontal minimizing arc adds I to the value of the entry, the next lemma
easily follows.

LEMMA 3. The entries on a successful minimizingpath are contained in < k + I suc-
cessive diagonals of D.

Our marking method is based on the following lemma. For each 1,..., m, let
the k environment of the pattern symbolp be the string C P-k... Pi+k, wherep e

forj < 1 andj > m.
LEMMA 4. Let a successful minimizingpath go through some entry on a diagonal h of

D. Thenfor at most k indexes, i, 1 < < m, character th+i does not occur in k environment
c.

Proof. Column j, h+ 1 < j < h+m, ofD is called bad if tj does not appear in Cj-h.
The lemma claims that the number of the bad columns is < k. Let M be the path in the

APPROXIMATE BOYER-MOORE STRING MATCHING 251

lemma. Let R be the set of indexes, j, h + 1 < j < h + m, such that path M contains
at least one entry D(i, j) on column j of D. IfM starts or ends outside diagonal h, then
the size of R can be < m. Then, however, M must have at least one vertical arc for each
index j missing in R because M crosses diagonal h. Therefore, vert(M) > m-size(R),
where vert(M) is the number of vertical arcs of M.

By Lemma 3, M must be contained in diagonals h k, h k + 1,..., h + k of D.
Hence for each j in R, path M must enter some entry on column j restricted to diagonals
h k,..., h + k, that is, some entry D(i k, j),..., D(i + k, j). Then if j is bad, the
first arc in M that enters column j must add I to the total cost of M. Because such an
arc enters a new column, it must be either a diagonal or a horizontal arc; note that with
no restriction on generality we may assume that the very first arc of M is not a vertical
one. Hence the number of bad columns in R is < cost(M)-vert(M), where cost(M) is
the value of the final entry of M.

Moreover, there can be m-size(R) additional bad columns as every column outside
R can be bad. The total number of the bad columns is, therefore, at most m-size(R)+
cost(M)-vert(M) <cost(M) < k.]

Lemma 4 suggests the following marking method. For diagonal h, check for
m, m 1,..., k + 1 if th+i is in C’ until k + i bad columns are found. Note that to get
minimum shift k + 1 (see Fig. 2) we stop already at i k + 1 instead of at i 1. If
the number of bad columns is < k, then mark diagonals h k,..., h + k, that is, mark
entries D(0, h k),..., D(0, h + k).

For finding the bad columns fast we need a precomputed table Bad(i, a), 1 < <
m, a E, such that

Bad(i, a) true if and only if a does not appear in k environment Ci.

Clearly the table can be computed by a simple scanning of P in time O((c + k)m).
After marking we have to determine the length of shift; that is, what is the next

diagonal after h around which the marking should eventually be done? The marking of
heuristic ensures that all successful minimizing paths that are properly before diagonal
h + k + 1 are already marked. Hence we can safely make at least a shift of k + 1 to
diagonal h + k + 1.

This can be combined with the shift heuristics of Algorithm 4 of 2 based on table
dk. So we determine the first diagonal after h, say, h + d, where at least one of the
characters th+m, th+m-1,..., th+m-l matches with the corresponding character of P.
This is correct because then there can be a successful minimizing path that goes through
diagonal h + d. The value of d is evaluated as in Algorithm 4, using exactly the same
precomputed table d. Note that unlike in the case ofAlgorithm 4, the maximum allowed
value of d is. now m, not m k, as the marking starts from diagonal h k, not from h.
Finally, the maximum of k + 1 and d is the length of the shift.

In practice, the marking and the computation of the shift can be merged if we start
searching for the bad columns from the end of the pattern.

Figure 2 illustrates marking and shifting. For r h + m, h + m 1,..., h + k + 1
we check whether or not tr appears among the pattern symbols corresponding to the
shaded block i (the k environment). If k + I symbols tr that do not appear are found,
entries D(0, h-k),..., D(0, h+k) are marked. Simultaneouslywe checkwhat is the next
diagonal after h containing a match between P and th+m-k,..., th+m (shaded block 2).
The next shift is to this diagonal but at least to diagonal h + k + 1.

We get the following algorithm for the scanning phase.

252 JORMA TARHIO AND ESKO UKKONEN

th+n’_"k th+m

FIG. 2. Mark and shift k 2).

ALGORITHM 5. The scanning phase for the k differences problem.
1. compute table Bad and, by Algorithm 3, table dk from P;
2. j:=m;

3. while j _< n + k do begin

4. r’=j;i’=m;

5. bad O; {bad counts the bad indexes}
6. d := m; {initial value of shift}
7. while i > k and bad <_ k do begin

8. if > m k then d :=min(d, dk[i, t]);
9. ifBad(i, tr) then bad’= bad +1;

10. i "= i- 1;r "= r- 1 end;
11. ifbad < k then

12. mark entries D(0, j m k),..., D(0, j m + k);
13. j j+ max(k + 1, d) end

The loop in steps 7-9 can be slightly optimized by splitting it into two parts such that the
first one handles k + 1 text characters and computes the length of shift, and the latter
goes on counting bad indexes (a similar optimization also applies to Algorithm 4).

Algorithm 5 has the drawback that it marks all diagonals when k > (m 1)/2, and
hence it is useful only for k < (m- 1)/2. Its marking accuracy can be improved for larger
k at cost of losing the minimum shift of k + 1. This is achieved by replacing line 7 by

7’. while i > 0 and bad <_ k do begin
and lines 11-13 by
11’. if bad <_ k then begin
12’. mark entries D(0, j m k),..., D(0, j m + k);
13’. j j+ max(k + 1, d) end
14’. else j := j+ max(min(k + 1, + 1), d) end

APPROXIMATE BOYER-MOORE STRING MATCHING 253

3.3. Analysis. The preprocessing of P requires O((k + c)m) for computing table
Bad and O(m + kc) for computing table d. As k < m, the total time is O((k + c)m).
The working space is O(cm).

The marking and shifting by Algorithm 5 takes time O(mn/k) in the worst case. The
analysis of the average case is similar to the analysis ofAlgorithm 4 in 2. Let Btoc(P) be
a random variable denoting, for some fixed c and k, the number ofthe columns examined
(step 9 ofAlgorithm 5) until k+ 1 bad columns are found and the next shift will be taken.

Obviously, Boc(P) corresponds to Cto(P) of Lemma 1. For the expected value
Bgo(P) we show the following rough bound.

LEMMA 5. Let 2k + 1 < a Then

[to(P) < (c

c-2k-i
+1 (k+l).

Proof. The expected value of Bto(P) (k + 1) can be bounded from above by the
expected value of the negative binomial distribution with parameters (k + 1, q), where
q is a lower bound for the probability that a column is bad. Recall that column j is
called bad if text symbol tj does not occur in the corresponding k environment. As the k
environment is a substring ofP oflength at most 2k/1, it can have at most 2k/1 different
symbols. Therefore, the probability that a random tj does not belong to the symbols of
a k environment is at least (c- (2k + 1))/c. Hence we can choose q (c- (2k + 1))/c.

The negative binomial distribution would then give for Btoc(P) (k + 1) an upper
bound (2k + 1) (k + 1)/ (c (2k + 1)). However, the shift heuristic implies that after a
shift of length < m we know that at least one and at most k / 1 columns will not be bad.
Hence to bound Bto(P) (k + 1) properly, we have to add k + 1 to the above bound,
which gives

Brow(P)- (k + 1) < +
c- (2k + 1) (k+l)+k+l,

and the lemma follows.

Let S’(P) be a random variable denoting the length of the shift in Algorithm 5 for
pattern P and for some fixed k and c. When scanning a random T, the special pattern
P0 again gives the shortest expected shift, that is, ’(P0) < ’(P) for all P of length m.
Lemma 6 gives a bound for S’ (P0).

LEMMA 6. ’(Po) _> 1/2 min(c/(k + 1),m).
Proof. Let t min(c- 1, m- 1). Then the possible lengths of a shift are 1, 2,..., t+

1; note that a shift actually is always _> k + 1 according to our heuristic, but the heuristic
can be ignored here, as our goal is to prove a lower bound. Therefore,

’(Po) Pr(S’(Po) > i).
i=0

IfO < i < m- k- 1, then

Pr(S’(Po) >i)= (c-i)
because for each of the k / I text symbols that are compared with the pattern to deter-
mine the shift (step 8 of Algorithm 5), there are i characters not allowed to occur as the

254 JORMA TARHIO AND ESKO UKKONEN

text symbols. This is exactly as in the proof of Lemma 2. A slight difference arises when
m-k < i < m- 1. Then

) .c--i--I-1 .c--i+2 c-re+k+1Pr(S’(Po) > i)
c- 1 m--i

C C C C

because now the number of forbidden characters is i for the m i last text symbols and
i 1, i 2,..., (m k 1) for the remaining k + 1 (m i) text symbols, listed
from right to left. But also in this case,

Pr(S(P) >i)> (c-i)k+lc
Hence

i=0
C

The rest ofthe proof is divided into two cases which are so similar to the cases in the proof
of Lemma 2 that we do not repeat the details. If m < c/(k + 1), then ’(P0) > 1/2m. If

1m >_ c/(k + 1), then S’(Po) > - [c/(k + 1)].
As the length of a shift is always _> k / 1, we get, from Lemma 6,

’(P) _> ’(Po)

((_> max k+l, min 2(k+l)’-

((c) (min max k+1,2(k+1) ,max k+l,-

_> min k+l+2(k+l),--
The number of text positions at which a right-to-left scanning of P is performed between
two shifts is again

/o

This can be shown as in the analysis of Algorithm 4. Note that for Algorithm 15 we need
not assume explicitly that the lengths of different shifts are independent. They are inde-
pendent as the length of the minimum shift is k + 1.

Hence the expected scanning time of Algorithm 15 for pattern P is

When we apply here the upper bound for Bo(P) from Lemma 15 and the above lower
bound for S’(P), and simplify, we obtain our final result.

TEOREN 2. Let 2k + 1 < Then the expected scanning time oAlgorithm is

c k

APPROXIMATE BOYER-MOORE STRING MATCHING 255

Thepreprocessing time is O((k + c)m), and the working space O(cm).
The checking of the marked diagonals can be done after Algorithm 5 or in cascade

with it in which case a buffer of length 2m is enough for saving the relevant part of text
T. The latter approach is presented in Algorithm 6, which contains a modification of
Algorithm 5 as its subroutine, function NPO.

ALGORITHM 6. The total algorithm for the k differences problem.
1. function NPO; begin {the next possible occurrence}
2. while j < n + k do begin

3. r .= j; m; bad "= 0; d "= m;
4. while > k and bad < k do begin

5. if i > m k then d min(d, dk[i, tr]);
6. ifBad(i, tr) then bad :=bad +1;
7. i "= i- 1;r "= r- 1 end;
8. if bad < k then goto out;

9. j j + max(k + 1, d) end;
10. out: if j < n + k then begin

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

NPO "= j m k;
j "= j + max(k + 1, d) end

else NPO n + I end;

compute tables Bad and dk;

j:=m;

for := 0 to m do H0 [i] := i;

H’= H0;
top := min(k + 1, m);
col NPO;
lastcol := col +m + 2k- 1;
while col < n do

for r :=col to lastcol do begin

c:=0;
for i := 1 to top do begin

if Pi t then d "= c;
else d := min(H[i- 1], H[i], c)+ 1;
c := H[i];H[i] := d end;

while H(top) > k do top := top 1;
if top m then report match at j;

else top := top +1 end;
next := NPO;
ifnext > lastcol +1 then begin

H "= H0;
top := min(k + 1, m);

{top -1 is the last row with the value < k}

256 JORMATARHIO AND ESKO UKKONEN

35. col "= next end

36. else col := lastcol +1;
37. lastcol := next +m / 2k- 1 end

The checking phase of Algorithm 6 evaluates a part of D by dynamic programming
(see 3.1). Because entries on every diagonal are monotonically increasing [Ukk85a],
the computation along a marked diagonal can be stopped, when the threshold value of
k / 1 is reached, because the rest of the entries on that diagonal will be greater than
k. Algorithm 6 implements this idea in a slightly streamlined way. Instead of restricting
the evaluation of D exactly on the marked diagonals, (which could be done, of course,
but leads to more complicated code), we evaluate each column ofD that intersects some
marked diagonal. Each such column is evaluated from its first entry to the last one that
could be < k. This can be easily decided using the diagonalwise monotonicity of D
[Ukk85b]. The evaluation of each separate block of columns can start from a column
identical to the first column of D (H0 in Algorithm 6; H stores the previous as well as
the current column under evaluation). For random strings, this method spends expected
time of O(k) on each column (this conjecture of [Ukk85b] has recently been proved in
[ChL92]). Hence the total expected time of the checking phase remains O(kn).

Asymptotically, steps 22-37 ofAlgorithm 6 are executed very seldom. Hence except
for small patterns, small alphabets and large k’s, the expected time for the checking
phase tends to be small, in which case the time bound of Theorem 2 is valid for our
entire algorithm.

3.4. Variations. Each marking operation before the next shift takes time O(m) in
the worst case. At the cost of decreased accuracy of marking we can reduce this by
limiting the number of the columns whose badness is examined. The time reduces to
O(k) when we examine only at most ak columns for some constant a > 1. If there are
not more than k bad columns among them, then the diagonals are marked. This variation
appealingly has the feature that the total time of marking and shifting reduces to O(n) in
the worst case. Of course, the gain may be lost in the checking phase, as more diagonals
will be marked.

On the other hand, the accuracy of the marking heuristic, which quite often conser-
vatively marks too many diagonals in its present form, can be improved by a more careful
analysis of whether or not a column is bad. Such an analysis can be based, at the cost of
longer preprocessing, on the observation that two matches on successive columns of D
can occur in the same minimizing path only if they are on the same diagonal.

In Algorithm 6, the width of the band ofcolumns inspected is m/2k. The algorithm
works better for small alphabets and short patterns, if a wider width is used, because that
will reduce reinspection of text positions during the scanning phase. If the width is at
least 2m / k, then we can in the case of a potential match make a shift of m + 1, which
guarantees that no text position is reinspected in that situation.

4. Experiments and conclusions. We have tested extensively our algorithms and
compared them with other methods. We will present results of a comparison with the
O(kn) expected time dynamic programming method [Ukk85b] which we found to be the
best in practice among the old algorithms we have tested [JTU90].

Table 1 shows total execution times of Algorithm 4 and 6 and the corresponding
dynamic programming algorithms DP1 (the k mismatches problem) and DP2 (the k
differences problem). Preprocessing, scanning, and checking times are specified for Al-
gorithm 6, as well as preprocessing times for Algorithm 4. In our tests, we used random

APPROXIMATE BOYER-MOORE STRING MATCHING 257

4096

1024

256

64

16

16 32 64 128 256

FIG. 3. Total timesfor k 4 and c 2.

Alg. 4

DP1

Alg. 6

DP2

4096

1024

256

16

8 16 32 64 128 256

m

FIG. 4. Total timesfor k 4 and c 90.

Alg. 4

DP1

Alg. 6

DP2

patterns ofvarying lengths and random texts oflength 100,000 characters over alphabets
of different sizes. The tests were run on a VAX 8800 under VMS. In order to decrease
random variation, the figures of Table 1 are averages of ten runs. Still more repetitions
should be necessary to eliminate variation, as can be seen in the duplicate entries of
Table I corresponding to different test series with the same parameters.

Figures 3-6 have been drawn form the data of Table 1. Figures 3 and 4 show the
total execution times when k 4 and m varies for alphabet sizes c 2 and 90. Figures
5 and 6 show the corresponding times when m 8 and k varies for alphabet sizes c 4
and 30.

Our algorithms, as all algorithms of Boyer-Moore type, work very well for large al-
phabets, and the execution time decreases when the length of the pattern grows. An
increment of the error limit k slows down our algorithms more than the dynamic pro-
gramming algorithms. Observe also that the Boyer-Moore approach is relatively better

258 JORMA TARHIO AND ESKO UKKONEN

4O96

1024

256

64

16

0 2 3 4 5

FIG. 5. Total timesfor m 8 and c 4.

Alg. 4

DP1

Alg. 6

DP2

4096

1024

256

64--

16

0 2 3 4 5 6

FIG. 6. Total timesfor m 8 and c 30.

Alg. 4

DP1

Alg. 6

DP2

in solving the k differences problem than in solving the k mismatches problem.
Our methods turned out to be faster than the previous methods; when the pattern

is long enough (m > 5), the error limit k is relatively small and the alphabet is not very
small (c > 5). Results of the practical experiments are consistent with our theoretical
analysis. Devising a more accurate and complete theoretical analysis of the algorithms
is left as a subject for further study.

APPROXIMATE BOYER-MOORE STRING MATCHING 259

TABLE 1
Execution times (in units of 10 milliseconds) of the algodthms (n 100,000). Prepr., Scan, and Check

denote thepreprocessing, scanning, and checking times, respectively.

c m k

2 8 4
2 16 4
2 32 4
2 64 4
2 128 4
2 256 4

4 8 4
4 16 4
4 32 4
4 64 4
4 128 4
4 256 4

30 8 4
30 16 4
30 32 4
30 64 4
30 128 4
30 256 4

90 8 4
90 16 4
90 32 4
90 64 4
90 128 4
90 256 4

2 8 0
2 8
2 8 2
2 8 3
2 8 4
2 8 5
2 8 6

4 8 0
4 8
4 8 2
4 8 3
4 8 4
4 8 5
4 8 6

30 8 0
30 8 1
30 8 2
30 8 3
30 8 4
30 8 5
30 8 6

90 8 0
90 8 1
90 8 2
90 8 3
90 8 4
90 8 5
90 8 6

ALG. 4 DP1 ALG. 6
Prepr. Total Prepr. Scan Check Total

0 574 227 0 129 406 535
0 681 403 0 240 705 945
0 681 371 0 451 759 1210
0 679 385 0 881 813 1694
0 688 349 0 1762 792 2554
0 691 361 0 3172 827 3999

0 451 213 0 129 469 598
0 453 224 0 235 557 792
0 447 222 0 427 731 1158
0 464 227 0 700 538 1238
0 459 226 0 849 216 1065
0 436 226 0 724 2 726

0 151 174 0 84 84 168
0 88 170 0 75 0 75
0 78 167 0 72 0 72
0 75 167 0 70 0 70
0 79 167 73 0 74
0 79 167 1 73 0 74

0 126 166 0 63 2 65
0 50 164 0 40 0 40
0 33 166 0 30 0 30
0 27 165 1 25 0 26
0 27 164 2 26 0 28

27 164 4 27 0 31

0 89 102 0 106 9 115
0 234 155 0 260 246 506
0 371 193 0 208 361 569
0 488 220 0 158 405 563
0 570 223 0 127 405 533
0 628 223 0 109 407 516
0 677 221 0 93 405 498

0 56 78 0 63 0 63
0 95 113 0 112 43 155
0 211 153 0 199 358 557
0 344 175 0 158 415 573
0 480 211 0 128 447 575
0 575 225 0 108 481 589
0 582 232 0 98 505 603

0 16 68 0 18 0 18
0 36 93 0 32 0 32
0 63 120 0 54 0 54
0 102 144 0 68 5 73
0 157 169 0 79 44 123
0 222 194 0 84 170 254
0 364 219 0 90 519 609

0 15
0 32
0 55
0 87
0 132
0 208
0 344

0 16 0 16
0 29 0 29
0 40 0 40
0 53 0 53
0 63 64
0 78 37 115
0 84 207 291

DP2

403
700
756
817
786
824

465
553
55O
563
556
553

406
410
406
403
404
403

389
389
390
389
388
387

164
278
353
399
404
407
401

129
229
353
408
445
477
503

115
187
263
336
412
484
548

114
189
258
332
408
484
554

260 JORMA TARHIO AND ESKO UKKONEN

Acknowledgment. Petteri Jokinen performed the experiments, which is gratefully
acknowledged.

[Bae89a]

[Bae89b]

[BoM77]
[ChL92]

[ChL90]

[Fe165]

[Fe166]

[GAG86]

[GAG88]

[GAP89]

[GrL89]

[Hor80]

[JTU90]

[Kos88]

[KMP771

[LaV88]

[LaV89]
[Sel80l

[Ukk85a]

[Ukk85bl
[UkW90l

[WaF75]

REFERENCES

R. BAEZA-YATES, Efficient Text Searching, Ph.D. thesis, Report CS-89-17, Computer Science De-
partment, University of Waterloo, Waterloo, Ontario, Canada, 1989.

String searching algorithms revisited, in Proceedings of the Workshop on Algorithms and
Data Structures, E Dehne et al., ed., Lecture Notes in Computer Science 382, Springer-
Verlag, Berlin, 1989, pp. 75-96.

R. BOYER AND S. MOORE,Afast string searching algorithm, Comm. ACM, 20 (1977), pp. 762-772.
W. CHANG AND J. LAMPE, Theoretical and empirical comparisons ofapproximate string matching

algorithms, in Proceedings of the Third Symposium on Combinatorial Pattern Matching,
Tucson, AZ, 1992, pp. 172-181.

W. CHANGAND E. LAWLER,Approximate string matching in sublinearexpected time, in Proceedings
of the 31st IEEE Annual Symposium on Foundations of Computer Science, IEEE Press,
New York, 1990, pp. 116-124.

W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. I, John Wiley, New
York, 1965.
,An Introduction to Probability Theory and ItsApplications, Vol. II, John Wiley, New York,

1966.
Z. GALIL AND R. GIANCARLO, Improved string matching with k mismatches, SIGACT News, 17

(1986), pp. 52-54.
Data structures and algorithms for approximate string matching, J. Complexity, 4 (1988),

pp. 33-72.
Z. GALIL AND K. PARK, An improved algorithm for approximate string matching, in Proceedings

of the 16th International Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science 372, Springer-Verlag, Berlin, 1989, pp. 394-404.

R. GROSSI AND F. LUCCIO, Simple and efficient string matching with k mismatches, Inform. Process.
Lett., 33 (1989), pp. 113-120.

N. HORSPOOL, Practicalfast searching in strings, Software Practice & Experience, 10 (1980), pp.
501-506.

P. JOKINEN, J. TARHIO, AND E. UKKONEN,A comparison ofapproximate string matching algorithms,
Report A-1991-7, Department of Computer Science, University of Helsinki, Helsinki, Fin-
land, 1991.

S. R. KOSARAJU, Efficient string matching, extended abstract, Department of Computer Science,
Johns Hopkins University, Baltimore, MD, 1988.

O. KNUTH, J. MORRIS, AND V. PRATr, Fastpattern matching in strings, SIAM J. Comput., 6 (1977),
pp. 323-350.

G. LANDAU AND U. VISHKIN, Fast string matching with k differences, J. Comput. System Sci., 37
(1988), pp. 63-78.

Fastparallel and serial approximate string matching, J. Algorithms, 10 (1989), pp. 157-169.
P. SELLERS, The theory and computation of evolutionary distances: Pattern recognition, J. Algo-

rithms, (1980), pp. 359-372.
E. UKKONEN, Algorithms for approximate string matching, Inform. Control, 64 (1985), pp. 100-

118.
Finding approximate patterns in strings, J. Algorithms, 6 (1985), pp. 132-137.

E. UKKONEN AND O. WOOD, Fast approximate string matching with sufftx automata, Report A-
1990-4, Department of Computer Science, University of Helsinki, Helsinki, Finland, 1990.

R. WAGNER AND M. FISCHER, The string-to-string correction problem, J. Assoc. Comput. Mach.,
21 (1975), pp. 168-173.

SIAM J. COMPLrE
Vol. 22, No. 2, pp. 261-271, April 1993

() 1993 Society for Industrial and Applied Mathematics
003

TWO PROBABILISTIC RESULTS ON MERGING*
WENCESLAS FERNANDEZ DE LA VEGAf, SAMPATH KANNAN*, AND MIKLOS

SANTHAf

Abstract. This paper contains two probabilistic results about merging two sorted lists of sizes n and mwith
m < n. This paper designs a probabilistic algorithm, which in the worst case is significantly faster than any
deterministic one in the range 1.618 < /m <_ 3. This paper extends it into a simple general algorithm that
performs well for any ratio n/re. In particular, for n/m > 1.618 it is significantly faster than binary merge.
This paper also proves an average case lower bound for a widely studied class of merging algorithms, when
l < n/m < + l.

Key words, merging, randomized algorithm, information theory, lower bound

AMS(MOS) subject classifications. 68Q20, 68Q25

1. Introduction. Merging is one of the basic problems in theoretical computer sci-
ence. Given two sorted lists A- {al <... < a,,} and B {bl <... < bn}, the task
consists of sorting the union of the two lists. We assume that the m + n elements are
distinct and m _< n. The merging is performed by pairwise comparisons between items
in A and items in B. The measure of complexity of a merging algorithm is the number
of comparisons made by the algorithm, and the complexity of the merging problem is
the complexity of the best merging algorithm. As usual, we can speak of worst case and
average case complexity.

The worst case complexity of the merging problem is quite well studied. Let C(m, r0
denote this complexity with input lists of sizes m and n: When m 1, merging degener-
ates into binary searchwhose complexity is [log2 (n+ 1)]. The case m 2was completely
solved by Graham [7] and Hwang and Lin [5]; their result is

C(2, n) log2 7(n + 1)/12q + [log2 14(n + 1)/17].

The exact complexity is also known when the sizes of the two lists are not too far apart.
For m < n < [3m/2J we have

C’(m, n) m + n 1,

and the optimal algorithm is the well-known tape-merge (two-way merge). This result
was obtained by Stockmeyer and Yao [10] and by Christen [2], after it was observed by
several people for m < n < m + 4. The best known aigorithmmbinary merge--which
gives satisfactory results for all values of rn and n is due to Hwang and Lin [6]. Let N
denote the set of nonnegative integers. Set n/m 2tz, where t E N and 1 < z < 2 are
uniquely determined, and let BM(m, n) denote the complexity of binary merge. Then

BM(m, r) [(t + z + 1)m] 1,

and Hwang and Lin have also shown that

BM(m, r) < [L(m, r) + m,

Received by the editors June 4, 1990; accepted for publication (in revised form) December 15, 1991.
Centre National de la Recherche Scientifique, Unit6 de Recherche Associ6e 410, Universit6 Paris-Sud,

91405 Orsay, France.
*Computer Science Department, University of Arizona, Tucson, Arizona 85721. The work of this author

was supported by National Science Foundation grant CCR91-08969.

261

262 FERNANDEZ DE LA VEGA, KANNAN, AND SANTHA

where L(m, n) log2 (+’) is the lower bound from information theory. This means
that if the ratio n/m goes to infinity, then the relative extra work done by binary merge
is o(C(m, n)). As the relative extra work might be significant for ratios n/m of constant
order, it is important to look for improvements in this case.

Several algorithms were proposed, which in some range for n/m perform better
than binary merge. Let us say that merging algorithm A1 with running time T(m, n) is
significantly faster for some fixed ratio n/m than merging algorithmA with running time
T(m, n), ifT(m, n)-T(m, n) fl(m). The merging algorithm ofHwang and Deutsch
[4] is better than binary merge for small values of m, but not significantly faster. The first
significant improvement over binary merge was proposed by Manacher [8]; he improved
it for n > 8m by 31m/336 comparisons. It was further improved by Christen [1], who
designed an ingenious but quite involved merging algorithm. It is better than binary
merge if n > 3m, it uses at least m/4 fewer comparisons if n > 4m, and asymptotically
it uses at least m/3 o(m) fewer comparisons when n/m goes to infinity. On the other
hand, this algorithm is worse than binary merge when n < 3m.

In the first part ofthis paperwe propose a simple probabilistic algorithm for merging.
The algorithm will at some points flip a (biased) coin, and its next step will depend on
the result of the coin toss. The algorithm is quite simple, and works well for all values
of m and n. It is significantly faster than binary merge for n/m > (x/ + 1)/2 1.618.
To the best of our knowledge, binary merge is the best algorithm known for n/m < 3,
thus our probabilistic algorithm is significantly faster than any deterministic one in this
range.

In the second part of the paper we prove a nontrivial average case lower bound for a
widely studied class of merging algorithms called insertive algorithms, defined as follows:
During the run of a merging algorithm, we will say that an element a of a list is active if a
has been compared to at least one element of the other list, but a’s exact position in the
other list has not been determined. We will call a merging algorithm insertive if there is no
more than one active element in the smaller list at any time. Apart from this constraint
the algorithm can be arbitrary. Many merging algorithms such as repeated binary search,
tape merge, and binary merge are insertive. We can establish the lower bound for ratios
n/m in the interval (1, x/+ 1) which are bounded away by a constant from the endpoints
of the interval. More precisely, we will prove that if (1 +) < n/m < (+ 1) for
some constant r/ > 0, then every insertive merging algorithm makes on the average at
least a constant factor more comparisons than the information theoretic lower bound.
We were unable to extend the lower bound for constant ratios n/m > v + 1. When
n/m , then the result of Hwang and Lin also implies that the information theoretic
lower bound and the actual complexity are asymptotically equal.

The rest of the paper is organized as follows: In 2.1 we describe our algorithm. The
analysis of its complexity will be done in 2.2 and we also prove there that the particular
bias of the coin in the algorithm was optimally chosen. In 3 we prove the average case
lower bound result for insertive algorithms. Finally, in 4 we mention some open prob-
lems. Throughout the paper the logarithm function in base 2 will be denoted by log, and
in the natural base by In.

2. The probabilistic algorithm.

2.1. Description of the algorithm. For this section let s (v/-- 1)/2 ,. 0.618, and
r (/- 1 + /s)2 .. 1.659. These numbers play a considerable role in the algorithm
and in its analysis. The heart of the algorithm MERGE is the probabilistic procedure
PROBMERGE, which merges two already sorted lists, where the longer list contains

TWO PROBABILISTIC RESULTS ON MERGING 263

more than (1 + s)-times, but at most 2r-times as many elements as the shorter one. The
intuition underlying PROBMERGE is described below. We know that if rt _< [3m/2J,
then the tape merge algorithm is best possible. Given two sorted lists A and B as before,
the tape merge algorithm can be thought of as inserting the a’s in order in list B. At
each stage the next a to be inserted is compared with the first "eligible" element in B.
If, however, B is a list of length 2m, then it might be better to compare the next a to be
inserted with the second eligible b (since, on average, there are two b’s between every
two consecutive a’s). However, the deterministic algorithm that tries to do this turns out
to be no better than tape merge. Its worst case complexity is also 3m 1. A natural idea
is to try to compare the next a to be inserted with either the first or the second eligible
element in B, the decision being made probabilistically. In fact this is our algorithm.

We will use sentinel elements in the algorithm. They make the description simpler
for the price of a little loss of efficiency.

Procedure PROBMERGE
Input: A {al < < am} and B {bl < < b,}, where 1 + s < n/m < 2r, and

sentinel elements b0 -oc, b,+ b,+ .
Output: The merged list.

{ s ifX+s<n/m<_2+s { thechoiceofthe }P :=
v/n/m- 1 if 2 + s < n/m <_ 2r probability value

i := 1;j := 1 {i indexes A, j indexes B}
while i < m do

with probability 1 p compare ai with bj
if a, < bj theni’= i+ 1 {bj_ < a, < bj}
elsej’=j+l

with probability p compare ai with bj+
if ai < bj+l then

compare ai with b
it" a < b then i’= + 1 {b_l < a, < b }
else/:= + 1;j := j + 1 {bj < ai < b+}

elsej’=j+2
end

The general algorithm MERGE uses PROBMERGE as a subroutine. Given lists A and
/3 of size m and rt > (1 + s)m, respectively, the algorithm calls PROBMERGE directly if
rt < rm. Otherwise it picks a uniformly spaced sublist C of/3. The spacing between the
elements of (7 is 2t, where t is the unique integer such that cardinality of (7 is between
rm and 2rm. The algorithm first merges A with (7 probabilistically. This determines
for each a in A a list of 2 1 b’s into which a should be inserted. The insertion is done
deterministically by binary search and takes t steps. Let us observe that MERGE actually
coincides with the procedure PROBMERGE while rt < 2rm.

Algorithm MERGE
Input: A {al <... < a,} and B {bl <... < bn}, where (1 + s) < n/m. For

r < n/m set m 2txm, t E N, r < x <_ 2r.
Output: The merged list.

1. If n/m < r then PROBMERGE(A, B).
2. Let C {o < < c,q} be thesublist of B, where c b(_)2,+l for

k 1,..., [xm], and define sentinel elements co -, c[x,q+l .
3. PROBMERGE(A, C).

264 FERNANDEZ DE LA VEGA, KANNAN, AND SANTHA

4. For i 1,..., m let 0 < ji < [xm] be such that cj, < ai <
5. For 1,..., m insert a by binary search into the list {b(,-1)2,+2 < <

2.2. Analysis of the algorithm. We would like to analyze the expected number of
comparisons made by the algorithm PROBMERGE. Let T(m, n) be this number when
the input of the procedure is two lists of size m and n, respectively, 1 + s < n/m < 2r,
and let p be the probability value defined inside the procedure.

THEOREM 2.1. We have

sn+(l+s)m ifl+s<n/m<2+s,T(m, n) <_
2vfnm if 2 + s < n/m < 2r.

Proof. The outcome of the procedure uniquely determines m nonnegative integers
kl,..., k,, where ki is the number of b’s between a-i and as. As the list B contains n
elements, -sm__l ks < n. The procedure puts the a’s into B one by one. Let fk be the
expected number of comparisons to put an a into B, when the number of b’s between
a and its predecessor in A is k. fk does not depend on the index of the element being

m

T(m, n) max Elk,.
I1 i--1

m-’S=l ks _< n

inserted. Then

Thus we are interested in the values fk. If k > 2, then after the first comparison the
element a jumps over two b’s with probability p, and jumps over one b with probability
1 p. This means that we get the following recurrence relation for fk:

f (1 P)fk-1 + Pfk-2 + 1,

with the initial conditions

fo 2p+ 1(1-p) p+ 1,

/1 3p(1 p) + 2((1 p)2 + p) _p2 + p + 2.

By standard technique, the solution of this linear recurrence is

k p3 + p2 p k 2p2 + 4p + 1
/k=p+l (p+l)2 (-p) + (p+l)2

This tells us that

m" " ks p3 + p2 p E(_p)k, + 2P2 + 4p + 1

Efk’=EP+I (P+ 1)u
i=1

(P+ 1)u
i-1 i-1

mo

m nThe term S=l k is always bounded from above by p-g7 Ifp s, we have p3 + p2 pp+l

0, and the result follows. If p > s (when 2 + s < n/m), we have p3 + p2 p > 0, and
-sm__l (_p)k, is maximized by choosing ki 0. Simple arithmetic gives the result also in
this case.

TWO PROBABILISTIC RESULTS ON MERGING 265

The global algorithm MERGE calls PROBMERGE with two lists of size m and
[mxq and then makes n binary searches, each in a list of size 2 1. Applying Theo-
rem 2.1, we immediately get the following result.

THEOREM 2.2. Let E(m,n) denote the expected number of comparisons made by
MERGE For n/m < r set n/m x, t O, and for n/m > r set n/m 2tx, t
N, r < x < 2r. Then

E(m,n) < (t + sx + l + s)m + l

[(t+2x/)m+l
if (1 + s) < x < 2 + s,
if2 + s < x < 2r.

COROLLARY 2.1. The algorithm MERGE is significantly faster than binary merge for
anyfixed ratio n/m > 1 + s.

Proof. With the notation of Theorem 2.2 we have

(x--sx--s)m--3
BM(m, n) E(m, n) >_ ((1 s) x(s 1/2))m- 3

if (l+s) < x_< 2,
if2 < x < 2+ s,
if 2 + s < x < 2r.

This difference is f(m). [3

Let us point out an interesting special case of the above result. When n 2m,
PROBMERGE merges the two lists with less than 2.855m expected comparisons,
whereas the best known deterministic algorithm [6] performs 3m 2 comparisons.

Some more calculation also yields a relation between the expected running time of
MERGE and the information theoretic lower bound.

COROLLARY 2.2. E(m, n) L(m, n) < 0.471m.
We also claim that the probability value p was optimally chosen in the procedure

PROBMERGE. Let Tp(m, n) be the expected number of comparisons made by PROB-
MERGE when the probability 0 < p < 1 is taken as a variable. Let us observe that we
have just analyzed Ts(m, n) and Tv/---_ (m, n) in Theorem 2.1. For the purpose of this

analysis let us permit any input lists such that the ratio n/m is at least 1. The following
theorem gives optimal choices for the probability value for all ranges of n/m.

THEOREM 2.3. For every p, for every large enough m and n, we have

To(re, n)

Tp(m, n) >
Ts(m, n)

Tv/_(m,n
Tl (m, n)

if 1 < n/m < 1 + s,
if 1+ s < n/m <_ 2 + s,
if 2 + s < n/m < 4,

if 4 < n/m.

Proof. We will examine the function Tp(m, n) according to two cases.
Case 1. p > s. For kl k,-i 0 and km n, the expected number of

comparisons made by the procedure PROBMERGE is

\Pn/m1) p3(p p2
+p-t-1 m+ 1)2P ((-p)n-l).n)

By definition, for every p, m, n we have Up(m, n) < Tp(m, n). We claim that for every
large enough m and n, for every p s, we have

Ts(m, n) < Up(m, n) if 1 + s < n/m < 2 + s,

266 FERNANDEZ DE LA VEGA, KANNAN, AND SANTHA

and that for every large enough m and n, for every p : vn/m 1, we have

Tx/-ff_l (m, n) < Up(m, n) if 2 + s _< n/m.

Let us define the functions V(p) (p+l +p+ 1)m and D(p) P+P-P(p+) ((-p)’ 1).
Then Up(m, n) V(p) + D(p). We will first prove the claim for the function V(p) rather

-,/,than the function U,(m, n). Its derivative is V’(p) ((p+) + 1)m, and it is easy to

check that the function V(p) takes its global minimum in the set of real numbers at the
point v/n/m- 1. Moreover, V(p) is an increasing function for p >_ V/n/m- 1. Thus the
minimum of the function V(p) in the interval Is, 1] is at the point s, if V/n/m 1 < s,
and is at the point v/nlm 1, if v/nlm 1 >_ s. If we observe that v/nlm 1 < s if
and only if n/m < 2 + s, then the claim follows for the function V.

If v/n/m 1 > s then for every p, we have V(p) V(v/n/m 1) ft(m), while

D(v/n/m 1) D(p) < [D(v/n/m 1)1 + ID(p)[O(1). This implies the claim for

Up(m, n) when v/n/m 1 > s, and a similar argument works when v/n/m 1 < s.
In conclusion, we have shown that for every p in the interval Is, 1], for every large

enough m and n,

Tp(m,n) >_ Ts(m,n) if n/m < 2 + s,

and similarly, for every p, for every large enough m and n,

Tp(m, n) >_ Tx/---_ (m, n) if n/m >_ 2 + s.

Case 2. p <_ s. We will Show that for every p in the interval [0, s], for every large
enough m and n,

Tp(m,n) >_ To(m,n) if n/m < l + s,

and similarly, for every p, for every large enough m and n,

Tp(m,n) > T(m,n) if n/m > l + s.

This clearly implies the theorem. The function Up(m, n) that we use is when kl
km- 1 and km n m + 1. This is because, in this range for p, p3 d- p2 p

is negative. For these choices of ki we get,

Once again we break up Up(m, n) into its two terms which we call V(p) and D(p).
(pa+p2_p __p)n-m+lThus V(p) -P3-l-3P-l"lkn/mp-[-i)m and D(p) (p_t_l)2)((+p). As before, we

concentrate on V(p), D(p) being O(1). We compute the derivative V’(p) of V(p) with
respect to p:

V(p)= (-2p3 3p2 + 2 n/m)(p+ 1)a
m.

Note that V(p) is a decreasing function in the range [0, o]. This means that the
minimum value for V(p) for p in the range [0, s] is attained either at 0 or at s. V(0)

TWO PROBABILISTIC RESULTS ON MERGING 267

m(n/m + 1) and V(s) m((1 + s) +sn/m). It is easy to see that V(s) V(O) decreases
as n/m increases. At n/m (1 + s), V(s) V(0). This proves both statements of the
claim at the beginning of case 2.

Thus while n/m < (1 + s), our probabilistic procedure gives deterministic tape-
merge as a special case. In the range 1 + s < n/m < 2 + s the best choice is the
constant p s. For n/m > 2 + s, the best choice grows with n/m until 1, when the
procedure (obviously) degenerates into a deterministic one. There is no reason to use
PROBMERGE for large values of n/m; MERGE is significantly faster when n/m > 2r.
In fact that is how r is chosen.

3. The lower bound. In this section we will prove the following theorem.
THEOREM 3.1. For every l > 0 there exists e > 0 such that for every large enough m

and n with (1 + rl)m < n < (+ 1 rl)m, every insertive merging algorithm makes at
least (1 + e)L(m, n) comparisons on the average.

Proof. The proof depends on the following Unbalance Lemma.
UNBALANCE LEMMA. Let T denote a binary decision tree with k leaves, let the set of

internal nodes be {D1,..., Dk-1 }, and let di be the numberofleaves ofthe subtree with root
Di. Let us suppose thatfor some J c_ {1, 2,..., k 1}, the subset ofnodes {Di j J}
satisfies thefollowing conditions:

(i) There exists > 0 such that ,ia di >- k log k.
(ii) There exists > 0 such that for every j J, the answerprobabilities (fraction of

leaves in left and right subtrees) at the node Di lie outside the interval (1/2 e2, 1/2 + e).
Then, the averagepath length ofT is at least

(1 + ee22) log k.

Proof. The average path length of T is

1
L(T):- E di"

l<_j<_k-1

Let Pi denote the answer probability at Dj. The information in T is

Z(T)-
l<_j<_k-1

where Hi Pi log lipi + qi log 1/qi is the entropy function. Elementary information
theory [9] tells us that we have necessarily

I(T) k log k.

For every j, we obviously have Hi _< 1, and Taylor’s formula gives Hi < 1 e2
2 for

Pi -< 1/2 e2. Thus we obtain

E di + E di(1 e2) -> k log k,
jJ jEJ

and finally

L(T) >_ (1 + ee22) log k.

Let us fix some insertive algorithm, and let T be the binary decision tree associated
with this algorithm. Let the internal nodes of T be D1,..., Dk-, where k (mm+’).

268 FERNANDEZ DE LA VEGA, KANNAN, AND SANTHA

Since the average running time of the algorithm is the average path length of T, it will
suffice to prove that the assumptions of the Unbalance Lemma are fulfilled for some
subset of the nodes and for some proper el and e2. To begin, notice that there is a
bijection between the outcomes of a merging algorithm and the set Z ofwords containing
precisely m letters a and n letters b. For any word w E {a, b}*, let Iwlo and Iwlb denote,
respectively, the number of occurrences of a and b in w.

It follows from the hypothesis that for some sufficiently small > 0 we have

1/2 + 3ff < n/(m + n) < 1/x/- 3.

Let C3 > 0 be an appropriate constant to be specified later. For any m < i < n and
w E Z, let decomp(w, i) denote the decomposition uvxy w, where the factors u, v, x, y
have the following lengths:

lul 3c3,
Ivl Ixl 3c3,
lyl m + n i 3c3.

Let us denote by Zi the set ofwords w Z such that decomp(w, i) satisfies the following
conditions:

1. vx (bba)C3(abb)c3,
2. for every decomposition y y’y", where [Y’I l; and for every decomposition

u u"u’, where lu’l l, we have

(1/2 +)l c2 < ly’l , lu’l (1/x/-)l + c2,

where c2 > 0 is an appropriate constant also to be specified later. We will define a subset
of nodes satisfying the assumptions of the Unbalance Lemma using the sets Zi. First we
prove two claims about these sets.

CLAIM 1. There exists a constant 3 > 0 such thatfor all m < i < n we have

Proof. Let w be a random element of Z, and let m _< _< n. The first require-
ment is obviously satisfied by w with constant probability. We will show that under this
hypothesis, the conditional probability that lY’lb falls outside the interval ((1/2 + ff)l
c, (1/x/ ff)l + c) is less then 0.48. As the second requirement is symmetrical in

lY’lb and lu’lb, this will imply the claim. We shall (rather crudely) bound this probabil-
ity by the sum l<t<lul s(1), where s(1) denotes the probability that the left factor of
y of length violates the second requirement. Clearly s(1) q(1) + r(1), where q(1) is
the probability that the left factor of y of length contains less than (1/2 + ff)l c2 oc-
currences of b’s, and r(1) is the probability that the same left factor contains more than
(1/v ff)l / c occurrences of b’s. Let us recall Hoeffding’s bound [3] about sampling
without replacement.

LEMMA (Hoeffding’s bound). [3] Let us suppose that we have an urn that contains
M + N letters, N ofwhich are b’s and M ofwhich are a’s. Let p N/(M + N). We are
sampling the urn without replacement. Let Xj be the 0 1 valued random variable which
is 1 ifand only ifat the jth trial we get a letter b. Let Si,p -]j= Xj. Then for every 6 > 0
we have

e-’5 I
ip

P[Si,p >_ (1 + 6)ip] <
(1 + 6) l+e

TWO PROBABILISTIC RESULTS ON MERGING 269

and similarly, for every 0 < < I we have

I ip

P[Si,p < (1- 7)ip] <
(1 +

We will use Hoeffding’s bound in the following way: set N n 4c3 and M
m 2c (recall that 4c is the number of b’s and 2c is the number of a’s in vx). Let
p N/(M + N). Then for large enough m, we have:

1/2 + 2 < N/(M + N) < 1//- 2.

Let q(1) (respectively, r(1)) be the probability that in a random w which satisfies the first
condition, the left factor of y of length contains more (fewer) occurrences of b than the
second condition permits. Then

q(1) < P[St,1//_2 >_ (1/x/-)/],

and

r(1) < P[S,1/2+2 < (1/2 4-)/].

Hoeffding’s bound implies that there exists a constant 0 < < i which depends only on
such that

q(/), r(l) < g.
Let cl cl () be an integer such that

E t < 0.24.
l=cl

Now, as a function of1 we choose c2 large enough that q(1) r(l) 0, whenever
Hence

o.48.
l</<lyl l--el

We are now ready to choose the constant ca as a function of c2 such that the following
Claim becomes true. Let ca cz/((3//) 2 3).

CLAIM 2. Let w E Zi for some m < i < n, and let uvxy decomp(w, i). Let z be a
nonemptyprefix of xy (a suffix of uv) such that either the letter which follows (precedes) z
in w is an a, or there is no more a in w after (before) z. Then we have

(1/2 +) < Izl llzl < (1//-).

Proof. We show the upper bound. If z is a prefix-of x, then IZlb/[Z[2/3. Otherwise
this fraction is maximized when the corresponding prefix of y contains the most possible
b’s. If this prefix is of length l, we have

Izlb/Izl <_ 2c3 4- (1/X/- ()Z + c2 1/X/- . l-I
3c3 4-

270 FERNANDEZ DE LA VEGA, KANNAN, AND SANTHA

We can now define a subset of the nodes of T which satisfies the conditions of the
Unbalance Lemma. For every couple (w, i) such that rn < i < n and w Zi, we first
define an internal node V(i, w) of T. Let uvzy decomp(w, i), and let h h(w, i) be
such that ah is the first instance of a in z (thus h 1 is the number of instances of a in
uv). If on the path of T corresponding to w the comparisons involving ah- precede
those involving ah, then let V(w, i) be the node of the decision tree at which the first
comparison involving ah takes place. Otherwise let V(w, i) be the node at which the
first comparison involving ah- takes place. Finally let

J {j’Dj V(w, i) for some w e Zi}.

We now show that the two conditions of the Unbalance Lemma are met by the nodes
whose indices are in J. First we will show that

jfid m<i<n

On the right-hand side everyword w I,.J,<i<, Zi is counted with multiplicity to, where

If i’, then Y(w, i) V(w, i’), because Ih(w, i) h(w, i’)l > 1. Thus the leaf cor-
responding to w is counted on the left-hand side at least t, times. Therefore by using
Claim 1 we get

dj >_ e3m qk log k.
jJ

We now turn to the second condition of the Unbalance Lemma. Let D V(w, i)
for some w Z, and let us suppose without loss of generality that the comparisons
involving ah-1 precede those involving ah. Let ah+r denote the leftmost right neighbour
of ah which has already been treated when the comparisons involving ah begin at D. (If
there is no such elementwe set r m-h+ 1.) Let us further suppose that ah- and ah+r
are separated by s occurrences of b for some s _> 1, which we denote by b,..., b+_.
Let us observe that s/(r / s) [Zlb/lZ for some initial segment z of xy, where z satisfies
the conditions of Claim 2. Therefore we have

1/2 + < s/(r + s) < 1/v/- .
The comparison at D is ah b+t_ for some 1 < < s. Let p(r, s, 1) Pr[ah >

b+t_] denote the answer probability at D. Among the leaves of V(w, i), the relative
rankings of the sets {ah,..., ah+r-1 } and {b,..., b+_x } are all equally represented.
For any word belonging to the leaves of Dj, the relative rank of ah within the pooled set
is at least if and only if ah > be+l-. Thus we have

s(s-1)...(s-l+l)p(r, s, l) (r + s)(r + s 1)...(r + s -1 + 1)
We claim that for every l, the answer probability p(r, s, l) falls outside the interval

(1/2 ee, 1/2 + e=), for e= min{, 1/2 (1/x/)=}. We prove this in two cases
according to the value of 1. If 1, then p(r, s, 1) s/(r + s) > 1/2 + . If > 2, then
we have

p(r, s, l) < r
s < (1/x/ if)2,

TWO PROBABILISTIC RESULTS ON MERGING 271

which means that the second condition of the Unbalance Lemma is also satisfied. We
now set e ele. The conclusion of the Unbalance Lemma gives exactly what we wanted
to prove. [3

4. Open problems. We have shown how to make significant improvements upon
the tape merge algorithm when the ratio n/m is at least the golden ratio. An interesting
open question is the value of the smallest ratio n/m where a significant improvement

probabilistic or deterministic can be obtained. Although the lower bounds in [2],
[10] hold only for deterministic algorithms, we conjecture that not even a probabilistic
algorithm can achieve improvements over tape merge for ratios less than the golden
ratio.

It would be interesting to design other, more complex probabilistic algorithms. Gen-
eralizing our average case lower bound for arbitrary merging algorithms also remains
open.

Acknowledgments. Thanks are due to Charles Delorme for his most valuable assis-
tance. We would also like to thank Russell Impagliazzo for his help in simplifying the
analysis of the probabilistic algorithm.

REFERENCES

C. CIIISTEt, Improving the bound on optimal merging, in Proceedings of the 19th IEEE Symposium on
Foundations of Computer Science, 1978, pp. 259-266.

[2] ., On the optimality ofthe straight merging algorithm, Tech. Report Publication 296, D6p. d’Info, et
de Rech. Op., Universit6 de Montr6al, Montr6al, Qu6bec, Canada, 1978.

[3] V. CnVATAL, Probabilistic methods in graph theory, Ann. Oper. Res., (1984), pp. 171-182.
[4] E K. HWANG Arid D. N. DEUTSCH, A class ofmerging algorithms, J. Assoc. Comput. Mach., 20 (1973),

pp. 148-159.
[5] E K. HWANG Arid S. LIN, Optimal merging of 2 elements with n elements, Acta Inform., (1971), pp.

145-158.
[6] ,Asimple algorithm for merging two disjoint linearly ordered lists, SIAM J. Comput., (1972), pp.

31-39.
[7] D.E. KNUTH, The Art ofComputer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Read-

ing, MA, 1973.
[8] G. K. MANACrER, Significant improvements to the Hwang-Ling merging algorithm, J. Assoc. Comput.,

Mach., 26 (1979), pp. 434-440.
[9] C. E PCARD, Graphes et questionnaires, Gauthiers-Villars, Paris, 1973.

[10] P. K. STOCKMEYER AND E E YAO, On the optimality of linear merge, SIAM J. Comput., 9 (1980), pp.
85-90.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 272-283, April 1993

() 1993 Society for Industrial and Applied Mathematics
OO4

OPTIMAL RANDOMIZED ALGORITHMS FOR
LOCAL SORTING AND SET-MAXIMA*

WAYNE GODDARDt, CLAIRE KENYON*, VALERIE KING, AND

LEONARD J. SCHULMAN

Abstract. Randomized algorithms for two sorting problems are presented. In the local sorting problem,
a graph is given in which each vertex is assigned an element of a total order, and the task is to determine the
relative order of every pair of adjacent vertices. In the set-maxima problem, a collection of sets whose elements
are drawn from a total order is given, and the task is to determine the maximum element in each set. Lower
bounds for the problems in the comparison model are described and it is shown that the algorithms are optimal
within a constant factor.

Key words, sorting, randomized algorithms, comparison model, partial order, graph algorithms

AMS(MOS) subject classifications. 68Q, 05C

1. Introduction. In this paper we study two sorting problems. The first is the local
sorting problem: given a graph in which each vertex is assigned an element of a total
order, one must determine the relative order of every pair of adjacent nodes. This prob-
lem restricts to standard sortingwhen the graph is complete, but in general its complexity
depends on the graph selected. The second problem is set-maxima, where the task is to
identify the maximum element in each of a collection of sets drawn from a total order.
Set-maxima was investigated in [1], [3], and [5]. Local sorting appears to be new, al-
though a restricted version was suggested in [6].

We present randomized algorithms for these problems and measure their complexity
in the comparison (decision-tree) model. In that model, one pays only for comparisons
between elements of the total order. The algorithms use random bits to help determine
which comparisons will be made, but their outcomes must be correct. The complexity of
the algorithm is thus the expected number of comparisons made on a worst-case input.
We obtain information-theoretic lower bounds for both problems and show that our
algorithms attain these bounds.

The output of a local-sorting algorithm is exactly an acyclic orientation of the graph
G. Thus an information-theoretic lower bound on the complexity of local sorting, even
for randomized algorithms, is given by the logarithm of the number, a(G), of acyclic
orientations of the graph G. We present an algorithm that is optimal for all graphsmit
makes an expected O(log a(G)) comparisons.

We derive an estimate of a(G) in terms of the degrees, {dr}, of the vertices {v}
of G: specifically log a(G) is O(-va log(d + 1)). Thus the number of comparisons

Received by the editors January 11, 1991; accepted for publication (in revised form) December 15, 1991.
This paper includes the extended abstracts [2] and [4].

tDepartment of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
The research of this author was supported in part by National Science Foundation grant 8912586-CCR and
Defense Advanced Research Project Agency contract N00014-89-J-1988.

*LIENS, Ecole Normale Sup6rieure, 75230 Paris Cedex 05, France. The research of this author was sup-
ported in part by the Institut de Recherche d’Informatique et d’Automatique.

NEC, Princeton, New Jersey 08540. The research of this author was supported in part by a grant from
the Natural Sciences and Engineering Council of Canada and the ITRC at the University of Toronto, Toronto,
Ontario, Canada.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
The research of this author was supported in part by National Science Foundation grant 8912586-CCR, De-
fense Advanced Research Project Agency contract N00014-89-J-1988 and an Office of Naval Research Grad-
uate Fellowship.

272

LOCAL SORTING AND SET-MAXIMA 273

our algorithm makes contrasts with the O(], d.) comparisons made by the naive
algorithm, which examines all edges.

Closely related to local sorting is the set-sort problem: sort each of a family of possi-
bly overlapping sets. Set-sort is equivalent to locally sorting the graph in which each set
induces a clique. We also observe that local sorting may be thought of as a special case
of set-maxima (where every set is a pair).

One application of local sorting is to the element uniqueness problem on a graph:
given a graph G with each vertex assigned an element of a total order, are all pairs of
adjacent values distinct? Manber and Tompa [7] introduced this question and showed
that log a(G) comparisons are necessary for this decision problem. Up to a constant
factor, this is the bound achieved by our local sorting procedure (which can identify
every equality).

The second problem we study, set-maxima, was introduced in [3], where an argu-
ment of Fredman was presented showing that, given m sets over an n-element uni-
verse, at most (’+_-x) arrangements of maxima are possible. We in fact observe an
information-theoretic lower bound of ft(n log(rain) + n), matching this limitation.

We describe a randomized algorithm for set-maxima that performs an expected
O(n log(m/n) + n) comparisons. By the above this is optimal in terms of n and m.

Local sorting provides a reasonable solution to thepartial order verification problem
suggested by A. Yao [10]: given a directed graph G with elements of a total order at each
of the n vertices, verify that the orientation of every edge agrees with the order. But it
is best to reduce the problem to set-maxima. In the reduction each set consists of the
immediate predecessors of a vertex of the graph. Our set-maxima algorithm yields an
optimal O(n)-comparison algorithm for this problem.

Deterministic algorithms are known for a few special cases of set-maxima. Koml6s
[5] made use of a reduction to set-maxima when he solved the minimum spanning tree

verification problem. His deterministic algorithm finds the tree edge of largest weight in
every simple cycle containing exactly one nontree edge. It solves this instance of set-
maxima in O(n log(rain)) comparisons, where n and m are the number of tree and
nontree edges. Then it verifies that the every nontree edge is greater than the appro-
priate maximum. We have been informed of an O(m + n)-time implementation of this
algorithm by Tarjan [9].

Recently Bar-Noy, Motwani, and J. Naor [1] gave a deterministic algorithm that uses
O(n) comparisons when the n sets are the hyperplanes in a projective geometry. They
also gave an O(n)-comparison algorithm for the case where n sets are chosen randomly,
so that each element appears in each set with probability p(n).

This paper has three main sections: the first deals with local sorting, the second with
set-maxima, and some open problems are discussed in the third.

2. Local sorting. At the heart of our approach to local sorting is the limited-degree
algorithm (2.1) whose complexity, O(n log(A + 1)), is a function only of the number n
of vertices and the maximum degree A of a graph G (where A may be a function of n).
However, the maximum degree of G is too crude a measure of its complexity for local
sorting. A more accurate measure is the logarithm of D(G), defined by:

v(c) l-I +
vG

where dv is the degree of v in G. In 2.3 we show that log D(G) is O(log a(G)), which is a
lower bound on the complexity of local sorting. In 2.2we describe a reduction procedure

274 WAYNE GODDARD, CLAIRE KENYON, VALERIE KING, AND LEONARD SCHULMAN

that alters the graph so that we can achieve the optimal O(log D(G)) comparisons with
several applications of the limited-degree algorithm.

We present our results under the assumption that the values at the vertices are dis-
tinct. Minor modifications suffice to cover the more general case where equalities are
allowed, and "local sorting" includes reporting the equalities as such.

2.1. The limited-degree local sorting algorithm. We show here how to sort locally
in a graph with vertex set X (IXl n) and maximum degree A. The idea is to take
a series of increasingly large random samples of the vertices and partially order each
sample using the information given by the partial order on the previous sample.

We produce a series of samples Rk, Rk-1, R0 X (where k will be defined
later). Starting with R, we then:

Partially order each Ri so that it is locally sorted to radius 22.
By this we mean that the relative order of vertices in R is known if, as measured in G,
they are within distance 22 of each other. The end result is that R0 X is locally sorted
to radius 1, as called for.

Algorithm. We choose the samples as follows. We let R0 X. Then we randomly
choose R from within R_ by taking elements independently with probability pi/p_ 1.

Thus the sample Ri has expected size npi. (The descending sequence pi will be specified
later.)

We continue until k such that R has expected size O(1). This we then sort using an
expected O(1) comparisons.

The main part of the algorithm is an iterative process in which the partial order on
Ri is used to obtain the requisite partial order on R_I. The R are used as "signposts"
for the two parts of this process. Let B denote the set of vertices of distance at most r
from vertex z. Proceed as follows.

Step 1. For each z Ri-1 do:
_22--1Find the rank ofz in R fq B using a binary search.

_2-Any two elements of Ri in B are within a distance of 22 of each otherso, since
_2z-R is locally sorted to distance 22, their relative order is already known (i.e., R B

has been totally ordered). This allows us to find z’s rank with a binary search.
Step 2. For each z Ri_ do:

_22--2Determine C, the set ofall y Ri-1 1z that have the same rank as z with
_29.-respect to R_2
__

-2-Note that for g in B Bv contains/3 (See Fig.2.1.) Thus C can be con-
structed using no further comparisons.

Step 3. For each pair z, y R_ do:
Ifz E Cu and y Cx then compare z and y.

If either z Cu or y Cx while z and y are at most distance 22i-2 apart, then there is
_22i--2 __22i--2at least one intervening signpost (element of R fq B or Ri fq/3u whose value is

between z and y), and therefore their relative order is known. Thus Step 3 is sufficient to
determine for each z R_ the relation between it and every element ofR_ fq/3
In other words Step 3 locally sorts Ri-1 to radius 22i-2.

Analysis. How many comparisons do we use?
Step-by-step analysis. For each z Ri_ 1, the number of comparisons in Step i is at

most log IB"- which, by our assumption on the degrees, is at most 2i- log(A + 1).
Thus the expected number of comparisons for the whole of Step 1 is at most

(2.1) npi_122i-1 log(A + 1).

LOCAL SORTING AND SET-MAXIMA 275

A

,&, A" signposts for x ," signposts determining Cx)

FIG. 2.1. y is a candidate for

Step 2 involves no comparisons.
We bound the number of comparisons in Step 3 by 7]xn,_l

Ri-1 is involved in at most ICx (z}l comparisons. The following lemma provides a
bound on the conditional expectation of IC given Ri_l.

LEMMA 2.1. For any Ri_ and any z Ri_I, the expected size of C is at most
2pi-1/Pi.

Proof. Consider first the set B+ consisting ofthose elements ofBx R_ greater
than . Thn let z+ be the smallest element of B+ /t and note that B/ C consists
of those elements of B+ lss than +. Each lement of B+ is in/ti with probability
P P/P-I. Hence (as this is a Bernoulli process), if B+ were infinite, I/3+ fq CI + 1
would have a geometric distribution with parameter p and thus expected value 1/p. The
finiteness of B+ only reduces this value.

Now define B- and z- analogously (so that E(IB- 6’ I) < (1 p)/p). As 6’
(B+ N C) U (B- N C) U {x}, it follows that E(ICI) < 1 + 2(1 p)/p.

Thus the expected number of comparisons in Step 3, given any particular R-I, is
bounded by [Ri_ IP-/P. Therefore the expected number of comparisons for Step 3 is
at most the expectation (ranging over R_) of this bound, which is

(2.2) pi_i/piE(iRi_ll) nPi_12/Pi.

Definition ofthe parameters. A good choice of the {p} is obtained by balancing the
costs (2.1) and (2.2). This requires 22- log(A + 1) Pi-1/P. Solving for p in terms
ofp_ and noting that p0 1, this leads us to choose

1
Pi (log(A + 1))i2P"

The value k is chosen such that E(IRk[) O(1). For this it is sufficient that k

Iv/log n1

276 WAYNE GODDARD, CLAIRE KENYON, VALERIE KING, AND LEONARD SCHULMAN

Total number of comparisons. Substituting this choice of pi into bounds (2.1) and
(2.2) and summing, it follows that the expected number of comparisons in going from
R to R_ is at most

(log(A q- 1))i-22i-4i+1

Therefore the expected number of comparisons in going from Rk to R is at most

k

(log(A -+- 1))i-22i-4i+ <- n < 13n.

(This bound is independent of A: this is possible because A determined the size of R1.)
Thus the overall number of comparisons is dominated by the transition from R to R0,
and we have the following theorem.

THEOREM 2.2. The limited-degree local sorting algorithm requires

E(comparisons) < 4n log(A + 1) + 13n

on a graph with n vertices and maximum degree A.
As an example, if the degree of every vertex is polylogarithmic in n, then the proce-

dure runs in O(n log log n) comparisons.

2.2. A reduction for arbitrary graphs. In this subsection we show how to sort locally
an arbitrary graph in O(log D(G)) comparisons. This is achieved through a reduction
to the limited-degree case. In the reduction we transform G into a new graph H in
which every edge of (7 is represented exactly once and each vertex of G is represented
several times. H is constructed such that locally sorting each component of H with the
limited-degree algorithm represents an efficient way of locally sorting G. Our reduction
is deterministic and requires no comparisons.

Given a graph G, first discard all isolated vertices. Then let U0 be the set of vertices
of degree 1, and Go G U0. We define U and G inductively for i > 0 by: U is the
set of vertices of degree at most a 22 I in G_, and G G_I U. Halt when
G is the null graph.

We now consider the graph whose vertex set is Ui t3 Ni_ (Ui) (where Ni_ (Ui) de-
notes the set of neighbors ofU in Gi_), and whose edges are the edges that are interior
to Ui or that connect Ui to Ni_ (Ui). In that graph, some vertices of Ni_l (Ui), the "red"
vertices, have degree at most ai. Others have degree higher than ai" we split each of
these into several "green" vertices each retaining between a/2 and ai of its originator’s
edges. (The coloring will be used in the analysis.) Let Hi be this new graph. An example
is shown in Fig. 2.2.

We now apply the limited-degree local sorting algorithm (2.1) to each Hi. This is
equivalent to locally sorting G.

THEOREM 2.3. Given any graph G, the local sorting algorithm uses an expected O(log
D(G) comparisons.

Proof. Let hi IHil. The maximum degree of Hi is at most ai. Thus we require an
expected O(y hi log(ai + 1)) comparisons to sort H locally. We separate the contribu-
tions to Y] h log(a + 1) into the contribution of the vertices in [.J U, the contribu-
tion of the red vertices, and that of the green vertices. (Note that log(a + 1) 2.)

LOCAL SORTING AND SET-MAXIMA 277

Ui
Green

Red

H

FIG. 2.2. Example ofthe graph reduction.

Every nonisolated vertex v ofG shows up, perhaps lacking some of its original edges,
in just one Ui. For each j < i, Nj-I(Uj) may contain vertices corresponding to v: either
several green vertices, or just one red vertex. Note that i _< [log log(d,, + 1)].

Consider a vertex v’ in Ui, derived from v in G. As v was not chosen for Ui-1, its
log(a + 1).degree d,, must exceed ai_. Therefore log(d,, + 1) _> log(ai_ + 1)=

Thus the contribution of U ui to /is at most 2 log D(G).
A vertex v of G has at most one red vertex derived from it in each Ni- (Ui) for

j < [log log(d,, + 1)] 1. Hence its total red contribution is at most

[log log(dr +1)] -1

log(d,, + 1).
j--1

Therefore the contribution of the red vertices is at most 2 log 7)(G).
The green vertices ofH are adjacent only to vertices of U. Further, green vertices

of H are of degree at least a/2, whereas those of U are of degree at most a. Thus
there are at most 21U] green vertices, and their contribution is at most twice that from
Uu .

Combining all the above, it follows that < 8 log D(G).]

Set-sort. Using the concavity of the log function, we can conclude from the above
that if G has m edges, then our local sorting algorithm uses O(n log((2m + n)/n)) com-
parisons. Applying this to the set-sort problem, we obtain the following corollary.

COROLLARY 2.4. Let S, $2,..., Sm be sets from a totally ordered universe ofsize n.
Then these sets can be sorted using an expected O(n log(’q ISj 12/n)) comparisons.

278 WAYNE GODDARD, CLAIRE KENYON, VALERIE KING, AND LEONARD SCHULMAN

2.3. The acyclic orientations of a graph. In this subsection we provide an estimate
of the number c(G) of acyclic orientations of a graph G, based solely on the degrees of
the vertices of G. The upper bound is due to Manber and Tompa [7]. (The parameter c
has also been studied, for instance, in [8].)

Define

.T’(G) H f(dv + 1),

where d, is the degree of v in G, and f(x) (x!) 1/x
THEOREM 2.5. For any graph G,

x/9(c) < < < 9(c).
In particular, log :D(G) O(log a(G)).

Proof The pr..oof that a(G) < /)(G) is in [7]. For positive integral x, v/x + 1 <
f(x + 1), hence v/7:)(G) < ’(G). Now we show that ’(G) < a(G).

The proof is by induction on the number ofvertices of G. The case of a single vertex
is trivial.

Let v be a vertex of minimum degree 6. If 6 0, then c(G) a(G v) and
’(G) ’(G v); so hereafter we assume that 6 > 1. We prove first that

(2.3) a(G) _> (6 + 1)a(C v).
Take any acyclic orientation ,4 of G v and look at v’s neighbors N in G. If N is totally
ordered by ,4, then there are 6 + 1 ways of extending ,4 to an acyclic orientation ofG (by
choosing v’s rank with respect to N); otherwise there are even more ways to extend ,4.

The next thing to notice is that

f(d,,)

where {d} indicate degrees in G (each greater than or equal to 6). It can be shown that
f(x + 1)If(x) is monotone decreasing for positive integral x. Therefore

’(C) < (C- v)S(+ 1)/| S(+ 1)/e\
\

Thus from inequality (2.3) above and the induction hypothesis, we find that

o(C) _> (6 + 1).T’(C- v) _> .T’(C)(6 + 1)(f(6))e

(f(6 -t- 1))+1 .T’(G).
The bounds on a(G) are the best possible of the form 1-I g(d,). The lower bound is

attained by any disjoint union of cliques. For the upper bound consider G If(a, b) with
b >> a: here a(G) a!(a + 1) b. (We would like to thank Mark Haiman for discussions
on this point.) The latter graphs also disprove the upper bound YI, max{2, d,} claimed
in [6].

Conclusion. The results of this section establish the following theorem.
THEOREM 2.6. For any graph G, the local sorting algorithm uses an expected

comparisons and is optimal up to a constantfactor.

LOCAL SORTING AND SET-MAXIMA 279

3. Set-maxima. One can use the set-sort algorithm to solve set-maxima; this is fine
when the sets are very small, but it is inefficient for large sets. The key idea in handling
large sets is a reduction process: take a random sample, partially sort it, and then use
this to reduce the sizes of the sets. Another useful idea is a generalization of set-maxima
(called t-maxima in this paper), in which one must find and sort the t largest elements in
each set.

In 3.1 we discuss our approach to set-maxima, and in 3.2we provide the algorithm
for t-maxima. In 3.3 we analyze the algorithm and show that for t O(1) it uses an
expected O(n log(rain) + n) comparisons, where m is the number of sets and n the size
of the universe. This we show is optimal as a function of m and n.

3.1. The approach to set-maxima. In this subsection we outline the set-maxima al-
gorithm. Assume we have sets $1, $9.,..., S, in a universe X of size n. Our general
strategy for set-maxima can be summarized in three stages.

1. Choose a random sample R, and determine for each set S a "representative"
r which is the maximum sample point in that set.

2. Determine for each set Si the reduced set S formed by discarding those ele-
ments less than the representative.

3. Solve set-maxima on the reduced system.
Observe that the maximum element in the reduced set is the same as that in the original
set.

Implementation of Stage 2 ifR is sorted. We look here at an efficient implementa-
tion of Stage 2 when the sample R has been sorted. Define for each z the "dual" set

T {rj x e Sj }.

To determine the reduced sets we need to determine the relationship between x and rj
for all j and x Sj. This is equivalent to finding for each x, the set { rj rj T & rj <
x}.

We perform a "doubling" search, rather than a binary search, to find the interval of
T in which x lies: One compares x with the elements ofT of ranks 1, 2, 4,..., 2 from
the bottom, until an element greater than x (if it exists) is found, and then performs a
binary search in the interval [2t-1,2t) to find where x lies.

A doubling search is more efficient than an ordinary binary search because the av-
erage x is likely to be smaller than most of the representatives, and thus near the bottom
of T.

Example. Let m be O(n log n). We solve set-maxima as follows. First we take a
random sample R where each element of X is chosen independently with probability
1/log n. Then we sort R, achieving Stage 1. It can then be shown that the expected size
of each reduced set is O(log n), and thus that the doubling searches of Stage 2 take a total
of O(n log log n) comparisons. (Proofs omitted.) We then use an expected O(n log log n)
comparisons to apply the set-sort algorithm to the reduced sets, determining their max-
ima. Thus the entire procedure requires an expected O(n log log n) O(n log(rain))
comparisons.

Generalization. It appears that the O(n log log n) comparisons of the example is the
best one can do with a completely sorted sample. However, if m is small this quantity is
w(n log(rain)), and so, in general, we cannot afford to sort the sample completely. We
therefore must handle Stage 2 differently. We note that for most x X, the search ofT
ends after x has been compared with only the smallest elements of T. This motivates
an extension of set-maxima.

280 WAYNE GODDARD, CLAIRE KENYON, VALERIE KING, AND LEONARD SCHULMAN

DEFINITION. In the t-maxima problem, one is given a set system and a parameter t,
and one must find and sort the t largest elements of each set. The t-minima problem is
defined analogously.

It is this level of generality that proves robust in our recursion.
We implement Stage 2 as follows. We first invoke u-minima on the {T} to find and

sort the u smallest elements in each T. (The parameter u will be specified later.) We
then attempt for each z the doubling search ofT as before. But we are able to complete
the doubling search only when z is smaller than the uth smallest element of T. We set
aside the few "bad" z’s for which the doubling searches fail, and handle them separately.

3.2. The set-maxima algorithm. In this subsection we present the full set-maxima
algorithm. Given an element z and a set A containing z, we say that the rank (bottom-
rank) of z in A is the number of elements not less than (not greater than) z.

We are given a universe A’ of n elements from some total order; and $1, $2,..., Sm,
subsets of X. We will assume that m > 2n.

The algorithm Large is defined below, recursively for X, $1, $2,..., Sm subsets of
the universe, and a parameter t > 16. Large solves t-maxima on the collection {X fq

S}_<m. Small is defined analogously for t-minima.
We call the procedure Large (16, A’, {S}<_m) to solve the set-maxima problem on

X and S, S,..., S.
Large(t, X, {Sj }j_<m)"

If XI _< 16 then sort X.
Else

Step 1. Let R be the sample generated by choosing each x E X independently with
probability lit.
Do Large(t, R, {S}). For 1 < j <_ m, let r be the element ofrank t in R fq S or
-o ifthere is no such element.

The call to Large(t, R, (Sy }) finds the t largest sample elements in each set Sy. Then,
rather than taking the representative to be the maximum sample element in each set, we
choose the tth largest value. This is so that each reduced set contains at least t elements,
if the original set started with that many.

The implementation of Stage 2 has three steps:
Step 2A.Foreach x X, letT {r S x}. Do Small(mta/n,R, {T}x).

This finds and sorts the mt/n smallest elements in each T.
Step 2B. For each x X, compare x with the element T ofT ofrank mt3/nfrom the

bottom. Ifx > T, then put x in Y.
If x < T, then do a doubling search on the sorted portion ofT compare x to
the elements ofT ofbottom-ranks 2, 21,... untilyoufind x is less than some ele-
ment of bottom-rank 2k < mt3/n. Then perform a binary search in the interval
between 2k- and 2k until x isplaced among the elements ofT.

If x is high up in T, specifically, greater than the element of bottom-rank mt3/n, it is
placed aside in Y. Otherwise a doubling search is performed. After this we know for
each S the subset S consisting of the x S (X Y) which are at least as big as the
representative rj.

Step 2C. Do Large(t, Y, {Si }).
This yields for each Sj the subset S consisting of the t largest elements in S fq Y (if
there are that many). By combining S and S, we obtain for each Si the reduced set
Sj, which contains its t largest elements (if Sy had that many originally).

LOCAL SORTING AND SET-MAXIMA 281

Step 3. Let Sj {z Sj fq (X Y) z >_ rj } 3 {largest t elements of Sj f Y}.
Apply the set-so algothm (cf Corolla 2.4) to the sets {Sj}jm.

Step 3 sorts each reduced set, and yields the t largest elements in each SX, as required.

3.3. alysis. We analyze the expected number of comparisons performed during
the procedure Large(t, X, {Sj}j). 1 comparisons occur in Steps 2B and 3, and in
the recursive calls.

Compasons in Steps 2B and 3. For i j m let p(rj) denote the rank of rj in

e number of comparisons needed for each element X Step 2B is the cost
of searching for the inteal in which lies and, if one is found, the cost of locating
within the inteal. us, Step 2B requires at most

(1{ x

comparisons. But sx l{ J r z, z S X }[is equal to [{ z S X
z E r } I, the sum of the ranks of the representatives. Hence, by the concavi of the log
function, Step 2B requires at most

(3.1)

comparisons.
In Step 3, the m sets Sj have size at most t + p(rj). Therefore the set-sort algorithm

(cf. Corollary 2.4) takes at most

(3.2) conlog(Z(t+p(rj))2/n)j
comparisons, for co a constant.

To compute the expectations of expressions (3.1) and (3.2), we determine the fol-
lowing upper bounds.

LEMMA 3.1. E(p(rj)) <_ t2 and E((t + p(rj))2) _< 2t4.
Proof. If Sj V) X were infinite, then p(rj) would be the rank of the tth sample ele-

ment in that set. Elements are in the sample independently with probability l/t; so we
would have a Bernoulli process, and p(ri) would be given by the sum of t independent
geometric random variables with parameter lit. For a geometric random variable Z
with parameter p, E(Z) lip so that E(p(rj)) < t2. Further, E(Z2) (2 p)/p2 and
therefore a simple calculation shows that E((t + p(rj))2) _< 2t4.]

Because of the concavity of logarithms, we thus have that the expected sum of ex-
pressions (3.1) and (3.2) is at most

2n log((mt2)/n) + con log((2mta)/n) <_ cn log(turin),

with c 4 + 4c0, since m > 2n.

Full analysis. Let f(t, n, m) denote the average cost of Large(t, X, {S }), including
recursive calls, when X and {S } are the worst possible inputs such that IX n and the
number of subsets is m. We will show by induction on n that for m _> 2n and t _> 16

(3.3) f(t, n, m) < 2cn log(mr/n).

282 WAYNE GODDARD, CLAIRE KENYON, VALERIE KING, AND LEONARD SCHULMAN

This is true for n < 16: then t > n, while the sort ofX takes at most dn log(n) for d
a small constant.

So assume that n > 16. Then, examining all stages of the algorithm, we see that
f(t, n, m) satisfies the following equation:

f(t, n, m) <_ cn log(turin) + E(f(t, IRI, m)) + E(f(mt3/n, Inl, n)) / E(f(t, IYI, m)),

where the expectations are taken over the distribution of the sample R.
By induction and because n log 1/n is concave, we may write:

:(t, n, m) < cn log(turin) m)
+f(mta/n, E(IRI), n) + f(t, E(IYI), m).

LEMMA 3.2. E(IRI) n/t and E(IYI) <_ n/t.
Proof. The first part of the lemma is obvious. To prove the second part, we note

that x E Y if and only if x is greater than at least mt3/n values rj for which Sj 9

x. Thus (mt3/n)lYI < I{ (x,j)’x _> r, x S)1- Eyp(r). Hence E(IYI) <
mtZ/(mta/n) nit. U

The equation bounding f can now be formulated as

(3.4) f(t, n, m) < cn log(rot/n) + 2f(t, n/t, m) + f(mt3/n, n/t, n).

Observe that if m > 2n and f(t’, n’, m’) is one of the terms on the right-hand side
of (3.4), then t’ > t and m’ > 2n’.

Thus, by our inductive hypothesis (3.3),

f(t,n,m) < cn log(mr/n)+ 2(2c(n/t) log(mt2/n)) + 2c(n/t) log(mta/n)
< cn log(mr/n)(1 + 8It + 8It)
< 2cn log(rot/n),

since t > 16 and m > 2n.
THEOREM 3.3. Let m sets be given from a totally ordered n-element universe, with

m > 2n, and a parameter t > 16. Then the expected number ofcomparisons required by
the t-maxima algorithm is O(n log(turin)). In particular, for all m we solve set-maxima in

O(n log(rain) + n)

expected comparisons, which is optimal as a function ofn and m.
We established the upper bound above. Here is the lower bound. (Note that for

m > n, O(log(mt/n)) O(log(mt2/n)).)
THEOREM 3.4. Ifmt2 is O(n2), then there exist collections ofm sets such that

fl(n log(mt2/n) + n)

compadsons are requiredfor t-maxima.
Proof. If one set contains all elements, then n- 1 comparisons are necessary. On the

other hand, one may partition the universe into blocks of size B and arrange O(nB/t)
sets of size t such that t-maxima forces each block to be sorted. This requires f(n log/3)
comparisons. [3

LOCAL SORTING AND SET-MAXIMA 283

4. Open questions. We list below some questions we have encountered.
(1) What about deterministic algorithms? No nontrivial deterministic algorithm for

local sorting is known other than on dense graphs, where one might as well totally sort
the elements. The same is true of set-maxima with the exception of the restricted set
systems discussed in [5] and [1].

(2) Can the time complexity of the set-maxima and local sorting algorithms (cur-
rently polynomial) be brought into line with their comparison model complexity?

(3) We have shown that there exist collections of m sets for which the information-
theoretic lower bound for set-maxima matches the complexity of our algorithm. How-
ever, some collections of m sets have fewer arrangements of maxima. Is there a set-
maxima algorithm that does better on such collections? We do not know of a simple
characterization of the number of possible arrangements of maxima for an arbitrary col-
lection of sets.

(4) A fourth question is raised by our local sorting algorithm, which makes com-
parisons between distant elements of the graph in order to finally determine the lo-
cal order relationships. Is this necessary? Specifically: Is there a local sorting algo-
rithm that uses O(log a(G)) comparisons but never compares elements over a distance
greater than some constant comparison horizon h? Our algorithm, modified so that
E(IRk]) n/log n, needs h(n) x/log log n. The question is particularly intriguing
because our algorithm actually makes rather few long-distance comparisons (e.g., only
linearly many beyond distance 4).

We know only that h 1 is not sufficient. This answers a question of Linial [6].
Consider a bipartite graph where all values in one color class are greater than those in
the other: all edges must be checked in order to certify this.

(5) A combinatorial question is that of obtaining better upper and lower bounds on

Acknowledgments. The authorswould like to thank Michael Sipser for many discus-
sions and considerable advice. Further, they would like to thank Michelangelo Grigni,
Mark Haiman, Russell Impagliazzo, and Mauricio Karchmer for helpful discussions.

REFERENCES

[1] A. BAR-NOY, R. MOTWANI, AND J. NAOR, A linear-time approach to the set maxima problem, SIAM J.
Discrete Math., 5 (1992), pp. 1-9.

[2] W. GODDARD, V. KING, AND L. J. SCHULMAN, Optimal randomized algorithms for local sorting and set-

maxima, in Proceedings of the 22nd ACM Symposium on Theory of Computing, 1990, pp. 45-53.
[3] R. GRAHAM, F. YAO, AND A. YAO, Information bounds are weak in the shortest distanceproblem, J. Assoc.

Comput. Mach., 27 (1980), pp. 428-444.
[4] C. KENYON AND V. KING, Verifyingpartial orders, in Proceedings of the 21st ACM Symposium on Theory

of Computing, 1989, pp. 367-374.
[5] J. KOML0S, Linear verification for spanning trees, Combinatorica, 5 (1985), pp. 57-65.
[6] N. LINIAL, Legal coloring ofgraphs, Combinatorica, 6 (1986), pp. 49-54.
[7] U. MANBER AND M. TOMPA, The effect of number of Hamiltonian paths on the complexity of a vertex-

coloringproblem, SIAM J. Comput., 13 (1984), pp. 109-115.
[8] R. STANLEY,Acyclic orientations ofgraphs, Discrete Math., 5 (1973), pp. 171-178.
[9] R. TARJAN, private communication.

[10] A. YAO, private communication.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 284-293, April 1993

1993 Society for Industrial and Applied Mathematics
OO5

A MONTE-CARLO ALGORITHM FOR ESTIMATING THE PERMANENT*
N. KARMARKARt, R. KARP, R. LIPTON, L. LOVSZ, AND M. LUBY

Abstract. Let A be an n x n matrix with 0-1 valued entries, and let per(A) be the permanent of A. This
paper describes a Monte-Carlo algorithm that produces a "good in the relative sense" estimate of per(A) and
has running time poly(n)2n/a, where poly(n) denotes a function that grows polynomially with n.

Key words, permanent, matching, Monte-Carlo algorithm, algorithm, bipartite graph, determinant

AMS(MOS) subject classifications. 05C50, 05C70, 68Q25, 68R05, 68R10

1. Introduction. Let A be an n n matrix with 0-1 valued entries, det(A) denote
the determinant of A, and per(A) denote the permanent of A. The marked contrast
between the computational complexity of computing de(A) versus that of computing
per(A), despite the deceiving similarity between the two tasks, has baffled researchers
for years. One of the reasons for interest in computing per(A) is that A can be viewed as
the adjacency matrix of a bipartite graph, H (X, Y, E), where X corresponds to the
rows in A, Y to the columns in A, and A I if there is an edge between X and Y.
The quantity per(A) is exactly the number of perfect matchings in H.

It is well known that deg(A) can be computed in poly(n) time. On the other hand,
the fastest algorithm known for computing per(A) runs in n2’ time [20]. Solid grounds
for arguing that computing per(A) is an inherently difficult problem were first provided
in [21], which shows that the problem is #P-complete. One implication of this result is
that if P NP, then there is no poly(n) time algorithm for computing per(A).

Because of the apparent nonexistence of a poly(n) time algorithm for computing
per(A) exactly, we focus our attention on finding an algorithm that produces a good
estimate of per(A) and has a small running time. An (, 6) approximation algorithm for
per(A) is a Monte-Carlo algorithm that accepts as input A and two positive parameters
e and 6. The output of the algorithm is an estimate Y of per(A), which satisfies

Pr[(1- e)per(A) G Y <_ (1 + e)per(A)] _> 1- 6.

The papers [9], [15], [16] discuss (e, 6) approximation algorithms for counting problems
in greater detail. We develop an (e, 6) approximation algorithm for per(A), which runs in
2’/2 log()poly(n) time. For fixed e and 6, the running time of the approximation al-
gorithm is essentially the square root of the running time for the fastest known algorithm
that computes per(A) exactly.

In [3], [10], [11] (e, 6) approximation algorithms for per(A) are given which run in
poly(n) time in the special case when each row and column in A contains at least n/2
l’s. The report [13], which appeared during the final revision of this paper, gives an

Received by the editors November 12, 1990; accepted for publication (in revised form) December 19,
1991.

AT&T Bell Laboratories, Incorporated, Murray Hill, New Jersey 07974-2010.
Computer Science Division, University of California, Berkeley, California 94720, and International Com-

puter Science Institute, Berkeley, California 94704-1105. The research of this author was supported by Na-
tional Science Foundation grant CCR-9005448.

Computer Science Department, Princeton University, Princeton, New Jersey 08544-0001.
Hungarian Academy of Sciences, 1051 Budapest, Roosevelt-Ter9, Hungary and Computer Science De-

partment, Princeton University, Princeton, New Jersey 08544-0001.
International Computer Science Institute, Berkeley, California 94720. The research of this author was

partially supported by National Science Foundation operating grant CCR-9016468 and by grant number 89-
00312 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

284

MONTE-CARLO PERMANENT ALGORITHM 285

(e, 6) approximation algorithm for per(A), which runs in time O(cv/-g2(’)e-2 log()).
Whether or not there is an (e, 6) approximation algorithm for per(A), which runs in
poly(n) time for general A, is still an open problem.

2. Some general considerations regarding (e,) approximation algorithms. Sup-
pose we would like to estimate some quantity Q and have available a stochastic exper-
iment whose output is a random variable X such that E[X] Q and E[X2] is finite.
Suppose further that we can repeat this experiment as many times as we wish, and that
the outcomes of the successive trials will be independent and identically distributed,
with the same distribution as X. Let X be the outcome of the ith trial. A straight-
forward application of Chebyshev’s inequality shows that, if we conduct N trials, where
N (E[X2]/E[X]2)(1/e26) then (E/N:1 Xi/N) gives an (e, 6) approximation to Q.

We can improve the dependence of the number of trials on 6 using a well-known
trick. Setting 6 1/4, we find that, ifN (4E[X2]/E[X]2)(1/e2), the probability is at least
_a that the average of the N trials will lie within e of Q. To obtain an (e, 6)-approximation
algorithm, we repeat such an N-sample experiment K times, where K is an odd integer
greater than a suitable constant c times log(1/6), and take as our estimator of Q the
median of the estimators produced by the K experiments of N samples each. Let us
say that the outcome of a N-sample experiment is good if it lies within e of Q. Then the
median of the K outcomes will be good whenever the majority of the K outcomes are
good. Using the fact that the outcomes are independent and identically distributed, and
that each outcome has probability at least of being good, standard bounds on the tail
of the binomial distribution [5] reveal that the median is good with probability at least
1 6. Thus, the number of trials required for an (e, 6) approximation to Q is

0 (E[X] 1

E[X]2 e2
lg ())

3. The Godsil/Gutman estimator ofper(A). The discussion of the last section shows
how an (e, 6)-algorithm for approximating a quantity Q can be constructed from any com-
putable stochastic experimentwhose outcome is a random variable Y such that E[Y] Q
and E[Y9] is finite. The efficiency of the algorithm will be based on the computational
difficulty of performing the stochastic experiment, and on the ratio E[Y]/E[Y]. The
rest of the paper is devoted to studying two particular stochastic experiments for estimat-
ing per(A). The first of these, whichwe call the Godsil/Gutman estimator, was suggested
in [8], but no analysis of the number of trials needed for an (e, 6) approximation algo-
rithm was provided; the second one is a variant of the Godsil/Gutman estimator, which
has a smaller second moment and thus leads to a more efficient algorithm.

The Godsil/Gutman estimator is defined as follows:
(1) An n x n matrix B is formed from A as follows:

For all i, j, 1 < i, j < n,
If Aij 0 then Bij +--- 0
Elseif Ai 1 then randomly and independently choose Bi,j {-1, 1},

each choice with probability 5.
(2) Y (det(B))2.
This stochastic experiment can be executed in poly(n) time.
In 4 we introduce some technical language that is appropriate for all of the fol-

lowing analysis. Section 5 concerns the Godsil/Gutman estimator; we show that E[Y]
per(A) and derive an upper bound on ELY2]. Then, in 6, we present a refinement of
the Godsil/Gutman estimator, show that it is unbiased, and derive an upper bound on
its second moment.

286 KARMARKAR, KARl), LIPTON, LOVASZ, AND LUBY

4. Terminology. Let P be the set of all n! permutations of 1,..., n. For all a E P,
let sgn(a) -1t, where t is the number of transpositions to form a.

Let P(A) E_ P be the set of all permutations a such that for i 1,..., n, A,(0 1.
Then, per(A) YaEP(A) 1 IP(A)[. For each a E P(A), for i 1,..., n, we label

(i, a(i)) with the symbol a. Let PZ(A) P(A) x P(A). For each (al, a2) P2(A),
let G(&) be the unlabelled graph where there is an unlabelled node for each (i, j) which
is labelled with either or both of ai, a2, and where there is an edge between two distinct
nodes (i, j) and (i’, j’) if and only if i i’ or j j’. Each connected component of G(#)
is an isolated node or an even length cycle. For each cycle in G(&), designate one of the
nodes in the cycle as the root ofthe cycle. Let D {G(b) b P2(A)}. For each graph
G D, let c(G) be the number of cycles in G. For each G D, let

e’q(G) {& e p2(A): G(&)= G}.

PROPOSITION 4.1. [e’q(G)[2c(G).

Proof. Let & (ax, a2) E e’q(G). Each isolated node in G is labelled with both
crt and a2. Let c be a cycle in G. If the label of the root in c is al, then every node
at an even distance from the root in c must be labelled a and every node at an odd
distance from the root in c must be labelled a2. The case when the root is labelled
is symmetric, interchanging the roles of O" and a2. Thus, for each cycle there are two
possible labellings and the total number of labellings of all cycles is then 2

Let D’ {G D: c(G) 0}.
PROPOSITION 4.2.
(1) G(<(71, (:r2)) e D’ a
(2) a(<al,a>) a(<a=,a=>) . (:r (72.

(3) [D’[per(A).
(4) For all G e D’, le’q(G)l- 1.

5. Analysis of the Godsil/Gutman estimator.
THEOREM 5.1. E[Y] per(A).
Proof. For each # (cry, a2) p2(A), let

x(&) H sgn(a)HBi,a(i)
k=l i=1

Then, since det(B) -]..eP(A)sgn(a) 1-]in__l Bi,a(i),

(1)

(2)

For each & (a,, al) E p2(A), x(&) i independent ofthe values chosen for B. Thus,
part (1) is equal to per(A) because the number of terms in the sum is IP(A)I per(A).
We show that the expected value of part (2) is equal to zero as follows. Fix G D D’
and b (ai, a2) E e’q(G). We show that E[x(b)] 0, thus showing that the expected

MONTE-CARLO PERMANENTALGORITHM 287

value of every term in part (2) is zero. Because G E D D’, G contains at least one
cycle. Let (i, j) be some node in some cycle of G. Because either (i, j) is labelled with
al and not with a2 or vice versa, z(tY) can be written as y(tY)Bi,j, where y(#) does not
contain Bi,j. Because Bi, is independent of

E[x(&)]- E[y(&)]E[Bi,j].

Because E[Bi,j] 0, E[x(0)] 0.

THEOREM 5.2.

’ 2c(G)
GD

Proof.

E[y]2 (per(A))u- 1= y Z 1: 2(G),
(a,a)Pg(A) GD (a,a:)gq(G) GD

where the last equali is from Proposition 4.1. t Pa(A) P(A) P(A) P(A)
P(A). For each 5 (a, a2, a3, a4) pa(A), let

k=l i=1

Then,

and

y2 (det(B))a x(5)
5Pa(A)

E[y2]= E[x(t)].
aPa(A)

Let ODD {# E Pa(A) there is some (i, j) which is labelled with an odd number of
labels from {al, a2, a3, a4}}, and let EVEN P4(A) -ODD. For each 5 ODD, there
is some (i, j) such that x(5) can be written as y(5)Bi,y, where y() does not contain
Bi,j. Thus, E[x(5)] E[y(t)]E[B,j]. Because E[Bi,j] 0, E[x(5)] 0. For each
5 EVEN, for each row i 1,..., n, either there is a j such that (i, j) is labelled with
all four of {crl, tr2, or3, or4 } or there is a j and a j’ # j such that (i,j) is labelled with
exactly two of {al, a2, a3, a4}, and <i,j’) is labelled with the other two. Let G(5) be the
graph where there is a node for each <i, j) such that (i, j) is labelled with at least one of
{al, a2, a3, a4}. There is an edge between two distinct nodes (i, j) and (i’, j’) if and only
if i i’ or j j’. Then, {G(5) 5 EVEN} D, where D is as previously defined.
For each G D, define

6i:l(G) {5 e EVEN a(5) G}.

We claim that Idia(G)l 6c(a). The reasoning is similar to that used for the proof of
Proposition 4.1. Let 5 (al,a2, aa, a4) di:l(G). Each isolated node in G is la-
belled with all four of {al, a2, a3,a4}. For each cycle c in G, the root of c and every

288 KARMARKAR, KARP, LIPTON, LOVASZ, AND LUBY

node at an even distance from the root must be labelled with the same two elements of
{or1, r2, r3, (r4} and every node at an odd distance from the root must be labelled with
the remaining two. Thus, there are (42) 6 possible labellings of each cycle, and conse-
quently a total of 6c(a) labellings.

It is not hard to see that for each/ E EVEN, z(/) 1 independent of the values
chosen for the entries in/3. This fact rests on the following two observations:

For any two permutations cr and -, sgn(cr-) sgn(r), sgn(-) and sgn(cr-)
4 4sgn(cr). Hence rI=t sgn(r) sgn(rI=t cry) 1-I=2 sgn(r-r). It follows from the

definition of EVEN that, if each of the three permutations r-1rk, k 2, 3, 4 is written
in the usual cycle notation as a product of disjoint cycles, then the cycles occurring will
correspond to the cycles of even length in G(), and each cycle will occur in exactly two
of the three permutations (r- rk. Thus, if each of these cycles is expressed in a standard
way as a product of transpositions, then each transposition will occur an even number of
times. It follows that 1-I=l sgn(cr-lcr) 1, and hence H=I sgn(r) 1;

Each factor in the productl-I= I-Ii=l Bi,(i) occurs an even number of times,
and thus the product is equal to 1.

Thus, E[Y2] E#6EVEN 1 EG6D 6c(a)" Since E[Y]2 EIS/6D 2(a), the proof
is complete. D

COROLLARY 5.3. The Godsil/Gutman estimatoryields an (,6)- approximation algo-
rithm for estimating per(A) which runs in time poly(n)3n/2 # log().

Proof. Each evaluation of the estimator can be performed in time poly(n). Also,

6c(a)
GD < max3C(a) < 3n/2,

2(a) GD

where the previous inequality follows because there are at most n/2 cycles in any
GED.

6. A better estimator and its analysis. We now present a variant of the Godsil/
Gutman estimator which yields a more efficient (, 3)-approximation algorithm for
per(A). Let

1 1 x/.
wo 1, l/) - + --i, w2 2 2

be the three cube roots of unity. If y a + bi is a complex number, then a bi is
the complex conjugate of y.

The estimator is computed as follows.
(1) An n x n matrix B is formed from A as follows:

For all i, j, 1 _< i, j _< n,
If Ai,j 0 then Bi,j -- 0
Elseif Ai,j 1 then randomly and independently choose

Bi,j {w0, Wl, w2 }, each choice with probability g.
(2) Z .-- det(B)det(B).
This estimator can be evaluated in poly(n) time.

MONTE-CARLO PERMANENT ALGORITHM 289

THEOREM 6.1.

E[Z]-- per(A).

Proof. The proof is similar to the proof of Theorem 5.1. For each # (al, a2) e
P2 (A), let

Then,

(3)

(4)

n

x(tY) sgn(al)sgn(a2) H Bi,al
i--1

Z det(B)det(B)= Z
&6p2(A)

&=(al,a)ep2(A)

GeD-D’ ee’q(G)

For each # (o1,0"1) p2(A), x(&) 1 independent of the values chosen for B.
Thus, part (3) is equal to per(A). Showing that the expected value of part (4) is equal
to zero is very similar to the corresponding portion of the proof in Theorem 5.1. The
observation needed is again that for any (i, j), E[Bi,j] 0. Yl

THEOREM 6.2.

E[Z
E[Z]

G6D

2c(G)
G6D

Proof. The proof follows exactly the outline of the proof of Theorem 5.2. We only
note the differences here.

For each ti (0"1,0"2, 0"3, 0"4) e p4(A), let

x(a) sgn(0"k) Bi,a(i) sgn(0"k) -i,a(i)
k=l "= k=3 "=

Then, E[Z2] ep,(A) E[x()]. From the definitions in the proof of Theorem 5.2,

p4(A) ODD U EVEN ODD U U 6/(G).
G6D

For/ ODD there is some (i, j) such that x(/) can be written as y(#)Bi,j or as y(gr)Bi,j,
where in either case y(tY) contains neither Bi,j nor i,. Because E[Bi,j] E[i,j] 0,
E[x(/)] 0. For each G D we further partition d0(G) as follows:

dtt’(G) {/ d0(G) in each cycle c in G the root of c is

labelled with exactly one of {al, 0"2} and with exactly

one of {a3, a4 } }.

290 KARMARKAR, KARP, LIPTON, LOVASZ, AND LUBY

Because there are four possible labellings for each cycle in G,]4tl’(G)] 4e(G). For
each & e 4it’(G), for each node (i, j) in G there are an equal number of occurrences
of Bi,j and Bi,j in z(#). Thus, z(8) 1 independent of the values chosen for B, and
E[x(5)] 1. For each ;5- dtl(G) tt’ (G), there is some node (i, j) in G such that Bi,
occurs twice in x(t) and i, does not occur at all. Thus, x(&) can be written as y(#)B,,
where y(/) contains no occurrences of B,i or ,j. Then, E[x(/)] E[y(&)]E[B,i].
Because E[B,j] 0, E[x(5)] 0.

Putting this together, E[Z2] -,aeD 4(a), and thus

4c(G)
E[z2] GD

G6D

COROLLARY 6.3. The estimator Zyields an (e, 6)-approximation algorithmfor estimat-
ing per(A) which runs in time poly(n)2n/ log().

Proof. Each evaluation of the estimator can be performed in time poly(n). Also,

4c(G)
GeD < max2c(G) < 2n/2,

2c(G) G6D

G6D

where the previous inequality follows because there are at most n/2 cycles in any
GD.

It is natural to consider a generalization of the above two algorithms, in which B,
is set equal to zero when A, 0, and to a random kth root of unity whenever Ai,j 1.
The Godsil/Gutman estimator corresponds to the case k 2, and the algorithm of the
present section, to the case k 3. Theorem 3 holds for all integers k _> 2, and Theorem
4 holds for all integers k _> 3. However, choosing k greater than 3 appears to give no
reduction in the variance of the estimator.

7. Some special eases. We have introduced two unbiased estimators of per(A)" the
Godsil/Gutman estimator Y and a second estimator Z which refines the Godsil/Gutman
technique by using cube roots of unity. We showed that

6c(G)
E[Y2] GeD

GD

and

E[z2] GD

4c(G)

G6D

We then obtained an upper bound of 3/ on E[y2]/E[Y]2 and an upper bound of
2n/2 on E[Z:]/E[Z]: using the trivial observation that, for all G, c(G) < . Although
this bound seems terribly pessimistic, the following example shows that there are cases

MONTE-CARLO PERMANENTALGORITHM 291

in which it is close to the truth. Let rt be even and let A be the n n matrix such that for
i 1,..., , A2i-1,2i-1 A2i_l,2i Ai,2i-1 A2i,2i 1 and all other entries in A
are zero. For the first algorithm the expected number of trials before there is even one
trial where Y # 0 is f(2’/9), and for the second algorithm it is f(()n/2). There is a
lot of room between 3’/2 and 2n/ and between (3-3,/z and 2/; we are not sure which2]

bound is closer to the worst case behavior for the respective algorithms.
Despite this bad example, we suspect that in most situations, these bounds are far

too pessimistic, since c(G) will "typically" be much smaller than n/2. As one heuris-
tic indication of this phenomenon we note that, if tY (al, a), where al and cr are
independent random permutations, then c(G(r)) will be close to In(n) with very high
probability.

In this section we analyze a concrete example in which the bounds of 3/ for the
Godsil/Gutman algorithm and 2/2 for its refinement are provably too pessimistic: the
n x n matrix C in which every element is equal to 1. The permanent of this matrix is, of
course, n!.

Let the random variable Y be the estimator produced by the Godsil/Gutman algo-
rithm applied to the matrix C, and let Z be the estimator produced by the refinement
given in 6 applied to the matrix C. Our main result is as follows.

THEOREM 7.1. In theparticular case ofthe n n matrix C,

ElY2] (n + 1)(n + 2) E[Z2]
E[y]2

< and <n+l
2 E[z]

Proof. Since the two estimators are unbiased, E[Y] E[Z] n!. In order to dis-
cuss the second moments of Y and Z we require a definition: for any permutation a of
{ 1, 2,..., n}, let d(a) be the number of cycles of length greater than one in the permu-
tation a.

We know from Theorems 5.2 and 6.2 that E[Y2] -G 6c(c) and E[Z2] G 4c(C)"
We note that, for any & (al, a2), c(G(r)) d(a-la2). Combining this with the fact
that le’q(G)l 2c(c) we find thatGD 6(G) <a,ag.>Pg(A) 3d(a-xag)" In the case of
the complete graph, P(A) is equal to P, the set of all permutations of { 1, 2,..., n}, and
thus E[Y2] -(x,,.>p= 3a(--). Since each permutation a can be written as

in exactly n! ways, the right-hand side reduces to n! -ep 3a(). Similarly, we obtain

E[Z2] n! EtrP 2d(tr)" But it follows from [17] (solution to Exercise 3.12, p. 203) that

--aep 3d(a) _< (n+2)!2 andaP 2d(a) < (n+l)l.. Sence, n[y2]/n[Y]2 _< (n+2)(n+l)/2
and E[Z2]/E[Z] 2 <_ n + 1.

It follows that, in the special case of the matrix C, a quadratic number of trials of the
Godsil/Gutman Monte-Carlo algorithm, or a linear number of trials of our refinement
of the Godsil/Gutman algorithm, are sufficient for an (e, 5)-approximation.

In a preliminaryversion of this paperwe conjectured that similar claims hold true for
almost all n n zero-one matrices. This was established in [9], where it was shown that,
for almost every 0, 1 matrix, O(nw(n)e-2) independent trials, using the estimator of 6,
suffice to obtain an (e, 1/4) approximation to the permanent. Here w(n) is any function
tending to infinity as n ---, oc. It was previously known that [12], combined with [7]
or [19], yields a polynomial-time (e,) approximation algorithm for the permanent of
a random zero-one matrix of arbitrary density. However, Jerrum’s result, based on the
algorithm of 6, gives a better running time than these methods.

292 KARMARKAR, KARP, LIPTON, LOVASZ, AND LUBY

8. Comments, generalizations, refinements. For both algorithms presented here,
once the values of B have been chosen, the value of the estimator can be computed
exactly in poly(n) time. In the second algorithm, this requires that be represented
symbolically. The symbol will not appear in the final answer, which is an integer.

Both Monte-Carlo algorithms can easily be modified to estimate per(A) when the
entries in A are allowed to be arbitrary positive numbers. However, in this case there
is an issue with precision; the estimators cannot be computed exactly in poly(n) time,
although they can be closely approximated. The modification for the Godsil/Gutman
estimator is to randomly choose

each choice with probability 1/2. The modification for the second estimator is to randomly
choose

each choice with probability 1/2. In both cases, the expected value of the estimator is
per(A) and the upper bounds on the number of trials to guarantee an (e,) approxima-
tion algorithm stated in Corollaries 5.3 and 6.3 still apply, assuming that at each trial
the estimator is computed exactly. The analysis would have to be modified to allow for
truncation error.

Each of our Monte-Carlo algorithms consists of O(log(1/2)) phases, with each phase
consisting of some number N of independent trials. We required that each phase be an
(e,) approximation algorithm. Our analysis of the upper bound on the number of trials
to guarantee this property was based on Chebyshev’s inequality, and thus the analysis
still holds if trials are pairwise independent. Consider running the first Monte-Carlo
algorithm with a fixed e and 6. As it is written it requires O(3n2) random bits per phase
in total, i.e., n2 random bits per trial to randomly choose the values for B. This can be
reduced to O(n3) random bits per phase using standard methods of generating pairwise
independent unbiased random bits 1], [6], 18].

9. Open questions.
(1) Is there an (e, 6) approximation algorithm for per(A) which runs in poly(n) time?

One possible approach to solving this problem is based on the observation that the trials
within a phase need only be pairwise independent, rather than completely independent.
The result of each phase is -i=1 Y/t where t?, the number of trials, is exponential in n.
Pairwise independence permits the t? samples to be generated using only O(na) random
bits. Perhaps the rule for generating the samples from the random bits can be designed
so that the quantity =1 Y can be computed directly and efficiently from the random
bits, without the need to calculate the result of each trial explicitly. Similar ideas have
been used successfully in other contexts [1], [2], [6], [4], [14], [18].

(2) Is there a deterministic algorithm with running time o(2), which accepts as input
A and e and which outputs Y such that

(1 e) per(A) _< Y _< (1 + e) per(A)?

MONTE-CARLO PERMANENT ALGORITHM 293

REFERENCES

[1] W. ALEXI, B. CHOR, O. GOLDREICH, AND C. P. SCHNORR, RSA Rabin functions: certain parts are as hard
as the whole, SIAM J. Comput., 17 (1988), pp. 194-209.

[2] E. BACH, Realistic analysis ofsome randomized algorithms, in 19th Proceedings of the ACM Symposium
on the Theory of Computing, 1987, pp. 453-461.

[3] A. BRODER, How hard is it to marry at random (on the approximation ofthepermanent), in 19th Proceed-
ings of the ACM Symposium on the Theory of Computing, 1986, pp. 50-58.

[4] J. CARTER AND M. WEGMAN, Universal class of hash functions, J. Comput. Systems Sci., 18 (1979),
pp. 143-154.

[5] H. CHERNOFF,A measure ofasymptotic efficiencyfor tests ofa hypothesis based on the sum ofobservations,
Ann. Math. Stat., 23 (1952), pp. 493-509.

[6] B. CnoaAND O. GOLDREICH, On thepower oftwo-points based sampling, J. Complexity, to appear.
[7] A. M. FRIEZE,A note on computing randompermanents, manuscript, 1989.
[8] C. D. GODSIL AND I. GUTMAN, On the matching polynomial of a graph, Algebraic Methods in Graph

Theory, I, L. Lovisz and V. T. S6s, eds., Math. Soc. Jinos Bolyai, North-Holland, Amsterdam,
1981, pp. 241-249.

[9] M. JERRUM, An analysis of a Monte-Carlo algorithm for estimating the permanent, Tech. Report ECS-
LFCS-91-164, Laboratory for Foundations of Computer Science, Department of Computer Sci-
ence, University of Edinburgh, Edinburgh, Scotland, June, 1991.

[10] M. JERRUM, L. L. VALIANT, AND U. VAZIRANI, Random generation of combinatorial structures from a

uniform disaibution, Theoret. Comput. Sci., 43 (1986), pp. 169-188.
11] M. JERRUMAND A. SINCLAIR, Conductance and the rapid mixingpropertyfor Markov chains: the approxi-

mation ofthepermanentresolved, Proceedings oftheACM Symposium on the Theory ofComputing,
1988, pp. 235-243.

[12] ,Approximating thepermanent, Internal Report CSR-275-88, Department of Computer Science,
University of Edinburgh, Edinburgh, Scotland, 1991; SIAM J. Comput., 18 (1989), pp. 1149-1178.

[13] M. JERRUM AND U. VAZIRANI,A mildly exponential approximation algorithm for thepermanent, Internal
Report ECS-LFCS-91-179, Department of Computer Science, University of Edinburgh, Scotland,
1991.

14] H. KARLOFF AND P. RAGHAVAN, Randomized algorithms andpseudorandom numbers, in Proceedings of
the 20th ACM Symposium on the Theory of Computing, 1988, pp. 310-321.

[15] R. KARPAND M. LUBY, Monte-Carlo algorithmsfor enumeration and reliabilityproblems, in 24th Proceed-
ings of the IEEE Foundation of Computer Science, 1983, pp. 56-64.

[16] R. KARP, M. LUBY, AND N. MADRAS, Monte-Carlo approximation algorithmsfor enumerationproblems, J.
Algorithms, 10 (1989), pp. 429-448.

[17] L. LovAsz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
[18] M. LUB, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput., 15

(1986), pp. 1036-1053.
19] R. MOTWANI, Expandinggraphs and the average-case analysis ofalgorithmsformatchings and relatedprob-

lems, in Proceedings of the ACM Symposium on the Theory of Computing, 1989, pp. 550-561.
[20] H. RYSER, Combinatorial Mathematics, The Carus Mathematical Monographs, 14, the Mathematical

Association of America, Washington, DC, 1963.
[21] L. VALIANT, The complexity ofcomputing thepermanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.

SIAM J. COMPLI’E.
Vol. 22, No. 2, pp. 294-302, April 1993

1993 Society for Industrial and Applied Mathematics
OO6

LIMITING NEGATIONS IN CONSTANT DEPTH CIRCUITS*

MIKLOS SANTHAt AND CHlZISTOPHEI WILSON*

Abstract. It follows from a theorem of Markov that the minimum number of negation gates in a circuit
sufficient to compute any Boolean function on n variables is Llogn + 1. It can be shown that, for
functions computed by families of polynomial size, O(log n) depth and bounded fan-in circuits (NC1), the
same result holds: on such circuits negations are necessary and sufficient. In this paper it is proven that this
situation changes when polynomial size circuit families of constant depth are considered: negations are no
longer sufficient. For threshold circuits it is proven that there are Boolean functions computable in constant
depth (TC) such that no such threshold circuit containing o(ne), for all > 0, negations can compute them.
There is a matching upper bound: for any > 0, everything computable by constant depth threshold circuits
can be computed by constant depth threshold circuits using n negations asymptotically. There are also tight
bounds for constant depth, unbounded fan-in circuits (AC): n/log n, for any r, negations are sufficient,
and f(n/log n), for some r, are necessary.

Key words, circuit complexity, monotone circuits, negation gates

AMS(MOS) subject classifications. 68Q15, 68(10, 94C10

1. Introduction. Although extensively studied, not very much is known about the
circuit complexity of Boolean functions. The results are especially few concerning lower
bounds. While it is conjectured that NP-complete problems cannot be computed with
circuits of less than exponential size, the best-known lower bounds are linear with small
constants. In striking opposition to this situation, important progress has been made
recently on monotone circuits. In his famous result Razborov [15] has proved a super-
polynomial lower bound on the monotone circuit complexity of an appropriate clique
function. Later this lower bound was strengthened to exponential size by Alon and Bop-
pana [5]. In another development, Tardos [16] pointed out that there are even problems
in P whose monotone circuit complexity is exponential, thus proving that negation may
be exponentially powerful.

Of course, we would like to extend Razborov’s lower bound result to the general
model. As this seems to be at the moment quite elusive, a natural intermediate step is
the study of circuits with a limited number of negations. If negations are also permitted
in the circuit, then we should not restrict the study just to monotone functions. But if
we consider also nonmonotone functions in our investigations, then before the study of
lower bounds there is an even more basic question: can a given function be computed at
all with a limited number of negations?

This question was answered by Markov [12] without any complexity theoretical con-
siderations. He defined for any Boolean function f {0, 1}’ - {0, 1}", the inversion
complexity inv(f) of f as the minimum number of negation gates contained in a circuit
which computes f. Let f (fl,. f,), and let x (z1,..., Zn) and y (yl,..., y,)
be two Boolean vectors in {0, 1}’. By definition let z < vifzi <//i for i 1,... ,n. The
ordered pair (z, V) is a gap for f if z < V and for some j, 1 < j < m, fj (z) > fj (V). Let
Zl < < zr be an increasing sequences of Boolean vectors in {0, 1}’. The decrease of
f on the sequence z,..., zr is the number of indices such that (zi, zi+) is a gap for f.
Finally the decrease dec(f) of f is the maximum decrease over all increasing sequence

Received by the editors April 19, 1991; accepted for publication (in revised form) December 16, 1991.
Centre National de Recherche Scientifique, Unit6 de Recherche Associ6e 410, Universit6 Paris-Sud,

Laboratoire de Recherche en Informatique, 91405 Orsay, France.
*Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403. The

research of this author was supported by National Science Foundation grant CCR-8810051.

294

LIMITING NEGATIONS IN CONSTANT DEPTH CIRCUITS 295

of Boolean vectors. The result of Markov establishes a precise relationship between the
inversion complexity of f and its decrease.

THEOREM 1.1 (MARKOV’S THEOREM) [12]. For every Boolean function f we have

inv(f) [log(dec(f))J + 1.

Because the length of any increasing sequence of n-dimensional Boolean vectors
is at most n + 1, by Markov’s theorem [log nJ + 1 negations are sufficient to compute
any Boolean function on n variables. On the other hand, it is easy to find a very simple
function f for which there exists an increasing sequence of vectors with n gaps. Thus,
for some functions [log nJ + 1 negations are also necessary.

In this paper we will study what remains true of this necessary and sufficient con-
dition when restrictions are imposed on the size and depth of the circuits computing
f. The restriction we will impose on the size of the circuits is polynomial size. Thus,
the question we would like to answer is the following: Let f {0, 1}* -- {0, 1}* be a
Boolean function that can be computed by a family of polynomial size circuits. Is it tree
that f can also be computed with a family of polynomial size circuits that contain at most
[log nJ + 1 negations?

It turns out that the answer strongly depends on whether any restriction is put on
the depth of the circuits. If f can be computed in polynomial size and depth d(n), where
d(n) f(log n), then the answer is yes (Theorem 2.3): f can be computed in the same
order of depth with [log nJ + 1 negations, even if the underlying model has bounded
fan-in. This result is implicitly contained in an early survey paper of Fischer [7], where
he also considers circuits with limited negation.

Our results on the other hand show that the answer is no for constant depth cir-
cuits. In the case of threshold circuits we show that there exists a function computable
in constant depth which cannot be computed in constant depth on threshold circuits us-
ing o(n’), for all e > 0, negations (Corollary 3.3). We also establish a matching upper
bound on the number of negations sufficient for constant depth (Theorem 3.7): For any
e > 0, every function which can be computed in constant depth on a family of thresh-
old circuits can be computed in constant depth by threshold circuits with n" negations
asymptotically. The method will give us a sublinear bound on the number of negations
needed for AC circuits (Theorem 4.1): For any r, every Boolean function computable
in constant depth can also be computed in constant depth with at most n/log n nega-
tions. This is the best bound we can obtain (Corollary 4.4): There is a (multi-output)
function computable in constant depth that cannot be computed in constant depth with
o(n/log n), for all r > 0, negotiations.

The tight lower bounds of Corollary 3.3 and Corollary 4.4 are obtained from trade-
off results between depth and number of negations in constant depth. Theorem 3.2 says
that depth d threshold circuits for NEG (see the definition in 2) require d(n+ 1)/d d
negations, and Theorem 4.3 claims that any circuit family computing NEG in depth d has
f(n/logd+3 n) negations. We can also prove that depth d threshold circuits forPARITY
have d(n/2])/d d negations. However, we are not able to obtain a tight lower bound
on the number of negotiations required by a constant depthAND/OR circuit for a single
valued function (NEG has n outputs). See 5 for more comments on this problem.

Let us mention at this point a result of Okolnishnikova [13] and Ajtai and Gurevich
[2] related to our Theorem 3.2: There exists a monotone function that can be computed
with polynomial size, constant depth circuits, but can not be computed with monotone,
polynomial size, constant depth circuits.

A trade-off result between depth and randomness was obtained for the st-connectiv-
ity problem by Raz and Wigderson [14]. They have shown that in every polynomial size,

296 MIKLOS SANTHAAND CHRISTOPHER WILSON

O(log n) depth circuit family, in which all the negations are placed on the input variables,
at least a constant fraction of them should be negated.

The paper is organized as follows. After some preliminaries, 2 contains a short out-
line of the proof of the already known result about circuits with f(log n) depth. Section
3 deals with upper and lower bounds for constant depth threshold circuits. Section 4
derives upper and lower bounds for unbounded fan-inAND circuits. Finally, in 5
we conclude and mention some open problems.

2. Preliminaries. We will use standard notions from circuit complexity theory, for
which the reader is referred, e.g., to Wegener’s book [18]. We will also use some con-
ventions throughout the paper. When it is not otherwise specified, we will deal with
circuits on n variables. Let z denote the Boolean vector (Zl,..., zn), and z-zi the vec-
tor (z,..., Xi-I,Zi+I,... ,Zn). We often identify the vector z with the word z...z,.
For w {0, 1}*, the weight of w is the number of ones in w, denoted by Iwl. If f is a
one-output Boolean function, then f is the negation of f.

Throughout the paper there may be nonintegral indices which should, in fact, be
rounded to an appropriate integer. This has not been done for the sake of legibility and
is in any case straightforward.

Two circuits are equivalent if they compute the same function. A circuit is monotone
if it does not contain any negation gates. Ignoring uniformity considerations, for i > 0,
the classes NC and AC are defined to be the set of functions computable by polynomial
size, O(log n) depth circuit families with bounded and unbounded fan-in, respectively.

Another important class of circuits we examine is that of threshold circuits. By def-
inition, for k 0,..., n, the kth threshoM function T(z) 1 if and only if Ix] > k.
The class TC is defined to be the class of functions computed by a family of polynomial
size, O(log n) depth circuits consisting of negations and gates that compute threshold
functions. It is known that NC c_ AC c_ TC c_ NC+. An especially interest-
ing problem recently has been that of separating these classes when 0. It is known
that AC c TC [9], but whether the containment TC c_ NC is proper is still an
open problem. In [8] it is shown that depth 2 threshold circuits are weaker than depth
3 threshold circuits. In.[20] it is shown that depth k monotone threshold circuits are
weaker than depth k + 1 monotone threshold circuits for any k.

The sorting function S(x) and the exact function E(x) are closely related to threshold
functions. By definition S(x) (T(x),... ,T,(x)), and E(x) (Eo(x),..., E,(x)),
where Ek(x) 1 if and only if Ixl k. Indeed, S(x) is the simultaneous computation
of all the nontrivial threshold functions, E,(x) T,(x), and Ek(x) Tk(x) A k+(X)
for 0 _< k _< n 1. These functions will be extensively used as well as the function NEG,
defined by NEG(x,... ,xn) (,... ,).

Let be the class of functions computed by a class of families of polynomial size
circuits, and let g(n) be a function from the natural numbers to the natural numbers.
Then Ca(,) is the set of functions that can be computed by a circuit family in the class
that contains at most g(n) negation gates. The class 0 will be denoted mon-C.; this is
the set of functions computable by a monotone circuit family in the class. By the type of
a circuit we mean bounded fan-in, unbounded fan-in, or threshold. The following facts
are well known.

FACT 2.1 (Valiant [17], Ajtai, Koml6s, and Szemer6di [3]). The sortingfunction S(x)
is in mon-NC.

FACT 2.2 (Ajtai and Ben-Or [1], Wegener, Wurm, and Yi [19]). For every t > O, the
thresholdfunction Tog , (x) is in mon-AC.

LIMITING NEGATIONS IN CONSTANT DEPTH CIRCUITS 297

The importance of the functionNEG lies in the fact that it incorporates all the "non-
monotone" information we need to compute any function by a circuit. This is expressed
in the following completeness lemma.

LEMMA 2.1 (Completeness Lemma). Let C be a class offunctions computed by
families ofpolynomialsize circuits ofthe types descdbed above, such that the allowable depth
ofthe circuit families is closed under multiplication by a constant. Let g(n) be a function
on the natural numbers. Then we have

Ca(, C ifand only ifNEG

Proof. The implication is straightforward from left to right. The other direction is
implied by the following well-known result (see, e.g., Wegener [18]): For every circuit
C of size s and depth d, there exists a monotone circuit C’ of the same type, of size at
most 2s and depth d which is equivalent to C, when the output of NEG(z) is also given
as input to C’.

The function NEG can easily be computed by a monotone AC circuit from the
outputs of the sorting function and the exact functions. This is stated in the following
lemma, which shares some ideas with the theory of slice functions (again, see [18]).

LEMMA 2.2. For 1 < i < n, we have

n

V
k=O

Proof. First we claim that for any 1 < < n, i Tlxl(X xi). If i 1, then the
number of ones in x xi is Ixl and Tlxl (x xi) 1. On the other hand, if i 0, then
the number of ones in x xi is Ix[1 and Tll(X xi) 0. The result follows since
Ek(x) 1 if and only if k Ix[. 13

Fischer [7] constructed a circuit that contains only [log nJ + i negations, and com-
putes the exact function, when the inputs are already sorted. The size of the circuit is
polynomial, and its depth is O(log n). This enabled him to compute the exact functions
by a polynomial size circuit family containing /log nJ + I negations. The depth of his
circuit family depended on the circuit depth of the sorting function, which was at that
time still an open problem. Today, it is known (Fact 2.1) that threshold functions can in
fact be computed in mon-NC1. This means that Fischer’s result implicitly implies the
following theorem.

THEOREM 2.3. Forevery circuitfamily ofpolynomial size and depth d(n), there exists an
equivalent circuitfamily ofthe same type, also ofpolynomial size and depth d(n) + O(log n),
which contains only/log nJ + 1 negations.

COROLLARY 2.4. For all k > 1, we have

(i) NClog n] + Nck,

(ii) AClog n] +1 ACk,

(iii) TClognj+l TCk.

This method of computing NEG in NClogn]+l can be viewed as a constructive (and
efficient) implementation of Markov’s result. This, to some extent, was foreshadowed
by Akers [4]. An analysis of his method reveals that NEG can be computed using few
negotiations in O(log n) depth using threshold circuits; that is, TClog nJ+l"

298 MIKLOS SANTHAAND CHRISTOPHER WILSON

3. Bounds for threshold circuits.

3.1. Lower bounds. Here we shall prove that it is impossible to computeNEG on a
depth d threshold circuit that uses fewer than d(n + 1) 1/4 d negotiations. In the proof
of this lower bound we will concentrate on inputs that are integers in unary notation.
These inputs are sequences of n bits with the ones preceding the zeros. When we say
that j is the input value, we mean that lJ0’-j is the input string.

With each gate 9 in a circuit we associate a satisfying set Ig c_ (0,..., n} such that
gate 9 outputs I if and only if input j E Ig. For example, the satisfying set of
that of V zx0 is [0, 5) tA [10, n], and that of/X 10 is [5, 10).

Let I c_ {0,..., n}. We define j as a right boundary of I if j E I and j + 1 I. The
value j is a right boundary of a gate of a circuit if it is a right boundary of the satisfying
set of the gate, and j is a right boundary of a circuit if it is the right boundary of some
of its gates. For example, the unique right boundary of . is i 1. In what follows, it is
important to count the number of right boundaries of a circuit since these are the inputs
where it behaves nonmonotonically. First we will note that the only way to create new
right boundaries is by the use of negotiations.

LEMMA 3.1. Let C be a circuit ofany type whosegates are either negations ormonotone
functions. Suppose that gate 9 is a monotone function of its input gates. Then any right
boundary of9 is a right boundary ofat least one ofits input gates.

Proof. Let us suppose that 9 f(91,..., 9), where f is a monotone function and
91,..., 9 are the input gates to 9. We claim that if j is not a right boundary of 9, for
1 _< _< r, then j is not a right boundary for 9 either. This is true since 9i(J) <_ 9i(J + 1),
for i < < r, implies 9(J) <- 9(J + 1) by the monotonicity of f.

THEOREM 3.2. Let C be a circuit computing NEG on inputs ofsize n. Suppose that C
has depth d, uses u negations, and has gates that are either negations or arbitrary monotone
functions. Then u >_ d(n + 1) 1/4 d.

Proof. For 0 _< i _< d, let level of the circuit consist of all gates whose longest path
to an input is of length i. Level 0 consists of inputs and constants, and thus only presents
the single right boundary n. The circuit must eventually create n other right boundaries.
Our bound will follow by showing that added depth can create only few right boundaries
if insufficient negotiations are available.

Observe what happens when a node is negated. If gate 9 has k right boundaries and
satisfying set [il, i2) J [i3, i4) U’" t0 [i2k- 1, i2k), then 0 has satisfying set [0, i

t2 [i2k, hi. This creates up to k new right boundaries. By the previous lemma, no
other type of gate can create new right boundaries. Thus, if up to some level the gates
present altogether t right boundaries and at the next level # gates are negated, this next
level creates at most t# new right boundaries. This gives a total of t(1 + #) possible right
boundaries up to the next level.

For 1,... d let ui be the number of negations at level i, where -]i=1 u u. By
the above, the circuit can create at most 1-Ii=l (1 + u) right boundaries. This product
is maximized when ui u/d. Since we must have (1 + u/d)4 >_ n + 1, it follows that
u >_ d(n + 1) l/d- d.

Similarly we can prove that if C is a circuit computing PARITY that satisfies the
conditions of Theorem 3.2, then u >_ d(n/2] 1/d d. As threshold gates are monotone,
the following corollary is immediate.

COROLLARY 3.3. Let 9(n) o(n) for all e > O. Then
T o1. NEG, PARITY_ Cg(n);

2. TC oTC’a(,)

LIMITING NEGATIONS IN CONSTANT DEPTH CIRCUITS 299

Notice that these results did not put any restrictions on the size of the circuit. Even
exponentially many monotone gates are of little use without enough negations. We can
state something strong about depth as well. For example, no family of threshold circuits
of depth (log n) l-e, e > 0, with 2lg" n negations can computeNEG orPARITY. Further-
more, Corollary 3.3 immediately implies that 0NCpoly.log properly contains TCpoly.log.

COROLLARY 3.4. Let 9(n) _> log n andfor all e > 0, 9(n) o(n). Then TC,a(,
NCa(,)

It is interesting to compare Corollary .4 to the result in [20] showin that mon-
TC is properly contained in mon-NC. Corollary 3.4 can also be neralized to show
a separation of NC and TC restricted to, say, log log n negations. This generalization
does not subsume the result in [20].

THEOREM 3.5. Let 0 < f(n) < [log nJ + 1. Iffor all e > O, g(n) o(2’Y(’)), then

NC}() oTC(,)

Proof. Let k n/2f(,)-I and consider the function

e,(x) (xo / ’,k) V (X2k / 3k) V... V (Xn_k/N n)

(x0 by default is 1). This can be viewed as a function on 2f(,)-1 inputs, so by The-
orem 2.3 is in NC(n). Following the proof of Theorem 3.2, e(x) has k right bound-
aries. Thus, any depth d threshold circuit with , negations computing e(x) must have
(1 + /d)d > 2y(")-2 or , _> d2(l’(’)-2)/d d. This is not possible under the
assumption on , g(n) in the statement of the theorem. [:]

3.2. Upper bounds. We have seen that not everything computable in TC can be
computed using o(n’), for all e > 0, negations. The question arises naturally: how many
negations are sufficient to give full power to TC? We can show that the lower bounds
derived above for threshold circuits are essentially optimal.

Our main tool will be the computation of the exact function in constant depth on a
threshold circuit. Since this is just two levels away fromNEG, it is evident that we cannot
compute it in depth d- 2 using less than d(n + 1)1/d d negations. We will show how to
compute it in depth 3d + O(1) using no more dnx/d d + 1 negations. Hence, the upper
and lower bounds are nearly tight.

LEMMA 3.6. Let d >_ I be an integer. There exists a depth 3d+O(1) andsize O(n1+(1/d))
family ofthreshold circuits with dn/d d + 1 negations computing the exactfunction E.

Proof. Set x0 1 for the sake of convenience. We will assume that the input has
been sorted as Xl X2 Xn. This can be done in depth 1 on a threshold circuit,
and this is the only place that we need threshold gates. The rest of the circuit will consist
of negotiations and unbounded fan-inAND gates.

The circuit we describe will have d layers, each layer will consist of several levels.
Let us define the functions Fk for 0 < k < d and 0 < < nk/d"

Fk 1 v in(d-k)/d <_ Ixl < (i + X)n(d-k)/d.

The construction we describe is iterative. One layer of the circuit will use n1/d I nega-
tions in transforming the -Fv/-I into the {F+(+)/- Clearly, the Fd are theI. Ji=0 Ji=0

desired outputs Ei, so long as we add En xn. The base case is simple as there is only
one possible i" i 0. We let F0 .

Given the F for 0 < < n/d, the following describes how to construct the F+
for 0 < i < n(+)/d in constant depth.

300 MIKLOS SANTHAAND CHRISTOPHER WILSON

(k,1) For 0 _< i < nk/d and 0 _< j < n1/d compute

Gk. Fik A Xin(d--k)/d+jn(d--te--1)/d.

n/a
(k,2) For 0 < j < n/a compute HI V=o -G(k,3) For 1 _< j < n1/a compute

Hk(k,4) For 0 j n/a 2 compute I H H+. tI/_ /_.

(kS) For 0 _< < nk/d and 0 _< j < n1/d compute */a+jk+ I A Gki,o"
We can describe when the functions above are satisfied.
(1) G. 1 if and only if in(d-k)/d + jn(d-k-)/d < [xl < (i + 1)n(d-k)/d

(2) HI 1 if and only if there ests i (1
< (i +
(3)] 1 ifand only if there ests (1 < nk/d) in(d-k)/d Ix[< in(d-k)/d+

jn(d-k-)/d.
(4) I] 1 if and only if there ests (1

x] < in(d-k)/d + (j + 1)n(d-k-)/d.
(5) *inX/a+j+ 1 if and only if (in/a + j)n(d-k-)/d _<]x] < (in/d + j +

1)n(d-k-)/d, as desired.
The steps (k,4), (k,5), and (k + 1,1) are all computed by A gates, so they can be

combined into one level. This yields a circuit for the Ei F of depth 3d + O(1). The
number of negations needed is 1 + d(n/d 1). The size bound follows from obseing
that steps (k,1) and (k,5) use nk/dn1/d n(k+l)/d gates. The sum d n(k+)/d isk=l
clearly O(n(d+)/d).

EOREM 3.7. For eve e > O, we have ampwtically

TCn TC.
Proof. Choose d so that lid < e. For this d we have that dn1/d <_ n asymptotically.

From Lemma 3.6 we can compute E in constant depth using asymptotically less than
n" negotiations. From Lemma2.2, we see that i V=o(Tk(x xi) A Ek(X)). The
Completeness Lemma then implies the result. [3

4. Constant depth AND/OR circuits. In this section we show that AC remains in-
variant under a restriction to some sublinear number of negations: n/log n negations,
for any r, are sufficient. Furthermore, this bound is tight.

The upper bound follows from the construction used in the previous section.
THEOREM 4.1. Let r >_ 0 and g(n) n/ logr n. Then we have

OACg(n ACo

Proof. We will break the input up into n/N groups, each of size N 4 log2r n.
According to Fact 2.2, TN is in mon-AC. Thus we can sort any group yl,..., YN in
monotone constant depth and polynomial (in n) size.

Aswe have seen in the proof ofLemma 3.6, we can compute E fromy >_ >_ YN in
constant depth usingAND/OR gates and 2x/ negations. The thresholds can be applied

Nagain to find 9i Vk=o(Tk(y Yi) A Ek(y)), as per Lemma 2.2. The total number
of negations used will be 2v/(n/N) n/log n. The result then follows from the
Completeness Lemma.

LIMITING NEGATIONS IN CONSTANT DEPTH CIRCUITS 301

DEFINITION. The sensitivity on a string w of the single valued function f, s(f, w), is
the number of neighbors w’ ofw differing in exactly one bit such that f(w) # f(w’). The
sensitivity of f, s(f), is the average over w (0, 1)’ of s(f, w).

There have been several papers in recently relating the sensitivity of a Boolean func-
tion to its Fourier transform [10], [11]. To show a matching lower bound to Theorem 4.1,
we make use of the following application of these results to AC functions.

LEMMA4.2 [11]. Iffis computedby a circuitfamily ofdepth d, then s(f 0(loga+a n).
THEOREM 4.3. Let (Cn} be a depth d circuit family which computes NEG(z) with

v(n) negotiations. Then v(n) (n/loga+a n).
Proof. Let us suppose on the contrary that there is depth d circuit family (C which

computes NEG(z) with v(n) fl(n/loga+a n) negotiations. By Lemma 4.2 there exists
a constant c > 0 such that for every n, for every function f which is computed at some
gate of C,

s(f < c logd+3 n.

Our hypothesis implies that there exists n such that

v(n) < n/(clogd+3 n).

Let n be such an integer, and let fl,..., fk, k < v(n) be the outputs of the negation
gates of C,.

Given a string w, we say a bit of w is sensitive to f if changing that bit changes the
output of f on w. Otherwise, that bit is insensitive to f. It follows that there is a string
w, which has a bit insensitive to all fl,..., fk. This is because

+... + +... +
< k c loga+Zn < n,

where E indicates the expectation of an event over all strings w of length n uniformly
distributed.

Let w be a string whose jth bit is insensitive to all f,..., f. Obtain w’ by changing
this bit. We can suppose that wj 0 and wj’ 1, which implies w < w’. Since the bit
is insensitive, we have for all i, fi (w) fi (w’). Thus, between w and w’ the outputs of
all negation gates of C’, are constant. This implies that no gate of C’, can take a greater
value on w than on w’. However, C, computes ., so on input w it outputs zj 1 and

-’ 0. This is impossible if no negation gate changes.on w’ it outputs w
COROLLARY 4.4. Ifg(n) o(n/ log n) for all r, then AC # AUg(n).O
5. Conclusions and open problems. Let us say a few words about the uniformity of

our circuits. In fact all of them are uniform. Indeed, while the earlier circuits of Valiant
[17] and Ajtai and Ben-Or [1] of, respectively, Fact 2.1 and Fact 2.2 are probabilistic, the
later constructions of Ajtai, Koml6s and Szemer6di [3] and Wegener, Wurm, and Yi [19]
are already uniform. The circuits of Fact 2.2 can also be constructed uniformly using
Theorem 4.1 of [6].

Although the upper bound of Theorem 4.1 and the lower bound of Theorem 4.3
were matching, the lower bound held only for a multivalued function. An intriguing
problem is to find out the exact number of negations necessary and sufficient to compute
every single-valued function in AC. We can show a weaker lower bound for some single
valued function. Let the problem EXISTODD, defined on x,..., x,, be

302 MIKLOS SANTHAAND CHRISTOPHER WILSON

(if n is odd, then the formula will be v (x,-2/x ,-1) v x,). Since EXISTODD on
inputs of the form 10n- is equivalent to PARITY, the proof technique of Theorem 3.2

A 0works for this function. Clearly, EXISTODD is in AC but it is not in C’() if, for all
> 0, o(’).

Another direction is where we started our reasoning: can we find lower bounds with
limited negations, without any restriction on the depth? For example, can we prove
Razborov type results for circuits containing a few (say, a constant number of) negations?

Acknowledgments. The authors would like to thank Noam Nisan for pointing out
the use of Lemma 4.2 in deriving the lower bound for AG.

REFERENCES

1] M. AJTAI AND M. BEN-OR,A theorem on probabilistic constant depth circuits, in Proceedings of the 16th
ACMAssociation for Computing Machinery Symposium on the Theory of Computing, ACM Press,
1984, pp. 471-474.

[2] M. AJTAI AND Y. GUREVICH, Monotone versus positive, J. Assoc. Comput. Mach., 34 (1987), pp. 1004-
1015.

[3] M. AJTAI, J. KOML0S, AND E. SZEMERfDI, An O(n log n) sorting network, Combinatorica, 3 (1983), pp.
1-19.

[4] S. ArRS, On maximum inversion with minimum inverters, IEEE Trans. Comput., 17 (1968), pp. 134-135.
[5] N. ALON AND R. BOPPANA, The monotone circuit complexity of Boolean functions, Combinatorica, 7

(1987), pp. 1-22.
[6] R. BOPPANA, Thresholdfunctions andboundeddepth monotone circuits, J. Comput. System Sci., 32 (1986),

pp. 222-229.
[7] M. FISCHER, The complexity ofnegation-limited networks--a briefsurvey, in Automata Theory and Formal

Languages, 2nd GI Conference, LNCS, Vol. 33, H. Brakhage, ed., Springer-Verlag, New York, 1975,
pp. 71-82.

[8] A. HAJNAL, P. E W. MAASS, M. SZEGEDY, AND G. TURAN, Threshold circuits of bounded depth, in Pro-
ceedings of the 28th IEEE Foundations of Computer Science, 1987, pp. 99-110.

[9] J. HASTAD, Almost optimal lower boundsfor small depth circuits, in Proceedings of the 18th Association
for Computing Machinery Symposium on the Theory of Computing, 1986, pp. 6-20.

[10] J. KAHN, G. KALAI, AND N. LINIAL, The influence ofvariables on Booleanfunctions, in Proceedings of the
29th IEEE Foundations of Computer Science, 1988, pp. 68-80.

[11] N. LINIAL, Y. MANSOUR, AND N. NISAN, Constant depth circuits, Fourier transform and learnability, in
Proceedings of the 30th IEEE Foundations of Computer Science, pp. 574-579.

[12] A. MARIOV, On the inversion complexity ofsystems ofBoolean functions, Soviet Math. Dokl., 4 (1963),
pp. 694-696.

[13] E.A. OKOLNISHNIKOVA, On the influence ofnegation on the complexity ofa realization ofmonotoneBoolean
functions byformulas ofbounded depth, Metody Diskret. Analiz., 38 (1982), pp. 74-80.

[14] R. RAZAND A. WIGDERSON, Probabilistic communication complexity ofBoolean relations, in Proceedings
of the 30th IEEE Foundations of Computer Science, 1989, pp. 562-567.

[15] A.A. RAZBOROV, Lower bounds on the monotone complexity ofsome Boolean functions, Soviet Math.
DOE., 281 (1985), pp. 798-801.

[16] E. TARDOS, The gap between monotone and non-monotone circuit complexity is exponential, Combinator-
ica, 7 (1987), pp. 393-394.

[17] L. VALIANT, Short monotoneformulaefor the majorityfunction, J. Algorithms, 5 (1984), pp. 363-366.
[18] I. WEGENER, The complexity ofBooleanfunctions, Wiley-Teubner, Stuttgart, 1987.
[19] I. WEGENER, N. WURM, AND S. Z. YI, Symmetric functions in AC can be computed in constant depth

with a very small size, in Boolean Function Complexity, Selected papers from the LMS Durham
Symposium, M. Paterson, ed., Cambridge Univ. Press, London, 1992.

[20] A. YAO, Circuits and local computation, in Proceedings of 20th Association for Computing Machinery
Symposium on the Theory of Computing, 1989, pp. 186-196.

SIAM J. COMPU’E.
Vol. 22, No. 2, pp. 303-317, April 1993

() 1993 Society for Industrial and Applied Mathematics
007

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING*
KHALED M. BUGRARAt AND PAUL WALTON PURDOM, JR.$

Abstract. Backtracking algorithms solve problemsby selecting a variable and assigning each possible value
to the variable. The resulting subproblems are simplified and solved recursively. Simple backtracking selects
variables in a fixed order. Clause order backtracking selects variables from the first nontrivial clause that has
not yet been satisfied. Formulas are given for the average time used by clause order backtracking when solving
random CNF satisfiability problems, where the problem sets have v variables, clauses, and a probability p of
a literal being in a clause. The average time for clause order backtracking is always less than that for simple
backtracking. It leads to polynomial time under many conditions where simple backtracking uses exponential
average time. Cases where clause order backtracking uses average time less than v (in the limit of v going
to infinity) include p < 1/(2v)e[(n-l) In v--In t]/t and p > v/[ln + (ln v)/2]/v. (The second result needs a

slight increase in the coefficient of In when increases faster than vIn v.)

Key words, average time, backtracking, combinatorial search, Davis-Putnam, pure literal rule, NP-com-
plete, satisfiability, searching

AMS(MOS) subject classifications. 68P10, 68Q20, 68Q25, 68T15

1. Constraint satisfaction and backtracking. Many interesting problems require
determining whether a set of constraints on variables with discrete values can be sat-
isfied. Let Rx(zt,... ,z,),..., Rt(z,... ,) be a set of relations and z,... ,z, be a
set of variables, where each variable has a finite set of possible values. A constraint sat-
isfaction problem consists of determining whether the variables can be set in a way that
makes all of the relations true. Such problems can be quite difficult even when each re-
lation is simple. For example, if each relation is a clause, then the constraint satisfaction
problem becomes the classical Conjunctive Normal Form (CNF) satisfiability problem.
Many special forms of the constraint satisfaction problem are NP-complete [3], [6], [12].

Searching is one common way to solve constraint satisfaction problems. The basic
idea of searching is to choose a variable and generate subproblems by assigning each
possible value to the variable. In each subproblem the relations are simplified by plug-
ging in the value of the selected variable. If any subproblem has a solution, then the
original problem has a solution. Otherwise, the original problem has no solution. The
subproblerns are solved by applying the technique recursively. Simple search algorithms
stop the recursion when all variables have values. They use exponential time when used
to find all solutions.

If any relation of a constraint satisfaction problem is alwaysfalse, then the problem
has no solution. Backtracking improves over plain search by immediately reporting no
solution for problems with a false relation. Often this short cut saves a huge amount of
time. Backtracking can take either exponential or polynomial average time, depending
on the set of problems being solved 1], 11].

Simple backtracking has a fixed order for selecting variables. Sometimes it wastes
time by assigning values to variables that do not appear in the problem. Even when
the original problem uses all the variables, some of the simplified subproblems may use

Received by the editors July 16, 1990; accepted for publication December 21, 1991.
College of Computer Science, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts

02115.
tComputer Science Department, Indiana University, Lindley Hall, Bloomington, Indiana 47405-4101.

Thework ofthis authorwas supported by Indiana University, and FAW (Research Institute for Applied Knowl-
edge Processing at the University of Ulm).

303

304 KHALED BUGRARAAND PAUL W. PURDOM, JR.

only a few of them. For problems with a few short clauses simple backtracldngfrequently
assigns values to absent variables.

Clause order backtracking reports no solution if the problem has a relation that is
always false. Otherwise, it selects the first relation that is not always true. For the first
variable that affects the value of this relation, each possible value is plugged in, the pred-
icate simplified, and the resulting subproblem is solved by recursive application of the
algorithm. Each solution of the subproblem (along with the the partial assignments of
values that lead to the subproblem) gives a solution to the original problem. If the origi-
nal problem has no nontrivial relations, then every assignment ofvalues to the remaining
variables results in a solution.

The following is a precise statement of the version of the algorithm that we analyze.
This version is tailored for CNF satisfiability problems. The algorithm finds every so-
lution to the given CNF problem, but it reports the solutions in a compressed form. A
clause is always false if and only if it is empty (contains no literals). A clause is a tau-
tology if and only if it contains a variable and its negation. A tautological clause always
evaluates to true.
Clause Order Backtracking Algorithm for CNF problems.

1. If the CNF problem has an empty clause, return with an empty set of solutions,
and charge one time unit.

2. If the first remaining clause of the CNF problem is a tautology, then remove it
from the problem. Repeat this part of the step as long as it applies. If there are
no clauses, then return with the current assignment of values to the variables as
a solution (each assignment of values for the remaining unset variables results
in a solution) and charge one time unit.

3. Let k be the number of unset variables in the first remaining clause. (Step 1
ensures that k > 1, and Step 2 ensures that each variable occurs in at most one
literal of the clause.) For j starting at 1 and increasing to at most k, generate
the jth subproblem by setting the first j 1 variables of the clause so that their
literals are false and setting the jth variable so that its literal is true. Use the
assignment of values to simplify the CNF problem (remove each false literal
from its clause and remove from the problem each clause with a true literal).
Apply the algorithm recursively to solve the simplified problem. If setting the
first j- 1 literals ofthe first remaining clause tofalse results in some clause being
empty, then stop generating subproblems. The set of solutions for the original
problem is the union of the set of solutions for the subproblems. If the loop
stops with j h, then charge h / 1 time units.

The cost in time units has been defined to be the same as the number of nodes in
the backtrack tree generated by the algorithm. The actual running time of the algorithm
depends on how cleverly it is implemented, but a good implementation will result in a
time that is proportional to the number of nodes multiplied by a factor that is between
1 and tv, where v is the number of variables and t is the number of clauses.

The backtrack tree includes nodes for determining that the first remaining clause
is empty. The computation associated with these nodes can be done quickly. In the
analysis we briefly consider the effect of not charging for these nodes (giving an upper
limit of k time units for Step 3). A cost of up to k + 1 units at Step 3 is natural when
comparing the algorithm with simple backtracking, but a limit of k units is more natural
when comparing the algorithm with unit clause backtracking. (Unit clause backtracking
selects variables from clauses of length one when possible.)

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 305

Figure 1 illustrates the counting of nodes. Each internal node is labelled with the
variable that is set at the corresponding point in the computation, the left branch cor-
responds to setting the variable to false, and the right branch corresponds to setting it
to true. The first clause, cl z V 11, contributes nodes 1, 2, and 3. The second clause,
c2 z V z, contributes nodes 4 and 5. Node 6 represents the solution {z false, !1
true, z true}. When z is true, both the first and second clauses are satisfied, but the
third clause, ca V contributes nodes 7 and 9. Node 8 represents the set of solutions
with {z =true, z =false}. All values of 11 are permitted at node 8. If the predicate had
a fourth clause, c4 z v 3, then the predicate would be false at node 4 and clause c2
would contribute only node 4. Nodes 5 and 6 would not be in the tree. With the three
clause problem of Fig. 1, nodes 3, 5, and 9 would not be charged for using the alternate
charging method of the previous paragraph.

2 SO1.

sol. c3

FIG. 1. The backtrack treefor thepredicate consisting ofthe three clauses cl c V 1, c2 x V z, c3 V .
2. Probability model. The random clause model generates random CNF satisfiabil-

ity problems using a set of v variables. A random clause is formed by independently
selecting each of the 2v literals with probability p. A random predicate is formed by
independently forming t random clauses.

In this model some variables may not occur in a particular problem. Some clauses
may be empty. Some clauses may be tautologies. Some clauses may be duplicates of
others. Each of these features may be considered to be a defect in the model, since
problems initially given to a satisfiability algorithm are not likely to have them. However,
these defects are not as important as it may at first appear because most of the features
do occur in the subproblems that are produced by searching algorithms. The model
has the advantage that the distribution of clauses does not change much when setting a
variable. This leads to a relatively easy analysis. As a result more satisfiability algorithms
have been analyzed with this model than with any other. The problems generated by
this model can be either easy or hard (for the algorithms that have been analyzed so far)
depending on how the parameters are set [2], [4], [5], [7], [8], [9], [10], [11]. The model
is useful for comparing strengths and weaknesses of various satisfiability algorithms.

3. Discussion of results. This section discusses the the average time performance
of clause order backtracking and compares it with that of other satisfiability algorithms.
The following sections contain the detailed derivation of the results.

306 KHALED BUGRARAAND PAUL W. PURDOM, JR.

A contour plot of the performance for problems with one hundred variables is given
in Fig. 2. A similar plot for fifty variables is given in [9]. The line that runs from the left
side to the right side shows for each t, the value of p that leads to the largest average
number of nodes. The remaining contours denote constant running time and are as
follow. The outer contour in Fig. 2 shows the conditions where the average number of
nodes per problem is 100. Each contour inward shows the conditions where the average
number of nodes per problem is a factor of 100 larger. Thus, the contours show the
conditions where the average number of nodes per problem is v, v2, va, and v4. The
actual average running time is bounded by a low degree polynomial times the average
number of nodes, where the details of the polynomial depend on just how cleverly one
programs the algorithm.

The average number of nodes for clause order backtracking is never more than the
average number of nodes for the version of simple backtracking that reports every solu-
tion. Under many conditions, clause order backtracking is much faster, but when pv is
small and t/v is large the improvement is not important. (This is the lower right region of
Fig. 2.) The comparison with simple backtracking [11] implies that the average number
of nodes for clause order backtracking is bounded by vn for large v when

t In 2 n(ln v)/v-> and pv<ln2,(1)
v -ln(1 e-P")

and also when

(2)
t pt[2 In 2 n(ln v)Iv]-> and pv>ln2,
v (in 2) in 1 + pt/ in 2) + pt In 1 + (ln 2)/pt]

provided pv/In v goes to zero.
There are additional cases where clause order backtracking is fast. Under most

of these conditions the average number of solutions per problem is exponential. The
reason that clause order backtracking is able to run in polynomial time and report every
solution is that solutions are reported in compressed form. When the algorithm reports
a solution, it often does not assign values to all the variables. Any truth assignment to
the remaining variables is a solution.

For small p we show that the average number of nodes is no more than vn when

(3)
1 e[(n_l) lnv_lnt_O(1)]/t

This limit approaches 1/(2v) when t grows faster than a constant times Inv. This result
corresponds to the fact that in Fig. 2 the contours all remain above p 1/(2v). The
result in (3) is better than the one in (1) when

t In 2_< 0.743 <(4)
v -ln(1 e-l/2)

For large p we show that the average number of nodes is no more than vn when

(5) P > i (1 + 5) In tv+ (ln v)/2

for any a > 0 and large v. When ln[(lnt)/(lnv)] < lnv (i.e., when t < vlnv), can
be replaced with zero. This result corresponds to the upper branch of the contours in

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 307

10-1

P

10

10-3

v 100

1 10 100 500

FIG. 2. The outer contour showsfor each the value ofp that results in an average of 100 nodes. Proceeding
inward, contoursforan average of 1O02, 1O0a, and 1004 are also shown. The linefrom the left side to the right side
showsfor each which value ofp results in the largest average number ofnodes. Consecutive points on a contour
are connected by a straight line.

Fig. 2. Iwama’s counting algorithm [7] for satisfiability has an average number of nodes
bounded by v’ when

(6) P > ilnt-
v

lnn

This is quite similar to (5), but somewhat better. Exact calculations for particular cases
[9] confirm the suggestion of these upper bound calculations, i.e., Iwama’s algorithm is
faster for large p. (It is slow for small p.) Iwama’s algorithm provides a count of the
number of solutions, but does not give the solutions. When p is above the bound in (5)
clause order backtracking quickly provides a complete list of solutions (in compressed
form).

308 KHALED BUGRARAAND PAUL W. PURDOM, JR.

Equations (3) and (5) show that for all p we have polynomial average time when

(7) t < 2(n- 1)- O([lnlnl/ln).

Other algorithms are known to be faster for small t, but none ofthem report all solutions.
For example, the upper bound for the pure literal rule algorithm [10] is better than the
upper bound for clause order backtracking for small t. (Comparing upper bounds does
not always show which algorithm is best, but the measurements in [9] suggest that the
upper bounds are close to the true values.) Comparing (3) with (28) of [10] shows that
for small p, the pure literal rule algorithm has a better upper bound for

(8) t < 2(nv In v) /2.

Equation (18) of [10] shows that the pure literal rule has a better upper bound for large
p when

n-21nv[l+O()(9) t < In 2

The fastest analyzed algorithm [5] for small t combines the unit clause rule, the pure
literal rule, and resolution to eliminate variables that occur no more than two times. The
use of resolution results in polynomial average time when t is below v2/3 so long as p is
not too large (when p is too large for this result, Iwama’s algorithm is fast).

Among the analyzed satisfiability algorithms that report all solutions, clause order
backtracking is one of the fastest. Selecting short clauses before long clauses would
clearly improve the speed but complicate the analysis. A version of clause order back-
tracking where unit clauses are selected before longer clauses has been partly analyzed
[9], but it is significantly faster than simple clause order backtracking only when pv is
small. Resolution-based algorithms are much faster than clause order backtracking for
small t and some values of p. For some applications the fact that they do not report all
solutions is a disadvantage. Clause order backtracking runs in low degree polynomial
average time for both large and small p. Only intermediate values ofp lead to problems
that are difficult for the algorithm.

4. Analysis. In the analysis, we associate clauses with nodes in the backtrack tree
in a way that is equivalent to that described in 1 but different in detail. The backtrack
tree always has a root. Each variable that is set when processing a clause results in two
nodes, one for setting it to true and one for setting it to false. Thus, in Fig. 1, this way of
counting associates node 1 with the root; nodes 2, 7, 3, and 4 with clause Cl; nodes 5 and
6 with clause c2; and nodes 8 and 9 with clause c3.

We now derive a sum that gives the average number of nodes generated by clause
order backtracking. First, we consider the probability that the first clause attempts to
contribute j nodes to the all false branch of the search tree (the branch where all vari-
ables are set to false). Then, we consider the probability that the first clause contributes
zero nodes to the branch. (This happens when the first clause is a tautology.) Next, we
consider the probability that the clauses following the first clause frustrate its attempt
to contribute j nodes (by becoming false before j variables have been set). Finally, we
use the fact that the probabilities are the same on all branches to obtain the sum for the
average number of nodes.

The probability that a clause contains the first variable appearing positively but not
negatively is p(1 p). The probability that the first variable appears as either positive or

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 309

negative, but not both is 2p(1 p). The probability that a clause contains k literals and
the clause is not a tautology is

Suppose i variables are set to false. The probability that a random clause contains
no true literals, contains k unset literals, and is not a tautology is

(11)
v i) 2kpk (1 p)2V-i-k.
k

The probability that such a clause contains its first true literal when j of its variables
have been set tofalse is 2-J (provided j < k). Let aj(i) be the probability that a random
clause is not a tautology, that it contains no true literals initially, and that it first contains
a true literal after setting the first j of its previously unset variables. Summing (11) times
2- gives

(12) aj(i) (v-i) (1 p)2V-i-k-pk for j >_ 1.

This is the probability that the first clause attempts to contribute j nodes to the all false
branch of the backtrack tree.

The probability that a clause contains no true literals and is not a tautology is

(13) (v i) 2kpk(1 p)2V--k (1 p)V(1 + p)V-

Let a0(i) be the probability that a random clause evaluates to true after i of its variables
have been set to false. Any clause meets these conditions except those considered in
(13). Thus,

(14) ao(i) 1 (1 p)’(1 + p)-i.

This is the probability that a clause is skipped in Step 2 of the algorithm, and thus con-
tributes zero nodes to the all false branch of the backtrack tree.

A clause evaluates tofalse if it contains only false literals. It cannot contain true or
unset literals. The probability that a clause contains no such literals in (1 _p)2,,-i. Thus,
the probability that a clause evaluates tofalse is

(15) 1 (1 p)2,-i.

Consider a particular predicate and a particular node in the associated backtrack
tree. Let n be the number of clauses that contribute nodes to the path from the root to
the selected node. (These are the clauses that are skipped in Step 2 and those that are
used in Step 3 of the algorithm.) Let j, be the number of nodes that the ruth clause
contributes to the path. Then jm > 0 for I < m < n, and j, > 1. Let s, be the number
of nodes contributed before those of the ruth clause. That is,

(16) Sm= jk.
l<_k<m

310 KHALED BUGRARAAND PAUL W. PURDOM, JR.

Consider a particular set ofj,’s and the set of all predicates that generate backtrack
trees with that set of jm’S. Assume that each set variable is assigned the valuefalse. The
ruth clause must contribute jm nodes to the all false branch, with s, variables having
already been set. The remaining t n clauses (those that are not associated with any
m) must not be false after s,+1 1 variables have been set. If all these conditions are
met, then the backtrack tree has a node for both values of the last literal: one value
results in the current clause containing a true literal, while the other value results in
each literal of the current clause being eitherfalse or unset. Let B(n, jl,... ,j,) be the
probability that the backtrack tree for a random predicate contains a nodewhere the ruth
clause contributes jm (for 1 < m < n) nodes to the path and where the last set variable
makes the nth clause true. Since each condition pertains to one clause, and each clause
is independently selected,

(17) B(n,j,...,jn) [1 (1 p)2V-8.+l+]t-n H aj,(Sm).
l<m<n

The ajl factor in this formula gives the probability that the first clause of a random pred-
icate contributes j nodes, the a. factor gives the probability that the second clause
contributes j2 nodes, etc. The [1 (1 -p)2"-8-/+]t-, factor gives the probability that
the clauses that have not contributed nodes have not previously evaluated to false. If
you consider node 5 in Fig. 1, it was reached by the first clause contributing two nodes
(nodes 2 and 4), the second clause contributing one node (node 5). To reach node 5 it
was also necessary for the remaining clauses (clause ca in this case) not to evaluate to
false at node 4. If the noncontributing clauses were not false at node 4, then they could
not have been false at any of the earlier nodes on the path. The factor a:(0) gives the
probability that the first random clause will contribute two nodes, and the a (2) factor
gives the probability that the second clause will contribute one node (even though two
variables have already been set). The factor [1 (1 -p)411 gives the probability that the
one remaining clause does not evaluate tofalse even though two variables have been set
at the parent of node 5.

Equation (17) gives the probability that the tree has a node with the specified char-
acteristics. In particular, the last variable has been set so that its literal in the selected
clause evaluates to true. With the same probability the tree has a node where that vari-
able is set so that the literal evaluates to false. Thus, the average number of nodes cor-
responding to a particular j, j,, with each variable being assigned any preselected
value (such asfalse), is 2B(n,j j,).

In the random clause model each branch of the backtrack tree has the same prob-
ability. There are 2 branches that have i variables set. Also each backtrack tree has a
root node. Thus, the expected number of nodes in the backtrack tree is

(18) N(t)=l+ E E"" E E
l<n<t j>_O jn->_O in>_1

2s’++lB(n, jl, ,jn).

The initial 1 counts the root of the backtrack tree, and the remaining terms count the
nodes on level s, for I < s, < v. Using b(i) 2Jaj(i) and (17), equation (18) can be
written as

(19) N(t) =1+2 E E"" E E H bj.(s,).
l<n<tjl>_O jn_l>_Ojn>_l l<_m<_n

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 311

5. Recurrence equation. The number of terms needed to evaluate N(t) with (19)
increases rapidly with t and v. We now derive a recurrence equation that is quicker to
evaluate. Define

(20)
N(t, i) 1 + 2 E E... E E ’- II

l<n<t ji_>0 in_l>_0 jn_>l l<_m<_n

Note that N(t) N(t, 0).
Giving separate consideration to the n 1 case in (20) results in

N(t, i) 1 + 2 El1 (1 p)2--+]t-bj(i)
j_>l

+2 E E" E El1-(1-p)2---++]t-,
2<n<tjl>_O jn-l>_Ojn>_l

Giving separate consideration to the jl sum results in

N(t, i) 1 + 2 E[1 (1 p)2V-i-j+l]t-lbj(i)
j>_l

j 2<n<t j2_>0 jn_l>_O jn>_l

[1 (1 H bJ.(i+j+s’m)’
2<m<n

where s’ Sk j. Now replace n by n + 1, m by m + 1, ji by ji_ 1, and si+l’ by si. As a
result, the new s is the sum of the new j through j,, and

(21) N(t, i) 1 + 2 E[1 (1 p)2V-i-J+]t-bj(i)
j_>l

j l<n<t--1 jl_>0 jn_l>_O jn>_l

(1 H bim(i+j+sm)"
l<m<n

The part of (21) to the right of the second b(i) is N(t 1, i + j) 1, so N obeys the
recurrence equation

(22) N(t, i) 1 + 2 E[1 (1 p)2"-i-J+]t-lbj(i) + E bj(i)[N(t 1, i + j) 1].
j>_l j

Simplifying, we get

(23) N(t, i)= 1 + bo(i)[N(t- 1, i)- 1]
+ E bj(i){2[1 -(1 -p)2V-i-j+l]t-1 zr N(t- 1, i + j)- 1}.

j_>l

Equation (20) gives the boundary condition N(0, i) 1.

312 KHALED BUGRARAAND PAUL W. PURDOM, JR.

With (23), the average time can be computed in time O(tvZ). Figure 2 shows the
results of calculations for v 100.

The recurrences in this paper were checked by comparing their solutions with the
actual number of nodes generated by programs for the algorithms. Each recurrence was
solved algebraically for i < t < 3, 1 < v < 3 using Macsyma. (A modification of (23)
was checked for 1 < t < 6, 1 < v < 6, tv < 12.) Also, each of the 22tv SAT problems
was generated and solved with a program that counted the number of nodes that were
generated. Aproblem with i literals has probability pi(1 _p)2tv-i. Multiplying the count
by the probability and summing over all problems gives a formula for the average number
of nodes. (This formula is a polynomial in p with integer coefficients.) The formulas
generated from the recurrences were identical with the ones generated by the programs.

6. Related recurrences. The number of nodes that results when a clause of length k
is allowed to contribute at most k nodes can be obtained by replacing 2ajn in the previous
derivations with a, + a’. where a’ is defined by (12) with the k j term omitted from
the sum. Let T(t, i) be the solution to

T(t, i) 1 +[1- (1-p)2V-i-J+]t- [bj(i) +bj+l(i)] + bj(i) IT(t- 1, i+j)- 1],

with boundary condition T(0, i) 1. The average number of nodes for the alternate
counting method is T(t) T(t, 0).

The recurrence for the number of solutions (in compressed form) is given by (2)
with the constant term dropped. Let S(t, i) be the solution to

(25) S(t, i) bj(i)S(t 1, i + j),
J

with the boundary condition S(0, i) 1. The average number of solutions is given by
s(t) s(t, o).

7. Comparison with simple backtracking.
THEOREM 1. The average number ofnodes generated by simple backtracking is greater

than or equal to the average number of nodes generated by clause order backtracking for
any distribution where theprobability ofapredicate is not changed bypermuting the variable
names in a single clause.

Proof. Consider an arbitrary node q in a possible backtrack tree. Refer to this node
with a string of T’s and F’s, where the ith symbol says which way to set the ith variable.
(The important point is that the node can be described without reference to which vari-
ables are set on the path to the node.) For each predicate P consider whether or not
node q occurs in the clause order backtrack tree for P. If node q does not occur, it is
either because one of the clauses used to determine the order of assigning values to vari-
ables becomesfalse or because one of the other clauses becomesfalse. For the compar-
ison between clause order backtracking and simple backtracking, construct a predicate
P’ in the following way. If node q does not occur in the clause order backtrack tree for
P, then P’ is the same as P. Otherwise, let k be the number of variables on the path
from the root to node q, let v be the ith variable set by clause order backtracking on the
path from the root to q, and let c be the clause that introduced v into the clause order
backtrack tree. Form predicate P’ from P by making the following change in variable
names in the indicated clauses. For from 1 to k, interchange variable names vi and in

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 313

all clauses after ci. For any node q, this mapping from P to P’ is well defined, each P’ is
the image of a unique P, and P and P’ have the same probability in the model for gener-
ating random clauses. Finally, if node q occurs in the clause order backtrack tree for P,
then it also occurs in the simple backtrack tree for P’. Summing over all predicates P,
we find that the probability of node q occurring in the clause order backtracking tree is
no larger than the probability of it occurring in the simple backtracking tree. (For most
distributions the node is less likely to be in the clause order tree, because a node q that
does not appear in the clause order backtrack tree for P may still appear in the simple
backtrack tree for P’.) q

8. Asymptotics. Let U(t) be an upper bound on N(t, i) 1 so that U(t) > N(t, i) 1
for 0 < i < v and t > 0. Since all the coefficients in (23) are positive

(26) N(t,i)- 1 <_ bo(i)U(t- 1)+Ebj(i){2[1-(1-p)2V-i-Y+l]t-1 +U(t- 1)}.
y>_l

Using

(27) E by(i) 2p(v i)(1 p)V(1 / p)-i-1,
j_>l

and

(28)

gives

1 (1 p)2,,-i _> 1 (1 p)2,,--j+l forj > 1

N(t, i)- I < [1 -(1 -p)’(1 + p)V-i]U(t- 1)
+2p(v-i)(1- p)V(1 q-p)v-i-l{2[1- (1 _p)2v-i]t-1 -]-U(t- 1)},

which can be written as

(29) N(t, i) 1 < 4p(v i)(1 p)’(1 + p)-i-[1 (1 p)2-i]t-
+{[2p(v i) 1 p](1 p)(1 + p)V-- + 1}U(t 1).

Replacing the i’s on the right side of (29) with the value that maximizes each part and
replacing two factors of (1 + p)- with 1 gives

(30) N(t, i)- i <_ 4pv(1-p2)[1-(1-p)2V]t-l +{l +[2pv-1](1-p2)v}U(t-1),

where we have assumed that 2pv I is nonnegative. (When 2pv I is negative, a slight
modification of the current derivation shows that N(t, i) is small, so that case is not
considered further.)

Now let U(t) be the solution to the recurrence

(31) U(t) 4pv(1 -p2)"[1 (1 -p)2,,]t-1 + {1 + [2pv 1](1 -p2)}U(t- 1),

with boundary condition U(0) 0. Equation (31) and the boundary for (23) imply that
U(t) is an upper bound on N(t, i) 1. Let a 1 + (2pv- 1)(1 _p2)V and b 1 (1 _p)2V.
Then,

(32) U(t) 4pv(1 p2),a b

314 KHALED BUGRARAAND PAUL W. PURDOM, JR.

Since (a bt)/(a b) at-1 -t- at-2b + at-3b2 +... + abt-2 + bt-1

a > 1, we have

(33) U(t) <_ 4ptv(1- p2)Vat-.

,a > b > 0, and

Also,

(34) U(t) <
4pv(1 p2)V

a
a-b

Figure 3 shows the contours from the approximation

(35) N(t, i) < 1 + 4pv(1 p2)v [1 + (2pv 1)(1 p2)V/(1 -t- p)]t [1 (1 p)2V]t
1 + p (2pv 1)(1 pg)/(1 + p) + (1 p)’

This approximation is (32) modified by including the (1 +p)- factors that were dropped
in deriving (32). When (35) gives a small result, it appears to have the main features of
the real results (except in the lower right region where p is small and t is large). The
(1 +p)- factors that are included in (35) but omitted from (32) have a noticeable effect
in the upper part of Fig. 3, but the following derivations show that the factors are not
significant when v/ is large.

The right side of (35) is large when a is above 1, and it is small when a is near 1.
Thus, it is small when pv is near 1/2 (so that 2pv I is small) and when p2v is large (so
that 2pv(1 -p2)" is small). When p is larger than v-1 but smaller than v-1/, the bound
is exponentially large (provided t is not small).

9. The small p ease. From (33) we obtain

(36) N(t, i) <_ 1 + 4ptv(1 p2)V[1 -t- (2pv 1)(1 p2)V]t.

When p is small, the (1 p)’ term is not important. Replacing it with the upper limit
of 1 gives

(37) N(t, i) <_ 1 + 4ptv(2pv)t.

The number of nodes is no more than v’ when

(38) v’ _> 1 + 4ptv(2pv)t.

Rearranging and taking logarithms gives

(39) ln(2pv) _< n In v ln(4ptv) O(v-)

Since p < 1, the number of nodes is no more than v’ when

(40)
1 1) lnv-lnt-O(1)l/tp < ve[(-

10. The large p case. From plugging in the values of a and b into (34) we obtain

(41) N(t, i) < 1 +
4pv(1 p2 V

(2pv 1)(1 p2), + (1 p)2 [1 + (2pv 1)(1

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 315

10-1

P

10-2

10-3

v 100

1 10 100

FIG. 3. The contoursfor the approximation to the average number ofnodes.

500

Dropping terms in a way that leads to an even large bound gives

@v(1 /,2,v [1 + 2pv(1 p2)VltN(t, i) _< 1 + (2p77 i)i: 7")-2_< 1 + [1 + 2pv(1 -p2),,]t
1 1/ 2pv

<1+ [(1)]pv--
The number of nodes is no more than v’ when

(42) v’ >_ l + 2 [l +O (b)] [l + 2pv(1-p2)’]t.

316 KHALED BUGRARAAND PAUL W. PURDOM, JR.

Writing this as v’ 1 _> 211 + O(1/(pv))] [1 + 2pv(1 p2)]t and taking logarithms gives
[nlnv- ln(1 -v-)]/t >_ ln[1 + 2pv(1 -p2)] + ln2 + ln[1 + O(1/(pv))], which can be
written as

(43) e[nlnv-O(1)l/t 1 _> 2pv(1 p2)..

Expanding the exponential in a power series gives

(44)
nlnv[2ptvl+o (nlnv)] >

Taking logarithms gives

(45) lnp + ln t + ln v In ln v O (n lnvt) _<v ln(1 p2).

Dividing by v and replace ln(1 pz) with -p O(p) gives

(46) p2 _> lnp+lnt+lnv-lnlnvv -O(Pa)-o(nlnv)
For any 6 > 0 and large v, (46) is satisfied by

(47) P _> /(1 + 5) In tv+ (ln v)/2

When ln[(lnt)/(lnv)] < lnv (i.e., when t < vlnv), the bound on p is also satisfied with
6-0

To obtain conditions where the average time is barely exponential (bounded by (1 +
e) for small positive e), replace n In v with e in (3) and (46).

Acknowledgment. We wish to thank the referees for their careful reading of the pa-
per and their helpful suggestions.

REFERENCES

[1] C.A. BROWN AND P. W. PURDOM,An average time analysis ofbacktracking, SIAM J. Comput., 10 (1981),
pp. 583-593.

[2] K. BUGRARA, Y. PAN, AND P. PURoOM, Exponential average timefor thepure literal rule, SIAM J. Comput.,
18 1988), pp. 409-418.

[3] S.A. COOK, The complexity oftheorem-provingprocedures, in the Proceedings ofthe 3rdACMSymposium
on Theory of Computing, Association for Computing Machinery, New York, 1971, pp. 151-158.

[4] J. FRANCO, On the Occurrence ofNull Clauses in Random Instances of Satisfiability, Tech. Report 291,
Department of Computer Science, Indiana University, Bloomington, IN, 1989.

[5] ., Elimination ofinfrequent variables improves average case performance ofsatisfiability algorithms,
SIAM J. Comput., 20 (1991), pp. 1119-1127.

[6] M. R. GAREV AND D. S. JOHNSON, Computers and Intractability, W. H. Freeman, San Francisco, 1979,
pp. 38-44, 48-50.

[7] K. IWAMA, CNF satisfiability test by counting andpolynomial average time, SIAM J. Comput., 18 (1989),
pp. 385-391.

[8] P.W. PURDOM, Search rearrangement backtracking andpolynomial average time, Artificial Intelligence, 21
(1983), pp. 117-133.

[9] P.W. PURDOM,A survey ofaverage time analyses ofsatisfiability algorithms, J. Inform. Process., 13 (1990),
pp. 449-455. An earlier version appeared as Random Satisfiability Problems, in Proceedings Algo-
rithms and Complexity, The Institute of Electronics, Information and Communication Engineers,
Tokyo, 1989, pp. 253-259.

AVERAGE TIME ANALYSIS OF CLAUSE ORDER BACKTRACKING 317

[10] P.W. PURDOM AND C. A. BROWN, Thepure literal rule andpolynomial average time, SIAM J. Comput., 14
(1985), pp. 943-953.

11] ,Polynomial-average-time satisfiabilityproblems, Inform. Sci., 41 (1987), pp. 23-42.
[12] P.W. PURDOM, C. A. BROWN, AND E. L. ROBERTSON, Backtracking with multi-level dynamic search rear-

rangement, Acta Informatica, 15 (1981), pp. 99-113.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 318-331, April 1993

() 1993 Society for Industrial and Applied Mathematics
0O8

FACTORING RATIONAL POLYNOMIALS OVER THE COMPLEX NUMBERS*
CHANDERJIT BAJAJt, JOHN CANNY$, THOMAS GARRITY, AND JOE WARREN

Abstract. NC algorithms are given for determining the number and degrees of the factors, irreducible over
the complex numbers 12, of a multivariate polynomial with rational coefficients and for approximating each
irreducible factor. NC is the class of functions computable by logspace-uniform boolean circuits ofpolynomial
size and polylogarithmic depth. The measures of size of the input polynomial are its degree, coefficient length,
number of variables (d, c, and n, respectively). If n is fixed, we give a deterministic NC algorithm. If the
number of variables is not fixed, we give a random (Monte-Carlo) NC algorithm in these input measures to
find the number and degree of each irreducible factor.

After reducing to the two-variable, square-free case, we apply the classical algebraic geometry fact that the
absolute irreducible factors of (P(zt, zg.) 0) correspond to the connected components of the real surface
(or complex curve) P(zt, z2) 0 minus its singular points. In finding the number of connected components
of the surface P 0, the surface is projected to the the z2-plane. The singular points of P(z, z2) lie over
the projection’s critical values. The inverse image of a grid isolating the critical values in the zz-plane lifts
to a one-dimensional real curve skeleton on the surface (P 0) whose number of connected components
is precisely the number of connected components of P 0 minus its singular points. The connectivity of
this curve skeleton is constructed symbolically using Sturm sequences associated with the various polynomials
defining these maps. Given the number of irreducible factors and their degrees, the actual factors can be
reconstructed using the recent result of Neff [Proceedings of the 31st Annual Symposium on Foundations of
Computer Science, pp. 152-162] on finding zeros of one-variable polynomials in NC.

Key words, polynomials, factoring, NC, algebraic geometry

AMS(MOS) subject classification. 12D05

1. Introduction. Factoring polynomials is a basic problem in symbolic computation
with applications as diverse as theorem proving and computer-aided design. Our goal
is to approximate the factors, irreducible over the complex numbers, of a multivariable
polynomial with rational coefficients in deterministic NCwith respect to the polynomial’s
degree and coefficient size, assuming that the number ofvariables is fixed. Further, if the
number of variables is not fixed, we will find the number of irreducible factors and each
of their degrees in random NC with respect to the polynomial’s degree, coefficient size
and number of variables. The key is that this is a topological problem, not an algebraic
one. We will show that the number of irreducible factors is exactly equal to the number
of connected components of a certain semialgebraic set.

Since factoring is held as a touchstone problem in computer algebra, there have been
a number of recent successes in factoring various types of polynomials over different
fields. Methods for factoring polynomials with rational coefficients over the rational
numbers are well known. Kaltofen [16] and Lenstra, Lenstra, and Lovasz [20] establish
that factoring polynomials in a fixed number of indeterminates over the field of rational
numbers Q is in polynomial time.

For factoring rational polynomials over (3, Noether [23], Davenport and Trager [6],
and Heintz and Sieveking [13] each give methods that require time exponential in the

Received by the editors May 17, 1989; accepted for publication (in revised form) November 25, 1991.
fDepartment of Computer Science, Purdue University, West Lafayette, Indiana 47907. The work of this

author was supported in part by Army Research Office contract DAAG29-85-C0018 and Office of Naval Re-
search contract N00014-88-K-0402.

Computer Science Division, University of California, Berkeley, California 94720. The work of this author
was supported in part by a David and Lucille Packard Fellowship.

Department of Mathematics, Rice University, Houston, Texas 77251.
Department of Computer Science, Rice University, Houston, Texas 77251. The work of this author was

supported in part by National Science Foundation grant IRI 88-10747.

318

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 319

degree of the input polynomial. DiCrescenzo and Duval [7] and Duval [8] give geomet-
ric methods of factorization based on algebraic geometry. Kaltofen [15] describes an
NC method for testing whether a rational polynomial is irreducible over C. The method
involves computing approximate roots and their corresponding minimum polynomials.
The first polynomial time algorithm for factoring over (3 seems to have been given by
Chistov and Grigoryev [4]. Until recently, it has been an open problem whether approx-
imating the factors, irreducible over C, of a rational polynomial is in NC. Kaltofen [18],
using techniques quite different from ours, has also derived an algorithm for approxi-
mating these factors in NC.

Recall that NC is the class of functions computable by log-space uniform Boolean
circuits of polynomial size and polylogarithmic depth. Thus the running time of an NC
algorithm will be polylogarithmic, allowing a polynomial number ofprocessors that work
in parallel. Given a polynomial P with rational coefficients, the input size is measured
by the number of variables n degree d coefficient size c and the number of nonzero
ooefficients s. We show that the general problem of computing, number and degrees of
the factors is in random NC in these measures, in the Monte-Carlo sense (definitely fast,
probably correct). If the number ofvariables is fixed, or if the polynomial P is dense, we
give a deterministic NC solution for also approximating the irreducible factors. Finally,
if the polynomial is represented as a straight-line program of length p our algorithm
runs in random NC plus the time to evaluate the polynomial at an integer point. By the
parallelization result of Valiant et al. [27], any straight-line program of size p and degree
d can be converted into an equivalent program of polynomial size, and polylogarithmic
depth in d and p, which can be evaluated in NC. Although this result applies to the real
number model, it extends easily to bit complexity since every node of the SLP represents
a polynomial in the input variables and constants. If we have a bound on the degree
of these polynomials, this also bounds the size of any intermediate coefficient when we
evaluate the program numerically.

However, the conversion to a low-depth straight-line program is itself not in NC,
and seems intrinsically sequential because of constant evaluation, which is P-complete.
So we cannot run our algorithm in random NC for straight-line program polynomials
unless we are given a program of low depth.

The paper can be divided into two main parts. In the first part, in 2 and 3 we
show how to find the number and the degree of the irreducible factors of a two-variable,
square-free polynomial with rational coefficients. In the second main part, in 4 and 5,
we show how to reduce the general case of a multivariable polynomial to a two-variable,
square-free polynomial, and then how to approximate the actual irreducible factors.

In 2, we recall a fact of the classical algebraic geometry: namely, that the number
of factors of a two-variable, square-free polynomial P(zl, zu) is precisely the number of
connected components of the real, two-dimensional surface P 0 minus the singular
points of P. This is the key, allowing us to translate the original algebraic problem of fac-
toring to the topological one offinding connected components of a special semi-algebraic
set. Section 3, the technical heart ofthe paper, finds the number of these connected com-
ponents. The two-dimensional surface P(zl, z2) 0, lying in C or equivalently Ra, can
be projected to the z2 plane, with a finite number of critical values. The singular points
of the surface lie over critical points of the projection. In 3.1, the projection is de-
scribed. In 3.2, we create a grid of horizontal and vertical lines in the zu-plane with the
property that inside each box of the grid there is at most one critical point of the projec-
tion. The inverse image of this grid on the surface P(zl, z2) 0 forms a curve skeleton.
By Theorems 3 and 4, the number of connected components of this curve skeleton will

320 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

be precisely the number of connected components of P(z, zz) 0 minus its singular
points. Since this curve skeleton is a graph, if we can compute its adjacency matrix in
NC, we can find the number of connected components in NC. Section 3.3 shows how
to find this matrix by using sign sequences of various Sturm sequences, all of which, by
Theorem 6, can be computed in NC. This will give the number of irreducible factors
of a two-variable square-free polynomial with rational coefficients. We will see that the
degree of each factor has already been determined, by applying Bezout’s theorem.

In 4, we show how to reduce the problem of factoring a multivariable polynomial
with rational coefficients to that of factoring a square-free, two-variable polynomial. All
we do is note that the proof of Bertini’s theorem in [21] actually describes an algorithm
that runs in NC. Finally, in 5, using the recentwonderful result ofNeff [22] that the roots
of a one-variable rational polynomial can be approximated in NC, we actually show how
to approximate the irreducible factors.

2. Connectivity and factorization.

2.1. Preliminaries. Let P(z,..., z,) C[z,..., z,] for i 1,..., k be polynomi-
als with complex coefficients in n variables. Let V(P,..., P) denote the set ofcommon
zeros of these polynomials in C

V(P,... ,Pk)= {z ClP(z)= 0, i= 1,... ,k}.

This is an example of an algebraic set. For a single polynomial P, the set S V(P) is
called a hypersurface. A hypersurface S is said to be irreducible if the zero set of the poly-
nomial P(z,..., z,) is irreducible over C. More generally, an algebraic set is irreducible
if it cannot be expressed as a finite union of proper algebraic subsets. An irreducible al-
gebraic set is called a variety.

For the rest of the paper, we assume that P is square-free (irreducible factors have
multiplicity one). Note that if the original P is not square-free, we may compute the
square-free part of P by computing

P/GCD P,

where P is monic in z. This computation may be performed in NC using the greatest
common divisor algorithm of [1].

The key observation in 2.2 will be that there is a fundamental relationship between
the singular points of an algebraic set and its irreducible components.

DEFINITION. Let S V(P) be a hypersurface with P a square-free polynomial.
The set of singularpoints of S, denoted Sing(S), is defined by

(1) Sing(S)-- Sf V Oz""’ Oz,

For example, an irreducible algebraic plane curve has at most a finite number of singular
points. More generally, the singular set can be defined for any algebraic set, but we will
not give a definition here. Intuitively, the singular points of an algebraic set are the points
where the set is not smooth (smooth points have neighborhoods diffeomorphic to some
Ck) or where tangent lines are ill-defined.

2.2. Topology ofzero sets of reducible polynomials. This section is the key to trans-
lating the algebraic problem of factoring to the topological problem of counting con-
nected components.

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 321

Removing the singular set from an algebraic set may split it into several connected
components. Here connectivity is equivalent to pathwise connected in the usual (metric)
topology. As the following theorems show, these components correspond exactly to the
irreducible components of the curve.

THEOREM 2.1. The set S is irreducible ifand only if S Sing(S) is connected.
THEOREM 2.2. The irreducible components ofset S are exactly the closures ofthe con-

nected components of S Sing(S).
Both theorems are extremely classical and are consequences ofthe next two lemmas.
LEMMA 2.3. Let the set S have distinct irreducible components S, $2,..., Sk. Then

for any i and j, Si Sj c_ Sing(S).
For hypersurfaces, this is a straightforward calculation. For the general case, this is

Theorem 6 in [26, Chap. 2, 2].
LEMMA 2.4. If S is irreducible, and Y is anyproper algebraic subset of S, then S Y

is connected.
This is Corollary 4.16 of [21].
3. Computing connected components. We have reduced the problem of finding the

number of irreducible factors of P(zl, z2) to the problem of counting the number of con-
nected components of the surface V(P) Sing(V(P)). In the first part of this section,
we discuss an algorithm for counting the number of connected components. We then
discuss how the algorithm can be executed in parallel.

3.1. Projecting to the plane. In this subsection, we treat the algebraic set V(P
(zl, z2)) as a branched cover of the z2 plane, showing that there will only be a finite
number of critical values (which will be defined in a minute) and, more importantly, that
the singular points of P must lie over critical values. In 3.2 and 3.3, we will construct
a grid, isolating the critical values, in the z2 plane whose inverse image on V(P) will be
a graph with the same number of connected components as V(P) Sing(V(P)). This
reduces the problem to constructing the adjacency matrix of this graph.

We express the complex coordinates z and z2 in terms of their real and imaginary
parts: z x +yi and z2 x2 d- y2i. The polynomial P(zl, z2) P(Xl, Yl, X2, Y2) can
also be expressed in terms of its real and imaginary parts: P(x, yl, x2, y2) Pl(xx, y,
x2, y2) + P2(x, yl, x2, y2)i. Thus, V(P) can be expressed as the two-dimensional real
surface V(P1, P2) in R4. Let 7r R4 ---, R2 be the projection map that takes those points
(x, yl,x2, y2) lying on V(P, P2) and maps them to (x2, y2). By a change of variables,
we can assume that P(z, z2) has a zd term, where d is the degree of P, implying that P
does not have any factors univariate in z2. Thus, 7r must be finite-to-one everywhere.

DEFINITION. If F R’ Rm is a differentiable map, p R’ is a critical point of
F if the Jacobian dF of F is not surjective at p. The image of a critical point is a cdtical
value.

In complex algebraic geometry, the critical points are called ramification points and
the critical values, branch points. A point that is not a critical point is called a regular
point, and the preimage of a regular value consists of regular points only.

This projection map has only a finite number of critical points.
LEMMA 3.1. There are only a finite number of critical points in the projection map 7r

from the surface V(P (xl, y, x2, y2), P2(x, y, x2, y2)) to the (x2, y2) plane.
This lemma can be stated more precisely.
LEMMA 3.2. The cdticalpoints oftheprojection map r are thepoints in the intersection

of V(P) and the surface oPOZl

322 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

The proofs of both lemmas are contained in 4 and 5 in [19, Chap. 2]. The criti-
cal values of the projection map are the zeros of the one variable polynomial R(z)
Resz (P, OP). This expression is frequently referred to as the discriminant.

Note that the singular points of the polynomial P, the points where both partial
derivatives vanish, must be contained in the critical points.

3.2. Reduction to curve skeleton. In this subsection we reduce the problem of find-
ing the number of connected components of V(P(z, z)) Sing(V(P)), which is the
number of irreducible factors of P, to finding the number of connected components of
a real one-dimensional curve skeleton (or graph) on the surface V(P) Sing(V(P)).

In 3.1 we showed that the projection map 7r from V(P) to the z or (zz, y) plane
has only a finite number of critical values. Let G be a grid of a finite number of horizontal
and vertical lines in the (xg.,//9.) plane, so that each critical value is in at most one cell of
the grid. For now, we assume such a grid exists. We will give more details about how to
construct such a grid later in this section. For now, the key point is that G isolates the
critical values of the projection map.

Let K be the inverse image of the grid G on the surface V(P). Note that K is one
dimensional and, since no critical values lie on G, lies on V(P) Sing(V(P)). K can
be interpreted as defining a graph whose vertices are those points on K lying over the
vertices of the grid G. Two vertices in this graph are adjacent if their corresponding
points on K are connected.

The following two theorems will show that the number of connected components of
the curve skeleton K is the same as the number of connected components of V(P)
Sing(V(P)). Theorem 3 will also yield the degree of each irreducible factor of P(z, z).

THEOREM 3.3. The number of vertices of the curve skeleton K, over any vertex of the
grid G, in each connected component of V(P) Sin9(V(P)) is exactly the degree ofthat
component.

Proof. Let P(z,z) IIQi(z,z), where each Qi is an irreducible factor of P.
Each connected component of V(P) Sing(V(P)) is of course V(Qi) Sing(V(P)),
for some i.

A vertex of the grid G is a point a in the z plane. The inverse image of this vertex
is given by the zeros of the one-variable polynomial P(z, a). The inverse image in each
component are the zeros of Qi(z, a). By the Fundamental Theorem of Algebra, each
component will have exactly degree ofQ points, which is also the degree of the compo-
nent. We do not have to worry about multiple roots of these polynomials since the grid
G does not pass through any critical values.

THEOREM 3.4. Anypath in V P) Sing(V P connecting twopoints in K is homo-
topic (i.e., can be continuously deformed) to a path in K.

Proof. Let a be a path in V(P)-Sing(V(P)) connecting two points of K. By slightly
deforming a, we can assume that the projection of a by 7r misses any critical values in
the z plane. In each cell of the grid G, deform the path 7r(a) to the actual grid G, so
that the area swept out by the deformation does not contain any critical values. This is
possible since each cell will contain at most one critical value. Since the area swept out
by the deformation does not contain a critical value, the deformation can be lifted to
V(P) Sing(V(P)). Thus the path a can be continuously deformed to a path on the
skeleton K.

We next describe the actual construction of the grid G. In the last section we show
that the critical points of the projection map 7r are the points in V(P, oP). Then the
critical values are the zeros of the one variable polynomial,

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 323

h3

h2

ho
0 _1_ Vl V2

FIG. 1. A gridplane whose cells contain at most one criticalpoint.

X2

(2) R(z2) Res (P, Oz)
where Reszl (P, Q) is the resultant of the polynomials ofP and Q treated as one-variable
polynomials in Zl. The edges of G are chosen to be parallel to the z2 and//2 axes.

The vertical edges are the lines zg. vi with the (v0 < vl < ...) real constants
chosen so that the open interval (vi, vi+1) contains at most one of the distinct real com-
ponents of the complex zeros of R(z2). The horizontal edges are the lines y2 hi with
the (h0 < hi < ...) real constants chosen so that the open interval (hi, hi+) contains
at most one of the distinct imaginary components of the complex zeros of R(z2). Figure
1 illustrates this situation where R(z2) (z2 1)(z2 + i)(z2 i).

The lines of G form rectangular cells in the z2 plane, intersecting in vertices. Note
that each cell in the grid contains at most one critical value.

The grid G may now be used to construct the curve skeleton K directly on V(P).
In fact K, the inverse image of G under the projection 7r onto the z2 plane is the one-
dimensional curve V(P) fq 7r-(G). As described earlier, the vertices of this graph are
the points on V(P) lying over each vertex (Vk, h,) in G. These points are the complex
roots of the univariate polynomial P(z, vk / ih). The edges of the graph correspond
to algebraic curve segments of K. Figure 2 illustrates three curve segments over two
vertices s and t of the grid G, adjacent on a vertical grid line. The curve segments have
been projected onto the xy2 plane.

Thus to find the number of connected components of V(P) Sing(V(P)), we must
find the number ofconnected components ofthe graph K. To determine the connectivity
of K, we need only the adjacency information between points of K, not the actual curve
segments. We will next describe a fast parallel method for computing this adjacency
information.

324 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

X2 Xl

FIG. 2. Curve segments on Sjoining vertices of K.

3.3. Construction of curve skeleton. In this section we show how to construct the
adjacency matrix for the curve skeleton K in NC with respect to the degree of the poly-
nomial and the coefficient size. The key will be the symbolic representation by sign se-
quences of roots of various polynomials, allowing us to keep track of the order of the
roots, which will be needed for the matrix.

In 3.3.1, we quickly review Sturm sequences for one-variable polynomials and then
give a generalization for multivariable polynomials. In 3.3.2, we show explicitly how to
construct the adjacency matrix of the curve skeleton.

3.3.1. Sturm sequences. Sturm sequences are classical. Let p(x) be a one-variable
polynomial. Consider the following sequence p0(x),..., Pn (X) of polynomials:

PO P

(3)

Pl dp(x)/dx

Pk qk-Pk- Pk-2

Pn

where Pk is simply the negative of the remainder obtained by dividing Pk-2 by Pk-1.
Since p(x) is a polynomial, the last term pn must be a constant. If p(x) is square-free, pn
must be nonzero. Sturm sequences can be computed in NC [1].

The importance of Sturm sequences lies in that they provide an easy way of deter-
mining how many real roots a polynomial has between two points.

THEOREM 3.5. Let p(x) be a univariate realpolynomial with Sturm sequence (po(x),
pn(X)). Let a and b be real numbers that are not roots of p(x). Then the number of

real roots ofp(x) between a and b is equal to the number ofsign changes in the sequence
(p0 (a),..., Pn (a)) minus the number ofsign changes in the sequence (po (b),. Pn (b)).

The proof can be found in many places, such as [14, Chap. 6].
We will also need the following multivariable version of Sturm sequences. Let E be

a collection of rational polynomials (p,..., p,) in n variables.

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 325

THEOREM 3.6. Let pl(Xl,... ,Xn) 0,... ,pm(Xl,... ,X,) 0 be a system of ra-
tional coefficient polynomial equations having a finite number of solution points. Denote
the real solution points not at infinity as cj E Rn, j 1,..., 1. Let ql (x,..., x,),

qk(x,..., x,) be a set of polynomials. Then the set of sign sequences of q (cj),
,qk(aj),j 1,... ,1 can be computedin NCifmisfixed.
This theorem is a corollary of Lemma 2.4 in [3].

3.3.2. Parallel adjacency calculation. We now discuss how to compute the grid G
in the z2 plane and the adjacency information for K in NC with respect to the degree of
the original polynomial and the coefficient size.

Let R(z) be the polynomial whose zeros are the critical values of the projection
map from V(P) to the z2 plane, defined by (2). Without loss of generality, we assume
that R(z) is square-free (if not, make it so). We write R(z) in terms of its real and
imaginary parts:

n(x2, y2) n (x2, y2) + in2(x2, y2).

The complex zeros of R are at the simultaneous real zeros of R1 and R2. Let

(4)
U(x)

H(y2) Resx. (R1, R2).

The real zeros of U contain the xe-coordinates of the critical values and the zeros of H
contain the yz-coordinates. Again, we ensure that U and H are square-free.

Since U is square-free, the solutions vi to the equation

(5) dU(x2)
0

dx2

generate vertical lines that separate the critical points. Likewise, the solutions hi to the
equation

(6)
dH(y2)

=0
dy2

generate horizontal lines that separate the critical points. Finally, if A is a constant so
that all roots of both U and H are greater than -A and less than A, then the grid G will
consist of the lines from (5) and (6) and

x2 +A

Y2 +A.

This gives a symbolic description of G. We next use this description of the grid with
Sturm sequences to compute the adjacency information for graph of the curve skeleton
K.

We describe a method for computing this adjacency information in the x direction
in G. The y direction is similar. Let (vi, by) and (vi, hy+) be two adjacent vertices in
G. These vertices lie on the grid line x2 vi. Over each of these vertices lies d points
in V(P). These points form the vertices of K. In Re, the intersection of x vi and

326 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

V(P) define d algebraic curve segments in K. These curve segments form the edges in
K, joining pairs of vertices in K, each lying over a distinct grid vertex.

We do not explicitly attempt to construct and follow the curve segments. Instead,
we symbolically compute the adjacency information. Project (V(z vi) V(P)) onto
the zy-plane via resultants. As shown in the next section, this projection can be chosen
so that only nodal singularities are introduced into the curve. To determine adjacency
information, we need only locate and detect the relative position of these nodes with
respect to the vertices of K, since at each node the order of vertices changes. Since we
are interested in nothing more than the relative order of these points, these calculations
can be done via Sturm sequences. For example, in Fig. 3, denote the endpoints of the
segment (vi, hi) and (vi, hj+l) by s and t. Over s, assume that there are four vertices
s, s, sa, and s4 in K. Likewise, over t there are four vertices tl, re, ta, and t4. The
projected curve segments link the s to the tj and the position of the nodes determines
which s vertices are connected to which t vertices.

Specifically, consider the three polynomials:

T(Xl, X2, Y2) Resy, (P, P2).

(7) dU()
dx2

N(x2, Y2) Res (T, OT
7)"

V(T) is the projection of V(P) to xx, x2, y2 space. Allowing xx and y2 to be free variables
for dU() the intersection of V(dU(.) with V(P) yields curves lying in planes paralleldxg. dxg.

to the xy2 plane and through the vertical grid lines.
Now allow y2 to be a free variable for dV(..) the points on V(N, dU/dx2), restricteddc2

to the line x2 vi, are the images of the nodes of V(T) projected to the y2 axis. Thus,
allowing x to be a free variable, V(N, dU/dx2) consists of lines in the xy2 plane, par-
allel to the x axis, containing nodes of the projected plane curve (the dotted horizontal
lines in Fig. 3).

Compute the sign sequences of the following polynomials at the common zeros of
the system (7):

The Sturm sequence of dU/dz.
The Sturm sequence of dH/dy.
The Sturm sequence with respect to y of N(z, y).
The Sturm sequence with respect to z of 0T

Oxl
By Theorem 3.6, these sign assignments can be computed in NC with respect to the size
of the input polynomials.

To compute adjacencies for K we proceed as follows: As y increases, the number
of sign alternations of the Sturm sequence for dH/dy increases monotonically. We first
sort all the sign assignments according to the number of sign alternations in this Sturm
sequence within each sign assignment. This partitions all the zeros of (7) into classes
according to yz coordinate. Each of these classes provides adjacency information for a
particular slice y2 h.

Next we sort within each class according to the number of sign alternations of the
Sturm sequence of dU/dxe. This gives us a collection of classes that lie on the same
horizontal grid segment between two adjacent vertical grid lines.

Then sort within classes according to number of sign alternations of the Sturm se-
quence of N(x, y2). The sign assignments with a zero correspond to the image in the
(x2, y2) plane of the nodes of the curve seqments.

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 327

81 q2 $3 q4

FIG. 3. Effect ofnodes on adjacency calculations.

Xl

Finally, we sort the sign assignments according to number of alternations of the
Sturm sequence of OT/Ozl. This orders the points with the same z2, /2-coordinates
along lines parallel to the Zl axis. One of these sign assignments will have a zero assign-
ment to the polynomial OT/Ozl, and this is the sign assignment of the node point itself.
From the position of this sign assignment in the ordering, we infer the relative position
of the node point along the dotted line and therefore among the branches of the curve
in K. In Fig. 3, we are ordering the points along the dotted lines.

To generate the graph K, we label the d vertices of K over a given gridpoint with
1,..., d. These labels come from the z ordering of the corresponding points in K. Each
node can be represented as a permutation (an exchange of two adjacent elements) of the
indices of the curve branches that cross at the node. To determine the permutation as we
move in / past k nodes, we compose the permutations of the nodes. The composition
can be done in NCby composing adjacent (in ordering) permutations, then composing
adjacent pairs of these, etc. The final permutation gives the change in ordering from one
gridpoint to the next and provides the d edges joining corresponding vertices of K.

One performs similar calculations to compute adjacency information in the horizon-
tal direction.

3.3.3. Projections introducing only nodal singularities. We need to prove the as-
sumption used in the 3.3.2 that a smooth space curve defined by the intersection of
two surfaces can be projected to a plane curve with at worst nodes as singularities. The
following is no doubt well known.

LEMMA 3.7. Let C be a space curve defined by the intersection oftwo algebraic surfaces.
Then we can choose a projection map in NC with respect to the degrees of thepolynomials
defining the surfaces so that the image ofC is a plane curve with at worst ordinary nodes as
singularities.

Proof. Recall that a projection is defined as follows: choose a point p off of both the
curve (7 and a plane P. Let q be any point on C’. Then the unique line defined by p and

328 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

q intersects the plane P in exactly one point. The projection maps q to this intersection
point.

By [21, pp. 132-135] or [12, Th. IV.3.10], a point will give rise to a nonnodal projec-
tion if it lies on a multisecant of the curve (i.e., a secant intersecting the curve in more
than two places), a tangent of the curve, or a secant with coplanar tangent lines. In
these references, it is shown that the set of nonnodal projection points forms a proper
algebraic subset. It can be checked that the polynomials defining this algebraic set are
bounded by the degrees of the polynomials defining the surfaces. Thus by [25], and using
arguments similar to those that will be given for Theorems 4.2 and 4.3 in 4, we can, in
NC with respect to the degrees of the polynomials defining the surfaces, choose a point
of projection.

One technical note is needed. Both [21] and [12] work over the complex numbers.
But a proper algebraic subset of Cn cannot contain all of the underlying real points.
Thus we are indeed guaranteed a good point of projection.

4. Reduction to bivariate factorization. All of the previous work depended on the
original polynomial being in two variables. In this section we show how to reduce the
problem of factoring a multivariable polynomial to the two-variable case.

There have been a number ofpapers giving reductions from multivariate to bivariate
factorization. The first appeared in Heintz and Sieveking [13], and made use of Bertini’s
theorem, as will we. This was a randomized irreducibility test that worked for sparse
multivariate polynomials. The idea was extended to factorization in [10]. In [16] a re-
duction was given which is in deterministic polynomial time if the number of variables
is fixed, or if the polynomials are dense. Kaltofen [17] later gave a different randomized
reduction for the sparse case. These randomized reductions work for polynomials rep-
resented as straight-line programs as well as sparse polynomials. An NC reduction for
the dnse case was given in [15].

For the complex case, we give a new randomized reduction that requires fewer bits
per random coefficient O(log d) than the previous methods O(d) for [17] and O(d2) for
[10]. Thus our reduction also runs in deterministic NC if the number ofvariables is fixed,
or if the polynomials are dense. For sparse polynomials, the reduction is in random NC
in the degree d number of variables n coefficient size c and number of nonzero terms
s. For straight-line program polynomials, the parallel running time is the sum of a poly-
logarithmic function of measures d, n, c, plus the time to evaluate the polynomial at an
integer point.

Given a polynomial P(zl,... ,zn), we assume that it is square-free. We wish to
develop a constructive version of Bertini’s theorem, which states that the intersection of
an irreducible variety with a generic plane will be an irreducible plane curve. Luckily
the proof given in Mumford as Theorem 4.17 in [21] is constructive. Next we describe
algebraically the set of intersecting planes that violate Bertini’s theorem and then, using
Schwartz’s lemma [25], show how to choose an intersecting plane satisfying Bertini’s
theorem.

We use the following theorem (which is Theorem 4.17 in [21]).
THEOREM 4.1. Let X C Pn(complexprojective n-space) be an r-dimensionalprojec-

tive variety and let M’-r- c pn be a linear space disjointfrom X. Let p X pn be
the projection from M and let

/3 (x E pr[p not smooth over x)
so that

(X- p-B) P’-B

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 329

is a finite-sheeted covering space. Let C pr be any line that meets B transversely. Then

p-(1- B) g) B

is also a connected coering space, hence p- is an irreducible curve.
In fact by Corollary (4.18) in [21], the above line can be chosen so that p-(1)

will intersect the variety X transversely. For our case, X will be an irreducible hypersur-
face V(P(xo,..., Xn)), where P(xo,..., x) is the homogenized version of a polynomial
P(xi,..., Xn). Thus V(P(xo,..., x)) is the projective closure ofthe affin hypersurface
V(P(xi,..., Xn)). Then M-r- will be for us simply a point off of V(P(xo,... ,Xn)).

Following [21], we will find three points that span the plane p-l(/). The first point,
p0 will be the point of projection. Any point off of the hypersurface V(P(xo,... ,x,))
will work.

As in the theorem, let B be the set of points, in the hyperplane P’-, over which the
projection from p0 is not smooth. In our terminology, B is the set of critical values. We
now need to find a line in the hyperplane P’- that is transverse to B. But this is easy.
In pn-, choose a point Pl Off Of B and then project B from this point to some p,-2.
Let B be the critical values in p-2 of this projection map, and let our third point p2 be
a point off of B. The line will be defined by the points p and p2 and the plane p- (1)
will be spanned by po, p, and p2. Again, the justification for these choices is in [21].

The following choices must be made. First we must find a point po off of a deree
(d ---degP) hypersurface in pn. Then we must find a point Pl Off of B, which is a degree
d(d 1) hypersurface in pn-1. Note that the degree of B is d(d 1) since it is given by
the resultant of the polynomial P and some first partial of P. Finally we must find the
point pe off of the set B’, which is a hypersurface of degree d(d 1)(d(d 1) 1) in
pn-e. Luckily it is not hard to choose points off of a proper algebraic set. Further, since
the set of bad points is a proper algebraic set, we can assume, even though the statement
of the above theorem is for projective space, that we are in an affine space Cn (i.e., we
can dehomogenize, since we will be losing only the points on the hyperplane at infinity,
which is a proper algebraic subset of degree one).

THEOREM 4.2. Let P(xl,. ,Xn) be an irreducible polynomial ofdegree d. Let E be
a finite subset of C. Then the probability that the bivariate polynomial Q(x, y) defining the
plane curve, given by the intersection of V(P) by a plane spanned by three points in E’, is
reducible is less than (d4 2d3 / de + d + X)/IEI, where IEI is the cardinality of E.

Proof. We make use of Schwartz’s lemma [25] that the number of points in the set
E’ (E a finite subset of C) that lie in an algebraic set Z c C’ of degree d is at most

dlEI-.
The set of points off of which we want to choose our three points is the union of

V(P), B, B’, and the hyperplane at infinity; hence, has degree d + d(d 1) + d(d 1)
(d(d- 1) 1), which is da 2da + de + d + 1. The result follows.

COROLLARY 4.3. Let P(x,... ,Xn) be a polynomial of degree d with k irreducible,
distinctfactors. Let E be a finite subset of C. Then theprobability that the bivariatepolyno-
mial Q(x, y) defining the plane curve given by the intersection of V(P) by a plane spanned
by three points in En does not have k factors with corresponding degrees is less than da

2d3 + d2 + d +
This follows because the points can be chosen exactly as in Theorem 4.2.
In order to achieve a probability of failure less than e, we make sure that the follow-

ing holds true: IEI > da 2d3 + de + d + 1/e. Choosing integer values for elements
of E therefore requires (4 log d + log) bits. For a deterministic algorithm, we take
IEI d4 2d3 + d2 + d.

330 C. BAJAJ, J. CANNY, T. GARRITY, AND J. WARREN

Finally, note that by Bertini’s theorem almost every reduction to two variables will
work. Thus if we do not fix the number of variables, our algorithm will run in random
(Monte-Carlo) NC.

5. Factorization information. We now want to approximate each factor of the poly-
nomial P(Zl,..., Zn), which is possible due to the recent work of Neff [22] on approxi-
mating the roots of a one-variable polynomial with rational coefficients in NC. The ar-
guments used are very straightforward, so we will only sketch the proof.

Let our polynomial P(zl,..., Zn) 1-I Pi(zl,..., z,), where each Pi is irreducible
of degree d. We can assume, after a change of coordinates, that P and the P are monic

(a,+n)! 1) unknown coefficients for each Pi. We willin the variable zn. There are then (a,)!(n)!
now determine how to approximate these coefficients by solving an associated system of
linear equations: AX B, where A will be an integral invertible matrix, X will be a
column vector of coefficients for P, and B will be a column vector of algebraic numbers.

Let al,a2,...,a,_l be integers. Using [22], approximate the roots of the one-
variable polynomial P(a, a,..., a_, z,). Assume for a moment that we can deter-
mine which roots are associated with which irreducible factor Pi and can thus approx-
imate the one-variable polynomial P(a, a,..., a,_, z). Then given an integer a,
we can approximate the algebraic number b P(al, a2,..., a,-l, an). By choosing

(a,)!(n)!(a’+n)! 1)-tuples of integers (al, a, an-l, an) and treating the coefficients of
the P as unknowns, we can approximate the coefficients by solving a linear system
AX B. Here B is the column vector of the algebraic numbers b from the various
Pi (al, a,..., an-1, an) and A is the square matrix arising from evaluating all monomi-
als of degree di in n variables at the points (al, a,..., an-l, an). We must choose our
tuple so that the matrix A is invertible, but this is clearly no problem.

There is one difficulty with this method. We do not yet know how to determine which
roots of P(a, a,..., a_, z) are associated to which factor P. We do know how to
do this in the two-variable case. For a polynomial P(Zl,Z2) I-I Pi(zx,z2), we can
determine which roots of P(al, z2) are associated to which factors Pi, since this is pre-
cisely the information that is contained in the connectedness of the earlier constructed
curve skeleton, provided that we choose the point al to be on the grid in the zl plane,
which we can do by enlarging the grid. The general case is now easy. Given two tuples
(al, a2,..., an-l) and (bl, bn-1), intersect P(Zl,..., Zn) Owith the plane parallel
to the Zn axis containing the points (al, a,..., an-I, O) and (bl,..., bn-1,0). This re-
duces the problem of associating roots of P to the two-variable case, which we can do.
Of course, we cannot intersect P(Zl,..., zn) 0 with any plane, but this is not a true
difficulty. In the previous section we have an algebraic description of the planes that do
not intersect P(za,..., Zn) 0 correctly. Thus we simply must choose our (n- 1) tuples
so that resulting planes perform properly.

Acknowledgments. We would like to thank Jim Renegar for his comments and dis-
cussion of this work. We would also like to thank the referee for many suggestions for
improving the exposition of the paper. An earlier version of this work was presented at
ISSAC ’89, in Portland, Oregon.

REFERENCES

[1] A. BORODIN, J. VONZUR GATHEN, AND J. HOPCROFT, Fastparallel matrix and GCD computations, Inform.
and Control, 52 (1982), pp. 241-256.

FACTORING RATIONAL POLYNOMIALS OVER COMPLEX NUMBERS 331

[2] J. CANNY,A new algebraic methodfor robot motionplanningand realgeometry, in Proceedings of the 28th
Symposium on Foundations of Computer Science, 1987, pp. 39-48.

[3] ,Some algebraic and geometric computations in PSPACE, in Proceedings of the 20th Symposium
on Theory of Computing, 1988, pp. 460-467.

[4] A. L. CHISTOV AND D. Y. GRIGORYEV, Subexponential-Time Solving Systems ofAlgebraic Equations I.,
Steklov Institute, LOMI preprint, 1983, E-9-83.

[5] P. CIARLET, Introduction to Numerical Linear Algebra and Optimisation, Cambridge Texts in Applied
Mathematics, Cambridge University Press, London, 1989.

[6] J. DAVENPORTAND TRAGER, Factorization overfinitely generatedfields, in Proceedings of the 1981 ACM
Symposium on Symbolic Algebraic Computation, 1981, pp. 200-205.

[7] C. DICRESCENZO AND D. DUVAL, Computations on curves, Eurosam’84, LICS 174, 1984, pp. 100-107.
[8] D. DUVAL, Diverses Questions Relatives au Calcul Formel Avec Des Nombres Algebriques, Th6se,

EUniversit6 Scientifique, Technologique et M6dicale de Grenoble, Grenoble, France, 1987.
[9] R. DVORNICICHAND C. TRAVERSO,Newton Symmetric Functions and theArithmetic ofAlgebraically Closed

Fields, in Proc. AAECC-5, Springer Lecture Notes Computer Science, No. 356, 1987, pp. 216-224.
[10] J. vor ZUR GATHERS, Irreducibility ofmultivariate polynomials, J. Comput. System Sci. No. 31, 1985, pp.

225-264.
[11] P. GRIFFITHS AND J. HARRIS, Principles ofAlgebraic Geometry, John Wiley and Sons, New York, 1978.
[12] R. HARTSHORtE, Algebraic Geometry, Springer-Verlag, Berlin, New York, 1977.
[13] J. HEINTZ AND M. SIEVEKING, Absolute primality ofpolynomials is decidable in random polynomial time

in the number ofvariables, in Proceedings of the 1981 International Conference on Automata, Lan-
guages, and Programming, Springer Lecture Notes in Computer Science, Vol. 115, 1981, pp. 16-28.

[14] P. HErRIcI, Applied and Computational ComplexAnalysis, John Wiley and Sons, New York, 1988.
[15] E. KALTOFEN, Fastparallel absolute irreducibility testing, J. Symbolic Comput., 1 (1985), pp. 57-67.
16] Polynomial-time reductionsfrom multivariate to bi- and univariate integralpolynomialfactorization,

SIAM J. Comput., 14 (1985), pp. 469-489.
[17] ,Effective Hilbert irreducibility, Inform. and Control, 66 (1985), pp. 123-137.
[18] Effective Noether irreducibility forms and applications, in Proceedings of the 23rd Annual Sym-

posium on Theory of Computing, 1990, pp. 54-63.
[19] K. KENDIG, ElementaryAlgebraic Geometry, Springer-Verlag, Berlin, New York, 1977.
[20] A. LErSTRA, H. LENSTRA, AND L. LOVASZ, Factoring polynomials with rational coefficients, Math. Ann.,

261 (1982), pp. 515-534.
[21] D. MUMFORD, Algebraic Geometry I: Complex Projective Varieties, Springer-Verlag, Berlin, New York,

1970.
[22] C. A. NEFF, Specified precision polynomial root isolation is in NC, in Proceedings of the 31st Annual

Symposium on Foundations of Computer Science, 1990, pp. 152-162.
[23] E. NOETHER, Ein algebraisches Kriterium fur absolute Irreduzibilitat, Math. Ann., 85 (1922), pp. 26-33.
[24] V. PAN, Fastand efficient algorithmsforsequential evaluation ofpolynomialzeros andofmatrixpolynomials,

in Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, 1985.
[25] J. SCHWARTZ, Fast probabilistic algorithms for verification ofpolynomial identities, J. Assoc. Comput.

Mach., 27 (1980), pp. 701-717.
[26] I. SHAFAREVICH, Basic Algebraic Geometry, Springer-Verlag, Berlin, New York, 1974.
[27] L.G. VALIANT, S. SKYUM, S. BERKOWITZ, AND C. RAfKOFF, Fastparallel computation ofpolynomials using

fewprocessors, SIAM J. Comput., 12 (1983), pp. 641-644.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 332-348, April 1993

() 1993 Society for Industrial and Applied Mathematics

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES UNDERWMTING-TIME
CONSTRAINTS*

E. G. COFFMAN, JR.t, LEOPOLD FLATTOt, AND PAUL E. WRIGHTt

Abstract. The nonpreemptive scheduling of n > i stochastic jobs is considered to minimize the expected
number ofparallel machines needed to meet given waiting-time constraints. The number ofmachines available
is unlimited. The running times ofthe jobs are denoted T1,..., Tn and are taken to be independent samples of
an exponentially distributed randomvariable 7’ with mean 1. Job waiting times are to be bounded stochastically
by a nonnegative random variable W, independent of7"1, Tn. At time zero, a timer is started with an initial
value W, andjob scheduling begins. When the timer expires, all jobs still waiting for a machine are assigned to
available machines. Only the distributions ofW and the job durations 7"1, Tn are known to the scheduler
in advance.

A scheduling policy is defined which is proven to be optimal when W has an exponential distribution, and
is asymptotically optimal as n cxz, when W is a constant (hard-deadline). In the exponential case, an explicit
formula for the cost function is derived. The uniqueness question is also resolved. The paper concludes with a

partial analysis of the general hard-deadline problem, which leads to a policy that we think is optimal. A proof
of optimality, however, remains an open problem.

Key words. Bellman equation, optimal scheduling, Markovian decision process

AMS(MOS) subject classifications. 90B22, 90B35, 93E20

1. Introduction. We consider the nonpreemptive scheduling of n >_ I stochastic
jobs so as to minimize the expected number of parallel machines needed to meet given
waiting-time constraints. The number of machines available is unlimited. The running
times of the jobs are denoted T1,..., T, and are taken to be independent samples of a
random variable T.

Job waiting times are to be bounded stochastically by a nonnegative random variable
W, independent of T, with distribution C(t). Thus at time zero a timer is started with
the initial value W and job scheduling begins. To simplify terminology, we equip the
timer with a bell which rings when the interval W expires. When the bell rings, all jobs
not currently running and still waiting are assigned to available machines. We emphasize
that, except when W is a constant, the value of the timer is not available to the scheduling
policy before the bell rings; but its distribution is known. Similarly, job lengths are also
not known in advance, but their comnon distribution is known. The problem is to find,
within the class of nonpreemptive policies, a policy which minimizes the expected cost,
with cost defined as the number of distinct machines used throughout a schedule.

The analysis of later sections suggests that this machine minimization problem is
quite difficult for general distributions ofT and W. A similar, but more precise statement
can be made about the corresponding combinational optimization problem, where the
values of T, 1 _< _< n and W are all given in advance and the maximum number
of machines used throughout a schedule is to be minimized. This problem is strongly
NP-complete, a result which follows easily from the strong NP-completeness of one-
dimensional bin-packing [1].

This paper simplifies the general problem by assuming that T has an exponential
distribution. In the usual way, this allows us to formulate a Markov decision process
without having to include elapsed job running times as part of the state variable. For
convenience we take the mean of the distribution as the time unit, E(T) 1. For general

Received by the editors January 8, 1991; accepted for publication (in revised form) February 17, 1992.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

332

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 333

C(t), the optimization problem remains difficult. However, for C(t) also exponential,
we give in 3 and 4 a complete characterization of optimal policies.

In particular, it is shown that, for some 1 < k < n, the following policy is opti-
mal. The policy begins by assigning jobs to k machines. Thereafter, until the bell rings,
jobs are run only on these machines; whenever a machine finishes a job, it is assigned a
waiting job, if any. If there are any jobs still waiting when the bell rings, then all such
jobs are assigned to new machines. This is called the constant-k policy; it is analyzed for
general C(t) in 2 in preparation for the results of later sections. Note that the cost of
any constant-k schedule is simply the maximum of k and the number of unfinished jobs
when the bell rings.

Section 5 treats the hard-deadline model, whereW is a known constant. This section
first shows that the best constant-k policy is asymptotically optimal as n . ABellman
equation is then developed for the general case. Numerical evidence and partial results
derived from the Bellman equation suggest the structure that an optimal policy is likely
to have. We present such a policy, but a proof of its optimality has so far eluded us.

In the context of stochastic scheduling theory, machine minimization relates to the
makespan minimizationproblem, where the system of machines is assumed fixed and the
latest job finishing time is to be minimized in expected value. The latter problem has
been studied extensively under a variety of assumptions, including machines of different
speeds, precedence constraints among jobs, and different distributions for the Ti (see
[2], [3], [4], [5] and the references therein for the literature on this problem). The model
here concerns the complementary, equally important problem of allocating resources to
meet customer demands on waiting times.

In addition to the usual job-shop applications cited in the literature of stochastic
scheduling theory, there are equivalent problems in computer/communication system
design. For example, at a network node the machines become channels or trunks, and
W bounds the message delay prior to the start of transmission. Machine minimization
also falls within the theory of stochastic real-time scheduling. A distinctive feature of the
model here is that job running times are not known in advance. Also, the waiting time
constraint is imposed on the delays prior to being assigned machines, rather than the job
finishing times.

2. The constant-k policy. This section assumes a general clock-time distribution
C(t) Pr{W < t}. For given n and k, 1 < k < n, let F(n, k) denote the expected
cost incurred by the constant-k policy. Then F(n) min<k<, F(n, k) denotes the
expected cost incurred by a best constant-k policy. Recall that the constant-k policy ini-
tially assigns k of the given n jobs to k machines. Of the remaining m n k jobs, let
R count those that will eventually be served before the bell rings. When the bell rings,
there still remain rn Rjobs requiring rn R new machines, in addition to the k already
in use. Thus, the total number M of machines used by the constant-k policy is given by
M rn R + k n R, so that

(2.1) F(n, k) E[M] n- E[R].

In particular, when k n, we have R 0 so that F(n, n) n.
The distribution for R is denoted by 7ri Pr{R i}, 0 < i < m n k. For

< m, Pr{R ilW t} is simply the probability that, in a Poisson process with rate
k, events occur in [0, t). Thus, we have a mixture of truncated Poisson distributions

334 E.G. COFFMAN, JR., L. FLATI’O, AND P. E. WRIGHT

(2.2)

dC(t),
i!

O<i<m,

Introduce the Laplace transform (s) f e-stdC(t) and rewrite (2.2) as

) Pi-Pi+, O < < m,
7ri

Pm i m,

with

(2.3)
j!

dC(t)=
j!

(k),
d>i

where fi(J)(k) is the jth derivative of t3(s) evaluated as s k. We have

m--1 m m

E[R]- E iTr, E i(p, pi+l)q-mPm E ipi E(i 1)pi
i>0 i=0 i=1 i=1

i=0

so (2.1) and (2.3) give

(2.4)
m

F(n, k) n EE (-k)J
i=1 j>_i J! (k).

This formula simplifies when C is a completely monotone distribution or the differ-
ence of two such distributions. In this case, C has a density c(t) that can be expressed
as

(2.5) c(t) e-tSdc(s)

for some (signed) measure a(s) which is finite on [0,). Since f c(t)dt 1, the mea-
sure a(s) must satisfyf da(s)/s 1. As an example of (2.5) we observe that weighted
sums of exponentials (hyperexponential distributions) are completely monotone. In this
case a(s) consists of a sequence of point masses, one for each exponential.

From (2.5)we get

e-ktt c(t)dt e-(k+)tt dt da(s)

J! dc(s);$

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 335

SO by (2.3), im__ Pi becomes

m

f0i=1 j>_i

Then (2.4) reduces to

(2.6) F(n,k) n- k 1-
k + s s

Note that 1/sz in the integrand causes no difficulties, by virtue of the integrability con-
dition on the measure and the fact that the bracketed term vanishes at s 0.

In general, little insight is provided by (2.4); the computation of F(n) becomes a
numerical problem. However, useful information is available from the asymptotic be-
havior of F(n, k) as n - . Asymptotic estimates can be obtained without reference
to (2.4), using only elementary properties of the Poisson distribution. We need the fol-
lowing intuitive, preliminary result.

LEMMA 2.1. Let a() be anyfunction satisfying a(/)// 13, 0 < B < oo as) - cx.
Let Ya denote a Poisson random variable withparameter ,k, and define Yx as Ya truncated
at a(;), i.e., Ya min{Yx, a(,)}. Then as ; - c,

(2.7)

Proof. If B < 1, choose e > 0 so that a(,) < (1 e) for all , sufficiently large. On
the set {IYx ,1 < he},x a(,). Thus, since E[x] <_ min{,k, a(,k)} a(,), we have
for all , sufficiently large,

a(A)Pr{IY A] < As} _< E[Y] _< a(A).

But lim Pr{IY A[< Ae} 1 is a standard property of the Poisson distribution,
so (2.7) follows for B < 1.

If B > 1 choose e so that a(A) > A(1 + e), and if B 1 choose e so that a(A) >
A(1-e), for all A sufficiently large. Then in either caseY _> A(1-e) when Ig - l <
so that

)(1 e)Pr{IYx- AI < ,ks} < E[Y] <

and (2.7) follows for B > 1 as above.
THEOREM 2.1. For any constant 0 < 0 < 1,

(2.8) lim
f(n, Ln0J)

1 0 tdC(t) + (1 0) 1 C
1 0

n--o 0

336 E.G. COFFMAN, JR., L. FLATrO, AND P. E. WRIGHT

Proof. From (2.1)

(2.9) F(n,k) foo [1 E[R]W_n =t]] dC(t).

For k Ln0J, [RIW t] is a Poisson random variable with parameter [nOJt truncated
at n [nOJ. By Lemma 2.1, as n ,

Ot if t < 1 0

(2.10) E[RIW= t] 0

n 1-0
1-0 if t_>

0

Let n -. in (2.9). Since 0 _< E[RIW t] <_ n, the dominated convergence
theorem along with (2.10) implies (2.8). U

The expression for

L(O) =_ lira
F(n,[nOJ)

rt-o n

is easy to minimize if C(t) has a continuous density c(t), t > O. In this case, let 0
1/(1 + u) and set

1) 1-0,(u)=L i+u ,u=----,O_<u<
Then (2.8) becomes

u1
t dC(t)

u
[1 C(u)],(2.11) L(u) 1

1 + u 1 +----
where L(0) L(oe) 1 and ,(u) > 0 for all u > 0. We are assuming that C(t) has a
continuous derivative C’ (t) c(t) for t > 0, so

(2.12) (/0)1
tc(t)dt [1 C(u)]L’(u) (1 + u)

Now f tc(t)dt is monotone increasing from zero to E[W] and 1 C(u) is monotone

decreasing from 1 to zero. Hence L(u) has a unique minimum at u u0, where L’ (u0)
0. The above analysis leads to the following consequence of Theorem 2.1.

COROLLARY 2.1. IfW has a continuous density c(t), then L(O) has a unique minimum
at 00 1/(1 + u0), where uo is the solution to

(2.13) tc(t)dt [1 C(uo)].

Hence, by (2.8),

L(O) C (1-0)’Oo =C(uo).

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 337

For distributions C without continuous densities, it may still be possible to obtain
info<o<L(O). An important example, to which we return in 5, occurs when W is a
constant.

Trivially, the constant=k policy supplies the upper bound E(n) < F(n, [n00J),
where 00 minimizes L(O) and E(n) is the expected cost of an optimal policy. This fact
is exploited in 5, where the asymptotic optimality of the constant-k policy is proved for
the case of constant clock times.

3. Exponential dock. This section shows that optimal policies are constant-k poli-
cies when W is exponentially distributed. We let # > 0 be the parameter of the distribu-
tion, C(t) 1 e-It, t >_ O. Before getting into the analysis we introduce two problem
reductions.

First, it is easy to see that we may confine ourselves to policies that always assign a
waiting job, if any, to a processor that has just completed a job, i.e., there is always an
optimal policy in the class defined by this property. This observation applies no mat-
ter what clock and service time distributions are assumed. But under our exponential
assumptions, if we ignore events with probability zero (in particular, simultaneous job
completions), it is clear that this "replenishing" property is in fact mandatory in an opti-
mal policy whenever there are two or more waiting jobs. If there is only one job waiting
at the time some processor completes a job, then the waiting job can be assigned to this
processor immediately or at any subsequent time no later than W.

Our second observation exploits the memoryless property of the exponential distri-
butions for W and T, and it states that the decisions of an optimal policy can be restricted
to job completion times. Furthermore, for the Markov decision process underlying our
optimization problem,, a sufficient state is (n, k), where n is the number ofunfinishedjobs
and k is the number ofjobs currently assigned to processors. Based on this fact, it is easy
to develop a Bellman equation for the cost E(n, k) of an optimal policy starting in state
(n, k). When in state (n, k), 1 < k < n, either initially or at some job completion time,
an optimal policycan assign a waiting job to an available machine and then proceed op-
timally, or it can wait until the next job departure or until the bell rings, whichever comes
first. As part of the first choice, the term "proceed optimally" includes those situations
where j > 1 jobs are allocated before continuing to run jobs in state (n j, k + j). If the
second choice is made, a job will depart first with probability k/(k + #), while the bell
will ring first with probability #/(k + #). If a job leaves first, then the machine on which
the completion occurs is replenished with a waiting job, if any. Then for any given n _> 1
we can write

k
E(n-1 k)+ l<k<n<xE(n,k)-min E(n,k+l),k+# k+#(3.1)

E(n,n) =n,

where the first and second terms in braces account for the first and second choices, re-
spectively. A routine induction on n k shows that (3.1) has a unique solution for any
n > 1. The cost of an optimal policy iscomputed from E(n) minl<k<, E(n, k).

With respect to (3.1) the following terminology is useful. We say that state (n, k) is
stable if and only if

k
(3.2) E(n, k)

k + #

n<E(n,k+l).E(n- 1, k) + k +

338 E.G. COFFMAN, JR., L. FLATrO, AND E E. WRIGHT

That is, an optimal policy in state (n, k) must continue running jobs in that state. State
(n, k) is unstable if and only if

k
(3.3) E(n, k) E(n, k + 1) < E(n 1, k) + # n,

k+# k+#

so that an optimal policy must assign at least one more job before continuing to run jobs.
State (n, k) is semistable if and only if

k
E(n-1 k)+ # n,(3.4) E(n, k) E(n, k + 1)

k +----- k + #

so an optimal policy in state (n, k) has both of the above options.
It is appropriate to define the state (n, n) as stable, since no new assignments are

possible in this state. Note also that (3.2) and E(n, n) n imply that (n, n 1), n > 1 is
stable, i.e., the worst possible cost (n > 1) is never incurred unless forced by the bell.

Our objective is a result (Theorem 3.1) that not only determines an optimal policy,
but also decides the uniqueness question and classifies each state as stable, semistable, or
unstable. For this purpose we need three lemmas. The existence of an optimal constant-
k policy follows easily from the first lemma, as the second lemma will show.

LEMMA 3.1. If k <_ n 1 and state (n, k) is stable or semistable, then (n 1, k) is
stable.

Proof. The result is immediate for k n 1; so assume that k < n 1. We first
observe that (3.2), (3.4), and the assumptions of the lemma imply

k
(3.5) E(n, k)

k +-- k + #

From the Bellman equation (3.1),

k+l E(n-l,k+l)+
k+l+#

(3.6) E(n, k + 1) _<
k + 1 + #

Now substitute the right-hand side of (3.6) in (3.5) and rearrange to obtain

(3.7) E(n- 1, k + 1) _> 1

(k + 1)(k + #)[k(k + 1 + #)E(n 1, k) + #hi.

But n > E(n 1, k). So on substitution into (3.7), we get E(n 1, k + 1) > E(n 1, k),
which means that (n 1, k) is stable.

Next, we relate E(n, k) to F(n, k), defined in 2 for the constant-k policy. Observe
that E(n, k) <_ F(n, k) for all n and k, by definition of E(n, k).

LEMMA 3.2. (a) If (n, k) is stable or semistable, then E(n, k) F(n, k), and, further-
more, the constant-k policy is the unique optimal policy among those policies which begin
runningjobs in state n, k

(b) Conversely, ifE(n, k) F(n, k), then (n, k) is either stable or semistable.
(c) E(n, k) mink<_j<_n F(n, j).
Proof. To prove part (a), consider an optimal policy for any fixed n. Clearly, the

policy must begin by running some subset of > I jobs, where the corresponding state
(n, l) is stable or semistable. Thereafter, provided the bell does not ring, the next state
transition will occur at a job completion and have the form (n, l) ---, (n 1,1), where we
have accounted for the fact that the machine just finishing a job is replenished. But state

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 339

(n 1, l) is stable by Lemma 3.1, so the policy must continue running jobs in this state
with one fewerwaitingjob. Repeating this reasoning shows that the decisions ofthe given
optimal policy must be precisely those of a constant-k policy with k 1. Part (a) follows
easily. For part (b), we may assume that k < n. We are assuming E(n, k) F(n, k), so
we can write

k
E(n-l,k)+ IZ n

k+# k+#
k>_ E(n, k) F(n, k)

k + #
F(n 1, k) + #E(n

n,# .n> k
-1, k)+k+#k+# -k+

and hence

k
k) + , #E(n- 1, k) + k + #

no

But this means (n, k) is stable or semistable so part (b) is proved.
For part (c) we may again assume k < n. Define the integer such that E(n, k)

E(n, k + 1) E(n, l) < E(n, + 1) where k < < n. Thus (n, l) is stable. By part
(a),

(3.8) E(n, k) E(n, t) F(n, l) >_ min F(n, j).
k<_j<_n

For fixed n and k _< j < n, let F(n, j) attain its minimum at j j0. One possible
policy starting out from state (n, k) is to transit to (n, j0) and then apply the constant-jo
policy. The expected cost of this policy is F(n, jo), so that

(3.9) E(n, k) < F(n, jo) inf F(n, j).
k<_j<_n

Inequalities (3.8) and (3.9) give E(n, k) mink<j<_n F(n, j) as desired.
To deal with the uniqueness problem, we analyze an explicit formula for F(n, k).

Choosing a(s) of (2.5) to have unit mass concentrated at s #, so as to obtain the
density c(t) lze-tt, t >_ 0, we find easily from (2.6),

(3.10) F(n, k)= n 1- 1 < k < n.
k+#

Let

(3.11) kn max{1 <_ k <_ n F(n,k) F(n)}

denote the largest value of k for which F(n, k) attains its minimum as a function of k
with n held fixed. From (3.10), we obtain F(n, k) < F(n, n) for 1 < k < n 1, so that
kn < nforn > 1.

LEMMA 3.3. Forfixed n, F(n, k) is unimodal in k and attains its minimum at either
one or two consecutive values of k, i.e., atlust kn, or atjust kn and kn 1.

Proof. Replace k in (3.10) by the continuous variable x, 1 _< x _< n, and with n fixed,
write F(x) n- f(x)/#, where

(3.12) f(x) x 1
x

x+tt

340 E.G. COFFMAN, JR., L. FLATTO, AND P. E. WRIGHT

We show that f"(z) < 0 and hence F"(z) > 0, 1 < x < n; the lemma then follows
easily. Let h(z) (n z)log z/(z + #) so that f(z) z[1 eh(x)]. To prove that

f"(z) < 0, it is enough to show that 2h’ (z) + zh"(z) > 0 in

f’(x) --eh(X)[2h’(x) -t- x(ht(x))2 + xh’(x)].

Routine calculations give

2h’(x) + xh"(x) x(x + #)2
2 log 1 x+## + x+##

The first term is clearly nonnegative for I < x < n, and the bracketed term is negative,
since log(1 z) + z < 0 for z #/(x + #) < 1. Thus f"(x) < 0 and F"(x) > O,
l<x<n. Yl

We are now in position for the main result.
THEOREM 3.1. (a) For any n >_ 1,

F(n, k) if k >_ kn,
(3.13) k)

F(n, kn) if k <_ kn.

(b) (n, k) is stablefor k >_ k and unstablefor k < k 2. If, forfixed n, F(n, k) has a
unique minimum at k kn >_ 2, then (n, kn 1) is also unstable; otherwise it is semistable.

(c) If, forfixed n, F(n, k) has a unique minimum at kn, then the constant-kpolicy with
k k, is the unique optimal policy. Otherwise there are exactly two optimal policies, viz,
the constant-kpolicies with k kn and k kn 1.

Proof. Part (a) follows directly from Lemmas 3.2 and 3.3. To prove part (b), we
may assume that k < n. For k >_ kn, we have E(n,k) F(n,k) < F(n,k + 1)
E(n,k + 1). Here (n,k) is stable for k >_ kn. For. k < kn 2, E(n,k) < F(n,k). By
Lemma 3.2(a), (n, k) is thus unstable. Similarly, if F(n, k) attains a unique minimum at
kn, then E(n, kn 1) < F(n, kn 1), and so (n, kn 1) is also unstable. Otherwise,
E(n, kn 1) F(n, kn 1) and by Lemma 3.2(b) (n, k, 1) is either stable or semistable.
As E(n, k 1) E(n, k), we conclude that (n, k 1) is semistable.

For part (c), we observe that the initial states for which E(n) is attained must either
be stable or semistable. Hence by part (b) and Lemma 3.2(a), the only optimal policies
executing initially in these states are the corresponding constant-k policies.

4. Analysis of k,. This section studies k as a function of both n and #. We begin
by fixing # and describing the behavior of k as n increases.

THEOREM 4.1. k, is an increasingfunction of n.

Proof. State (n, k,) is stable and, by Lemma 3.1, so is (n 1, k,). It follows from
Theorem 3.1(b) that kn > k,_.

Corollary 2.1, together with a uniform version of Theorem 2.1, furnishes asymptotic
estimates for the present model. With C(t) 1 e-t, t >_ 0, these results imply that
as n oc, k #/(# + x(#))n and E(n) [1 e-(t’)]n, where x(#) is the unique
positive root of e x 1 #. We do not present the details of the proof, as a more
detailed analysis is possible for this case which yields the following stronger result.

THEOREM 4.2. As n --. oc,

(4.1) kn-"
+ x(#)

n + O(1)

OPTIMAL STOCHAS,TIC ALLOCATION OF MACHINES 341

and

(4.2) E(n) [1 e-(U)]n + O(1).

Proof. For given n, k, is the largest k for which

l<_k<_n,H(n, k) =- #In- F(n, k)] k 1
k +/z

attains its maximum. Let H(n, nO) nf, (0), where k nO and

[(1- 0<0_<1.

Then k, may be expressed as k, nO, + O(1), where J’ (0,) 0 defines 0,.
Write

fn(O) 0 [1- en(O--1) log(l+(./nO))]
and then eand log(1 + (/nO)) in powers of /(nO). It is easily verified that, for any
constant 7, 0 < 7 < 1,

uniformly on [, 1], where

(4.4) f(O) 0[1 e-h()], h(O) (0- 1).

Differentiation formulas give f" > 0 on (0, 1] with f’(O+) > 0, and f(1) < 0. Hence
f’(O) 0 has a unique root in (0, 1], say, at 0,. Choose 0 < 7 < 0,. By (4.3), for n
suciently large, 0 < 7 < 0 and f’(O,)- f’(O) O(1/n). application ofthe mean
value theorem to f’ then gives 0 0, + O(1/n); so from k n0 + O(1), we get
k n0, + O(1). By (4.4), 0, /[+ h(0,)]; so

((4.5) f’(0,) 1 e-h(* + O,h’ (O,)e-h(* 1 1 +

implies eh(*) h(O,) 1 h(O,) x(). Together with k nO, + O(1), this
proves (4.1).

Substituting kn nO, + O(1) into (4.3) shows that

.(n, kn) =.fn () =nfn (0. +0 ()) =n [f(O.)+0 ()];n
so

(4.6)
E(n) n -H(n, kn) 1

f(O.)
n + 0(1)

O,
(1 e-h(O*))] n + 0(1)--1---

342 E.G. COFFMAN, JR., L. FLATrO, AND P. E. WRIGHT

By (4.5), 1 e-h(O*) #e-h(O*)/O,; so on substitution into (4.6) we prove (4.2).
Finally, we describe k, as a function of#. For n 1, 2, we readily check that k, (#)

1; so we assume n > 2. First, we need the following property of

H(n,k,#)=k 1-
k+#

LEMMA 4.1. Forgiven n and 1 < k < n 2, the equation H(n, k, #) H(n, k
has exactly one root. Denoting this root by #k, we have

H(n, k, #) > H(n, k + 1, lz), 0 < # < #k,

H(n, k, #) < H(n, k + 1, #), # > #k.

Proof. Let H (n, k, #) denote the derivative with respect to #. Then

>0.(4.7) H’(n, k, #)
k + #

From the formulas for H and H,
(4.8) H(n, k, O) O, H(n, k, oc) k, H’(n, k, O) n k.

We conclude that D(n, k, #) H(n, k, #) H(n, k / 1, #), 1 <_ k <_ n 2, is positive
for all # sufficiently small and negative for all # sufficiently large. Let #k denote the
smallest zero of D. Then D(n, k, #) > 0, 0 < # < #k, and it remains to show that
D(n, k, #) < 0, # > #k. For # > #, the function (x + #k)/(x + #) is strictly increasing
in x > 0; so

H’(n,k+l,#) (k+l+#k)
-k

(k+#k)
-k+l H’(n,k,#)

H’(n, k + 1, #k) k + 1 + # k + # H’(n, k, #k)

Also D(n, k, #) > 0 on (0, #k) implies D (n, k, #) <_ 0, which means

H’(n,k + 1,#k)/H’(n,k,#k) > 1;

so

H’ (n, k + 1, #k) H’H’(n, k + 1, #) > H’(n, i z-i (n, k, #) > H’(n, k, #),

whereupon an integration yields D(n, k, #) < 0 for # >/zk. V1
THEOREM 4.3. Let #k, 1 < k < n 2, be defined as in Lemma 4.1, and define

#o O,#n-1 oc. Then lzo < #1 < #2 < < #n-2 < #n-- and in (#k-,#k), 1 <
k < n 1, we have kn (#) k, i.e., as # increases, k, (#) increases from 1 to n 1 and
assumes all intermediate values.

Proof. Fix n and let 1 < k < n- 1, 0 < # < x. Since F(n, k, #) n- H(n, k, #)/#,
we conclude from (3.10) and (4.8) that F(n, 1, #) < F(n, 2, #) < < F(n, n 1, #)
for all # sufficiently small, and F(n, 1, #) > F(n, 2, #) > > F(n, n 1,/z) for all
sufficiently large. Thus, k,(#) 1 and k,(#) n 1 for all # sufficiently small
and large, respectively. This gives F(n, 1, #) < min2<k<,- F(n, k, #) for # sufficiently
small and the reverse inequality for # sufficiently large. Let/2 be the smallest # forwhich

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 343

F(n, 1, #) min2<k<,-i F(n, k, #), so that k,(#) 1, 0 < # </1. By Lemma 3.3 we
must then have F(n, 1, fzl F(n, 2, fzl < < F(n, n 1,/21). Together with Lemma
4.1, this implies/21 #1 and F(n, 1, #) > F(n, 2, #), # > #1, and thus for # > #1, that
k rendering F(n, k, #) smallest will be at least 2, and exactly 2 near #1. Repeating the
above reasoning yields the theorem. [:]

We remark that for given n and # (#_l,#),F(n,j,#) assumes a minimum at
j k only. For such #, the constant-k policy is the only optimal policy. For # #, 1 <
k < n 2, F(n, j, #) assumes a minimum at j k, k + 1. In this case, there are exactly
two optimal policies, viz the constant-k and k / 1-policies.

5. Constant clock. It is easy to anticipate that the constant-clock case is likely to be
more difficult than the exponential-clock case. We only have to observe that (n, k) is no
longer a sufficient state for the Markov decision process; with a constant clock we need
in addition to (n, k) an indication of how long the clock has to run, or equivalently, how
long it has already run. However, we can describe the asymptotic behavior of an optimal
policy. We do this by proving a lower bound on the expected cost incurred by any policy,
and then observing that the expected cost of the best constant-k policy converges to this
lower bound as n - . Thus, while the constant-k policies are not optimal in general,
they are asymptotically optimal in the above sense.

After the asymptotic result we will present conjectures and partial results for the
general problem. The analysis will identifywhat lies at the heart ofthe open optimization
problem. This material is further motivated by the fact that the numerical evaluation of
the Bellman equation (see (5.6)) gives convincing evidence that the conjectures are true.

A lower bound. Let C(t) be an arbitrary distribution, and define the function

t ac(t)
(5.1) (u)

1 + u
u >_ 0.

It is easy to see that (u) is bounded and positive for all u sufficiently large, so
sups>0 I,(u) > 0. The result below is our sole generalization to other than exponen-
tial service times.

THEOREM 5.1. Let the distribution ofT have a monotone nondecreasing hazard-rate
function, and assume as before that E[T] 1. Then E(n)/n >_ sups,>0 (u).

Proof. Let M denote the maximum number of processors used throughout the
schedule. An area argument yields the inequality

n K

i=1 i=1

where K < M is the number of active machines just before the bell rings, and where
the T, 1 < i < K, denote the residual times of the jobs running on these machines

(]/K=I T is defined to be zero when K 0). Taking expectations,

To simplify (5.2), we prove next that

344 E.G. COFFMAN, JR., L. FLATI’O, AND P. E. WRIGHT

a result that would be trivial if K were independent of T for all i. But the inequality
is easy to prove in any case. Let X(A) be the indicator function of event A, and define
2’k X(K k), 0 < k < n. Also, let T’, 1 < i < K, be the elapsed time of the job
whose remaining time is T. Then

(5.3) E T --E Xk,T =E[XkT]
i--1 k--1 i--1 k=l i=1

and

E[XkT] EE[XkTIXk, T’] E[XkE(TIXk, TT)].

But given T’, T is independent of Xk; SO E[,T] E[XkE(TIT’)]. Also, E[TIT’ <_
E[T] 1, since T’s distribution is hazard-rate-nondecreasing. Then E[,kT] <_ E[Xk],
whereupon substitution into (5.3) gives

E T < kE[Xk]=E[K],
i=1 k=l

as desired.
Since K < M, we can now return to (5.2) and write

(5.4) n < E[MW] + E[M] E[M(W + 1)].

But for any u > 0, we have

E[M(W + 1)] E[M(W + 1)A’(W < u)] + E[M(W + 1)A’(W > u)]
(5.5)

< (1 +)E[M] + n. (1 + t)dC(t).

The desired bound on E(n) E[M], valid for optimal schedules, follows easily from
(5.4), and (5.5). a

It follows at once from Theorem 5.1 that E(n) _< n is bounded from below by a
linear function of n for all n sufficiently large. Returning to our exponential service-time
distribution, we can now prove the optimality result promised earlier.

THEOREM 5.2. Let the clock time be a constant s. Then the constant-kpolicy is asymp-
totically optimal in the sense that, with

l+s

n n< k)= + o(n)a
l+s l+s

Proof. The lower bound follows from Theorem 5.1. The asymptotic expression for
F(n, k) is obtained directly from Theorem 2.1, since the right-hand side of (2.8) equals
1/(1 + s)when 0 1/(1 + s). D

The general problem. Assuming a constant clock time, and exponentially distributed
service times T with E[T] 1, a Markov decision process can be defined on the set

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 345

of states (n, k, s), where n and k have their earlier meanings and where s is the time
remaining on the clock. Define E(n, s) minl<k<, E(n, k, s) as the expected cost
incurred by an optimal policy in scheduling n jobs with s time units on the clock and
all machines initially available. E(n, k, s) can be computed from the following Bellman
equation:

E(n, k, s) inf e-ktE(n, k + 1, s t) + ke-k’E(n 1 k, s u)du
0<t<s

E(n, n, s) n.

The second of these equations is obvious. The recurrence in the first equation is derived
as follows. In state (n, k, s) the scheduler must choose one of a continuum of actions
Pt, 0 < t < s. Pt means: Begin the k jobs on k machines at time zero. If none of these
jobs finishes by time t, then start a newjob on a (k + 1)th machine and proceed optimally
thereafter. If at least one job finishes by time t, say this occurs first at time u, then
replenish the just .finishing machine With a new job and proceed-optimally thereafter.
The expected number of machines used under Pt is the expression inside the brackets
of (5.6). Minimizing over t yields the cost of the optimal policy.

The following elementary properties of E(n, k, s) are intuitive and easily derived
from the Bellman equation. We omit the proofs.

LEMMA 5.1. (a) E(n, k, O) n, E(n, k, oc) k.
(b) E(n, k, s) is nondecreasing in k forfvced n and s, strictly increasing in nforfoced k

and s, and strictly decreasing in s forfixed n and k < n.
Graphs of E(n, k, s) suggested by numerical evaluations of the Bellman equation

are sketched in Fig. 1. The key properties of the curves in Fig. 1 are expressed in the
following assertion.

k+l

k

k-1

nk n,k

(tl ,ll

(n,k +

(n,k)

(n,k- 1)

FIG. 1. Graph ofE(n, k, s).

CONJECTURE. For each n > 1 there exist nonnegative numbers 8nk, 1 < k < n 1,
such that

(5.7) E(n, k + 1, s) E(n, k, s), s < Snk; E(n, k + 1, s) > E(n, k, s), s > Sk,

346 E.G. COFFMAN, JR., L. FLATTO, AND P. E. WRIGHT

(5.8) 8n,n--1 8n,n--2 8nl.

Since a state in which k n 1 must be stable, as in 3, we have s,,,-i 0. Unfor-
tunately, we have been unable to prove this assertion; it remains a conjecture supported
by numerical evaluations of (5.6). The remainder of this section proves the following
result, which shows how (5.7) and (5.8) determine the structure of an optimal policy.

THEOREM 5.3. The relations in (5.7) and (5.8) imply

(5.9) s,-,k < S,,k, 1 <_ k <_ n- 2,

and hence thefollowing structure ofan optimalpolicy.
Let the initial state have n > l jobs to be scheduled, an unlimited number ofmachines

available, and a clock time s such that Snk < s <_ s,,k-1 for some 1 <_ k <_ n- 1. Then
assign jobs to k machines and start running jobs in state (n, k, s). Continue running jobs
in any given state until one of the following three events occur: (1) The bell rings" in this
case assign the n k >_ 0 waiting jobs to new machines. (2) A machine completes a job
in some state (n’, k’, s’), k’ < n’; in this case replenish the machine and continue in state
(n’ 1, k’, s’). (3)A state (n’, k’, s’), k’ < n’, is reached in which the remaining clock time
has reduced to s’ Sn,k, in this case assign a waitingjob to a new machine and continue
in state (n’, k’ + 1’, s’).

We remark that (2) is a direct consequence of Theorem 5.3 and (3) a direct conse-
quence of the assertion made in (5.7), (5.8).

Before proving the theorem, we need a preliminary result. Define

(5.10) B(n, k, s) ekE(n, k -+- 1, s) kekE(n 1, k, T)dT.

Introducing B(n, k, s) into (5.6) gives

F 1
(5.11) E(n, k, s) E(n, k + 1 s) e-k* /B(n, k, s) inf B(n, k, t)/.

L 0<t<s

LEMMA 5.2. The relations in (5.7) and (5.8) imply that E(n, k, s) is continuously dif-
ferentiable with respect to sfor all I < k < n < c and 0 < s < cx. In addition,

(5.12) E’ (n, k, s) + kE(n, k, s) <_ kE(n 1, k, s),

with equalityfor s > 8nk.

Proof. The proof is by induction on n- k, the number ofwaiting jobs. The assertions
of the lemma are readily verified for n k < 1; so assume n k > 2. Differentiating
(5.10) we get

(5.13) B’(n,k,s) ek[E’(n,k + 1, s) + kE(n,k + 1, s) kE(n- 1, k, s)].

In view of (5.11), we may rewrite (5.7) as

(5.14) B’(n,k,s) < Ofor s < S,k, andB(n,k,s) > B(n,k,s,k) for 8 8nk,

so that B’ (n, k, s,k) 0. Then (5.13), (5.14), and the inductive hypothesis give

(5.15) E’ (n, k, s) <_ -kE(n, k, s) + kE(n 1, k, s) for s < S,k,

OPTIMAL STOCHASTIC ALLOCATION OF MACHINES 347

with equality at s s,k, where E’(n, k, s) is interpreted as a left derivative at s s,k.

By (5.11) and (5.14),

E(n, k, s) E(n, k + 1, s) e-S[B(n, k, s) B(n, k, s,k)]

E(n, k, s,k)e-k(s-’) + ke-k(-’)E(n 1, k, r)dr, 8 8nk.

Differentiating, we get

(5.16) E’ (n, k, s) -kE(n, k, s) + kE(n 1, k, s), s >_ s,k,

where E’ (n, k, s) is interpreted as a right derivative at s S,k. The lemma follows from
(5.15) and (5.16). [3

Proofof Theorern 5.3. From (5.12)and (5.13)we obtain for 0 < s < s,_l,,

B’(n,k,s) ek[E’(n,k + 1, s) + kE(n,k + 1, s) kE(n- 1, k + 1, s)]

< ek[(k + 1)E(n- 1, k + 1, s)- (k + 1)E(n, k + 1, s)]

+ [.kE(n, k + 1, s) kE(n 1, k + 1, s)]

ek[E(n 1, k + 1, s) E(n, k + 1, s)] < O.

Thus B(n, k, s) is strictly decreasing for 0 < s < 8n-l,k, and we conclude from (5.11)
that 8nk > 8n-l,k.

Finally, it is easily seen that the relations in (5.7)-(5.9) imply the optimality of the
policy given in the theorem. D

6. Final remarks. The main contributions have been a solution to the stochastic
machine minimization problem under exponential assumptions, a detailed analysis of
the constant-k policy, and a proof that this policy is asymptotically optimal in the case
of exponential service and hard deadlines. The most tantalizing open problem is finding
a proof of the optimality of the policy defined in Theorem 5.3 for hard deadlines. The
optimality of the constant-k policy for distributions (7(t) with nonincreasing hazard rates
is also a conjecture worth investigating. However, in addition to more general distribu-
tional assumptions, there are many other interesting avenues of further research, e.g.,
machines of different speeds, and jobs with precedence constraints are useful extensions
of the structure of the problem.

A special case ofsome importance is the assumption of constant service times. Here,
it can be proved that the constant-k policy is optimal for all clock-time distributions. In
general, the analysis is in the same spirit as that in 3 and 4. However, the peculiarities
of the problem and the greater generality of the result alter and extend the arguments
in certain ways. As a result, a comprehensive analysis is well beyond the scope of this
paper. The authors plan to include this analysis in a future publication.

REFERENCES

[1] M. R. GAREY AND D. S. JOHNSON, Computer and Intractability--A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, CA, 1979.

[2] M. PINEDO AND L. SCHRAGE, Stochastic shop scheduling: A survey, in Deterministic and Stochastic
Scheduling, M. Dempster, J. K. Lenstra, and A. Rinooy-Kan, eds., D. Reidel, Dordrecht, Holland,
1982.

348 E.G. COFFMAN, JR., L. FLAT/’O, AND P. E. WRIGHT

[3] R. R. WEBER, Scheduling jobs with stochastic processing requirements on parallel machines to minimize
makespan orflowtime, J. Appl. Prob., 19 (1982), pp. 167-182.

[4] G. WEISS, Multiserver stochastic scheduling, in Deterministic and Stochastic Scheduling, M. Dempster,
J. K. Lenstra, and A. Rinooy-Kan, eds., D. Reidel, Dordrecht, Holland, 1982.

[5] G. WEISS AND M. PINEDO, Scheduling tasks with exponential services times on nonidentical processors to
minimize vadous costfunctions, J. Appl. Prob., 17 (1980), pp. 187-202.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 349--355, April 1993

() 1993 Society for Industrial and Applied Mathematics
010

AN ON-LINE SCHEDULING HEURISTIC WITH BETTERWORST
CASE,RATIO THAN GRAHAM’S LIST SCHEDULING*
G/BOR GALAMBOSrAND GERHARD J. WOEGINGER

Abstract. The problem of on-line scheduling a set of independent jobs on m machines is considered. The
goal is to minimize the makespan of the schedule. Graham’s List Scheduling heuristic [R. L. Graham, SlAM
J. Appl. Math., 17(1969), pp. 416-429] guarantees a WOlSt case performance of 2 -- for this problem. This
worst case bound cannot be improved for m 2 and m 3. For m > 4, approximation algorithms with
worst case performance at most 2 -- em are presented, where em is some positive real depending only
on m.

Key words, combinatorial problems, scheduling, worst case bounds, on-line algorithms

AMS(MOS) subject classifications. 90B35, 90C27

1. Introduction. We consider the problem of on-line scheduling a list {J1,..., d, }
of n jobs nonpreemptively on m identical machines {M1,..., Mm}. Each job di has a
fixed processing time pi. The jobs may be processed in any order. Our goal is to mini-
mize the makespan, i.e., the maximum completion time over all jobs in a schedule. This
problem obviously is NP-hard. So we are interested in heuristics that produce "rather"
good approximate solutions. The quality of a heuristic H is measured by its worst case
ratio

(1) RH(m) limsup{CH(L)/C*(L) L is a list ofjobs},

where CH(L) denotes the makespan produced by the heuristic on m machines and the
list L of jobs and C* (L) denotes the corresponding makespan in some optimum sched-
ule. The jobs are given to us on-line, that means we get the jobs one by one and must
immediately decide by which machine the job is processed. Once a job is assigned to its
machine, we are not allowed to move the job to another machine.

In 1969, Graham [2] suggested a simple heuristic to solve this on-line problem, List
Scheduling (LS for short). This heuristic always assigns a job to the machine that has
the minimum load at the moment. Graham showed that LS constructs a schedule with

times the optimum makespan. Until now there was no heuristicmakespan at most 2-
known with better worst case ratio. This was mentioned as an open problem by Faigle,
Kern, and Turfin [1].

In this paper, for m _> 4 machines we present a heuristic that has a slightly better
worst case performance guarantee than LS. Contrary to the simple formulation of Gra-
ham’s heuristic, the behaviour of our heuristic depends on the number m of machines
and the processing time of the job that has to be scheduled next. Thus, by exploiting
more information than LS does, we are able to improve on the antique 2 worst case
bound. For the average performance, numerical tests indicate that the gain in the worst
case ratio is not paid by a loss in the average performance. For m 2 and m 3, List
Scheduling cannot be beaten, as its worst case bounds are best possible. For m _> 4, no
on-line heuristic can guarantee a better worst case performance than 1 + x//2 1.707.

Received by the editors May 22, 1991; accepted for publication (in revised form) October 4, 1991. This
paper was supported by a grant from the Hungarian Academy of Sciences (OTKA Nr. 2037) and by the Chris-
tian Doppler Laboratorium fiir Diskrete Optimierung.

J6zsef Attila University, Department of Applied Computer Sciences, Arpfid t6r 2, H-6720 Szeged, Hun-
gary.

tTU .Graz, Institut fiir Theoretische Informatik, Klosterwiesgasse 32/11, A-8010 Graz, Austria.

349

350 G/BORGBOSAND GERHARD WOEGINGER

The paper is organized as follows. Section 2 deals with lower bounds for on-line
scheduling algorithms. Section 3 gives a number of basic definitions and presents our
heuristic. Section 4 gives the worst case analysis of the heuristic and the discussion in 5
finishes the paper.

2. Lower bounds for on-line scheduling. All we do in this section is to prove the
following theorem. This result is also contained in the discussion of [1].

THEOREM 2.1. There is no on-line scheduling algorithm with worst case guarantee
better than

(i) 3/2for 2 machines,
(ii) 5/3for 3 machines,
(iii) 1 + x//2for m > 4 machines.

Proof. Claims (i) and (ii) are easily proved by using the list L2 (1, 1, 2) for m 2
and the list (1, 1, 1, 3, 3, 3, 6) for m 3. The exact arguments are analogous to
those used for m > 4 and omitted.

For m > 4, we consider a sequence consisting ofm times a job of length 1, followed
by m times a job of length 1 + v/ and ending with a single job of length 2 + 2v/. If the
algorithm puts two or more of the jobs with length 1 on the same machine, it does not
get any other job. It produced a makespan of 2, whereas the optimum makespan is only
1 and we are finished. Otherwise, it puts one job with length 1 on every machine. If in
the following the algorithm puts two or more of the jobs with length 1 + x/ on the same
machine, we are finished again. Instead of an optimum makespan 2 + x/, it came up
with a 3 + 2x/- makespan. Consequently, every machine gets one job with processing
time 1 and one with processing time 1 + x/ job. But now the single final job completes
the proof.

3. Some definitions and the heuristic. We will denote by C* the makespan in the
optimal schedule and by Cn the makespan in the schedule constructed by our heuristic.
As the algorithm gets the jobs one by one, the values of C* and Cn vary during the
algorithm. To simplify notation, we will identify each job with its length. The load Li of a
machineM is the sum of processing times over all jobs assigned to it. Whenwe describe
the algorithm, we will use Lmax to denote the maximum load and Lmin to denote the
minimum load over all machines.

We assume that m > 4 holds (as for m < 3 List Scheduling cannot be beaten).
To define the algorithm, we introduce two real numbers c(m) and/3(m), where 0 <
c(m) < 1/3 and 1 < /3(m) < 5/4 holds. Moreover, we will assume that (/3(m) +
1)/(m)3 > a(m) + 1 holds. These two numbers depend on m and their exact value will
be specified later. To simplify presentation we write a and/ instead of a(m) and/(m).
For nonnegative reals z, y we define the symmetric relation

(2) xy Y <x_<fly,

and we say that in this case x is similar to y. For S’ a set of nonnegative reals, we say that
(S) holds, if and only if every two elements in S are similar (equivalently we can say,
(S) holds if and only if the smallest and the largest elements of S are similar to each

other).
Before we present our heuristic, we want to give the reader some intuition of

the underlying ideas. We begin with recapitulating the analysis of List Scheduling. Let
L1 <_ L2 < < Lm be the loads of the machines and let x be a newjob to be scheduled.

A BETTER ON-LINE SCHEDULING HEURISTIC 351

We use C* > (’ Li / x)/m > L1 / x/m and C* > x to derive

(3) L+x<C*-x/m+x< (2---ml)C*..
This inequality is tight if C* x holds and all Li are equal. To reach a better worst case
performance, we must avoid at least one of these two conditions. We have no influence
on the length of job x, consequently we try to keep the L as "unequal" as possible. To
measure "unequality" of loads we apply the similarity relation introduced above. Un-
fortunately, it is not always possible to keep the loads unequal (for example if the first
m jobs to be scheduled all have equal length). To circumvent this difficulty, we use a
threshold a; if the quotient of smallest load to largest load is less than a, the next job
may be put on the smallest machine. If a is chosen appropriately (with respect to fl and
m), we will show that after such actions the ratio CH/C* is not too large.

Finally, we are ready to present our heuristic called Refined List Scheduling (RLS
for short).

(1) Reorder the machines such that L < L2 <... < L, holds.
Let x be a new job given to the algorithm.

(2) If (L1 + x, L2, L3,..., Lm) then put x on M1 and goto (1).
(3) Else if L > oLm then put x on M2 and goto (1).
(4) Else if L <_ oLm then

(4.1) Put x on M.
(4.2) While Lmin Lmax do: put all new jobs on M.
(4.3) Goto (1).

The heuristic terminates when no more jobs are given to it. Observe that new jobs
are given to the algorithm only in steps (1) and (4.2). In step (4.2) M1 generally is not
the machine with minimum load anymore; the heuristic is putting jobs on M1 until it has
the maximum load.

4. The worst case analysis. In this section we will derive a sequence of claims and
lemmas that lead to a number of different worst case bounds. Having derived all these
bounds, we will fix the values of a and so as to minimize the maximum of all these
bounds.

LEMMA 4.1. Each time the heuristic reenters step (1), (L,... ,L,) holds.
Proof. The proof is a simple inductive argument. When the heuristic reenters step

(1) the first time, there is only one nonempty machine and the claim follows. If the
heuristic last performed step (2), the claim holds by definition; if it last performed step
(3), the claim holds by induction, as step (3) does not increase Lmin L1. If it reenters
from step (4), Lmin 5 Lmax holds.

LEMMA 4.2. When the heuristic leaves step (2), the inequality

(4) (L + x)/C* < (2m- 2 + 1 + fl)

holds.
Proof. By Lemma 4.1, before x was assigned to M the machine loads were not

similar. This implies

)C* > L q-- x /m > --(m l +)L + x/m,
m

352 G/d3OR GALAMBOS AND GERHARD WOEGINGER

where the first inequality follows from averaging over all loads and the second inequality
uses Li > L1 for i 1... m 1 and L, > L1. Using (7* > z, we simply derive the
claimed result.

LEMMA 4.3. When the heudstic leaves step (3), the inequality

(6) (L2 + x)/C* < (m + (m- 2)/3- (m- 1)a)/(m- 1)

holds.
Proof. As L2 is the second smallest load, it is less or equal to the average value of

the m 1 largest loads. This gives

(7) L2 < (L2 +... + Lm)/(m- 1) _< (me* L1 x)/(m- 1).

Moreover, we show that

(8) L1 + x < tiC*

by considering the following two-cases. If L2 > C*, L1 + x < C* must hold (again by
the standard averaging argument) and this implies the inequality because of > 1. On
the other hand, if L2 < C* holds, we may use that L1 + z and L2 are similar and derive
the inequality. The two displayed inequalities together with L1 > aL, _> aC* lead to

(9)
L2+x <_ (mC* Ll X)/(m-1) + x

mC*/(m- 1) L1 + (L1 + x)(m- 2)/(m- 1)
C* (m + (m- 2)fl- (m- 1)a/(m- 1),<

\ /

and the proof is complete. U
LEMMA 4.4. IfLmin Lmax holds in step (4.2), then

(10) Lmax/C* <- 1 +/).

Proof. By load averaging, C* >_ ,Li/m holds. Now we simply use Li >_ Lmax/
for < m 1 and finish the proof.

LEMMA 4.5. Assume the algorithm enters step (4). Denote by ai thejob assigned last to
machine Mi. Then for every > 2, ai > (1 a2)Li must hold.

Proof. Assume the contrapositive. Then we consider that machine My with ay <
(1 a32)Ly that got its ay latest among all these contradicting machines. The job ay was
not assigned during step (2), as step (2) assigns jobs to only the smallest machine and by
assumption

(11) Ly --ay > a2Ly >_ aLm >_ L1

holds. Therefore, ay was treated either in step (3) or in step (4). We will distinguish
between these two cases. We typify loads at the moment before ay is assigned by a prime,
loads without prime concern the moment cited in the formulation of the claim. The two
moments are typified analogously. Finally, in our arguments we will use a machine Md
with M1 Md 7 My.

First we scrutinize the step (3) case. In this case, My must have been the second
smallest machine when ay was assigned to it. The only possible smaller machine at this
moment is M1. Moreover by the definition of My, no other machine received a job

A BETI’ER ON-LINE SCHEDULING HEURISTIC 353

between the primed and the unprimed moment. At the primed moment, L) and L are
similar, and at the unprimed moment the loads are similar again. This means flL _> L
and flL > Lj + aj and we derive

(12) (f12 1)L} > aj.

At the primed moment L[. > aLmax holds, at the unprimed moment L1 < aLmax holds.
The load of M1 does not decrease between these two moments, thus Lmax must increase.
The only possibility for this is Lmax L + a. This gives L1 <_ a(L + a) In addition,
L + aj >_ L/fl holds, since the two numbers are similar. These two facts together with
L1 _> L imply

(13) (a+l)aj> (-a) L.
But now the two displayed inequalities contradict the assumption (fl + 1)//3 > a + 1.

Next we examine the step (4) case. As the heuristic entered step (4), L1 _< aLmax _<
aL holds. At the primed moment, L L implies that LI >_ (L-a)/fl holds. Using
LI _> L], this leads to

(14) aj _> (1- a2)Lj,

and our proof is complete.
LEMMA 4.6. When the heuristic leaves step (4.2), then

(15) Lmax/c* <_ fl2/(2- 2aft2) + 1.

Proof. Let ai, 1 <_ i <_ m denote the last job assigned to Mi before the heuristic
enters the while-loop (hence, al is equal to z). As L1 +z L,, we have L1 +z >_ Lm//3.
Together with Lemma 4.5 and L <_ alto, this gives

(16) ai>__ (-a3) L,

for all 1 < i < m. Finally, we define y to be the last job assigned to machine M before
the heuristic leaves step (4.2) and note that after this assignment Lmax is the load of
machine M.

We distinguish two cases. If y > (- -a)Lm holds, we use the pigeon hole principle:
There are m + 1 jobs with length greater or equal (a)L,, hence the optimum
schedule must put two of them on the same machine. This gives C* >_ (- 2a3)L.
Using C* > y and the fact that Lmax y L, we have

(17) Lmax _< fiLm + y < fl2C*/(2 2ceil2) + C*.

Otherwise, if y < (a)Lm holds, we derive in an analogous way that C* >_ (Z
a)Lm + y and C* _> y. This gives

1
(18) Lmax- C* <_ (fl- - + at)Lm <_ (f12_ 1 + afl2)Lmin.

But now Lmin _< C* and 32-1+a32 is smaller or equal to 32/(2-2a32), if0 < a < 1/3
and i < 3 _< 5/4. So we end in all cases with the claimed bound. H

354 G/d3OR GALAMBOS AND GERHARD WOEGINGER

TABLE
Approximate values of and/for different

4 0.27419 1.02837
5 0.25549 1.06111
6 0.24439 1.08295
7 0.23696 1.09863
8 0.23161 1.11047
9 0.22756 1.11975
10 0.22439 1.12722

idd o. dd05
o 0.19743 1.19743

RRLS(m) RLS(m) em L.B.

1.50000 1.50000
1.66667 1.66667

1.74472 1.75000 0.0053 1.70710
1.79034 1.80000 0.0097 1.70710
1.82197 1.83333 0.0114 1.70710
1.84523 1.85714 0.0119 1.70710
1.86308 1.87500 0.0119 1.70710
1.87722 1.88889 0.0117 1.70710
1.88869 1.90000 0.0113 1.70710

1.12 1.00 0.bi9 1.7071
2.00000 2.00000 0.0000 1.7071

THEOREM 4.7. For m >_ 4 the worst case performance ofRLS is less than or equal to
2 +/- e,, with e, some smallpositive real depending on m.m

Proof. Summarizing, Lemmas 4.2, 4.3, 4.4, and 4.6 give the following worst case
bounds. In each inequality C* denotes the momentary optimum makespan:

(19) (L1 + x)/C*

(20) (L2 + x)/C*

(21) Lmax/c*
(22) Lmax/c*

< (2m-2+fl)/(m-l+),

< (m + (m- 2)/3-(m- 1)a)/(m 1),
_< ,/(-,- 1 +/),
< Z /(2 -2 Z +

Let us examine the worst case performance of RLS. A worst case situation occurs after
some job z was assigned to its machine. This happens either in step (2), in step (3), in
the middle of step (4), or in the end of step (4); the four inequalities above give upper
bounds on the worst case ratios in these four scenarios. Consequently, our goal is to
minimize for each m > 4 the maximum over the four right-hand side values under the
restrictions

(23) 0 < c < 1/3, 1 < < 5/4, (+ 1)/3 > c + 1.

We denote this minimum (that is an upper bound on the worst case ratio of RLS) by
RRzs(m). First, it is easy to see that for < 2, the right-hand side of (21) is less than or
equal to the right-hand side of (19) and so we need not consider it in the optimization
problem. For the remaining three values, we derive by using standard calculus that the
minimum is taken if all three values are equal. Some substitutions lead to

(24) 4(2m 3) + 23(m2 2m + 2) + 2(4m- m2 3) 2(m 1) 2(m 1)2.

For m < 3 this equality does not have a feasible solution. For each m _> 4, this equality
has a solution with 1 < < 5/4, since its value taken for 1 is negative and its value
for/ 5/4 is positive. The solutions for some small values of m are stated in the third
column of Table 1. As m tends to infinity,/ tends from below to the positive real root
of 2fla -/2 2 0. The restriction (fl + 1)/f13 > O -- i that was essential in the proof
of Lemma 4.5, is of no consequence for the minimization problem.

Finally, we determine from the right-hand side of inequality (19) the value of
This means that RLSbeats theRRLS(m). As fl > i holds, we have RRLS(m) < 2 -.

worst case performance of List Scheduling for m _>. 4. Table 1 summarizes some of the
results of this section. [3

A BEqqqER ON-LINE SCHEDULING HEURISTIC 355

5. Discussion. In this paper we derived an on-line algorithm that beats Graham’s
List Scheduling in the measure of worst case performance (for m > 4 machines). For
two or three machines, the worst case guarantee of List Scheduling is optimal.

However, asymptotically our analysis did not improve the heuristic LS, since
tends to zero as m tends to infinity. So the first open problem is at hand. Are there
on-line scheduling algorithms with worst case ratio smaller than 2 6 for all m and
some fixed 6 > 0? Secondly, the following question may be interesting as well. For four
machines, we gave a lower bound of 1.7071 and an upper bound of 1.7447. How can we
narrow the gap between these two bounds?

Acknowledgement. We thank Hannes Hassler and Hans Kellerer for valuable dis-
cussions, and we thank Wolfgang Gutjahr for pointing out an error in an earlier version
of this paper.

REFERENCES

[1] U. FAIGLE, W. KERN, AND GY. TURAN, On the performance ofon-line algorithms forpartition problems,
Acta Cybernet., 9 (1989), pp. 107-119.

[2] R.L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969), pp. 416-
429.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 356-378, April 1993

() 1993 Society for Industrial and Applied Mathematics
011

THEORETICAL ASPECTS OF VLSI PIN LIMITATIONS*
ROBERT CYPHER

Abstract. This paper presents a formal model ofthe pin requirements of a parallel computer. This model is
then used to obtain bounds on the pin requirements of different parallel machines and on the tradeoffs between
pins and time. Specifically, two new bounds are established on the relationship between pin requirements and
the time needed to sort or permute data. This paper also gives new lower bounds on the pin requirements of
mesh-connected, cube-connected-cycles, shuffle-exchange, and A]tai-KomlSs-Szemerdi (AKS) computers,
and it gives new upper bounds on the pin requirements of shuffle-exchange and AKS computers. All of these
bounds are tight to within a constant factor. Finally, the bounds on pin requirements are used to prove a
tight lower bound on the time required to implement the AKS sorting algorithm on a shuffle-exchange or
cube-connected-cycles computer.

Key words, pin limitations, VLSI theory, parallel sorting

AMS(MOS) subject classifications. 68Q35, 68P10, 68M10, 68Q05

1. Introduction. An enormous number of different interconnection networks have
been proposed for distributed-memory parallel computers. These networks differ in
both their ability to support various algorithms and in their hardware costs. One use-
ful measure of hardware cost is the area required when the entire parallel computer is
laid out on a single sheet of silicon. This measure has been well studied, and the very-
large-scale integration (VLSI) area requirements of many interconnection networks are
known. Also, tradeoffs between area and time for problems such as permuting and sort-
ing data have been established [28], [29].

Actual parallel machines are typically laid out on a number of separate chips, each
of which has a limited number of pins through which connections can be made to other
chips. In some cases the number of pins available per chip is a more serious limitation
than the amount of area available per chip [6], [10], [11], [15], [25]. As a result, the pin
requirements of a parallel computer are another important measure of its cost. Many
researchers have studied pin requirements but a theory comparable to that relating to
VLSI area requirements has not been created.

A large amount of research has been devoted to studying the pin requirements
of switch-based interconnection networks. For example, the pin requirements of the
Omega network were studied by Ciminiera and Serra [6]; Snir [25]; Franklin and Dhar
[10]; Franklin, Wann, and Thomas [11]; McMillen and Siegel [20]; Knauer, O’Neill, and
Huang [15]; and Szymanski [27]. Other switch-based networks studied include the cross-
bar [10], [11], [27], the augmented data manipulator [20], and various partial concentra-
tors [7]. Snir introduced a general model for VLSI pin requirements [25] and proved
matching upper and lower bounds on the pin requirements of Omega networks, two-
dimensional mesh-connected computers, and trees. Snir also proved a lower bound on
the pin requirements of shuffle-exchange computers, which was subject to certain re-
strictions, and an upper bound on the pin requirements of mesh-connected computers
of arbitrary dimension [25].

Received by the editors April 29, 1991; accepted for publication (in revised form) January 7, 1992. A
preliminary version of this work was presented at the 6th MIT Conference on Advanced Research in VLSI,
Cambridge, Massachusetts, April 1990. This research was supported in part by a National Science Foundation
Graduate Fellowship.

tDepartment K54/802, IBM Research Division, Almaden Research. Center, 650 Harry Road, San Jose,
California 95120.

356

VLSI PIN LIMITATIONS 357

A number of researchers have studied different but related problems. Ullman de-
fined the notion of "flux" to capture the amount of locality in a network and he showed
the importance of this measure to sorting and artificial intelligence problems [31]. Li
and Maresca introduced a parallel computer called the "polymorphic torus" and com-
pared this machine to mesh-connected computers and hypercubes in terms of flux and
performance [19]. They introduced the notion of the flux-time product, and they cal-
culated this product for a number of machines and algorithms. Hong and Kung studied
the input/output complexity of the fast Fourier transform and other problems [14], and
Aggarwal and Vitter studied the input/output complexity of the fast Fourier transform
and of permuting and sorting problems [1].

Three types Of results are presented in this paper. First, two new lower bounds on
the tradeoffs between pin and time requirements for permuting and sorting data are
proved. These lower bounds are analogous to the AT: (where A is chip area and T is
time) lower bounds that have been established for the VLSI area model. These lower
bounds apply to all interconnection networks, so they provide an objective measure of
the cost/performance tradeoffs of an interconnection topology.

Second, new lower and upper bounds on the pin requirements of various types of
parallel computers are proved. Specifically, tight lower bounds on the pin requirements
of mesh-connected computers of arbitrary (constant) dimension [21], cube-connected-
cycles computers [22], shuffle-exchange computers [26], and Ajtai-Koml6s-Szemer6di
(AKS) computers [2], [18] are proved, as are tight upper bounds on the pin require-
ments of shuffle-exchange computers and AKS computers. The lower bound for mesh-
connected computers extends a lower bound proved by Snir for two-dimensional mesh-
connected computers [25]. The upper bound for shuffle-exchange computers solves an
open problem posed by Snir [25], and the lower bound for shuffle-exchange computers
generalizes a lower bound proved by Snir [25]. The bounds on AKS computers show that
the AKS computer is suboptimal in terms of pin and time requirements for permuting
and sorting data. This result is unexpected, because the AKS computer has been proved
to be optimal in terms of the VLSI area model [3].

Third, the AKS sorting algorithm is proved to require O(log2 N) time to sort N items
when it is implemented on an N-processor cube-connected-cycles or shuffle-exchange
computer. Previously it was unknown whether the AKS sorting algorithm could be used
to obtain an optimal O(log N)-time sorting algorithm for these types of computers. Sur-
prisingly, this bound on the running time of the AKS algorithm makes critical use of the
bounds on pin requirements proved earlier in the paper.

The remainder of this paper is organized as follows. Section 2 presents a formal
model of the VLSI pin requirements of a parallel machine. Section 3 reviews some
previously known results for the pin requirements of parallel computers. Lower bounds
on the time and pin requirements for permuting and sorting are presented in 4. Sections
5-8 contain results for mesh-connected computers, cube-connected-cycles computers,
shuffle-exchange computers, and AKS computers, respectively. Finally, bounds on the
time required to implement the AKS sorting algorithm on cube-connected cycles and
shuffle-exchange computers are presented in 9.

2. The VLSl-pin-requirements model. A distributed-memory parallel machine M
will be viewed as an undirected graph M (V, E), where the nodes V represent pro-
cessors and the edges E represent communication links. Each communication link can
transmit one word in unit time. The parameter N IVl will be the number of proces-
sors in M, and the parameter C’ will be the number of chips to which M is partitioned.
It will be assumed throughout that 4 < C < N. To minimize the pin requirements for

358 ROBERT CYPHER

M, the N processors must be assigned to the C chips so that no chip has a large num-
ber of wires connecting the processors on the chip with the processors off the chip. The
only restriction in assigning processors to chips will be that each chip has fewer than N/2
processors. This restriction is a result of the limited area of a chip, and it prevents the
trivial solution of assigning all the processors to a single chip, which requires 0 pins. The
above notions are formalized below.

Given any positive integer I, let [I] {0, 1,..., I 1}. Let M (V, E) be an
undirected graph. The collection of sets P Po,’", Pk-x is a partition of M if the
following properties hold:

1. For each i E [k], P c V.
2. U[k] P V.
3. For each i E [k] and j [k], where i j, P Pj 0.
The sets P0,’", P-I will often be referred to as chips. Given a set S c_ V, the

boundary of S in M, written Bound(S, M), is the set of edges in E connecting vertices
in S with vertices not in S. The g/rth of M partitioned by P, written Girth(M, P), is

maxie[IBound(Pi, M)I.
A partition P P0,""", P-I ofM is legal if maxie[] IP I < IVI/2 and k < C. The

pin requirements of M will be denoted by the parameter Q, where Q is the minimum,
over all legal partitions P of M, of Girth(M, P). Given a problem to be solved, the
parameter T is the minimum, over all algorithms for the problem, of the algorithm’s
time requirements on M.

3. Known results. This section briefly reviews some lower and upper bounds on the
pin requirements of parallel computers that are either known or that follow directly from
known results.

3.1. Mesh-connected computers. The N processors in a d-dimensional mesh-con-
nected computer [21] may be thought of as being arranged in a d-dimensional array.
Each side of the array is of length u, where u N1/a is an integer. The position of each
processor in the array is specified by a unique integer vector of the form (aa-1,’", a0),
where 0 < a < u for all i, 0 < i < d. Mesh-connected computers can be defined
either with or without wraparound connections. In a mesh-connected computer without
wraparounds, each processor (aa-1,’.., a0) is connected to the at most 2d processors
of the form (ad-1,""", ai+l, ai q- l, ai-1,’", ao), provided that they exist. In a mesh-
connected computer with wraparounds, each processor (ad-1,’", a0) is connected to
2d processors of the form (ad-1,’", a+l, (a :i: 1) rood u, ai-1,.’., a0).

An upper bound on the pin requirements of mesh-connected computers can be ob-
tained by viewing the processors as forming a d-dimensional cube and partitioning the
cube into (nearly) cubical blocks with (approximately) N/C processors each. The num-
ber ofpins required by this partition is based on the surface-to-volume ratio ofthe cubical
blocks and is given in the following theorem due to Snir [25].

THEOREM 3.1. If M is a d-dimensional mesh-connected computer with or without
wraparounds and if d is a constant, then Q O((N/c)(d-1)/d).

The following theorem, proved by Snir [25], shows that the above bound is the best
bound possible when d 2. However, Snir’s proof technique makes critical use of a
property that is unique to the case d 2 (namely, that a single chip cannot receive
processors from opposite faces of the cube) and does not generalize to higher values of
d.

THEOREM 3.2. If M is a 2-dimensional mesh-connected computer with or without
wraparounds, then Q ft((N/C)I/).

VI.SI PIN LIMITATIONS 359

3.2. Hypercube computers. A hypercube computer [21], [24] consists of N 2
processors, each of which has a unique label in the range 0 through N 1. Each pair
of processors i and j are connected if and only if the binary representations of i and
differ in exactly one bit position.

An upper bound on the pin requirements of a hypercube can be obtained by parti-
tioning the hypercube into smaller dimensional hypercubes with (approximately) N/C
processors each. Each processor will then be connected to O(logN log(N/C))
O(log C) processors on different chips, so Q O(Nlog C/C). This result, which is
very natural and has been discovered by several researchers [13], [19], [24], is stated in
the following theorem.

THEOREM 3.3. If M is a hypercube computer with N processors, then it holds that
Q O(N log C/C).

This partition into smaller dimensional hypercubes can be shown to be optimal by
using the following lemma (called an isoperimetric inequality) proved by Hart [12]. For
any nonnegative integer i, let h(i) denote the number of ones in the binary represen-
tation of i. For example, h(0) 0 and h(23) 4. Also, for any positive integer s, let

-:o h(i).
LEMMA 3.4. Let M (V, E) be a hypercube computer with N processors, and let

S c_ V, where IS s > O. Then IBound(S, M)l _> s log N- 2g(s).
In order to use Lemma 3.4 to prove that the upper bound given by Theorem 3.3 is

optimal, we will need the following bound on the value of g(s).
LEMMA 3.5. For all integers s >_ 1, g(s) <_ s [log s]/2.
Proof. All integers in the range 0 through s 1 can be represented with [log s]

bits. In the sequence 0, 1,..., s 1, the jth bit, 0 _< j < [log s], appears periodically
as 2J zeros followed by 2J ones. Because the jth bit first appears as 2 zeros, it has the
value one for at most half of the integers in the sequence 0, 1,..., s 1. Thus g(s)

8--1-i=0 h(i) < s [log s]/2.
Combining Lemmas 3.4 and 3.5 yields the following theorem.
THEOREM 3.6. If M is a hypercube computer with N processors, then it holds that

Q f(N log C/C).
Proof. Let P P0,"’, Pk- be any legal partition of M, let s maxis[k]

and let j be such that IPjl s. Note that k _< C, so the average size of the sets
is at least N/C and s >_ N/C. Also, because P is a legal partition of M, s < N/2.
Let f(x) x(logN [logx). From Lemmas 3.4 and 3.5 [Sound(Py,M)l > f(s).
There are two cases. If N/4 <_ s < N/2, then log N [log s >_ 1 and f(s) >_ N/4
f(N log C/C). Otherwise, N/C < s < N/4 and log N log s _> 2, so log N [log s
log N-log s- 1 > (log N-log s)/2. Let e(x) x(log N-log x)/2. Then the derivative
e’(x) (lnN lnx 1)/21n2, so when lnx < lnN- 1, e’(x) > 0. Thus f(s)
s(log N [log s]) >_ e(s) and e(s) is minimized when s N/C, at which point e(s)
(N/2C)(log C) f(N log C/C). Thus in either case Q _> ISound(P, M)[_> f(s)
a(NlogC/C).

3.3. Cube-connected-cycles computers. A cube-connected-cycles (CCC) computer
[22] consists ofN n2’ processors, where n 2" for some integer m. Each processor
has a unique label of the form (r, c), where 0 _< r < 2’* and 0 _< c < n. Let a @ b denote
the bitwise exclusive OR of a and b. Each processor (r, c) is connected to processor
(r @ 2c, c) through a cube edge and to processors (r, (c+ 1) mod n) through lateral edges.

1Throughout this paper log N will denote the base 2 logarithm of N and In N will denote the natural
logarithm of N.

360 ROBERT CYPHER

Snir [25] proved tight lower and upper bounds on the pin requirements of Omega
networks, which are multistage switch-based interconnection networks. Snir’s upper
bound is based on a partition of an Omega network into a collection of smaller Omega
networks. By associating each switch in an Omega network with a pair of processors that
are connected by a cube edge in a CCC, Snir’s upper bound on the pin requirements of
an Omega network can be used to obtain an upper bound on the pin requirements of a
CCC. In fact, the resulting partition of a CCC is similar to partitions given by a number
of authors, including Hong and Kung [14]; Knauer, O’Neill, and Huang [15]; and Ag-
garwal and Vitter [1]. The pin requirements of this partition of a CCC are given in the
following theorem.

THEOREM 3.7. IfM is a cube-connected-cycles computer with Nprocessors, then Q
O(N/Clog(aN/C)).

It should be noted that Sniffs lower bound on the pin requirements of an Omega
network does not imply a similar lower bound on the pin requirements of a CCC, because
each switch in an Omega network must be assigned to a single chip, whereas a pair of
processors in a CCC that are connected by a cube edge can be assigned to different chips.

One interesting consequence of Theorems .5 and .7 is that if C N, where
0 < x < 1 is a constant, then the pin requirements of a hypercube are a factor of
t(log2 N) greater than those of a CCC even though the degree of a hypercube is only a
factor of 0(log N) greater than the degree of a CCC.

4. Lower bounds for permuting and sorting. Having defined the VLSI-pin-require-
ments model, we are able to establish bounds on relationships among the parameters N,
C, Q and T. In this paper we will focus on the permutation and sorting problems. For
both problems it is assumed that N items are to be permuted or sorted and that each
item consists of a constant number ,of words. The only operations that are allowed to be
performed on items are duplication of the item and examination of the item’s destina-
tion or key value, so algorithms that encode the contents of an item are prohibited. Also,
it is assumed that each processor originally holds one item and that after the permuta-
tion or sort each processor again holds one item. When an average-case time analysis is
used, it is assumed that all of the N! different permutations or orderings of the sort keys
are equally likely. In the permutation problem only the time spent permuting the data
is counted; the time spent determining how to accomplish the permutation is ignored.
The following theorems establish lower bounds on the time and pin requirements ofper-
muting and sorting. Theorem 4.1 is closely related to a lower bound on the input/output
complexity of permuting and sorting that was obtained by Aggarwal and Vitter [1] and
to a lower bound on area that was proven by Vuillemin [32].

THEOREM 4.1. IfM is a parallel machine with Nprocessors and ifT is the average- or
worst-case time required to permute or sort N items on M, then TCQ f(N).

Proof. The lower bound for the average-case time analysis will be proved here. The
lower bound for the worst case follows immediately from the lower bound for the average
case. View M as a graph M (V, E), and let P P0,’"", Pc-1 be any legal partition
of M. Let j E [C] be such that for all i E [C], IPI _> IP, I, and let S Pj. Note that
the average size of the sets Pi is at least N/C so ISI _> N/C. Also, because P is a legal
partition of M, IS[< N/2.

Note that for any permutation or sort, if k items must be sent from processors in
S to processors outside of S, then the time required for that permutation or sort is at
least k/[Bound(S, M)I. Also, to implement all N! of the different permutations or sorts,
a total of ISI(N ISI)(N 1)! items must be sent from processors in S to processors
outside of S. Because N/C . q.[< N/2, [SI(N-ISI)(N-1)! > (N/2C)N!. Therefore,

VLSI PIN LIMITATIONS 361

the total time required to implement all N! different permutations or sorts is at least
N!(N/2CIBound(S, M)I), and the average time required for a permutation or sort is at
least N/2ClBound(S, M)I. Because Q >_ IBound(S, M)I, it follows that T > N/2CQ
and TCQ f(N).

Although Theorem 4.1 gives an important lower bound on the time and pin require-
ments for permuting and sorting, a tighter lower bound can be obtained in some cases.
This other lower bound is proved in the following theorem.

THEOREM 4.2. IfM is a parallel machine with Nprocessors and ifT is the average- or
worst-case time required topermute orsort N items on M, then TCQ log Q/ log C [2(N).

Proof. The lower bound for the average-case time analysis will be proved here. The
lower bound for the worst case follows immediately from the lower bound for the aver-
age case. If 4 _< C < 256, then from Theorem 4.1 TCQ f(N), which implies that
TCQ log Q/log C f(N). Therefore, it will be assumed that C _> 256.

The idea of the proof is that at most TCQ items can move between chips in
time T. Thus if it could be shown that on the average f(N) items each have to visit
f(log C/log Q) chips, then TCQ would have to be f(N log C/log Q), which implies
that TCQ log Q/log C f(N). This argument can be used if the processors are fairly
evenly distributed among the chips, but it fails if many of the processors are assigned to
a small number of chips. However, in that case an argument like the one used in The-
orem 4.1 can be used to obtain the desired result. Thus a two-case analysis will be used
on the basis of how evenly the processors are assigned to the chips.

View M as a graph M (V, E), and let P P0,""", Pc- be any legal partition of
M. Without loss of generality, assume that for all i, j [C] if < j, then [Pil > IP I.
Let s [P0[, and for each i, where 1 _< <_ s, let y be the number of chips having at
least processors (see Fig. 1). More formally, yi C if [Pc-[> i, and yi min{j
[c] IPyl i)otherwise. Note that

(This follows from the fact that a chip with j processors will be counted in exactly j of
the y’s.) Let k be the smallest integer such that

k

i=1

The definition of k is illustrated in Fig. 2, where the area of the shaded region consisting
of the first k rows is at least N/2. Two cases will be considered on the basis of the value
of Yk.

First, consider the case for which Yk >_ C/2. Let Wires(P, M) be the set of all
edges in E that connect nodes that are in different sets in P, and for any i, j E V let
WireDist(i, j, P, M) be the minimum, over all paths between and j in M, of the num-
ber of edges in the path that are in the set Wires(P, M). Then, for an item to go from
processor to pro.cessor j it must cross at least WireDist(i, j, P, M) wires between chips.
Note that given any processor i and any distance d, at most Qd _+_ 1 chips contain a pro-
cessor j such that WireDist(i, j, P, M) _< d. In particular, for any processor i at most

Lc/4 + lJ chips contain a processor j such that WireDist(i, j, P, M) _< log C/4 log Q.
Let Rbe a set consisting of k ofthe processors from each chip, or all ofthe processors

from a chip if the chip has fewer than k processors. For example, the shaded region in

362 ROBERT CYPHER

PROCESSORS
PER
CHIP

0

CHIP NUMBER

FIG. 1. Number ofprocessorsper chip as a function ofchip number. Each square represents oneprocessor.

Fig. 2 is such a set R. Note that

k

N > In y > N/2.
i=1

It is clear that kyk < [RI, so k <_ IRI/Yk <_ N/C/. As a result, for any positive
integer z any set of z chips can contain at most zk < zN/C1/2 processors in R. If we
set z [C/4 + lJ and recall that C _> 256, it follows that for any processor there are
at most C1/4 + lJ N/C/2 < (C-/4 + C-/2)N <_ 3N/8 processors j e R such that
WireDist(i, j, P, M) < log C/4 log Q. Therefore, for any given processor i there are at
least JR[-3N/8 >_ N/8 processors j R such that WireDist(i, j, P, M) > log C/4 log Q.

As a result, the sum over all N! permutations or sorts of the total number of times
that items must move between chips to implement the permutation or sort is at least
(log C/4 log Q)(N/8)(N)(N 1)! (N log C/32 log Q)N!. However, only CQ items
can move between chips in unit time, so the total time required to implement all N!
permutations or sorts is at least N!(N log C/32CQ log Q) and the average time required
to implement a permutation or sort is at least N log C/32CQ log Q. Therefore, T >
N log C/32CQ log Q, and TCQ log Q/log C f(N).

Next, consider the case for which Yk < C1/2. Notice that

k-1

i--1

VLSI PIN LIMITATIONS 363

PROCESSORS
PER
CHIP

Yk

0 C-1

CHIP NUMBER

FIG. 2. Number ofprocessorsper chip as a function ofchip number. The value k is the smallest integer such
that the lowest k rows contain at least halfoftheprocessors. The shaded region shows the N/2 or moreprocessors
considered when Yk >_ C1/2.

SO

as is illustrated in Fig. 3. However, for each where k < < s, yi < C1/2. Therefore,

N/2 < yi < C/2 (s k + l)C/2,
i--k i=k

so s k + 1 > N/2C/2. Because k > 1, s > N/2C/2.
Now let S P0. To implement all N! of the different permutations or sorts, a to-

tal of ISI(N ISI)(N X)! 8(N 8)(N 1)! items must be sent from processors
in S to processors outside of S. Because N/2C1/2 < s < N/2, .s(N s)(N 1)! >,

(N/4C1/2)N!. Therefore, the total time required to implement all N! different per-
mutations or sorts is at least N!(N/4CZ/)/IBound(S,M)], and the average time
required for a permutation or sort is at least (N/4CZ/)/IBound(S,M)I. Because
Q _> IBound(S,M)l, T >_ N/4C/Q and TCQ/logC >_ NC/2/41ogC >_ N/4, so
TCQ log Q/log C f(N). [:]

Notice that the stronger lower bound is obtained by using Theorem 4.1 when C
O(Q) and by using Theorem 4.2 when Q O(C). A natural question is whether or not

364 ROBERT CYPHER

PROCESSORS
PER
CHIP

[- y

--- t---.4

----.’ i---------i .-’--- ;---i--- I.---.t .:"’.""’i *’’’:
"" "" ’’"" "’’" "’i

0 C-1

CHIP NUMBER

FIG. 3. Number ofprocessorsper chip as a function ofchip number. The value k is the smallest integer such
that the lowest k rows contain at least halfoftheprocessors. The shaded region shows the N!2 or moreprocessors
considered when Y’k < C1/2.

these lower bounds are the strongest possible. In 6 it will be shown that for the average-
and worst-case permutation problems and for the average-case sorting problem, when
C’ O(Q) the lower bound given by Theorem 4.1 can be attained and when Q O(C)
the lower bound given by Theorem 4.2 can be attained. It is unknown whether a stronger
lower bound exists for the worst-case sorting problem.

5. d-Dimensional mesh-connected computers. The definition of a d-dimensional
mesh-connected computer and an upper bound on its pin requirements were given in
3. A tight lower bound on the pin requirements of a two-dimensional mesh-connected
computer was given in 3. In this section a tight lower bound on the pin requirements
of a d-dimensional mesh-connected computer will be proved for any positive constant d.
The lower bound is based on the following definitions and lemmas.

For the remainder of this section letM (V, E) be a d-dimensional mesh-connected
computer (with or without wraparounds), where d is a constant, and let u N1/d. Given
a set fi’ c_ V and an integer k E [d], Proj(S, k) is obtained by setting the kth coordinate
of each vector in fi’ to 0 and removing duplicates. More formally, Proj (S k) =/7, where
/ (/a-1,’",/0) E /if and only if /k 0 and 3:c (za_z,...,zo) S such that
for all i E [d], where k, :c /. Given a set S c_ V and integers and k where
k E [d], Slice(S, k, i) consists of those vectors in S for which the kth coordinate equals
i. More formally, Slice(S, k, i) =/7, where /= (/a-z,""", /0) E/ if and only if /E S
and /k i. Given a set S c_ V and an integer k E [d], Intersect(S, k, u) consists of those

VLSI PIN LIMITATIONS 365

vectors y E Proj(S, k) for which all u of the vectors obtainable from y by setting the kth
coordinate to a value in [u] are also in S. More formally, Intersect(S, k, u) R, where

(ya-x,""", y0) R if and only if y 0 and for all i [u], z (za_,..., zo) S
such that z and for all j [d], where j # k, z y. Finally, for any (z, y) E,
Dim((x, y)) k if and only if x (Xd-1,’", Xo) and y (Yd-1,’’’, Yo) and Xk Yk.

LEMMA 5.1. Given a nonempty set S c_ V,

IPrj(S,J)l _> ds(d-)/d,
j[d]

where s I 1.
Proof. The proof is by induction on d. The basis is d 1, in which case the claim is

that [Proj(S, 0)1 > 1, which follows immediately from the fact that S is nonempty. The
induction hypothesis is that the lemma holds for all d < a, and it will be shown that the
induction hypothesis implies that the lemma holds for d a. Assume that d a. For
all i E [u] let Si Slice(S,a- 1,i)and let si ISil. Note that -i[,] s- s. Also,
note that for each j [a 1]

IProj(S,j)l-- y IProj(S,j)l.

Therefore,

y IProj(S,j)l- -lProj(S,j)l- IProj(S,j)l,
je[a-1] je[a-1] i.[u] ie[u] j[a-i]

and, because each ofthe sets Si is contained in an (a- 1)-dimensional cube, the induction
hypothesis yields

]Prj(Si’J)l >- E (a- 1)8}a-2)/(a-1) (a- 1) E sis7
[] []

Let h [u] be such that for each [u], Sh >_ si. Then

(a- 1) E 8i81/(a--1) >- (a- 1)8; 1/(a-1) E 8i (a- 1)8;1/(a-1)8.
i[] i[]

1/(a--l)

It has been shown that

IProj(S,j)l >_ (a- 1)8;1/(a-1)8.
j[a--1]

However, IProj(S, a- 1)l _> 8h, SO

IProj(S,j)l >_ Sh / (a- 1)-/(a-x)s.

Let f(x) X + (a- 1)x-1/(-)s. The derivative f’(x) 1 x-a/(a-)s equals 0when
x s(-1)/, and the second derivative f"(x) (a/(a 1))x(X-Za)/(a-i)s is positive
when x s()/, so f(x) is minimized when x s(-i)/a. erefore,

[Proj(S,j)l k 8(a-1)/a + (a- 1)(8(a-1)/a)-l/(a-1)8 a8(a-1)/a,

366 ROBERT CYPHER

which completes the inductive step. I-1
LEMMA 5.2. Forany nonempty set S C_ V and any integer k E [d], let Ek,s { (z, y)

Bound(S,M) Dim((x,g))- k}. Then for any k [d], I ,sl _> IP oj(S,k)l-
IIntersect(S, k, u)I.

Proof. Let R Proj(S, k) \ Intersect(S, k, u). Note that IRI IProj(S, k)l
]Intersect(S, k, u)l. For any x R let V {y Y lProj({y},k {x}}. Then there
must exist a y (Yd-1,""", Y0) Yx and a y’ (Yd-1,""", Yk+l, Yk + 1, Yk-,’’’, YO)
Vz where either y S and y f S or y f S and y S. Therefore, for each x R
there exists an edge (y, y) Ek,s, where y E V and y V. Note that for any
x R and x’ R, if x 7 x’, then V and V, are disjoint. Therefore, the edges in
Ek,s corresponding to distinct elements of R are distinct. As a result, IEk,sl >_ IRI
IProj(S, k)l]Intersect(S, k, u)]. 13

THEOREM 5.3. IfM is a d-dimensionalMCC with or without wraparounds and if d is
a constant, then Q f((N/C)(d-)/d).

Proof. Let P Po,’", Pc- be any legal partition of M. Let j [C] be such that
for all E [C], IPyl _> IPil, and let S Py. Note that N/C <_ ISI < N/2. From Lemma
5.2

IBound(S, M)I _> y (IProj(S, k)l IIntersect(S, k, u)l)
k[dl

IProj(S, k)l IIntersect(S, k, u)l"
k[d] k[d]

From Lemma 5.1

’ IProj(S,k)l dlSl (d-)/d
k[d]

Note that for any k [d], Ilntersect(S, k, u)l < ISI/u, so

IIntersect(S, k, u)l _< dlSl/u.
k[d]

Therefore,

[Bound(S, M)I dlSl (d-1)/d dlSl/u
dlSl(d-X)/d(1 --Isll/d/N1/d)

> d(N/C)(d-1)/d(1- 1/21/d)
a((g/c)(d-1)/d).

Because Q _> IBound(S, M)I, it follows that Q f((N/C)(d-1)/d), l-I
It should be noted that Bollobs and Leader have proved isoperimetric inequali-

ties (lower bounds on the number of neighbors that a set of nodes must have) for d-
dimensional meshes both with and withoutwraparounds [4], [5]. However, those isoperi-
metric inequalities characterize a set that has a minimal number of neighbors without
quantifying the number of neighbors, and as a result they do not provide a bound such
as the one proved in Theorem 5.3.

VLSI PIN LIMITATIONS 367

6. Cube-connected-cycles computers. The definition ofa CCCcomputer and an up-
per bound on its pin requirements were given in 3. By combining the lower bounds of
Theorems 4.1 and 4.2 with published algorithms for permuting and sorting on a CCC
computer, it is possible to prove tight lower bounds on the pin requirements of a CCC
computer. The following lemma is due to Preparata and Vuillemin [22].

LEMMA 6.1. The average- and worst-case times required to permute N items on an
N-processor cube-connected-cycles computer are O(log N).

The following lemma was proven by Reif and Valiant [23].
LEMMA 6.2. The average-case time required to sort N items on an N-processor cube-

connected-cycles computer is O(log N).
THEOREM 6.3. IfM is a cube-connected-cycles computer with Nprocessors, then Q

f(N/C log(4N/C)).
Proof. Let T be the worst-case time required to permute N items on M. From

Lemma 6.1 T O(log N). We will consider two cases based on the relative values of C
and N. First, consider the case C <_ N1/2. In this case note that log(4N/C) (log N).
From Theorem 4.1 TCQ fl(N), so Q f(N/Clog N) f(N/Clog(4N/C)).

Next, consider the case C > N1/. In this case note that log C f(log N). From
Theorem 4.2 TCQ logQ log C f(N), so Q log Q f(N log C/C log N) f(N/C).
If Q < 4N/C then log Q O(log(4N/C)) and Q f(N/C log(4N/C)). Otherwise,
Q > 4N/C, so Q f(N/C) and Q f(N/Clog(4N/C)). q

We will now show that the CCC computer is capable of matching the lower bounds
for the average- and worst-case permutation problems and for the average-case sorting
problem given by Theorems 4.1 and 4.2. Recall that the stronger lower bound is obtained
by using Theorem 4.1 when C O(Q) and by using Theorem 4.2 when Q O(C).

THEOREM 6.4. IfM is a cube-connected-cycles computer with Nprocessors and if T
is the average-case time required to permute or sort N items on M or the worst-case time
required to permute N items on M, then either

C O((N/log N) 1/2)
and

C= O(Q) and TCQ O(N)

or

and

C ft((N/log N) 1/2)

Q O(C) and TCQ log Q/log C O(N).

Proof. First, consider the case C O((N/log N)1/2). From Theorem 6.3

n(x/c og(aN/C))

ft(N/(N/log N)1/2 log N)
f((N/log N)1/2)
a(c),

so C O(Q). From Lemmas 6.1 and 6.2 T O(log N). From Theorem 3.7 Q
O(N/Clog(4N/C)). Therefore, TCQ O(NlogN/log(4N/C)). Because C
O((N/ log N)I/), log(4N/C) a(log N). Therefore, TCQ O(N).

368 ROBERT CYPHER

Next, consider the case C f((N/log N)1/2). If f(z) z/log z, then the deriva-
tive f’(x) (ln-lx In-2 x)ln2 and f’(x) > 0 when x > 3. But 4N/C > 4, so

f(4N/C) is maximized when 4N/C is largest. From Theorem 3.7

Q O(N/Clog(4N/C))

O(y(aU/C))

O((N log N)I/u/log(N log N)
O((N/log N)

o(c).

Because f(4N/C) > 2 and Q O(f(4N/C)), it holds that logQ O(logf(4N/C))
O(log(4N/C)). Therefore, Q log Q O(N/C). From Lemmas 6.1 and 6.2 T
O(log N). Because C f((N/log N)l/2), log C ft(log N). As a result,
TCQ log Q/ log C O(N). U

7. Shuffle-exchange computers. This section contains tight lower and upper bounds
on the pin requirements of shuffle-exchange computers [26]. A shuffle-exchange com-
puter has N 2’* processors, each of which has a unique label in the range 0 through
N 1. For any integer i, where 0 < i < N, let (i,_,..., i0) denote the n-bit binary
representation of i. Let a @ b denote the bitwise exclusive OR of a and b, and for any
integers i and j, where 0 < i < N, 0 < j < n, let Comp(i, j) i @ 2J. For any in-
teger i, where 0 _< i < N, let Shuffle(i, n) (i_2,..., io, i_), let Unshuffie(i, n)
(i0, i,-1,... ,i), and let Exch(i) Comp(i, 0). In a shuffle-exchange computer each
processor i is connected to processor Exch(i) by an exchange edge and to processors
Shuffle(i, n) and Unshuffle(i, n) by shuffle edges.

The lower bound on the pin requirements of a shuffle-exchange computer is based
on the following lemma due to Stone [26].

LEMMA 7.1. The worst-case time required to permute N items on an N-processor
shuffle-exchange computer is O(log N).

Combining Lemma 7.1 with Theorems 4.1 and 4.2 yields the following theorem,
which generalizes a result obtained by Snir [25]. The proof is identical to the proof of
Theorem 6.3 and will not be repeated here.

THEOREM 7.2. If M is a shuffle-exchange computer with N processors, then Q
f(N/C log(4N/C)).

The following theorem solves an open problem posed by Snir [25]. The proof is
based on results obtained by Leighton in creating an optimal area layout of the shuffle
exchange [17].

THEOREM 7.3. If M is a shuffle-exchange computer with N processors, then Q
O(N/Clog(4N/C)).

Proof. First, note that if N/C is less than some constant k, then log(4N/C) O(1)
and the theorem holds from any assignment of nearly equal numbers of processors to
each chip. Therefore, in the remainder of the proof it will be assumed that N/C is
larger than any given constant k. To obtain an optimal area layout of the shuffle ex-
change, Leighton divided the processors into two sets, one that contained O(N/log N)
processors and will be called the exceptionalprocessors and another that contained the
remainder of the processors and will be called the regularprocessors [17]. (In Leighton’s
terminology, the exceptional processors include processors in degenerate necklaces, pro-
cessors for which the longest block of zeros has length less than log n log In n 1 or

VLSI PIN LIMITATIONS 369

greater than 2 log n, and processors for which there is no distinguished node for the piece
of the necklace containing the processor.) Leighton then defined a log N O(N/log N)
grid of nodes, and he gave rules for placing the regular processors on this grid.

A similar grid of nodes will be used here. For any regular processor i let Col(i)
be what Leighton referred to as the distinguished node of the (basic, primary, or sec-
ondary) piece of the necklace containing processor i. Also, for any regular processor
i let Row(i) be the row of Leighton’s grid that contains processor i. Then create a
logN O(N/log N) grid ofnodes, where the rows are numbered 0,..., log N-1 and the
columns are numbered with all of the possible values of the function Col(i). Next, place
each regular processor i in row Row(i) and column Col(i) of this grid. The following
properties of this grid follow immediately from the properties of Leighton’s grid.

At most three processors are assigned to each node of the grid.
For all but O(N/logN) regular nodes i, Col(Shuftte(i,n)) Col(i) and

Row(Shuffle(i, n))= Row(i)- 1.
For all but O(N/log N) regular nodes i, Col(Unshuftte(i, n)) Col(i) and

Row(Unshuftte(i,n)) Row(i) + 1.
For all but O(N/log N) regular nodes i, Col(Exch(i)) Comp(Col(i), Row(i))

and Row(Exch(i)) Row(i).
This grid will be used to partition the processors onto C chips. The idea is to create

an initial partition of the processors P’ such that each group in the initial partition is
very small and the total number of edges that cross partition boundaries is also small. A
final partition of the processors P is obtained by merging groups in the initial partition
until no more than C groups remain.

The initial partition P’ is based on the observation that when the regular processors
of a shuffle-exchange computer are assigned to the log N O(N/log N) grid defined
above, a similarity between their connections and the connections of a CCC computer
becomes apparent. As a result, the optimal partition of a CCC computer given in Theo-
rem 3.7 can be used to obtain a good partition of the regular nodes in a shuffle-exchange
computer. Let x [(log(4N/C))/2J, and let y 2x. Note that x O(log(4N/C))
and y 0((N/C)1/2). For each regular processor i let Band(i) IRow(i)/xJ, and if
Col(i) j (j,_l,..., j0) then let Vert(i) k (kn-1,’" ", k0), where for all h, 0 <
tt < Zt, kh 0 if [h/xJ Band(i) and kh jh otherwise. The partition P’ is formed by
assigning each exceptional processor to its own group and by assigning regular proces-
sors and j to the same group if and only if Band(i) Band(j) and Vert(i) Vert(j).
Then each group of this partition has at most 3xy O((N/C)/ log(4N/C)) O(N/
C log(4N/C)) processors and the size of the boundary of each group is at most O(N/
C log(4N/C)). Also, there are at most O((N/log N)(log N/log(4N/C))) O(N/
log(4N/C)) shuffle edges that are not local to a group of processors and at most
O(N/log N) O(N/log(4N/C)) exchange edges that are not local to a group of pro-
cessors. Let the constant a be such that there are at most aN/log(4N/C) edges that are
not local to a group of processors.

Next, the groups defined by partition P are arbitrarily divided into three classes
with the only restriction being that each class contains fewer than N/2 processors. The
final partition P is then created by merging groups in the partition determined by P,
subject to the restriction that only groups in the same class can be merged. Specifically,
a greedy procedure is used to merge groups defined by partition P, all of which are
in the same class, until a cluster (collection of groups) is obtained that has a boundary
of 4aN/C log(4N/C) or more edges, or until the class is empty. Because the groups
in the initial partition are so small, each cluster will have a boundary of at most O(N/

370 ROBERT CYPHER

C log(4N/C)) edges. Also, because there are at most aN/log(4N/C) edges that are
not local to a group in the initial partition and because all but three of the clusters
have a boundary of at least 4aN/C log(4N/C) edges, there are at most C/4 + 3 < C
clusters. Finally, each cluster has fewer than N/2 processors. Thus the partition P,
which is defined to consist of these clusters, is legal, and Q < Girth(M, P) O(N/C
log(4N/C)). [q

Following the original appearance ofTheorem 7.3 [8], Koch et al. showed an embed-
ding of an N-processor shuffle exchange into an O(N)-processor butterfly with constant
load and congestion [16]. That embedding, combined with a similar embedding of a but-
terfly into a cube-connected-cycles computer and Theorem 3.7, could be used to obtain
an alternative proof of Theorem 7.3.

The following lemma proves that when C N/2 the upper bound on Q given in
Theorem 7.3 can be achieved without assigning more than N3/ processors to any one
chip. Although this result will not be needed in this section, it will be used in 9. The
proof is omitted because it is identical to the proof of Theorem 7.3, except that N/
classes of O(N3/) processors each are used instead of three classes of fewer than N/2
processors each.

LEMMA 7.4. If M is a shuffle-exchange computer with N processors, then it is pos-
sible to partition M onto C N/2 chips with O(N3/4) processors per chip and with
O(N/2/ log N) pinsper chip.

$. AKS computers. Ajtai, Koml6s, and Szemer6di created a sorting network for N
items that has O(N log N) comparators and O(log N) depth [2]. The constants of pro-
portionality hidden in the O(N log N) and O(log N) bounds are extremely large, so the
network is not useful in practice. However, this network, which will be called the AKS
network, is of great theoretical interest because all previously known sorting networks re-
quired f(log2 N) depth. As a result, the AKS network has been important in answering
a number of questions about parallel sorting.

We will define a parallel computer, called the AKS computer, that is based on the
AKS network. We begin with an AKS network for sorting r items, where r (N/
log N). This network receives r input lines from the left and produces the sorted items
on r output lines on the right. The network consists of (r log r) comparators that are
arranged in d O(log r) columns. The AKS computer is created by forming an r d
array of rd N processors. Each processor (i, j), where 0 < i < r and 0 < j < d, is
connected to processors (i, (j + 1) mod d) and (i, (j 1) mod d) by horizontal connec-
tions. Also, each processor (i, j) is connected to processor (i’, j) by a vertical connection
if and only if wires and i are connected by a comparator in column j of the AKS net-
work (see Fig. 4). Thus an AKS computer is basically an AKS network with processors
instead of comparators and with wraparound connections between the input and output
lines.

One notable application of the AKS computer was obtained by Leighton, who
showed that an AKS computer with N processors can sort N items in O(log N) time
[18]. Leighton’s technique consists of performing sorts of r items in a pipelined manner
plus performing four fixed permutations of the N items. Leighton proposed adding ad-
ditional connections to implement these permutations, but they could also be performed
on the AKS computer defined above without sacrificing the O(log N)-time performance
of the sort. This can be done by breaking each of the fixed permutations of N items into
permutations of the r items located in the same column of the computer, followed by
permutations of the O(log r) items located in the same row of the computer, followed by
permutations of the r items located in the same column of the computer. This breaking

VLSI PIN LIMITATIONS 371

0

6

7

(a) (b)
FIG. 4. Relationship between (a) a column in the AKS network and (b) a column in the AKS computer.

ofa permutation into smaller permutations can be accomplished by using the Hall-Konig
marriage theorem [33]. The permutations within rows can be implemented by simply us-
ing the horizontal connections to shift each item to its destination in O(log r) time. The
permutations within columns can be implemented by sorting the items within each col-
umn according to their destination row. Of course, these sorts can also be pipelined and
thus can be implemented in O(log r) time. This O(log N)-time algorithm for sorting N
items on an N-processor AKS computer will be called the Leighton-AKS algorithm.

The AKS network has been used to obtain minimum-area VLSI sorters. Bilardi
and Preparata demonstrated that the N-input AKS sorting network has O(N2) area [3]
(in the word model), and Leighton used this result and the Leighton-AKS algorithm
to show that an O(Ng/log9 N)-area VLSI sorter that sorts N items in O(log N) time
could be created [18]. This result matches the lower bound for sorting of AT f’t(N)
proved by Thompson [30]. Thus despite its complex pattern of comparisons, the AKS
computer requires the minimum possible amount of area for a VLSI sorter that operates
in O(log N) time. In this section we will show that despite the optimality of the AKS
computer from an area perspective, the AKS computer is suboptimal from a VLSI-pin-
requirements perspective.

The detailed structure of an AKS computer is quite complicated and will not be
repeated here. Instead, a few key characteristics of the AKS computer will be reviewed.
First, recall that an AKS computerwith N processors has the structure of an AKS sorting
network for sorting r O(N/log N) items. The columns in an AKS computer are
grouped into log r + 1 stages. All of the connections from processors in stage i, where
0 < i < log r, are to processors in stages 1 mod (log r+ 1), i, and + 1 mod (log r+ 1).
The processors in each stage are located in r different rows, and connections between
processors in different stages link processors that lie in the same row.

Each stage (except the first) is divided into three substages. During each substage
the processors are partitioned into a number of groups, and comparisons are performed

372 ROBERT CYPHER

only within groups. Within each stage (except the first) the first and third substages use
one partition, and the second substage uses a different partition. These partitions can
be defined with the help of a complete binary tree having r leaves. Each node of the
binary tree is assigned a natural interval in the range 0, , r 1, where the root is given
the entire interval, and the left and right children of a node are assigned the left and
right halves, respectively, of that node’s interval. We will use these overlapping natural
intervals to define a partition of 0,. , r 1 into disjoint subintervals. More specifically,
the nodes of the binary tree occupy log r / 1 levels with the root being in level 0 and the
leaves being in level log r. During each stage i, 0 < < log r, the nodes at level of the
tree are assigned their entire natural intervals, and nodes at level i j, 1 < j < i, are
assigned two intervals, each ofwhich is c-J as long as the node’s natural interval, located
at each end of the node’s natural interval (a _> 8 is a constant set to 100 in the original
AKS paper [2]). The nodes at each level other than level 0 actually receive slightly less
than their entire intervals, because the nodes at lower numbered levels have priority (see
Fig. 5).

A

D E B C F G

r r

4 4 4 4

A

FIG. 5. Binary tree and associated intervals for stage 2.

This binary tree is then divided into triangles of three nodes each. During the first
and third substages of a stage the binary tree is divided into triangles with apexes at even
levels (see Fig. 6), but during the second substage of a stage the binary tree is divided
into triangles with apexes at odd levels (see Fig. 7). During each substage the processors
are partitioned by rows according to the intervals contained in the triangles in the binary
tree. In the first stage all of the rows of processors lie in a single group.

Within each of the groups of a partition, an operation called a nearsort is performed.
The details of the nearsort will be ignored, but two properties of the nearsort will be
needed. First, comparisons are performed only within groups. Second, each group is
divided into an upper half and a lower half, and a set of comparisons is performed of

VLSI PIN LIMITATIONS 373

FIG. 6. Division ofbinary treeforfirst and third substages.

FIG. 7. Division ofbinary treefor second substage.

the two halves, which form a bipartite expander graph with parameters ((1 e)/e, e, "y),
where 0 < e < - and ,y > 1 are constants (e 10- in the original AKS paper [2]).
A bipartite expander graph with 2w nodes and with parameters (z, g, z) has degree at
most z, and yet for each set S consisting of wy or fewer nodes of one partite set, at least
zlSI nodes have connections to nodes in S. Such a set S will be said to be expanded by a
factor of z. The above properties of the AKS computer will be used to prove upper and
lower bounds on the pin requirements of AKS computers.

THEOREM 8.1. IfM is an AKS computer with N processors, then it holds that Q
O(N log C/C log N).

Proof. Recall that the processors can be viewed as forming a rectangular array
with r O(N/log N) rows. If C _> r, then log C 19(log N) and the claim is that
Q O(N/C), which is trivially accomplished by assigning roughly equal numbers of
processors to each chip. If C < r, then let c 2LlogCJ and partition the r rows of
processors into c sets each containing r/c adjacent rows (it is assumed that r is a power
of 2). It will be shown that this partition is legal and has only O(N log C/C log N) pins
per chip. First, note that all horizontal connections are local to chips, so only vertical
connections require pins. Next, note that stages 0,..., log c contribute only O(r log c/c)
processors to each chip, and thus they contribute only O(r log c/c) pins to each chip.

Now consider the processors in stages log c / 1,..., log r. In the binary tree that
determines the partitions used by the AKS network, the natural intervals of the nodes
at levels log c + 1,..., log r lie entirely within the blocks of r/c rows that are assigned

374 ROBERT CYPHER

to single chips. As a result, only levels 0,..., log c (which will be called the upper levels)
correspond to processors that will require pins for their vertical connections. There are
at most kr/c (where k is a constant determined by the AKS network) processors per
chip in the upper levels during stage log c + 1, at most kr/ck’ (where k’ > I is a constant
determined by the AKS network) processors per chip in the upper levels during stage
log c + 2, and, in general, at most kr/c(k’)i-1 processors per chip in the upper levels
during stage log c + i, where 1 _< i _< log r log c. Therefore, there are a total of at most
O(r/c) processors per chip in the upper levels during stages log c+ 1,..., log r combined
and at most O(r/c) + O(r log c/c) O(Nlog C/Clog N) pins per chip. Finally, the
partition is legal because c _> 4 and each chip has at most N/c processors. [3

We will now prove a matching lower bound on the pin requirements of an AKS
computer. Our proof will require a number of definitions. First, let r be such that an
AKS computer with N processors has the connections of an AKS sorting network with
r inputs. Recall that r O(N/log N). Let c and e be constants given by the AKS
network construction as defined above. Let/3 be the maximum number of processors
in any single row and stage of an AKS computer. Let kl log(4/e), and let k2 be
such that an AKS computer with N processors requires at most k2 log N time to sort
N items by using the Leighton-AKS algorithm. Let k3 be such that for any parallel
computer, if T is the worst-case time required to sort N items, then TCQ > k3N (see
Theorem 4.1). Let k4 (kg. + 1)4 + 24kl, let k5 be such that r < ksN/log N, and
let k6 min(1/16/3, l/ks, ka/kgk4ks). Note that c,/3, e, k, k, ka, k4, ks, and k6 are
constants. Also, notice that c > 8,/3 > 1, 0 < e < 1/7, (1 e)/e > 6, k > 4, k4 > 26,
and k6 < 1.

The following lemmas will be helpful in obtaining the lower bound on Q.
LEMMA 8.2. IfM is an AKS computer with Nprocessors and if P is a legalpartition

ofM onto C chips, then either Girth(M, P) > k6r log (7/(5’ or C > k4.
Proof. Assume for the sake of contradiction that the claim is false, in which case

C < k4 and Girth(M, P) < k6r log C/C. Let T be the time required to implement
the Leighton-AKS algorithm on M. Because Q < Girth(M, P), TCQ > kaN, and
T < k log N, it follows that

Girth(M, P) > kaN/TC
>_ kaN/k4k2 log N

>_ k3r/k2k4k5
>_ k6r
>_ k6r log C/C

which is a contradiction. [3

LEMMA 8.3. IfM is anAKS computer with Nprocessors and ifP is a legalpartition of
M onto C chips, then either Girth(M, P) > k6r log C/C or each chip contains processors
from at most r/C/2 different rows oftheAKS computer.

Proof. Assume for the sake of contradiction that the claim is false, in which case
Girth(M, P) < k6r log C/C and there exists some chip x that contains processors from
more than r/C/ different rows. We will classify each row of the AKS computer ac-
cording to how many of the processors in that row are assigned to chip x. Let a row of
processors be a full row if all of the processors in that row are assigned to chip x, let a
row of processors be a partial row if some but not all of the processors in that row are
assigned to chip x, and let a row be an empty row otherwise. First, we will show that there

VLSI PIN LIMITATIONS 375

are fewer than kzr log C/C full rows. This is true because if there are at least k2r log C/C
full rows, then chip z must contain at least k2N log C/C processors. Because the items
from chip z can be moved to other chips in k2 log N time by using the Leighton-AKS al-
gorithm, chip z must have at least N log C/C log N > r log C/ksC > k6r log C/C pins,
which would imply that Girth(M, P) > k6r log C/C, which would be a contradiction.
Therefore, there are fewer than k2r log C/C full rows.

Because chip z contains processors from more than r/C1/2 different rows, there
must be more than rlC1 k2r log CIC partial rows. But from Lemma 8.2 C > k4 _>
26 so C/4- k2 >_ 1, log C _< C/4 and (log C)/C <_ 1/C3/4. Therefore, r/Cx/2-
k2r log C/C >_ (r/C3/4)(C/4 k2) _> r/C3/4 >_ r log C/C. But chip x must have at
least one pin per partial row because the processors in each row are connected in a cycle.
Therefore, Girth(M, P) > r log C/C > k6r log C/C, which is a contradiction. U

THEOREM 8.4. IfM is an AKS computer with Nprocessors, then it follows that Q
(NlogC/ClogN).

Proof. Assume for the sake of contradiction that there exists a legal partition P
P0," , Pc- ofM onto C chips such that Girth(M, P) < k6r log C/C. Note that from
Lemma 8.2 C > k4.

llogC_kl IfConsider an arbitrary stage i of the AKS computer, where 1 _< _< 5
i is even, let j 1, and if i is odd, let j 2. As was discussed earlier, the processors
in each substage of each stage are partitioned with the use of a binary tree. In the first
substage of each stage the nodes in the binary tree are divided into triangles with apexes
at even levels, and in the second substage of each stage they are divided into triangles
with apexes at odd levels. Thus in substage j of stage i the nodes in the binary tree are
divided so that each node in level of the binary tree forms its own group. The natural
interval for each node in level i of the binary tree has size r/2. Although each node in
level i does not receive all of its natural interval (part of the interval is taken by nodes at
lower numbered levels), it does receive at least

1-’(2/a)h > 1/2
h=l

of its natural interval (because each level i h, 1 < h < i, takes a fraction of at most
(2/a)h of the natural interval of a node at level i). Let the intervals assigned to nodes at
level of the binary tree be calledprimary intervals, and let the upper and lower halves of
a primary interval be called halfintervals. Because 1 < < 1/2 log C-k and because each
node at level i receives at least half of its natural interval, each primary interval contains
at least r/2+ >_ r(4/e)/2C/ 2r/C/2e rows and each half interval contains at least
r/C1/2 rows.

Now consider an arbitrary primary interval y and an arbitrary chip P, 0 _< x < C.
Let V be the set of processors in P that are in substage j of stage i, and let W be the set
of processors in V that are in rows associated with primary interval y. Let S be the set
of rows in the AKS computer that contain one or more processors in W. Note that from
Lemma 8.3 [S[< r/C/2. Each row in set S will be called a complete row if and only if
all of the processors in that row that are in substage j of stage i are in Px. Let U be the
set of rows in S that are complete. There are two cases:

Case 1" IUI _> ISI/ . In this case let U and U2 be the subsets of U contained in
the upper and lower half intervals of y, respectively. Assume without loss of generality
that IUxl _> lUll. Because IUxl _< ISI _< and the half interval containing U1
has at least r/C/Ze rows, U1 consists of at most a fraction of e of the rows in the half
interval, and as a result the rows in U1 are expanded by a factor of (1 e)/e (that is,

376 ROBERT CYPHER

they are connected to at least U I(1 e)le rows in the lower half interval). However,
at most rows in the lower half interval contain processors in W, so there are at least
(IU1 l(1- e)/e)- I: 1 > (ISl/4)(6)- I: 1 ISl/ vertical connections between processors
in W and processors not in P. Therefore, chip P must have at least ISI/2 pins for the
processors in W, which is an average of at least 1/2fl pins per processor in W.

Case 2: IuI < ISI/2. In this case there are at least ISI IuI >_ Isi/2 horizontal
connections between processors in W and processors not in P. Therefore, chip P
must have at least ISI/ pins for the processors in W, which is an average of at least
1/2fl pins per processor in W.

Thus in either case chip P must have at least 1/2fl pins per processor in W. Be-
cause the chip P and primary interval y were chosen arbitrarily and because there are
at least r/2 processors in substage j of stage that are in some primary interval, there
must be a total of at least r/4 pins required by the processors in substage j of stage

log C. Because i is an arbitrarylog C- k >i. Note that C > k4 _> 2ak, so
stage in the range 1 < i _< 1/2 logC kl, there are a total of at least 1/4(logC)(r/4)
r log C/16/3 >_ kr log C pins and some chip has at least kr log C/C pins. Therefore,
Girth(M, P) >_ kr log C/C, which is a contradiction. As a result, for any legal partition
P, Girth(M, P) >_ kr log C/C, which implies that Q f(N log C/C log N). q

An immediate consequence of Theorem 8.4 is that an AKS computer is suboptimal
with respect to its TCQ product for the worst-case sorting problem. To show this, we
will need the following lemma proved by Cypher and elaxton [9].

LEMMA 8.5. The worst-case time required to sort N items on an N-processor cube-
connected-cycles or shuffle-exchange computer is O(log N(log log N)2).

Now let T be the worst-case time required to sort N items, and consider the case
for which C N1/3. In this case for an AKS computer T O(log N) and Q
O(N2/3), so TCQ O(N log N). In contrast, for a cube-connected-cycles or shuffle-
exchange computer T O(log N(log log N)2) and Q O(N2/3/log N), so TCQ
O(N(log log N)2). As a result, the TCQ product of an AKS computer is suboptimal for
the worst-case sorting problem.

9. AKS algorithm lower bound. In this section we will prove a lower bound on the
running time of the AKS sorting algorithm when it is implemented on a cube-connected-
cycles or shuffle-exchange computer. This lower bound is based on the bounds for the
pin requirements of the AKS, cube-connected-cycles, and shuffle-exchange computers
presented earlier.

THEOREM 9.1. If M is a cube-connected-cycles or shuffle-exchange computer with
N processors, then the time required to sort N items on M by using the AKS algorithm
is f(log2 N).

Proof. The proof follows from Theorems 3.7 and 8.4 and Lemma 7.4 with the pa-
rameter C set to N1/. From Theorem 3.7 and Lemma 7.4 the pin requirements of M
are Q O(N/Clog(4N/C)) O(N1/e/log N). The AKS network with N inputs can
be viewed as being the data-flow graph for the AKS algorithm, where each compara-
tor in the network represents a comparison operation in the graph and each link in the
network represents the transmission of a data value from one comparison to another.
Any time T implementation of the AKS algorithm on M will require that this data flow
graph be mapped to M with at most T nodes of the graph being assigned to each pro-
cessor and at most T edges of the graph lying on each communication link of M. Note
that the ith largest item, 0 < i < N, must be moved to processor i, which is the proces-
sor that originally had the ith input. This corresponds to the existence of wraparound
edges in the data-flow graph. Thus a time T implementation of the AKS algorithm will

VLSI PIN LIMITATIONS 377

also define a partition of an O(N log N) node AKS network (with wraparounds) onto
N1/2 chips with girth at most QT O(TNI/2/log N). From Lemma 7.4 and the proof
of Theorem 3.7 each chip contains at most N3/4 processors from M. Therefore, when
T O(log2 N) the resulting partition of the AKS network (with wraparounds) is legal.
However, from Theorem 8.4 an O(N log N) node AKS network (with wraparounds) that
is legally partitioned onto N/ chips must have a girth of at least f(N/ log N). Thus
TN1/2/logN f(N1/9 log N) and T f(log2 N). U

It is quite easy to attain the lower bound given in Theorem 9.1. The AKS sorting
algorithm performs O(log N) stages of comparisons, where the pattern of the compar-
isons is fixed. As a result, each stage can be implemented by first permuting the data
items so that items that need to be compared are in connected processors. Because
these permutations are fixed, each of them can be implemented in O(log N) time on
a cube-connected-cycles or shuffle-exchange computer [22], [26]. This implementation
yields the following theorem.

THEOREM 9.2. If M is a cube-connected-cycles or shuffle-exchange computer with
N processors, then the time required to sort N items on M by using the AKS algodthm
is O(log N).

Acknowledgments. The author thanks Jorge Sanz, Marc Snir, and Gianfranco Bi-
lardi for their helpful discussions and comments.

REFERENCES

[1] A. AGGARWAL AND J. VITrER, The I/0 complexity of sorting and related problems (extended abstract),
in Proc. 14th International Colloquium on Automata, Languages and Programming, Karlsruhe,
Germany, Vol. 267, Springer-Verlag Lecture Notes in Computer Science, 1987, pp. 467-478.

[2] M. AJTAI, J. KOMLt3S, AND E. SZEMERIDI, An O(log n) sorting network, Combinatorica, 3 (1983), pp.
1-19.

[3] G. BILARDIAND E PREPARAa’A, The VLSIoptimality oftheAKS sorting network, Inform. Process. Lett., 20
(1985), pp. 55-59.

[4] B. BOLLOBASAND I. LEADER,An isoperimetric inequality on the discrete toms, SIAM J. Discrete Math., 3
(1990), pp. 32-37.

[5] ,Compressions and isoperimetric inequalities, J. Combin. Theory Ser. A, 56 (1991), pp. 47-62.
[6] L. CIMINIERA AND A. SERRA, LSI Implementation of modular interconnection networks for MIMD ma-

chines, in Proc. International Conference on Parallel Processing, 1980, pp. 161-162.
[7] T. CORMEN, Efficientmultichippartial concentratorswitches, in Proc. International Conference on Parallel

Processing, 1987, pp. 525-532.
[8] R. CYPHER, Theoretical aspects ofVLSIpin limitations, Tech. Report 89-02-01, Department of Computer

Science, University of Washington, Seattle, WA, 1989.
[9] R. CYPHERAND G. PLAXTON, Deterministic sorting in nearly logarithmic time on the hypercube and related

computers, in Proc. 22nd ACM Symposium on Theory of Computing, 1990, pp. 193-203.
[10] M. FRANKLIN AND S. DHAR, Interconnection networks: Physical design andperformance analysis, J. Par.

Distr. Comput., 3 (1986), pp. 352-372.
11] M. FRANKLIN, D. WANN, AND W. THOMAS, Pin limitations and partitioning of VLSI interconnection net-

works, IEEE Trans. Comput., C-31 (1982), pp. 1109-1116.
[12] S. HART,A note on the edges ofthe n-cube, Discrete Math., 14 (1976), pp. 157-163.
[13] J. HAYES, T. MUDGE, Q. STOUT, S. COLLEY, AND J. PALMER, Architecture ofa hypercube supercomputer,

in Proc. International Conference on Parallel Processing, 1986, pp. 653-660.
[14] J. HONG AND H. KUNG, I/0 complexity: The red-blue pebble game, in Proc. 13th ACM Symposium on

Theory of Computing, 1981, pp. 326-333.
[15] S. KNAUER, J. O’NEILL, AND A. HUANG, Self-routing switching network, in Principles of CMOS VLSI

Design, N. Weste and K. Eshraghian, eds., Addison-Wesley, Reading, MA, 1985.
[16] R. KOCH, T. LEIGHTON, B. IVIAGGS, S. RAO, AND A. ROSENBERG, Work-preserving emulations offoced-

connection networks (extended abstract), in Proc. 21st ACM Symposium on Theory of Computing,
1989, pp. 227-240.

378 ROBERT CYPHER

[17] T. LEIGHTON, Complexity Issues in I/’LSI: Optimal Layoutsfor the Shuffle-Exchange Graph and OtherNet-
works, MIT Press, Cambridge, MA, 1983.

[18] ., Tight bounds on the complexity ofparallel sorting, IEEE Trans. Comput., C-34 (1985), pp. 344-
354.

[19] H. LI AND M. MARESCA, Polymorphic-torus network, in Proc. International Conference on Parallel Pro-
cessing, 1987, pp. 411-414.

[20] R. MCMILLENAND H. SIEGEL, Evaluation ofcube and data manipulator networks, J. Par. Distr. Comput.,
2 (1985), pp. 79-107.

[21] D. NASSIMI AND S. SAHI, Data broadcasting in SIMD computers, IEEE Trans. Comput., C-30 (1981),
pp. 101-107.

[22] E PREPARAa’AAND J. VtILLEMIr, The cube-connected cycles: A versatile networkforparallel computation,
Comm. ACM, 24 (1981), pp. 300-309.

[23] J. REIF AND L. VALIAtCr, A logarithmic time sort for linear size networks, J. Assoc. Comput. Mach., 34
(1987), pp. 60-76.

[24] C. SEITZ, The cosmic cube, Comm. ACM, 28 (1985), pp. 22-33.
[25] M. SNIR, I/0 limitations on multi-chip I/LSI systems, in Proc. 19th Allerton Conference on Communi-

cations, Control and Computing, Monticello, IL, sponsored by University of Illinois at Urbana-
Champaign, 1981, pp. 224-233.

[26] H. Sa’ONE, Parallelprocessing with the perfect shuffle, IEEE Trans. Comput., C-20 (1971), pp. 153-161.
[27] T. SZYMANSrd,A I/I_,SI comparison ofswitch-recursive Banyan and crossbar interconnection networks, in

Proc. International Conference on Parallel Processing, 1986, pp. 192-199.
[28] C. THoMPSON,Area-time complexityfor I/I_,SI, in Proc. llth ACM Symposium on Theory of Computing,

1979, pp. 81-88.
[29] ,A complexity theoryfor I/LSI, Ph.D. thesis, Department of Computer Science, Carnegie-Mellon

University, Pittsburgh, PA, 1980.
[30] ., The I/-LSI complexity ofsorting, IEEE Trans. Comput., C-32, 1983, pp. 1171-1184.
[31] J. ULLMAN, Flux, sorting and supercomputer organization for AI applications, J. Par. Distr. Comput., 1

(1984), pp. 133-151.
[32] J. VUILLEMIN,A combinatorial limit to the computingpower of k’.L.S.I, circuits, in Proc. 21st IEEE Sym-

posium on Foundations of Computer Science, 1980, pp. 294-300.
[33] A. WAKSMAN,Apermutation network, J. ACM, 15 (1968), pp. 159-163.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 379-394, April 1993

() 1993 Society for Industrial and Applied Mathematics
012

GAP THEOREMS FOR DISTRIBUTED COMPUTATION*
SHLOMO MORANt AND MANFRED K. WARMUTH*

Abstract. Consider a bidirectional ring of n identical processors that communicate asynchronously. The
processors have no identifiers, and hence the ring is called anonymous. Each processor receives an input
letter, and the ring is to compute a function of the circular input string. If the function value is constant for
all input strings, then the processors do not need to send any messages. On the other hand, it is proven that
any deterministic algorithm that computes any nonconstant function for anonymous rings requires f2(n log n)
bits of communication for some input string. Also exhibited are nonconstant functions that require O(n log n)
bits of communication for every input string. The same gap for the bit complexity of nonconstant functions
remains even if the processors have distinct identifiers, provided that the identifiers are taken from a large
enough domain.

When the communication is measured in messages rather than bits, the results change. A nonconstant
function that can be computed with O(n log* r) messages on an anonymous ring is presented.

Key words, distributed algorithms, networkS, asynchronous, message complexity, bit complexity, ring of
processors, lower bounds, gap theorem

AMS(MOS) subject classifications. 68M10, 68Q10, 68Q15, 68Q25

1. Introduction. There has been an extensive amount of research on studying com-
putation on a ring of n asynchronous processors. The ring topology is in a sense the
simplest distributed network that produces many typical phenomena of distributed com-
putation. In this model the processors may communicate by sending messages along the
links of the ring, which are either unidirectional or bidirectional. All the messages sent
reach their targets after a finite, but unpredictable and unbounded delay. Numerous al-
gorithms [ASW88], [DKR82], [P82] have been found for this asynchronous ring model.
All these algorithms require the transmission of f(Tz log n) bits. This is not surprising in
view ofthe results of this paper. We establish a gap theorem for asynchronous distributed
computation on the ring which says that either the function computed is constant and
no messages need to be sent, or the function is nonconstant and there is an input string
requiring f(n log n) bits.

In our model there is no leader among the processors. All processors receive a letter
from some input alphabet as their input and run the same deterministic program, which
may depend on the ring size. We first treat the case where the ring is unidirectional
and the processors have no identifiers (the anonymous model of [ASW88]). Then we
show that the lower bound holds also for bidirectional anonymous rings, and for rings of
processors with distinct identifiers, provided the set of possible identifiers is sufficiently
large. Note that in the anonymous ring without a leader it is necessary that the processors
"know" some bound on the ring size. Otherwise the processors cannot determine when
to terminate [ASW88].

Let us contrast the anonymous ring with the model of a ring with a leader (which is
also the initiator ofthe algorithm). Ifwe assume unidirectional communication, then any
nonconstant function that depends on the input of any processor other than the input
of leader requires f(n) bits. In the bidirectional case, there are simple nonconstant

Received by the editors September 28, 1988; accepted for publication (in revised form) January 16, 1992.
A preliminary version of this paper appeared in [MW86].

tDepartment of Computer Science, the Technion, Haifa 32000, Israel. Part of this work was done while
the author was at IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

*Department of Computer and Information Sciences, University of California, Santa Cruz, California
95064. The research of this author was supported by Faculty Research funds granted by the University of
California, Santa Cruz, and by Office of Naval Research grants N00014-86-K-0454 and N00014-91-Jd162.

379

380 SHLOMO MORANAND MANFRED K. WARMUTH

functions for any bit complexity O(b(n)). If b(n) > n2, such a function is achieved using
nonconstant size input alphabet. We now show how to achieve such a function with
b(n) < n. In this case the input letters are bits. The input to the ring is denoted as an
n-bit cyclic string w, the ith bit wi of w being the input letter of the ith processor. Using
a crossing sequence argument on pairs of links we can show that the following function
is a nonconstant function of bit complexity O(b(n)) f(w) I if and only if w contains
a palindrome of

bits centered at the leader (the same function was first described in [MZ87], where it
was used for a similar purpose). Thus there is no gap for rings with a leader. Our gap
theorem for anonymous rings clearly quantifies the price we have to pay for having no
distinguished processor.

In the model where there is a leader but the size of the ring is unknown, a differ-
ent sort of "gap" has been found by Mansour and Zaks [MZ87]. They showed that a
language is accepted in this model in O(n) bit complexity if and only if it is regular, and
every nonregular language requires f(n log n) bits. These results of [MZ87] are analo-
gous to the classical results for one-tape Turing machines [T64], [H68]. Note that the bit
complexity of nonregular language coincides with the bit complexity required for com-
puting the size of the ring. As discussed above, if the size of the ring is known, then for
any bit complexity, there is a language with that complexity on rings with a leader.

The lower bound of f(r log n) for anonymous rings proven here does not hold if one
counts messages (of arbitrary length) instead of bits. In fact, we show in this paper that if
the input alphabet is of size at least n, then there are simple nonconstant functions that
can be computed in O(n) messages, for arbitrary ring size. Considering the message
complexity is more interesting in the case when the input alphabet is of constant size,
independent of the ring size n. In [ASW88] a nonconstant function was presented that is
computable in O(n) messages on an anonymous ring when the inputs are bits. However,
this function is only defined for rings of odd size. It is easy to find similar functions for
rings whose sizes are not divisible by some fixed integer. When the smallest nondivisor
of the ring size is large, the ring contains more inherent symmetry, and it is hard to find
nonconstant functions of low message complexity. We exhibit a nonconstant function
with binary inputs for arbitrary ring size that can be computed in O(r log* r) messages.
For some values of n, a matching lower bound of O(n log* n) was proven for computing
any nonconstant function [DG87]. The lower bound assumes that the input alphabet is
finite.

Our lower bound proofs rely heavily on the asynchronous nature ofthe computation.
We use the fact that the result of a computation must be independent ofthe specific delay
times of the links, and impose certain delays on the links that assure that f(r log r)
bits are sent. In contrast, on synchronous anonymous rings, the Boolean AND can be
computed with O(n) bits [ASW88], and f(n) is also a trivial lower bound for an arbitrary
nonconstant function.

Our research opens many challenging problems concerning gap theorems in dis-
tributed computation. Given an asynchronous network of anonymous processors, define
the distributed bit (message) complexity of the network to be the smallest bit (message)
complexity of a nonconstant function when computed on that network. Intuitively, this
complexity measures the minimum effort needed to coordinate the processors of the net-

The function log* n grows very slowly (< 5 for n < 265536). It is the number of iterations of the function
log2 required to get the value n down to 1 or below.

GAP THEOREMS 381

work in any sensible way. 2 This coordination should be more difficult if the network is
highly symmetric. What parameters of the network correspond to this complexity? How
does this complexity depend on the connectivity, diameter, or other properties of the
network? Our results show that the distributed bit complexity of a ring of n processors
is O(n log n). The distributed bit complexity of the torus was recently shown to be linear
in the number of processors [BB89].

In the next section we summarize the model of computation. We first prove the
f(n log n) lower bound on the bit complexity for unidirectional rings with no identifiers
(3), and then we generalize the result to bidirectional rings (4) and to rings with iden-
tilers (5). In the last section we show that for each n, there are nonconstant functions
that can be computed on a ring of n anonymous processors by algorithms of O(n log n)
bit complexity and O(n log* n) message complexity. The latter function is defined by in-
terleaving de Bruijn sequences of various lengths. We also show there that if we allow
the alphabet size to be f(n), then there is a nonconstant function (defined uniformly for
all ring sizes) of linear message complexity.

The Gap Theorem with distinct identifiers assumes that the identifiers are chosen
from a set of double exponential size. Similar theorems for small identifier sets are con-
sidered in a subsequent paper [BMW91]. Also Gap Theorems for probabilistic models
have been recently shown in [AAHK89].

2. The model. Our computational model is a ring R of n processors, pl, p2,..., pn.
The processors are anonymous, i.e., they do not have identifiers, and they run the same
deterministic program which may depend on the ring size. In particular, the program of
pi does not depend on its index i. Consecutive processors (as well as the last processor
pn and the first processor pl) are connected by communication links, and thus each pro-
cessor has two neighbors. A processor can distinguish between its two neighbors; one is
called the left and the other one the right neighbor. An orientation of the ring is a partic-
ular assignment of left and right to the links of each processor. If the notions of left and
right of all processors are consistent, then we say the ring is oriented. In the bidirectional
ring connected processors can send and receive messages to and from both neighbors,
respectively. In the unidirectional ring we assume that the ring is oriented and that mes-
sages can only be sent to the right and received from the left, that is, messages can only
travel in one direction around the ring.

We assume that messages are encoded as nonempty bit strings. The messages sent
along a fixed direction of a link arrive in the order in which they were sent. The commu-
nication is asynchronous, meaning that messages arrive with an unpredictable but finite
delay time. We assume that any nonempty subset of the processors maywake up sponta-
neously and start running the algorithm. Processors that do not wake up spontaneously
are awakened upon receiving a message from a neighbor.

In our model, the input of each processor is a letter of an arbitrary alphabet 1, i.e.,
the functions have the domain I’. We shall assume that I contains the letter 0. An ex-
ecution of an algorithm on a unidirectional or bidirectional ring consists of (i) an input
assignment to each processor, (ii) in the case of a bidirectional ring an orientation of the
ring, and (iii) a combined schedule of how the algorithm is run at each processor. The
schedule includes wake up times for each processor, the exact times for each step taken
by the individual runs of the algorithm and times for when each message was sent and re-
ceived. The schedule has to satisfy the requirements of asynchronous ring computations,
as described above.

2This complexity might also depend on the size of the input alphabet over which the functions are defined.

382 SHLOMO MORANAND MANFRED K. WARMUTH

An algorithm computes a function f (which is defined for a particular ring size n)
if for every input string w in I’ and each execution on the ring labeled with a; every
processor outputs f(w). For any nonconstant function f there is a string o I’ such
that f() # f(0’). For any algorithm that computes f we say for convenience that
if the input is w (respectively, 0’), then all processors running AL reach an accepting
(respectively, rejecting) state.

Note that functions computed on a ring without a leader must be invariant under
circular shifts of the input string and in case of (unoriented) bidirectional ring also un-
der reversal of the input string [ASW88]. The bit (message) complexity of any algorithm
is the maximal number of bits (messages) sent over all possible executions of this algo-
rithm. The bit (message) complexity of a function f is the minimal possible bit (message)
complexity of any algorithm that computes f. The bit (message) complexity of a given
network is the minimal possible bit (message) complexity of any nonconstant function
when computed on that network. The lower bound we prove on the bit complexity of
bidirectional rings also holds when the bidirectional rings are oriented. All algorithms
presented in this paper are for unidirectional rings. We discuss how they can be con-
verted to algorithms of similar bit and message complexities that work on unoriented
bidirectional rings.

Proofrnethodfor the lower bounds. We consider an arbitrary algorithm AL that com-
putes a nonconstant function on a ring of size n, and we construct executions of AL on
lines of processor of various lengths. By cutting and pasting such executions we get an
execution of AL on a ring of size n in which at least cn log n bits are sent for some con-
stant c independent of n. We first present the lower bound for the unidirectional case
since it helps us understand the more complicated bidirectional case.

3. The lower bound for unidirectional rings.
THEOREM 1. The bit complexity ofa unidirectional ring ofn anonymousprocessors is

f(n log n).
The proof of Theorem 1 will follow from some lemmas given below. We will give

lower bounds on the worst case complexity of any algorithm AL that accepts some string
w I’ and rejects 0n. The first lemma (which holds for both the unidirectional and
bidirectional case) is similar to Theorem 5.1 of [ASW88]. We repeat its proof here to
make the paper more self-contained. Since the function value is independent of the
delay times of the asynchronous computation, we may choose any delay times for the
proofs: we assume that the ring is oriented, all processors start at time zero, internal
computation at a processor takes no time, and links are either blocked (very large delay)
or are synchronized (it takes exactly one time unit to traverse the link). For the lemma
below we assume that all links are synchronized. Intuitively, this keeps the execution
symmetric and causes the most messages to be sent.

LEMMA 1. Let AL be an algorithm for a unidirectional or bidirectional ring of n pro-
cessors. If AL rejects 0" and accepts 0z T for some T, then AL requires at least nz/2]
messages on input 0.

Proof. Consider the synchronized execution of AL with input string 0’. Since all
processors have the same input letter and run the same algorithm, at any given time all
the processors are in the same state of the algorithm. Hence, at least one message is sent
by each processor at each integral time until some time T at which no message is sent.
From then on the processors are inactive because no new messages are received. Thus

3in 6 (the last section) and only in that sectionwe present algorithms for computing nonconstant functions
that are defined for more than one ring size. In that case we give the algorithm the ring size as an argument.

GAP THEOREMS 383

the processors terminate at time T after sending at least nT messages altogether. Now
consider a second execution with input string O T. If T < z/2], then the processor
Prz/21 is in the same state of the algorithm at time step T in both executions. Thus in
both cases prz/2 terminates with the same result, which is a contradiction. We conclude
that at least n[z/2 messages are sent in the execution with 0’ as the input string.

Consider an execution of the algorithm AL on ring R with a; as input string and all
links synchronized. The sequence of messages sent by an anonymous processor in such
an execution is uniquely determined by its input letter and the sequence of messages
received by the processor, which we call the "history" of the processor. Suppose all pro-
cessors terminate before some time t. For 0 < s < t and for 1 < i < n, we define
the history hi(s) as the string mi(1)L... Lmi(rs), where L is a separating symbol, and
mi(1),..., mi(rs) are the messages (nonempty bit strings) received by pi until (and in-
cluding) time s, in chronological order. Note that r might be smaller than s. Hi hi(t)
is the total history of pi in this execution. Since the messages are nonempty bit strings,
the total length of Hi is less than twice the number of bits received by pi. Thus, a lower
bound on the bit complexity of AL is implied by a lower bound on the sum of the lengths
of the total histories of the processors in a certain execution of AL. The lower bound on
the sum of the lengths will follow from the fact that during a certain execution of AL the
number of distinct histories of the processors is f(n), and therefore the lemma below
implies the)(n log n) bound.

LEMMA 2. Let H1,. Ht be distinct stdngs over an alphabet of size r > 1. Then
Inxl + Inel /"" / IHtl _> (//2)log(//2).

Proof. Represent the Hi with an order r-ary tree, such that each Hi corresponds
to a path from the root to an internal node or a leaf of the tree. In the tree each leaf
is responsible for some Hi. Assume the overall length of the strings Hi is minimized
and the leaves at the lowest level of the tree are as far to the left as possible. Then
in the corresponding tree each leaf and each internal node is responsible for some Hi.
Furthermore, all but possibly one internal node have out-degree r, and hence at least
half of all nodes are leaves. The lemma is implied by the fact that the average height of
the leaves in an r-ary tree with v leaves is at least logr v.

Outline oftheproofofTheorem 1. An execution ofAL is constructed for which either
Lemmas 1 or 2 implies the lower bound of f(n log n) bits. In the first case a processor
accepts an input string that contains log n consecutive zeros. Thus Lemma 1 implies
that f(n log n) messages are required for input 0’. In the second case there will be an
execution with more than n log n processors with distinct histories and Lemma 2 gives
an f(n log n) bits lower bound.

Let k be an integer such that all the processors have terminated before time t kn
in the synchronized execution of AL on w, and let C be a line of kn processors, denoted
by pl,, pz,,..., p,,, p,,..., pn,k. Informally, C consists of k copies of the ring R of n
processors that were cut at the link p, pl and then concatenated to form one line of kn
processors. Thus, processor Pi,j in C corresponds to the processor pi in the jth copy of
R. We make C a ring by connecting P,,k with pl, by a link which is blocked. Note that
even though every processor in C acts as if it is on a ring, the block on the link P,k PI,
makes the global behavior of C to be that of a line of processors.

Let wk be the input string to C, where pi,j receives the input letter wi, and consider
the execution of AL on C in which all links are synchronized except for the block on
the link Pn,k P1,1. For 0 < s < t, the histories hi,j(s) and Hi,j of the processor pi,j

4This does not hold for arbitrary executions. In this paper we only need to consider histories of specific
executions.

384 SHLOMO MORANAND MANFRED K. WARMUTH

in C’ (with input string w) are defined similarly to the histories of the processors in R
(with input w) given above. Recall that all processors of R terminate at time t 1 or
before. Using an argument similar to the "shifting scenario" argument of [FLM85], we
show that Pn and p,, act alike.

LEMMA 3. Processor pn,k in C accepts.
Proof. Recall that C consists of k identical copies of R. Assume for a moment that

there is no block on the link p,, p,. It is easy to see that in that case hi,(s) h(s)
for all i, j and for 0 < s < t. If we now restore the block on p,, p,, then by time
s, the block can only effect the s leftmost processors. Thus at time t 1 processor
p,, has exactly the same history that p, has at time t 1 and p,, accepts because p,
does so.

Next, we define a subsequence of (7 such that all of its processors have distinct
histories at the end of the execution. First we use (7 to construct a directed graph, G,
and the construct C from G.

The vertices of G are the processors of (7, and there is a directed edge from p to
q if q is the rightmost processor having the same history as the processor to the right
of p. It is easy to see that there is exactly one edge leaving every processor except the
last processor, p,,, and that G contains no cycles. Thus, G is a directed tree rooted
at p,,. C’ is now the sequence of processors on the unique path that starts at px,1 and
ends at p,,.

LEMMA 4. No two processors ofC have the same history in the execution on

Proof. The first processor in ’, p,, is the only processor that receives no messages
during the execution described above, due to the block on the link entering it. For the
other processors the lemma follows from the fact that for each history H there is at most
one rightmost processor p in C with Hp H.

Let the sequence of processors ’ defined above be (pi,,..., pi,,,), and let
7- be the input string a. w, of length m. We now run AL on ’ with all links synchro-
nized except for the link pi,,, pi, (= p,, p,) which is blocked.

LEMMA 5. In the execution of AL on C with input string -, the history ofprocessor
pi, (1 < < m) of is the same as the history ofpi,j in the corresponding execution of
AL on C with input string a;. In particular, processor pi,,, (= p,, of accepts.

Proof. This follows by a "cut and paste" argument, using the way t is constructed
from C p,(= pi, clearly has the same history in both executions, and the history
of any other processor p in both executions is completely determined by its input letter
and the history of the preceding processor.

COROLLARY 1. For any 1 < < m, the number ofbits received by distinctprocessors
ofC in the execution described above is at least (l/4) loga (1/2).

Proof. Let P be a set of processors in ’, and let p P. By Lemma 5, the history
of p in the execution of C’ is the same as its history in the execution of C’. This implies,
by Lemma 4, that no two processors in P have the same history. Thus, by Lemma 2, the
sum of the lengths of the histories of the processors in P is at least (1/2) loga (1/2). The
corollary follows from the observation made earlier, that this sum is less than twice the
number of bits received by these processors.

Proof of Theorem 1. Let -’ be the first n letters of -. 0’. Let m’ min({m, n})
(recall that I1 m). Consider an execution of AL on R with input string 7-’, in which
the first m’ processors have exactly the same history as the first m’ processors in the
execution of C’ on 7- described above, and no message sent by the remaining processors
is ever received. We distinguish two cases, depending on the length m of (7.

GAP THEOREMS 385

Case m < n log n. By Lemma 5, r’ will be accepted by at least one processor
in R. Since r’ ends with log n zeros, Lemma 1 guarantees that f(n log n) messages are
required for the input string 0’ and the theorem holds.

Case m > n log n. By Corollary 1, the total number of bits received by the first
m’ processors is (m’/4)loga(m’/2), which is f(n log n). This completes the proof of
Theorem 1.

4. The lower bound for bidirectional rings. The proof of the gap theorem for bidi-
rectional rings follows the same general outline. However, the corresponding "cut and
paste" construction is more subtle, and requires a more careful analysis.

THEOREM 1’. The bit complexity ofa bidirectional ring ofn anonymous processors is
f(n log n). This bound holds even ifthe ring is oriented.

Proof. Let AL be an algorithm for an oriented bidirectional ring R of size n that ac-
cepts v and rejects 0’ and consider a synchronized execution ofAL on w. The history of a
processorp at time s in such an execution is a string h(s) d(1)m 1)... d (r8)m (r8),
where d(j) is either R (for right) or L (for left), and the m(j)’s are the distinct mes-
sages (nonempty bit strings) received byp up to (and including) time s, in chronological
order; m(j) is received from direction d (j), and when two messages arrive at the same
time, we assume that the left one is received before the right one. Note that the length
ofH is at most two times larger than the number of bits received by p.

Assume that AL accepts w in less than t time units, where t nk. For each pos-
itive integer b < k, define a line D of 2rib processors as follows: Let C be a line
(p,x, p2,1,..., P,b) of nb processors, and let C/ be the line obtained by replacing each

Db is constructed by connecting the last processor P,b of Cb with thePi,j in Cb by Pi,j
first processor p, of C. As before make D a ring by connecting p, to p, via a
blocked link.

For each b < k, we construct a particular execution, Eb, of AL on Db with input
string w2. Again internal computation of a processor takes no time, and a message
requires exactly one unit to traverse a link. A processor is blocked at time s if it receives
no messages at time s or later. In execution Eb we impose the following schedule: p,
andP,b are blocked at time 1, p2, andP-,b are blocked at time 2, and in general at time
s (1 < s < bn), the s leftmost and the s rightmost processors of Db are blocked. Since
p,l and Pn,b are blocked at time 1 and since the execution is synchronized, no message
sent on the link P,,b P, is ever received and thus Db acts as a line of processors.

The following stronger version of Lemma 3 states that at the end of the execution
Eb, the history of the sth leftmost [rightmost] processor in Db is equal to that of the
corresponding processor in the synchronized execution of AL on R after s 1 time
units.

LEMMA 6. Let p, [p.,] be the sth lefimost [rightmost] processor in D(1 <
and let h, [h,] denote the history ofprocessor p, [p,] in execution E. Then h,(t)
h(8 1) [h,j (t) h(s 1)] and in the execution on D, both p,, and PI, accept.

Since every n consecutive processors in D correspond to the n processors of R,
Lemma 6 implies the following.

COROLLARY 2. Let R be any set of n consecutive processors in D. Then the sum of
the lengths of the histories in E is not larger than the sum of the lengths of the histories of
theprocessors in the synchronized execution on P

Similar to the proof for the unidirectional case, we associate with the sequence
D described above an undirected graph as follows: The vertices are the processors in

386 SHLOMO MORANAND MANFRED K. WARMUTH

Db b . There is an edge between each processor p in Cb and the rightmost
processor in Cb which has the same history as the right neighbor of p, and there is an
edge between each processor p’ in C/, and the leftmost processor in C/,, which has the
same history as the left neighbor of p’. We also add an extra edge between the leftmost
processor in (7/,, p,, and the rightmost processor of Cb, P,,b. It is easily observed that
this graph is an undirected tree. Let Cb be the path in that tree from p, to P,b, and
be the path from P,,b to P’mb" D--- is the concatenation Cb" C.

LEMMA 7. There is an execution Eb on Db in which everyprocessorhas the same history
as it has in the execution Eb on Db.

Proofs. Consider two processors, p and q, that are adjacent on Db but not on Db.
Now let D be the line obtained from Db by connecting p and q with a link e, and deleting
all the processors between p and q. We now define an execution/ and/) in which the
histories of all the processors in D are the same as the corresponding histories in the
execution Eb on Db.

Assume without loss of generality that in Eb, p sends a message to its right neighbor
before it receives a message from it. Then the execution/ is initiated by simulating the
execution Eb on the processor p and the processors to its left, and delaying the computa-
tions in all other processors. Such a simulation is possible since no processor to the left
ofp ever receives a message from a processor to the right ofp (here we use the fact that
the link between P,b’ and p, is blocked). Continue the simulation as long as p sends
messages to its right neighbor without receiving a message from it, up to a point where
p receives message from its right neighbor. At this point, continue the execution/ by
making a similar simulation on q and the processors to its right. This procedure can be
repeated until the desired execution/ is constructed.

Once the execution/ is constructed, select in/) two processors that are adjacent in
D-- but not in/), connect them by a link as above, and repeat the procedure above. By
repeating this for every link in Db, we get the desired execution Eb.

The construction of Cb and (7/, guarantees that no two processors in Cb and no two
processors in C have the same history in the execution Eb on Db described above. Hence
no three processors in Db have the same history in Eb. This implies, by Lemma 2, that the
number of bits received by any distinct processors in Db is larger than (//8) log4 (//4).

Let m be the length ofD (recall that k is defined by the equality t nk). In the
case where m < n we can pad D with n m processors that receive input zero. As
in the proof Theorem 1, the messages sent by these n m never reach their target. Ac-
cording to Lemma 6, p,, accepts, and hence by Lemma 7 the corresponding processor
in D accepts too. By distinguishing two cases depending on whetherm < n log n or
not, we can complete the proof of Theorem 1’ as in Theorem 1, provided that m <

However, if m > n, then we cannot proceed as in the unidirectional case. If we
"cut" the n leftmost processors of]9, then the nth processor does not receive the proper
messages from the right, and the proof requires modification. This is where we use the
histories Eb for b < k.

LEMMA 8. Let mb be the length of Db, and let mo O. For any b such that I < b < k,
eitherthe last nprocessors ofCb orthefirst nprocessors ofC contain at least (rob-rob-)/2
distinct histories in Eb.

Proof. For notational convenience assume that processor lines with subscript 0 are
empty. For a line Q let IQI denote the number of processors in it. Recall that Db is
obtained by inserting a line of 2n processors between the left half, Cb-, and the right
half, C_1, of Db-. Since mb IDbl ICb C1 and mb-1 IDb-l]Cb-i C_

GAP THEOREMS 387

either

or

ICbl- ICb-ll > mb- mb-1
2

ICLI ICL_ >mb
2

Assume without loss of generality that the former is the case. It suffices to show that
the last (rob mb-1)/2 processors of Cb are the last n processor of Cb. Observe that
Cb is constructed by taking a prefix of Cb-1 and appending it with a sequence of distinct
processors from the last n processors of Cb. Thus the processors at position ICb-11 + 1
through position]Cbl of the line Cb must be from the last n processors of Cb.

We are now ready to prove the Theorem 1’ for the remaining case that mk > n

(recall that t kn). Let b be the smallest integer such that mb > n. Clearly either
mb mb-1 > n/2 or n/2 < mb-1 < n.

In the former case by Lemma 8 there are n consecutive processors in D, which have
at least n/4 distinct histories the lower bound follows from Lemma 2 and Corollary 2. In
the second case, let r be the string composed of the concatenation of the input letters to
the processors in Db-1. Then n/2 < mb- ITI <_ n. Consider the execution on a line
with input string T. 0’- I1 consisting of the execution Eb_ on the first mb-1 processors,
and assume that the remaining processors are never awakened. Since this execution
has more than n/2 distinct histories, the result follows. This completes the proof of
Theorem 1.

5. Lower bounds for rings with identifiers. Interestingly, the gap remains for rings
with identifiers if the set of possible identifiers is large enough relative to the ring size
n. Now the algorithm AL that each processor runs is given two inputs, a symbol of the
input alphabet and an identifier of the processor. Different processors must receive dis-
tinct identifiers. An execution of an algorithm includes a labeling of the ring with distinct
identifiers in addition to an assignment of an input symbol to each processor, an orienta-
tion of the ring, and a combined schedule of how the algorithm is run at each processor.
The function value may only depend on the labeling of the processors with input symbols
and must be invariant over all labelings of the ring with distinct identifiers, all orienta-
tions, and all possible schedules. The bit (message) complexity of an algorithm is again
the maximal number ofbits (messages) sent over all possible executions of this algorithm
and the bit (message) complexity of a function f is the minimal possible bit (message)
complexity of any algorithm that computes f. Note that this notion ofcomplexity is worst
case over all possible labelings of the ring with distinct identifiers.

To prove the lower bound off(n log n) on the bit complexity for rings with identifiers
we make the following simplifying assumptions. Assume that AL rejects 0’ and accepts
an input string w, as before. Let denote the set ofletters in the string 0.w. Observe that
the function computed by AL is nonconstant even for input strings over the restricted
input alphabet ’’. For each a E let e(a) be an encoding of a by at most log n + 2
bits. For a specific execution of AL, in which all the input letters are from -, define
ebb(s), the extended history of the processor p at time s in this execution, to be a string
e(a)t(1)d(1)m(1).., t(rs)d(rs)m(rs), where a is the input ofp in this execution, the
d(j)s and the mi(j)s are, as before, directions and messages, and the ti(j)s are either
! if the corresponding message was received by p, or O if it was sent by it.

THEOREM 2. The bit complexity of a bidirectional oriented ring of n processors with
distinct identifiers is f(n log n), provided that the set of identifiers that can be assigned to
theprocessors is large enough.

388 SHLOMO MORANAND MANFRED K. WARMUTH

Proof. Assume that there is an algorithm AL ofbit complexity o(n log n) computing
a nonconstant function, and let Z be the set of possible identifiers, with IZI _> n. Let
Hz be the set of possible extended histories that can occur at a processor with identifier
z E Z when AL is executed on an input from ’. Then the definition of extended
history implies that the program of a processor with identifier z in executions on input
from’ is uniquely determined by Hz, and hence that ifH =H,, then two processors
with identifiers z and z’ behave identically in all executions on inputs from ’. Since,
apart from the log n + 2 bits required to encode the input, the length of the extended
history of a processor is at most three times the number of bits received or sent by that
processor, the assumption on the bit complexity of AL implies that the set of all possible
extended histories H= zH is of cardinality o(2’ logr) O(nr).

Denote Z=_AZ, z’ ifH=H,. The relation ----AZ partitions Z into at most 21/1= o(2,")
o(IZI/n equivalence classes, where all the processors in each class behave identically

on inputs from y]’. Thus, there must be n distinct identifiers in Z that belong to the
same equivalence class. By restricting the identifiers to this equivalence class, the proof
of the anonymous class implies a lower bound of f(n log n) on the bit complexity of AL,
which contradicts the assumption. [q

6. Functions computable with a small number ofmessages. In [ASW88] a noncon-
stant function was presented that is computable in O(n) messages and O(n log n) bits.
That function is the characteristic function for the subset of {0, 1}, which consists of all
cyclic shifts pattern 0(01)*. The pattern requires that the ring size n is odd. As we will
show here, for any nondivisor k of n there are similar patterns that can be recognized
in O(kn) messages and O(kn + n log n) bits. Since for any ring size n there is a nondi-
visor of size O(log n) this leads to a nonconstant function defined for all ring sizes with
message and bit complexity O(n log n). This shows that the f(n log n) bounds on the bit
complexity given in the previous sections are tight.

As the main result of this section we exhibit a function with "almost linear," i.e.,
9t(n log* n), message complexity, and this function is defined for arbitrary ring size. The
lower bound proven in [DG87] for specific ring sizes matches this upper bound. The
upper bounds proven in this section assume alphabets of constant size at least two. In
fact, we show that if the alphabet size is at least n, then there are nonconstant functions
that can be computed with O(n) messages. (The f(n log* n) lower bound of [DG87]
assumes constant alphabet size.)

All algorithms presented in this section work on the unidirectional ring and output
one if and only if the input is a cyclic shift of a string 9. It is easy to derive bidirectional
versions of these algorithms working on bidirectional rings of arbitrary orientation such
that the message complexity increases by at most a factor of two. Recall that algorithms
working on unidirectional rings assume that the ring is oriented and they only receive
messages from the left and send messages to the right. Let U be such an algorithm. In
the bidirectional version each processor runs two noninteracting versions of U, one that
receives messages from the left neighbor and sends messages to the right neighbor, and a
second one that receives messages from the right neighbor and sends to the left neighbor.
Here left and right refer to the local orientation of the processor. The local orientations
between processors do not have to be consistent with each other. After both algorithms
terminate each processor outputs one if and only if one of the algorithms outputs one.
It is easy to see that the bidirectional version computes one if and only if the input string
or the reverse of the input string is a cyclic shift of 9.

5We write f(n) o(9(n)) if lirnn f(n)/9(n) O.

GAP THEOREMS 389

To get an easy introduction to the unidirectional algorithms presented in this sec-
tion, we will first present a simple generalization of an algorithm of [ASW88], which is
also used in our algorithm. This generalization, which we call NON-DIV, is defined for
two parameters: the ring size n, and an integer k which does not divide n(n > k). It ac-
cepts the (cyclic shifts of) the pattern 7r 0’mak (0k-11)/,/k/. The message complexity
of NON-DIV is O(kn) and its bit complexity is O(kn + n log n). Algorithm BRUIJN,
the second algorithm described, follows the same outline as NON-DIV but it is used to
recognize more complicated patterns. Finally, BRUIJN is used iteratively in Algorithm
STAR for recognizing a pattern in O(n log* n) messages.

ALGORITHM NON-DIV(k n):
%% it is assumed that n mod k r # 0. %%
FOR all n processors in parallel DO
N1. Set your status topassive and send your bit to the right neighbor. Forward k+r-3

bits received from the left to the right and wait until you receive k + r 2 bits
from the left.

N2. Let # be the concatenation of the k + r 2 bits received from the left with your
own bit (I, contains k + r 1 bits).
IF # is not a cyclic substring of 7r 0r(0-11)/’// THEN send a zero-message
and terminate with output zero.
IF q o+r-1 THEN send a size-counter message with count one to the right
and change your status to active.

Wait for a message from the left.

%% This must be either a zero-message or a size-counter. %%
N3. IF the message receives is a zero-message THEN forward it and terminate with

output zero.
IF the message received is a size-counter THEN

IF your status ispassive THEN increment the size-counter by one and forward
it to the right.
ELSE (i.e., your status is active):
IF the value of the size-counter is n THEN send a one-message to the right and
terminate with output one.

ELSE send a zero-message to the right and terminate with output zero.

ELSE (The message received must be either one-message or a zero-message)
N4. Forward the message you received and terminate with output zero if it was a zero-

message and with output one otherwise.

We sketch below a proof that NON-DIV indeed recognizes the string
71" 0r(0k-11) In/kj where r n mod k.

Case 1. The input string contains a substring of length k + r 1 which is not a
substring of 7r. Then the processor with the rightmost bit of this substring will initiate a
zero-message in Step N2, and will never forward a size-counter. This latter fact means that
no size-counter will make a complete traversal of the ring, and hence that no one-message
can be initialized. The zero-messages (possibly more than one) produced in Step N2 will
eventually cover the whole ring and all processors will output zero.

Case 2. This case is the complement of Case 1. Thus nozero-message will be initiated
in Step N2. A simple case analysis shows that in this case the input string must contain a
substring of k + r I successive zeros, and that it contains exactly one such substring if
and only if the input string is a cyclic shift of 7r. This means that at least one size-counter

390 SHLOMO MORANAND MANFRED K. WARMUTH

will be initiated in Step N2, and exactly one size-counter will be initiated if and only if
the input string should be accepted. The proof is completed by observing that output
one is obtained only if some size-counter traverses the whole ring which is only possible
if exactly one such counter was initiated. If more than one size-counter is initiated, then
eventually some processorwill generate azero-message and all processor will output zero.

Each processor sends at most 2k messages in an execution ofNON-DIV, so that the
total number of messages is O(kn). Counters cost at most [log n] + 1 bits, so the total
bit complexity ofNON-DIV is O(kn + n log n).

Now it is easy to derive an algorithm computing a nonconstant function of O(n log n)
bit complexity uniformly for all ring sizes: First each processor determines the smallest
nondivisor of k of the ring size n and then runs NON-DIV(k,n). Since k is O(logn)
we get an algorithm for a nonconstant function whose bit complexity matches the lower
bounds of the previous sections.

LEMMA 9. There is a nonconstantfunctionfor binary input alphabet definedfor all ring
sizes n with bit complexity O(n log n) on the unidirectional ring.

Before proceeding we note that if the input alphabet has size at least n, then there
are nonconstant functions of O(n) message complexity: let or0,..., r,_ be n letters of
the alphabet. The cyclic shifts ofr r0r r,_ can be accepted as follows. Sendyour
input letter to your right neighbor as in Step N1 ofNON-DIV, and concatenate the letter
received with your own letter as in N2 to form ; if is not of the form rcr+mod,(i
0,..., n 1), then initiate a zero-message and terminate with output 0. The pattern
=(r,_r0 initiates a counter message. Thus we have:
LEMMA 10 (Hans Bodlaender). If the input alphabet is of size at least n, then the

distributed message complexity ofring nprocessors is O(n).
The above lemma can be generalized to alphabet size en for arbitrary positive con-

stant e. Moreover, a similar technique can be used to show a linear distributed message
complexity of other networks, provided the alphabet size is linear in the network size.

The final goal of this section is to present an algorithm called STAR(n) that computes
a nontrivial function in O(n log* n) messages for arbitrary ring size n. So far we have
shown that if n is not divisible by some integer k O(log* n), then NON-DIV(k, n)
is such an algorithm. However, it is much harder to find algorithms of low message
complexity if n has no small nondivisors.

STAR(n) recognizes patterns based on the classical de Bruijn Sequences [B46]. A
de Bmijn Sequence is a sequence of 2 bits with the property that each binary string
of length k occurs in 3 exactly once as a cyclic substring [B46]. For each k > 1 there
are such sequences (see, e.g., [E79]). From now on assume that / denotes a fixed such
sequence with the property that its first k bits are zeros, and that the first zero is barred.
That means that our input alphabet has three letters 0, 1, and , which we call bits for
simplicity. We discuss later how to get the corresponding results for the two-letter case.

One way to construct a de Bruijn sequence/3 is the following: start with 0-; bit
i for (k + 1 < < 2k) is one if the string of length k formed by the bits k + 1,
k + 2,..., i 1 appended by a one does not appear yet in the sequence; otherwise bit
i is zero. The sequences for k 1, 2, 3, 4 are 1, 011, 0011101, 000111101100101,
respectively.

We will use prefixes of strings in (3) to construct patterns recognizable with a small
number of messages. Note that in these prefixes, each new copy of 3 starts with 0. Let
7rk,, (for k < n) be the first n bits of (ilk) ’. For example, 713,21 =000111010001110100011.
The Algorithm STAR (n) will essentially recognize cyclical shifts of a word formed by in-

GAP THEOREMS 391

terleaving a number of patterns of the form 7rk,,,,, for various choices of k’ and n’.
At times the algorithm checks whether the parts of the input string fulfill a local con-

dition of legality with respect to some 7rk,,,,, which we define now. Let O O0... O,_
be a cyclic string of length n representing the input of the n processors. Then Oi is legal
with respect to 7rk,, if the k bits to the left of O appended with O produces a string
that occurs as a cyclic substring in 7rk,,. The following lemma shows that if all bits of O
are legal with respect to 7rk,,, then this string must be equal to 7rk,, or a close relative
thereof.

Let 7. be any bit string and a be a cyclical substring in 7-. A bit b is called a successor
of tr in 7- if ab is a cyclical substring of 7-. Let the last k bits of a string a0, al,..., c_ of
length >_ k be the string at-k, ag-k+,..., ag_. Let p be the last k bits of zrk,,. Every
length k cyclic substring cr p of zrk, has exactly one successor in 7rk,,. However there
might be two successors of p in 7rk,,. Clearly 0 is always a successor. If n > 2k then
contains flk as substring and p has b as a successor in 7rk,, where b is the unique successor
of p in ilk. Now b 0 if and only if and n 0 rood 2k.

LEMMA 11. Assume all n bits ofan input string 0 are legal with respect to 7rk,n and let

p consist of the last k bits of 7rk,n. If n 0 mod 2k then 0 is a cyclic shift of (ilk)n/2k" If
n 0 mod 2k then 0 contains pO at least once as a cyclical substring and pO occurs exactly
once ifand only if0 is a cyclical shift of

Proof. If n 0 mod 2k, then 7rk,, (/3k)’/e. Thus, 7rk,, and/3k have the same set
of cyclical substrings of length k and each such substring has the same unique successor
in 7rk,, and in/3k. Since all bits of O are legal with respect to 7r,, we conclude that if

n 0 mod 2k, then O must be a cyclic shift of (/3k)’/e.
If n : 0 mod 2k, then by the legality assumption the successors of all cyclical sub-

strings of length k of O are uniquely determined, except for p, which has two successors:
0 and the successors of p in/3. Thus after each occurrence of p the current copy of/3 is
completed or it is cut off at p and a new copy of/3 is begun with the 0. The definition of
p implies that the subword of/3k beginning with 0 and ending with p has length n mod 2k

and equals 7rk,,modZ. Thus O must be a cyclical shift of a string of length n of the form
(ilk -[- 71"k,nmod2k)*. Now the second half for the claim follows easily.

If the ring size n is not divisible by k 1 + log* n then STAR(n) simply calls NON-
DIV(k, n). However if n 0 mod (1 + log* n) then the algorithm recognizes a com-
plicated pattern O(’) which we will now describe. Let n’ n/(1 + log* n). O(’) is a
string in the language F (#{0, 0, 1}lg* n)n’ over the four letter alphabet {0, 1, 0, #}
containing l(n) "interleaved" de Bruijn Sequences, where l(n) is defined as follows: let
k0 1 and ki+ 2k’; l(n) is the minimum i such that ki does not divide n’. Note that
log* n is the minimum i such that ki _> n, and hence l(n) < log* n.

For all strings O in F, let O[i] (for 1 _< _< log* n) be the concatenation of the
bits which are the ith letters to the right of the # letters. For example, O[1] consists of
the bits to the right of the # letters, and O[log* n] consists of the bits to the left of the
letters. O(’0 is the string in F with the following properties:

(1) O(’) [i] 7rk,_,,,, for 1 < _</(n); and
(2) O(n) [i] contains only zeros for l(n) + 1 <_ <_ log* n.
As a rough outline, Algorithm STAR (n) first checks in Step SO whether the input O

is in F. Note that if this is true, then there are exactly n’ processor with input #. These
processors check in loop i of Step S1 whether O[i] is a cyclic shift of 7rk_x,n,. To do this
for O[/(n)] Step $2 is needed as well.

392 SHLOMO MORANAND MANFRED K. WARMUTH

SO.

S1.

$2.

END

ALGORITHM STAR(n).
IF n 0 mod (log* n + 1) THEN call NON-DW(k,n), for k log*n + 1,
to recognize cyclic shifts of 0’*md(0- 1)’/.
ELSE

BEGIN
Send your input to your right neighbor, forward lo9*n inputs, and wait for 1+

log* n inputs.
IF the number of # signs you have received is not exactly one THEN send a

zero-message to the right and terminate with output zero.
%% If no processor initiates a zero-message in the previous statement then

there are n’# signs in the input, all of which are exactly 1 + log* n apart. Each of
processor with input # denotes the log* n bit string between itself and the previ-
ous processor with input # as bl... blog* n.%%

IF your input is # and bt(,)+lbt(,)+2.., blog* , contains a letter other than 0 or
if b 0, for 1 < i < l(n), and b_ 0 THEN send a zero-message to the right
and terminate with output zero.
END

%% For the remaining part of the algorithm whenever any processor receives
a zero-message (one-message) it forwards it and terminates with output zero (re-
spectively, one). Furthermore we only address processors with input #. All other
processors always only forward the messages they receive and terminate as de-
scribed above. %%

For := I to l(n) DO
BEGIN
IF 1 THEN all processors are initiators.
ELSE you are an initiator if your bit b_ equals 0.
%% The initiators are k_ (1 + log* n) apart.%%
IF you are an initiator
THEN start an input collection message by sending your bit b to the right.
IF you are an initiator THEN do the following once and ELSE to it twice:

Append your bit bi to the input collection message received and forward it.
%% The second input collection message received by each initiator processor has
length 2k_ 1. The concatenation of the second halves of all these messages con-
stitute O() [i] and the same holds for the first halves.%%
IF you are an initiator and any of the bits in the second half of the last message is
not legal with respect to 7rk,_l,,, THEN initiate a zero-message.
%% Note that 2k’-I k divides n’ for all except i l(n). %%
END

IF your last message contains p0 as a substring, where p consists of the last
k(,)_ bits of
THEN send a size-counter with count one to the right.
IF you receive a size-counter and did not start a size-counter
THEN increment it and forward it.
ELSE IF the received size-counter equals n
THEN send a one-message to the right.
ELSE Send a zero-message.

GAP THEOREMS 393

LEMMA 12. For all ring sizes n 0 mod (log* n + 1), Algorithm STAR(n) recognizes
cyclic shifts of0(’) in O(n log* n) messages.

Proof.
Case 1. Azero-message was enerated in Step SO. That is either (i) the input string O

is not in F (#{0, 0, 1}g* n)n, or (ii) for some processor with input 4/: one of the bits

bl(n)+l,..., blog* n is not 0, or (iii) for some such processor bi 0 and hi-1 0 for some
1 < < l(n). In any of the above three cases the input string is not a cyclical shift of
O(’) and the processor which generated azero-message will not forward any size-counter.
Hence no size-counter will traverse the whole ring, and no processor will initiate a one-
message. We conclude that in this case all the processors will eventually output zero.

Case 2. Case 1 does not hold and for some 1 < < l(n), O[i] contains a bit which is
not legal with respect to 7rk,_l,,,. Assume is minimum. We first claim that all initiators
of loop are k-i (1 + log* n) apart. This clearly holds for i 1. If > I then in loop i- 1
all bits of O[i 1] were legal with respect to 7rk,_2.,,. Recall that n’ 0 mod ki-1 and
that 2k’-2 ki-1. Thus Lemma 11 implies that O[i 1] is a cyclic shift of (3ki_2)
and all occurrences of 0 in O[i 1] are ki-1 apart. This guarantees that the claim holds
for i > 1 as well.

Since all initiators are properly spaced the second input collection message the ini-
tiators receive are exactly 2ki_l long. Thus the second halls of these messages form
O[i] and the same holds for the first halves. Each initiator can check whether the bits in
the second half are legal with respect to 7rk_x,,, since it knows the preceding substrings
of length ki_ 1. By the above choice of one of the bits must be illegal and thus some
initiator will start a zero-message. Thus in Case 2 all processors correctly output zero.

Case 3. Case 1 does not hold and for 1 < i < l(n), all bits of O[i] are legal with
respect to 7rk_,n,. Since all bits of O[/(n)] are legal with respect to 7rk,_,n, and n’ 0
mod kl(n), Lemma 11 guarantees that there is at least one occurrence of p0 in Oil(n)],
where p consists of the last kt(,)_x bits p of 7r(_,,,. Thus there will be at least one
initiator that has p0 as a substring in its second input collector message and these initiators
will start size-counters. As for NON-DIV if more than one counter is initiated then this
eventually causes a zero-message and all processors terminate with output zero. Only
if exactly one counter travels around the whole ring, a one-message is initiated and all
processors output one. The correctness ofSTAR(n) in Case 3 follows again from Lemma
11 which assures us that exactly one counter is initiated in Step $3 if and only if Oil(n)]
is a cyclic shift of 7rk(_l,,,.

It is easy to see that Algorithm STAR sends O(n log* n) messages in Step SO. In Step
S1 each loop costs O(n) messages and there are l(n) O(log* n) iterations. In Step $2

only O(n) messages are sent.
Note that O(n) might use up to four letters. To recognize similar strings Ot(n) over a

binary input alphabet we encode the ith letter (1 < < 4) by li05-i. Ifn 0 mod 5 then
Ot(’0 0’mdS(041)’/5 and otherwise O’(’) equals O’/5, using the five bit encoding for
all letters. It is easy to see that for all ring sizes O(n) can also be recognized in O(n log* n)
messages.

THEOREM 3. There is a nonconstantfunction for binary input alphabet definedfor all
ring sizes n with message complexity 0(n log* n) on the unidirectional ring.

Acknowledgment. The authors thank Hans Bodlaender for pointing out Lemma 10,
Gerhard Buntrock for many useful discussions, and an anonymous referee for numerous
and insightful comments which helped to clarify and improve the presentation of this
paper.

394 SHLOMO MORANAND MANFRED K. WARMUTH

REFERENCES

[AAHK89]

[ASW88]

[B46]

[BB891

[BMW911

[DKR82]

[DG87]

[E79]
[FLM85]

[H68]

[MW86]

[MZ87]

[P82]

[T64]

K. ABRAHAMSOq, A. ADLER, L. HIGHAM, AND D. KIRKPATRICK, Randomizedfunction evaluation
on a ring, Distributed Computing, 3 (1989), pp. 107-117.

C. ATHYA, M. SNIR, AND M. K. WARMUTH, Computingon an anonymous ring, J. Assoc. Comput.
Mach., 35 (1988), pp. 845-875.

N. G. DE BRUIJN, A Combinatorial Problem, Proceedings ofKoninklijke Nederlands Akademie
van Wetenschappen, Vol. 49, Part 2, 1946, pp. 758-764.

P. W. BEAME AND H. L. BODLAENDER, Distributed Computing on Transitive Networks: The Toms,
Proceedings of the 6th Symposium on Theoretical Aspects of Computer Science, 1989,
pp. 294-303.

H. L. BODLAENDER, S. MORAN, AND M. K. WARMUTH, The distributed bit complexity ofthe ring:
From the anonymous to the non-anonymous case, Inform. Comput., to appear.

D. DOLEV, M. KLAWE, AND M. RODEH,An O(r log n) unidirectional algorithmfor extremafind-
ing in a circle, J. Algorithms, 3 (1982), pp. 245-260.

P. DURIS AND Z. GALIL, Two LowerBounds inAsynchronous Distributed Computation, Proceed-
ings of IEEE Conference on Foundations in Computer Science, IEEE Press, New York,
1987, pp. 326-330.

S. EVF_,N, Graph Algorithms, Computer Science Press, New York, 1979.
M. J. FISCHER, N. A. LUNCH, AND M. MERRITI’, Easy impossibility proofs for distributed con-

sensus problems, Proceedings of the Fourth Annual ACM Symposium on Principles of
Distributed Computation, Minaki, Ontario, Canada, August 1985, pp. 59-70.

J. HARTMANIS, Computational complexity of one-tape Turing machine computations, J. Assoc.
Comput. Mach., 15 (1968), pp. 325-339.

S. MORAN AND M. K. WARMUTH, Gap theoremsfor disbuted computation, Proceedings of the
Fifth AnnualACM Symposium on Principles of Distributed Computing, Calgary, Alberta,
Canada. 1986, pp. 131-140.

Y. MANSOUR AND S. ZAKS, On the bit complexity of distributed computations in a ring with a
leader, Inform. Comput., 75 (1987), pp. 162-177.

G. L. PETERSON,An 0(rz log n) unidirectional algorithm for the circular extrema problem, ACM
Trans. Programming Languages and Systems, 4 (1982), pp. 758-762.

B. A. TRACHTENBROT, Turing companions with logarithmic delay, Algebra Logika, 3 (1964),
pp. 33-48 (in Russian): English translation in University of California Computing Center,
Tech. Report 5, Berkeley, CA, 1966.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 395-402, April 1993

() 1993 Society for Industrial and Applied Mathematics
013

ON LANGUAGES WITH VERY HIGH
SPACE-BOUNDED KOLMOGOROV COMPLEXITY*

I:tONALD V. BOOKt AND JACK H. LUTZ

Abstract. It is shown that if a language recognizable in exponential space is bounded truth-table reducible
in polynomial time to a language with very high space-bounded Kolmogorov complexity, then it is bounded
truth-table reducible in polynomial time to a sparse language.

There are a number of corollaries, including the following:
(a) no language with very high space-bounded Kolmogorov complexity is _<tt-hard for NP, unless

P NP;
(b) no language with very high space-bounded Kolmogorov complexity is _<t-hard for the class of lan-

guages accepted in exponential time.

Key words. Kolmogorov complexity, bounded truth-table reducibility, exponential space, sparse sets

AMS(MOS) subject classifications. 68Q15, 03D15

1. Introduction. In complexity theory a great deal of attention has been given to
sparse languages and to properties of languages efficiently reducible to sparse languages
(see, for example, [KL82], [Ma82], [OW91], [Wa87]). Such languages are considered
to have very low information content. A number of results in this area have improved
our understanding ofthe structure ofcomplexity classes and resource-bounded reducibil-
ities.

The subject of this paper is the class of languages that are bounded truth-table (or
Turing) reducible in polynomial time to languages with essentially maximal information
content. Specifically, it is shown (Theorem 3.1) that any language recognizable in ex-
ponential space that is bounded reducible in polynomial time to a set with very high
space-bounded Kolmogorov complexity must be bounded reducible in polynomial time
to a sparse set. Using a recent result of Ogiwara and Watanabe [OW91], this implies that
no language with very high space-bounded Kolmogorov complexity can be <tt-hard for
NP, unless P NP; similar results are given for other classes.

From the proof of the main result, other conclusions can be made. For example,
Watanabe [Wa87] has shown that the class of languages recognizable deterministically
in exponential time (denoted E) is not included in the class oflanguages that are bounded
truth-table reducible in polynomial time to sparse languages; we can conclude that no
language with very high space-bounded Kolmogorov complexity can be <tt-hard for E.

Languages with very high space-bounded Kolmogorov complexity are very complex
in the sense that each such language has essentially maximal information content. It is
known that almost every language has space-bounded Kolmogorov complexity of this
magnitude. The results presented here provide evidence that the information in lan-
guages with very high space-bounded Kolmogorov complexity is encoded in such a way
that very little of it can be retrieved in a computationally useful way.

Received by the editors July 22, 1991; accepted for publication (in revised form) January 31, 1992. The
results of this paper were announced at the Seventh IEEE Conference on Structure in Complexity Theory,
June 1992, and an extended abstract appears in the proceedings of that conference.

Department of Mathematics, University of California, Santa Barbara, California 93106. The work of this
author was supported in part by National Science Foundation grant CCR-8913584 and by the Alexander von
Humboldt Stiftung while he visited the Institut fiir Informatik, Technische Universitit Miinchen, Germany.

Department of Computer Science, Iowa State University, Ames, Iowa 50011. Thework of this author was
supported in part by National Science Foundation grant CCR-8809238 and in par, by the Center for Discrete
Mathematics and Theoretical Computer Science, where he was a visitor while a portion of this work was done.

395

396 RONALD V. BOOKAND JACK H. LUTZ

2. Preliminaries. For the most part our notation is standard, following that used by
Balczar, Diaz, and Gabarr6 [BDG88], [BDG90].

Alllanguages here are sets A c_ {0, 1}*. Alanguage S issparse, written S E SPARSE,
if there is a polynomial q such that IIS_< ll _< q(n) for all n, where S_<n denotes
{0, 1 }-<’. We write REC for the set of all recursive languages.

A <__tt-reduction of language A to language B is a pair (f, g) of polynomial time
computable functions such that for each z E {0, 1 }*, the following hold:

(i) f(z) (fl(z), f2(z),..., fk(z)) is an ordered k-tuple of strings;
(ii) g(z) {0, 1}k {0, 1} is a Boolean function;
(iii) x A] g(x)(fl(x) B]f2(x) B f(x) B]), where is the

truth value of b (i.e., b if q5 then 1 else 0).
We write A <P B if for some k, A ---tt B.--btt

Given a polynomial time-bounded reducibility <rp and a class C of languages, we
write Pr(C) for

{A](C C) such that A <re (7}.
For example, Pbtt(C) Uk>0 Pk-tt(C).

We use the following notation for exponential complexity classes:

E DTIME(2linear); ESPACE DSPACE(2linear).

A property of natural numbers holds infinitely often (i.o.) if it holds for infinitely
many n E N, and holds almost everywhere (a.e.) if it holds for all but finitely many n N.

3. Main result. The main technical result of this paper is the following: any lan-
guage in ESPACE that is bounded truth-table reducible in polynomial time to a set with
high space-bounded Kolmogorov complexity must be bounded truth-table reducible in
polynomial time to some sparse set. In the next section we show that this result yields a
variety of corollaries.

Given a machine M, a function t N N, a language L c_ {0, 1}*, and a natural
number r, the t-space-bounded Kolmogorov complexity of L<_ relative to M is defined
as

KStM(L<n) min{lTr IM(Tr, n) XL<,in t(2n) space).

Thus, KStM(L<) is the length of the shortest string 7r such that M on input (Tr, r)
outputs the (2’+1 1)-bit characteristic string of L_<, and halts while using no more than
t(2) workspace. This quantity is often interpreted as the "amount of information" that
is contained in L< and is "accessible" by means of computations that use at most t(2)
workspace.

Well-known simulation techniques show that there exists a universal machine U that
is optimal in the sense that for each machine iV/there is a constant c such that for all t, L,
and n, we have

K.t+(L<_,) < KStM(L<_,) + c.’U

Hence, we fix an optimal machine U and omit it from the notation. (See [BDG90] or
[LV90] for additional discussions of Kolmogorov complexity.)

The main result involves languages with essentially maximal information content,
that is, languages B such that for every polynomial q, KSq(B<_n) > 2+1 2n almost

VERY HIGH KOLMOGOROV COMPLEXITY 397

everywhere. (Notice that for every language A, KS’(A<_,) < 2n+l +c for some absolute
constant c; this justifies the phrase "essentially maximal.")

THEOREM 3.1. Let A ESPACE, and let k > 0 be an integer. Suppose that there is
a language B such that A <-tt B and, for everypolynomial q, KSq(B<_,) > 2’+ 2n
almost everywhere. Then there exists a sparse set S such that A <P S.--k-tt

Before proceeding with the proof of Theorem 3.1, we provide some notation and
terminology.

First, suppose that for some languages C and D and some functions f and g, C
D via (f,g). Define] as follows: for each string x E {0, 1}* and each i, 1 < i <
k, (x) fi(x)lOll. Note that for each x E {0, 1}* and i, 1 < < k,

(3.1) If()l

For each L c_ (0, 1}*, define L by

L {fi(x)lx e {0, 1}*, 1 < i < k, fi(x) e L}.

Notice that C _<_tt D via (f, g)implies that C <-tt D via (], g).
Second, some terminologywill be convenient. For n E N, an n-assignment is a partial

function c from (0, 1}<-’ into (0, 1}. (Thus, an n-assignment is also an m-assignment
for all m > n.) A language C c_ {0, 1}* satisfies an n-assignment c if c(x) x C
for all x E dom c. Two n assignments c and/3 are consistent with one another if there
exists a language C c_ {0, 1 }* such that C satisfies both c and ft. For an n-assignment c
and x {0, 1}*, let c](x) denote the string c(f (x))... a(f(x)) {0, 1}. (Note that

af(x) is defined if and _only if f (x),..., f(x) dom c.) A string x {0, 1}* forbids
an n-assignment a if af(x) is defined and g(x)c](x) [x A]. (This implies that if
A <--tt via (], g) and x forbids ix, then does not satisfy a.) An n-assignment to

](x) is an n-assignment c such that dom c (f’ (x),..., fk (x)} c_ (0, 1} -<’. Finally, fix
an "end-marker" $ and, for each n N and n-assignment a, let

the lexicographically first string x {0, 1)-<’ that forbids

some n assignments to](x) that is consistent

with c, if such an x exists,
$, if no such x exists.

Now we turn to the proof of Theorem 3.1.
Proof. Assume that the result is false, that is, assume that A ESPACE

kP_tt(SPARSE). Let f and g be functions such that A <-[-tt B via (f, g). We will show
that there is a polynomial r such that

(3.2) KS"(B<,) < 2’+ 2n i.o.,

thus contradicting the hypothesis.
Let us briefly sketch the argument. For each n E N, we define a finite tree T, whose

vertices at each level include partial specifications of all languages such that A <--tt
via (f, g). In particular, B will satisfy some leaf of T,. For a randomly selected language
C c_ (0, 1}*, let 1 be the event that C satisfies some vertex at depth > in T,. The trees
T, will be constructed so that the probability Pr(l) decays exponentially as increases.
It will follow by the algorithmic construction of T, that KS(C<_n) is small for all C such

398 RONALD V. BOOKAND JACK H. LUTZ

that C satisfies some vertex that is deep in Tn, thus guaranteeing that KS(C<_n) is small
for infinitely many n. The quantitative details will be such that (3.2) holds.

Construction of the trees. For each n E N, define a tree Tn as follows. Each ver-
tex of each Tn is an n-assignment. The tree To consists of a single vertex, the empty
0-assignment a. (That is, dom a .) The tree T,+I is constructed from Tn by at-
taching subtrees to zero or more ofthe leaves of Tn. The vertices ofTn are the old vertices
of Tn+l. The new vertices of Tn+l are introduced recursively as follows. Let a be a leaf
of Tn or a new vertex of Tn+l. If x(a, n + 1) $, then a is a leaf of Tn+l. Otherwise, the
immediate successors of a in Tn+l, when they exist, are those (n+ 1)-assignments/3 such
that/3 is consistent with a, dom/3 (dom a) to {f(x(a,n + 1)),..., fk(x(a,n + 1))},
and x(a, n + 1) does not forbid/3.

General properties of Tn. (a) It is clear that, for each vertex a of Tn, dom a c_
Wn fq n, where Wn {0, 1)--<n.

(b) Note that each vertex of each Tn has at most 2k 1 immediate successors.
Also, along any path from the root of Tn to a leaf of Tn, the domain of each vertex
is a proper subset of the domain of its immediate successors, so the depth of Tn is at
most 11{0,1}-<11 2n+x 1. Thus, each T is a finite tree.

(c) By hypothesis A E ESPACE, and f and g were assumed to be computable in poly-
nomial time. Thus, the trees T can be constructed and traversed in space polynomial
in their depth.

The key property of the trees Tn is best understood in probabilistic terms. Fix n N
and consider the random experiment in which a set S c_ {0, 1} -<n is chosen probabilis-
tically according to the uniform distribution on all such sets. For each n-assignment a,
let F be the event that S satisfies a, and let F+ be the event that S satisfies some im-
mediate successor of a in T. (If a is not an interior vertex of Tn, then F+ . We
emphasize that it is S, not S, which is chosen according to the uniform distribution.) The
key property of our construction is the following.

Local property. For each interior vertex a of Tn,

(3.3) Pr(F+IF < 1- 2-.
Proof of the local property. Assume that a is an interior vertex of Tn, and let z

x(a, m), where m is the least integer such that z(a, m) $. (Note that m _< n.) By the
construction of Tn, there is an n-assignment/3 such that is consistent with a, dom/3
(dom a) t3 {fl(z),..., f(x)}, and/3 is not an immediate successor of a in Tn (because
z forbids). Since is consistent with a, there exists a set So c_ {0, 1} -<n suchthat 00
satisfies both a and/3.

Note that dom a and dom/3 are subsets of Wn fq Wn, where Wn {0, 1 }_<n. Define
h Wn Wn Wn-- by h(ulO) u for all ulO Wn f3 Wn. Note that F
{SlSfqh(dom a) S0 fq h(dom a)} and F {SlSNh(dom/3) S0 f3 h(dom/3)}. Let

O {SIS (h(dom/3) h(dom a)) So (h(dom/3) h(dom a))}.

ThenG andF are independent eventswhose intersection is F, so that Pr(F/ [F)
Pr(G). Since]lh(dom)11 -< IIh(dom dom)11 -< Ildom dom 11 -< k, it
follows that Pr(f+[F) < 1-Pr(Fz[F)= 1-Pr(G)= 1- 2-[[h(dm)-h(dma)[[

1--2-k. []

For each N, let $t be the event that S satisfies some vertex at depth in Tn. (The
set S is still chosen uniformly, with n fixed.) Write Tn (1) for the set of all interior nodes
of Tn at depth l.

VERY HIGH KOLMOGOROV COMPLEXITY 399

Claim. For all

(3.4) N, Pr(g:t) < (1 2-k)t.

Proof. The local property (3.3) yields

Pr(gt+)= Pr(F+)
eT()

Pr(F+fqF)
aeT.(t)

Pr(F+IF)Pr(F)
aeT.(t)

_< (1- 2-k) Z
<_ (1 2-k)pr(Et).

Pr(F)

It follows inductively that for all e N,

Pr(&) < (1 2-k)t. []

For each n e N, define a path/3,,0,...,/n,J(n) from the root of T, to a leaf of T, by
the following recursion. First, B,,0 a. For the recursion step, for each interior vertex
a of T,, let x(a) x(a, m), where m is the least integer such that x(a, m) $. Assume
that a path/3,,0,.. ,/3,, in T, has been defined so that/3,, is an interior node ofT, and
/,,jf(x) If1 (x) e B]... fk(x) e B] for each x x(,,i), 0 < i < j. (Note that this
hypothesis is satisfied vacuously when j 0.) Then ,+ is the unique n-assignment
such that/,,+ is consistent with ,,, dom ,,+ (dom ,,) {f (x),..., fk(x)},
and fl,,j+](x) [fl(x) e B]... [fk(x) B], where x x(,,j). (Recall that (f, g) is
a <kP_tt-reduction of A to/3, so this implies that g(x)(,,i](x)) x A]. It follows
that x does not forbid ,,+x, so that ,,+ is indeed an immediate successor of ,, in

For each n N, let , =/,,j(,). A routine induction shows that for every n N, B
satisfies ,.

For each n N, let S,,,..., S,,x(,) be the lexicographic enumeration of all sets

S c_ {0, 1}<-’ such that satisfies some vertex a of T,, whose depth in T, is at least tin,
where

(3.5) d
k- log(2k 1)"

Note that this is precisely an enumeration of d,, SO that from (3.4) we have

(3.6)
log I(n)= 2n+l- 1 + log Pr(g.dn)

_< 2+ 1+ d. n-log(1 2-k)
2+1 3n- 1.

By hypothesis A ESPACE, and f and g were assumed to be computable in poly-
nomial time. Thus, the trees T, can be constructed and traversed in space polynomial
in their depth. Thus, there is a machine M such that, if 1 < i < l(n) and i is writ-
ten in binary, then M(i, n) outputs the (2’+ 1)-bit characteristic string of S,,i using

400 RONALD V. BOOKAND JACK H. LUTZ

workspace polynomial in 2’. Since B satisfies each fl,, it follows by (3.6) that there is a
polynomial r’ such that KS(B<_,) < 1 + log I(n) < 2’+1 3n for all n E D, where
D {n E lld(n) _> tin}. Then, by the optimality of the universal machine, there exists
a polynomial r and a constant c such that

(3.7) KSr(B<n) <_ 2n+l 3n + c

for all n D.
To prove that (3.2) holds, it will be sufficient to show that the set D is infinite.
Claim. D is infinite.
Proof. Let B’ t_J,_>0-1 ({ 1 }). Since B satisfies each fl,, it is clear that B’ c_ B.

Fix a strictly increasing polynomial s such that [fi(x)[< s([x[) for all x {0, 1}* and
1 < i < k. Then

(3.8) B_, C_/-)({1})
for all n E N. To see that this is true, let y E B,. Then y fi(z) for some x E {0, 1}*
and i, 1 < i < k. By (3.1), Izl < n, so that If (z)l _< s(n)for all j, 1 < j < k. Since

z(8(n), s(n)) $, z does not forbid any s(n)-assignment to f(z) that is consistent with

fls(,). It follows that y fi(z) is not in (dom fl,,+) (dom/3m) for any m > s(n).
Since y E B’ tA,>0B ({ 1}). It follows that y E fl-(,) ({ 1}), confirming (3.8).

We have already noted that (], g) is a <_tt-reduction of A to . In fact, (], g) is a

<_tt-reduction of A to B’. To see this, fix x E {0, 1}*, let n Izl, and let m s(s(n)).
Let fl be the unique m-assignment such that/3 is consistent with fl,, dom fl (dom
m) t_J {f (x),..., fk(x)}, and m(fi(x)) 0 for each i, 1 < i < k, such that fi(x)

_
dom tim. Since X(m, m) $, x does not forbid fl. Since /3mf(X is defined, it follows
by (3.8) that

confirming that A <I_tt B’ via (], g). By assumption, A q[Pk_tt(SPARSE) so that we
have

(3.9) IIBII > k. d. s(n) i.o.

On the other hand,

(3.10) Ildom k. depth(fl(n)) k. J(s(n)).

By (3.8), (3.9), and (3.10), J(s(n)) > d. s(n) for infinitely many n. Since s is strictly
increasing, it follows that the set D is infinite.

Since D is infinite, (3.2) follows from (3.7). This completes the proof of Theorem
3.1.]

Consider the reducibility specified by the pair (f, g) in the proof of Theorem 3.1.
What properties were used? Timeas such played no role. Another measure of compu-
tation such as space or time-space could have been used; for example, ,PSPaC couldk-tt

VERY HIGH KOLMOGOROV COMPLEXITY 401

have been used instead of <---tt" The fact that the reducibilitywas specified by determin-
istic machines plays no role except for the fact that both f and 9 are functions; another
mode of computation could have been used as long as functions are used to specify the
reducibility. The hypothesis that A E ESPACE, combined with the fact that f and 9
could be computed in polynomial time, allowed the trees Tn to be constructed and tra-
versed in space polynomial in their depth. In each case the corresponding result would
hold and the proof would be essentially the same as that of Theorem 3.1.

4. Applications. We develop some applications of Theorem 3.1. In each case we
consider languages satisfying the lower bounds on the space-bounded Kolmogorov com-
plexity of the language. In order to eliminate the repetition of awkward phrases, we
introduce a new definition.

The class HIGH is the collection of all languages B that for every polynomial q,
satisfy KSq(B<,) > 2’+ 2n almost everywhere.

As noted in 3, if a language is in HIGH, then it has essentially maximal information
content.

Almost every language is in HIGH. This follows from the fact [Ma71] that RAND
HIGH, where RAND is the set ofalgorithmically random languages as defined by Martin-
L6f [Ma66]. Martin-L6f showed that almost every language is in RAND. In fact, the
inclusion ofRAND in HIGH is proper since almost every recursive language is in HIGH
[Lu92], while no recursively enumerable (hence, no recursive) language is in RAND. On
the other hand, HIGH fq ESPACE , that is, no language recognized by a machine
that uses workspace O(2’) for any c > 0 is in HIGH.

Recall that Theorem 3.1 shows that for every integer k > 0, Pk_tt(HIGH)
ESPACE c_ Pk_tt(SPARSE).

The following result shows that it is highly unlikely that any language in HIGH is
_<tt-hard for many of the classes studied in structural complexity theory. Recall that the
reducibility <tt is transitive.

THEOREM 4.1. Let If be any class chosen from {PSPACE, NP, PP, C=P, MOD2P,
MOD3P,...}. Ifthere is a language in HIGH that is <_tt-hardfor K, then K P.

Proof. Ogiwara and Watanabe [OW91] have shown that if there is a sparse set that is

<bPtt-hard for NP, then P NP. Later, Ogiwara and Lozano [OL91] extended that result
so that it holds for the other choices of K. Theorem 3.1 shows that if there is a language
A E HIGH such that A is <tt-hard for any such class K, then there is a sparse set S
such that S is <tt-hard for K. Hence, K P.

Thus, Theorem 4.1 shows that for any class K chosen from {PSPACE, NP, PP, C=P,
MODg.P, MOD3P, .}, if P K, then no language in HIGH can be <P -hard for K. A--btt
similar consequence holds for E DTIME(2nnear) with no unproven hypothesis.

THEOREM 4.2. No language in HIGH is <_tt-hardfor E.
Proof. Watanabe [Wa87] has shown that no sparse set is <tt-hard for E, so by The-

orem 4.1 no language in HIGH is <tt-hard for E.
The main theorem was stated in terms of a fixed integer k that bounds the number

of queries. Instead, we could consider a function k(n) O(log n) that is computable in
polynomial time and replace the fixed integer k with the function k(n) to obtain a bound
on the number of queries. Thus, Pk(n)_tt(HIGH) fq ESPACE C_ Pk(n)-tt(SPARSE).
In addition, the proof of the main theorem allows us to conclude that P,(HIGH)
ESPACE c_ P,(SPARSE) and

P(log,)-att(HIGH) ESPACE c_ P(log)_att(SPARSE).

402 RONALD V. BOOKAND JACK H. LUTZ

The results have been stated in terms of languages reducible to languages with ex-
tremely high space-bounded Kolmogorov complexity. No such language is in ESPACE.
However, the proof of the main theorem yields a bound on the Kologogorov complexity
of languages to which languages in ESPACE can be reduced, and this bound allows us
to make additional conclusions.

COROLLARY 4.3. For every A E ESPACE Pbtt(SPARSE), there exists apolynomial
r such thatfor all languages B, if A <-tt B, then KSr(B<_n) < 2n+l 2n i.o.

Corollary 4.3 implies that hard languages have unusually low Kolmogorov complex-
ity. Moreover, the fact that the polynomial r is fixed enables us to strengthen Theorem
4.1 as follows.

THEOREM 4.4. (a)/fP NP, then there is a fixedpolynomial q such that every Pbtt-
hard language Hfor NP has space-bounded Kolmogorov complexity KSq(H< < 2n+
2n i.o.

(b) There is a fixedpolynomial q such that every _-hard language Hfor E has space-
bounded Kolmogorov complexity KSq(H<_n 2’+ 2 i.o.

Proof. (a) If P % NP, then there exists a language A E NP Pb(SPARSE) [OW91].
Fix q for A as in Corollary 4.3. Then every -hard language H for NP satisfies A P

--btt
H, while Kqq(H<_n) < 2n+l 2n i.o.

(b) The proof is the same as for (a) except that we fix A E Pbtt(SPARSE)
[Wa87]. q

[BDG88]
[BDG90I
[KI_2]
[LV90]

[Lu92]

[Ma82]

[Ma66]
[Ma71]

[OL91]

[OW91]

[Wa87]

REFERENCES

J. BALC/ZAR, J. DiAZ, AND J. GABARRt3, Structural Complexity I, Springer-Verlag, New York, 1988.
Structural Complexity II, Springer-Verlag, New York, 1990.

R. KARPAND R. LIPTON, Turing machines that take advice, Enseign. Math., 28 (1982), pp. 191-209.
M. LI AND P. VITANYI, Kolmogorov complexity and its applications, in Handbook of Theoretical

Computer Science, J. van Leeuwen, ed., Vol. A, Elsevier, Amsterdam, 1990, pp. 187-254.
J. LUTZ, Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44 (1992), pp.

220-258.
S. MAHANEY, Sparse complete set for NP: Solution to a conjecture by Berman and Hartmanis, J.

Comput. System Sci., 25 (1982), pp. 130-143.
P. MARTIN-LISF, On the definition ofrandom sequences, Inform. and Control, 9 (1966), pp. 602-619.

Complexity oscillations in infinite binary sequences, Z. Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete, 19 (1971), pp. 225-230.

M. OGIWARA AND A. LOZANO, On one query self-reducible sets, Proc. 6th IEEE Conference on
Structure in Complexity Theory, Chicago, IL 1991, pp. 139-151.

M. OGIWARA AND O. WATANABE, On polynomial bounded truth-table reducibility of NP sets to

sparse sets, SIAM J. Comput., 20 (1991), pp. 471-483.
O. WATANABE, Polynomial time reducibility to a set ofsmall density, Proc. 2nd IEEE Conference

on Structure in Complexity Theory, 1987, pp. 138-146.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 403-417, April 1993

() 1993 Society for Industrial and Applied Mathematics
014

COIN-FLIPPING GAMES IMMUNE AGAINST LINEAR-SIZED COALITIONS*
NOGA ALONt AND MONI NAOR$

Abstract. Perfect information coin-flipping and leader-election games arise naturally in the study of fault
tolerant distributed computing and have been considered in many different scenarios. This paper answers a
question of Ben-Or and Linial by proving that for every c < i there are such games on n players in which no
coalition of cn players can influence the outcome with probability greater than some universal constant times
c. (Note that this paper actually proves this statement only for all c < 1/2, but since its universal constant is

bigger than 3 the above is trivial for c > .) This paper shows that a random protocol of a certain length has
this property and gives an explicit construction as well.

Key words, fault tolerance, distributed computing, perfect information games, coin-flipping, leader
election

AMS(MOS) subject classifications. 68C05, 05B25, 90D99

1. Introduction. A fundamental problem of fault tolerant distributed computing is
that of n processors wishing to agree on a random value. The problem becomes nontriv-
ial when some of the processors are faulty. The problem has been considered in many
different scenarios, depending on the assumptions made on the type of communication
between the processors, the kind and number of faults, and the power of the adversary.
See the surveys of Chor and Dwork [9] and Ben-Or, Linial, and Saks [6]. In the present
paper we consider it in the natural model formulated by Ben-Or and Linial [5] (whose
formal description is given in the next subsection): the processors have complete infor-
mation, (i.e., the communication type is a public broadcast channel), the processors take
turns broadcasting some random values and the outcome is a function of all the bits that
were sent. The adversary is assumed to be computationally unlimited. The problem is
to design protocols where the influence on the outcome of any set of faulty processors
not exceeding a certain size is bounded.

A closely related problem is that of leader election: the processors take turns broad-
casting messages. At the end of the protocol, as a function of the bits transmitted, one
processor is considered the leader. The problem is to design protocols that have the
property that for any coalition of faulty processors whose size does not exceed a certain
threshold, the probability that a member of the coalition be elected is bounded.

Unlike the Byzantine case, where the exact thresholds for achieving an agreement
were known [9], [10], for the perfect information scenario a gap existed: it was known
that n/2 cheaters (out of n players) can completely control the protocol, yet the best
known protocol [12], [1] (improving the one in [5]) has the property that only sets of
cheaters of size less than n/3 log n have influence bounded away from 1.

In this paper we resolve this problem and show that there are protocols where even
a linear number of cheaters have only bounded influence. We first show in 2, via a
probabilistic construction, the existence of an election protocol that can tolerate up to n
cheaters (i.e., the elected leader will not be faulty with some nonzero probability). Then,
in 3, we show an explicit construction that works for a smaller (yet linear in n) threshold.
This easily gives coin-flipping protocols with a similar behavior.

Received by the editors August 12, 1991; accepted for publication (in revised form) September 5, 1991.
Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Univer-

sity, Tel Aviv, Israel (noga@taurus.bitnet). Most of this work was done while the author was visiting IBM
Almaden Research Center, 650 Harry Road, San Jose, California 95120.

tDepartment K53/802, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120
(naor@ibm.com).

403

404 NOGAALON AND MONI NAOR

Our proofs combine probabilistic arguments with an iterative procedure based on
the pseudorandom properties of projective and affine planes. The analysis requires a
study of a game that we call faulty baton passing, which is performed in each iteration of
the procedure.

1.1. Preliminaries, background, and results. A perfect-information coin-flipping
game of n players is a rooted tree T whose leaves are labeled by zero or 1 and whose
internal vertices are labeled by the names of the players. In addition, each internal ver-
tex v is associated with a probability distribution Dv on its children. Starting from the
root, the player whose name labels the current vertex v chooses one of its children ac-
cording to the distribution Dr, and the game proceeds to the chosen child. When a leaf
is reached the game ends and its value is the label of the leaf. Note that the same player
may have to make more than one choice in a game. It is sometimes assumed that the
tree T is binary and that the probability distribution associated with each internal vertex
is the uniform distribution on its two children. This makes no essential difference, and
hence we use here the more general definition.

Let N denote the set of players. We say that a player I E N plays fairly if he makes
his choice randomly (according to the corresponding probability distribution) whenever
it is his turn to make a choice in the course of the game.

Let p be the probability of reaching a leaf labeled 1 if all players play fairly. T is
a fair game if p (T) 1/2. For a subset S of the set of players N, let p(S) denote the
probability of reaching a 1-leaf when the coalition S plays the optimal strategy trying
to maximize the probability of reaching a 1-value. Here we assume that all the other
players play fairly and that each player in S’ knows exactly which other players are in S.
The influence I1 (S) of S towards 1 in the game T is defined by I(S) p(S) pT
The influence Io(S) of S towards zero in T is defined similarly and the (total) influence
I(S) IT (S) is defined by I(s) I1:r (S) + I0:r (S). Therefore, I(S) measures the capa-
bility of S to control the game, and a game is robust if I(S) is small for every relatively
small S. In [5] it is proved that for every perfect-information coin-flipping game T of a
set N of n players, wherep is bounded away from zero and 1, and for every k _< n there
is a subset S c N of cardinality k whose influence I(S) is at least f(k/n). In the same
paper the authors construct a fair game of n players in which the influence of each set
of k players, where k _< O(T/,lga 2) is at most O(k/n). Improving the estimates of Saks
[12], together with the main result of [11], Ajtai and Linial [1] showed that there is a fair
game on n players in which the influence of each set of k <_ n/3 log n is at most O(k/n).
These results lead to the following problem, raised in [5], and referred to as the most
outstanding problem in this area in some of the more recent papers on the subject.

Problem (see [5] and [1]). Are there fair perfect-information coin-flipping games
of n players in which for every k < n the influence of every set of k players is at most
O(k/n)? In particular, are there such games in which there is no set of size o(n) whose
influence is 1 o(1) ?

In the present paper we show that the answer to both questions is "yes." We first
present a probabilistic proof of existence of such games. Afterwards we describe, for
every positive c < 1, an explicit construction of perfect-information coin-flipping fair
games of n players in which there is no set of cn players whose influence exceeds O(c).
(Note that the construction works only for all positive real c < C, where C is some
absolute positive constant; but since the multiplicative constant in the expression O(c)
can be adjusted, this implies the result for all c < 1.)

Our results are better formulated in terms ofleader-election games. Aleader-election
game of n players is a rooted tree T whose vertices are labeled by the names of the play-

ROBUST COIN-FLIPPING GAMES 405

ers, and each internal vertex v is associated with a probability distribution Dv on its chil-
dren. Starting from the root, the player whose name labels the current vertex v chooses
one of its children according to the distribution Dr, and the game proceeds to the chosen
child. When a leaf is reached the game ends and the chosen leader is the label of this
leaf.

For a subset S of players, let pT(S) denote the probability that a leader from S is
chosen, when the coalition S plays the optimal strategy trying to maximize the probability
of such a choice, (and when all other players play fairly). For a constant 6 > 0 and for
t < n let us call, following [12], a leader-election game T 6-robust against t-cheaters if
pT (S) < 6 for any subset S of at most t players. Let t(n, 6) denote the maximum t such
that there exists a leader-election game of n players that is 6-robust against t cheaters.
From any leader-election game T we can construct its associated coin-flipping fair game
C(T) obtained by letting the chosen leader flip a coin and decide the value of the game.
Thus, formally, C(T) is the game obtained from the tree T by adding to each leaf v of
T two children labeled zero and 1, and by associating v with the uniform distribution on
these two children. It is obvious that for a subset S of players, the influence of S towards
zero or towards 1 in C(T) is preciselyp(S)/2. Therefore, the existence ofrobust leader-
election games implies the existence of robust coin-flipping games. This leads naturally
to the problem of estimating t(n, 6).

In [12] Saks constructed a leader-election game that is 6-robust against c(6)n/log
cheaters, for any 0 < 6 < 1, where c(6) is a positive constant depending only on 6. This
shows that t(n,) > c(6)n/log n. Answering a question raised in [12] we show that in
fact t(n,) > f(6n) for all 0 < 6 < 1. Moreover, for any e < 1/2 there is a 6 < 1 such that
t(n,) > en. As noted in [12] there is a simple argument that shows that t(n, 6) <
for all 6 < 1. It would be interesting to close the gap between the two constants
here.

Our best lower bounds (in terms of the constants) for t(n,) are obtained by proba-
bilistic arguments, described in the next section. However, we also give an explicit con-
struction of leader-election games of n players that are -robust against f(6n)-cheaters.

2. The existence of robust games. Let T be a full binary rooted tree of depth d. Put
N {1,..., n}, and let us label each internal vertex v ofT, randomly and independently,
by a number in N chosen according to a uniform distribution on N. Observe that T is a
leader-election game ofn players. Our first result in this section is the following theorem,
which demonstrates the existence of very robust leader-election games.

THEOREM 2.1. Let T be the leader-election game chosen randomly as above. Then,
such that pTthe probability that there is a set S c N ofcardinality en, where e < 5, S) is

at least

3/2
e + V(1 V/(1/2) + (3/2))

+ ")’

does not exceed

n) e((1/2) + (3e/2))d
en ,)/2

In particular, there is an n-player leader-election game T ofdepth O(n) in whichfor any set

of en < 1/4nplayers pT(s) < e + 12e/.
Note that even if all players in an n-players leader-election game play fairly, then

for every e (which is an integral multiple of l/n) there is a set S of en players such that

406 NOGAALONAND MONI NAOR

the leader is chosen among the members of S with probability of at least e. This shows
that the last estimate for pT(s) in the theorem above is sharp, up to the additive lower
order term 12e3/z.

The theorem is proved by deriving estimates on the expectation and variance of the
value of pr(S) in a randomly chosen leader-election game. Then, using Chebyshev’s
inequality it is shown that with the required probability there is no set S where pT(S) is
larger than the bound in the theorem. A similar strategy is used in the proof of the main
result of [4].

First we establish the following two lemmata.
LEMMA 2.2. Let Y, Z be two independent random variables with equal expectations

E(Y) E(Z) E and equal variances Var(Y) Var(Z) az. Let e <_ 1 be a positive
constant and let X be the random variable defined as (Y + Z)/2 with probability 1 e and
Max{Y, Z} with probability e. Then

(1) E(X) E + E(IY ZI) < E +

(2) Var(X) < a2 (1 -)
Proof. Observe that Max(Y, Z) (Y + Z)/2 / IY ZI/2. By Jensen’s inequality

E(IY- Zl) _< v/E((Y- Z)2) v/Var(Y- Z) v/Var(Y) + Var(Z)

Hence,

e
E(iy ZI < E + - x/a.E(X) (1- e)E + e E+ E(IY ZI) =E+

Thus (1) holds.
To prove (2) observe, first, that by the Cauchy-Schwarz inequality, for every two

random variables T, F,

(E(TF) E(T)E(F))2 (E((T- E(T))(F- E(F))))2 _< Var(T)Var(F).

(This is simply the well-known fact that the absolute value of the correlation factor of
two random variables is at most 1.) Taking T Y + Z, F IY ZI we get

(3) IE((Y + Z)IY- ZI)- E(Y + Z)E(IY- Zl)l v/Var(Y + Z)Var(IY ZI) _< 2a.
(4)

By the definition of X:

E(X2) (1 e)E(y2) + E(Z2) + 2E(YZ)
4

E(Y2) + E(Z2) + 2E(YZ) e

4 + 2 E((Y + Z)IY- ZI)+ -E(IY- ZI=)

E(Y2) + E(Z2) + 2E2

+ -E((Y + Z)IY- Zl)+ E(IY- ZlU).

ROBUST COIN-FLIPPING GAMES 407

Also, by (1),

(5)
2

(x) +,(Iv- Zl)+ -((IV- Zl))
2=EZ+eE(Y + Z)E(IY- ZI)+ -(E(IY- ZI))z.

Subtracting (5) from (4) we obtain

Var(X) E(X) -(E(X))

E(Y) + E(Z) 2E2

+ (E((Y + Z)IY- Zl)- E(Y + Z)E(IY- Zl))

2+E(IY- Zl) -(E(IY- ZI)).
In view of (3), the last quantity is at most

Var(Y) + Var(Z) + 2a2 + E([Y- ZI)

2 + cr: + 2r9 (rz +
completing the proof of (2). [3

In order to state the next lemmawe need some more notation. Let T be, as before, a
full binary rooted tree ofdepth d, whose vertices are labeled randomly and independently
by the elements of N {1,..., n}. Let a < 1 be a positive number, and let us choose,
for every leaf v of T randomly and independently, a weight w(v), where w(v) I with
probability a and w(v) 0 with probability 1 a. Let S c N be a fixed subset of
cardinality ISI n. Define a weight function wa,s on the vertices of T as follows. If v
is a leaf of T, then wa,s(v) w(v). If u is an internal vertex of T and vl, v2 are its two
children, then

Wa,S(U) Max{Wa,S(Vl), Wa,S(V2)} if u is labeled by an element of S,

w,s(u) w’s(vl) + w’s(v2) otherwise.
2

and

Obviously, for fixed S, a, and for every fixed vertex v of T, w,s(v) is a random
variable whose value depends on the random choices of the labels of the internal vertices
of T and on the random choices of the weights w(v) of the leaves of T.

LEMMA 2.3. Let v be a vertex of T whose distance from the leaves is h. Then the
expectation and the variance ofthe random variable wa,s(v) satisfy

E(wa,S(v)) <_ a +,
i=o

w(o,s()) _< + -5-

_<a+e
x/(1 V/(1/2) + (3e/2))’

Proof. We apply induction on h. For h 0 the expectation and the variance of
w,s(v) are a and a(1 -a), respectively, and hence both inequalities hold. Assuming the

408 NOGAALONAND MONI NAOR

result holds for all h’ < h, let u be a vertex of distance h from the leaves, h > 1. Let vl
and v2 be the two children of u. Since the label of u is in S with probability e, and since
w,,s(vl) and w,,s(v2) are two identically distributed independent random variables, we
can apply Lemma 2.2 with X w,,s(u), Y w,s(vx), Z w,s(v2). By the induction
hypothesis this gives

(h-1)/2

Similarly, by Lemma 2.2 and by the induction hypothesis,

This completes the proof.
Returning, now, to our randomly chosen leader-election game given by the randomly

labeled tree T of depth d, let us fix a set S with S en, where e < 1/2, and let us estimate
the probability that for this specific set S, the inequality

e3/2
pT(s) > e + q- 9/v/(1 -v V/(1/2)+ (3e/2))

holds. For every vertex v, let Tv denote the subtree of T rooted at v. If the leader-
election game is played on Tv, then the probability that a leader from S is chosen, when
the coalition S plays the optimal strategy trying to maximize the probability of such a
choice, is pTv (S). Obviously, if v is a leaf of T, then pTv (S) is 1 if the label of v is in S
and is zero otherwise. More interesting is the case that v is an internal vertex of T and
u and w are its two children. It is not too difficult to check that in this case:

pT’(s) Max{pT’(S),pT(S)} ifv is labeled by an element of S,
pT, (S) + pT, (S)

otherwise.p o(s)

and

Therefore, the random variables pT (S) are defined exactly as the random variables
Wa,S(v) discussed in Lemma 2.3, where here a e. It follows that the expectations and
variances of these random variables satisfy the bounds appearing in this lemma (with
a e). In particular, when we let v be the root of T we conclude that the expectation
and the variance of pT’(s) pT(s) satisfy

E(pT(S)) < e +

<eft-
(1 (1/2) + (3e/2))’

ROBUST COIN-FLIPPING GAMES 409

and

1 3e)
d

Var(pr(S)) _< e + -Combining this with Chebyshev’s inequality we obtain the following.
players, and let T be the leader-electionLEMMA 2.4. Let S be a fixed set of en < gn

game chosen randomly as above. Then, for everypositive % the probability that

3/2
pr(S) > e + +

does not exceed

e((1/2) + (3e/2))d

ProofofTheorem 2.1. By Lemma 2.4, for every fixed subset ofplayers S ofcardinality
ISl < the probability that pT (S) exceeds

e3/2
e + v/(1 V/(1/2) + (3e/2))

+ 7

does not exceed

e((1/2) + (3e/2))d

2
Since the number of choices for S is (,), the desired result follows.

Theorem 2.1 shows that for every e that satisfies

3/2
e+ <1,

v(1 V/(1/2)+ (3e/2))

there is a 5 < 1 such that t(n,) >_ en; i.e., there are leader-election games on n players
which are 5-robust against en-cheaters. This does not suffice to prove the existence of
such a 5 for e, which is, e.g., at least 1/4. Still, we can modify the proof to show that such

To do so, we first need one of the simple properties of thea 5 exists for every e < .
baton-passing game. The baton-passing game, first analyzed in [12], is a leader-election
game where a leader is chosen by passing a baton among the players. Initially the baton
is held by an arbitrary player, and each player that receives the baton picks (randomly)
a player that has not been selected so far and passes the baton to him. The leader is the
last person to hold the baton. As was already mentioned, in any leader-election game
T of n players there is a coalition S of at most Fn/2] players such that pT (S) 1, i.e.,
S can guarantee a leader from the coalition. The baton-passing game shows that this is
sharp. This is because if there are n players, and S is a set of less than half of them, then
there is a positive (though exponentially small) probability that whenever a player not
in S has to pass the baton and there are still yet unselected players from S he chooses a
player from S. If this happens, the chosen leader will not be in S. We have thus proved
the following simple lemma.

LEMMA 2.5. For every integer m there is a leader-election game G ofm players such
that pC (S) < I for each set S ofless than m/2players.

410 NOGAALON AND MONI NAOR

COROLLARY 2.6. For every < 1/2 there is a < i such that for every n there is an
n-players leader-election game that is 6-robust against en-cheaters.

Proof. Given e < 1/2 let us choose small positive constants a a(e) and 7
such that

x/-d 1
+ ’ +

+ <

Next choose a sufficiently large integer h so that

+ (z,/e))h
en 72

Finally choose a sufficiently large m re(e, a) so that

i>_m/2

Let T be a full binary rooted tree of depth h, and let us choose, for each internal vertex
of T, randomly and independently, a label in the set of players N {1,..., n}. For
each leaf v of T we choose, randomly an independently (with repetitions) a (multi) set
My ofm members of N. Consider the following leader-election game represented by T.
Starting at the root, the player whose name labels the current vertex chooses randomly
one of its two children, and the game proceeds to the chosen child. When a leaf v is
reached, a leader is chosen by playing the baton-passing game among the players in My.
Observe that by Lemma 2.5, for every coalition S of n players, if, during the game, the
set M. corresponding to the chosen leaf contains less than m/2 members of S, then the
probability that the leader will be chosen from S is bounded away from 1 (i.e., is less
than 1 by a constant depending on m, which depends only on e (and a a(e)) and is
independent of the total number of players n.) Thus, to complete the proof, it suffices
to bound away from 1 the probability that the coalition S will succeed in reaching a leaf
whose set contains more than m/2 members of S. However, by the inequalities used
in defining the quantities m, a, 7, and h, and by applying Lemma 2.3 and repeating the
arguments used in the proofs of Lemma 2.4 and Theorem 2.1 we conclude that there is a
tree T such that for every set S of cardinality en the above probability is at most 1/2. This
completes the proof. U

Remark. The constant 1/2 can be probably increased a bit by a more careful analysis
in the proof of Lemma 2.2. This would not suffice, however, to close the gap between

We suspect that for every e < 1/2 there is a < 1 suchthis increased constant and 7.
that for every n there are leader-election games of n players that are -robust against en
players. This remains open.

As mentioned in the introduction, robust leader-election games supply robust coin-
flipping games by allowing the leader choose the random bit. Therefore, as a simple
consequence of Theorem 2.1 and Corollary 2.6, we obtain the following.

THEOREM 2.7. (i) There arefair n-players coinflippinggames ofdepth O(n) such that
3/2the influence ofevery set ofen < 1/4 nplayers towards zero or towards 1 is at most e + 6e

(ii) For every < 1/2 there are fair n-players coin-flipping games such that the influence
ofevery set ofenplayers towards zero or towards 1 is bounded awayfrom .

This theorem solves the problem mentioned in the introduction. Its proof, as well
as that of Theorem 2.1, is probabilistic, and hence supplies no explicit construction of
the corresponding robust games. In the next section we describe explicit constructions

ROBUST COIN-FLIPPING GAMES 411

of leader-election games and coin-flipping games that are immune against linear-sized
coalitions.

3. Explicit construction. In this section we show how to explicitly construct coin-
flipping games where the influence of any set which is smaller than some linear thresh-
old is bounded away from 1. We use the idea put forth by Bracha [7] in the Byzantine
context of forming virtual players from committees of actual players. Say that a commit-
tee is good if it has a certain ratio of good players to bad players. The advantage of an
assignment to committees is that the ratio of good committees to bad committees can
be much better than the ratio of good players to bad players.

Recall that baton passing is the game analyzed by Saks [12] and Ajtai and Linial [1],
where a leader is chosen by passing a baton among the players. Initially the baton is held
by some arbitrary player and each player that receives the baton picks a player that has
not been selected so far and gives him the baton.

In our scheme, the committees formed play baton passing. When a committee gets
the baton it elects a leader (recursively) and decides on the next committee to get the
baton. The leader of the last committee to hold the baton is the global leader.

The advantage our game has over baton passing is that the bad players do not know
in advance which committees will elect good leaders and which bad leaders. Thus,
though the percentage of bad leaders is high, a bad leader does not necessarily choose a
committee that elects a good leader (which is the optimal strategy in baton passing).

The committees are assigned using an affine plane: each player corresponds to a
point in the plane and a committee is a line.

In the next subsection we analyze the variant of the baton-passing game that is rel-
evant to our scheme: a good player might turn bad when he receives the baton. (This
corresponds to the case that a good committee elects a bad leader.) In 3.2we discuss the
properties of the assignment to committees by affine planes. Finally in 3.3 we analyze
the resulting construction.

3.1. Faulty baton passing. In this subsection we analyze the baton-passing game
when even the good players have a certain probability e of becoming faulty. We call this
variant the faulty baton-passing game. The game itself is identical to the usual baton
passing, and only the behavior of the good players differs.

In the regular baton-passing game the best strategy for the bad participants is to
select a good player to receive the baton. By the moment reflection argument [1] (or
by induction as in [12]) this is the best strategy in the faulty baton-passing game as well.
Thus we can assume that whenever a bad participant has the baton he selects a good
participant to receive it, and a good participant that becomes faulty also selects a good
participant to receive the baton.

We would like to find bounds on the function f(s, t) f,(s, t) defined as follows.
f(s, t) is the probability of the baton to end at a bad player (and not at a good one that
becomes faulty), starting from a good player when there are s (as yet unselected) good
players, t (as yet unselected) bad players, and a good player has probability e ofbecoming
faulty when he gets the baton. (It is important that it not be known in advance whether
a good player would become faulty when he will receive the baton.)

We assume 0 < e < 1/4. Clearly, f(0, t) 1 k/t > I and f(s, O) 0 /s > O. From the
bad players strategy,

s + et t et
(6) Vs, t, > 1 f(s, t) f(s 1, t) + f(s 1, t 1).

s+t s+t

412 NOGAALONAND MONI NAOR

LEMMA 3.1. For all s, t >_ O, 0 <_ e < 1/4,

(7) f(a, t) < 8.
(t logg.(t + 1))

(s -t- 1) 1-e

Proof. We apply induction on s + t. The assertion holds for (8 0, t >_ 1) and for
(t 0, s >_ 0). For t i and s >_ i from (6) we have

s+e s+e s-l+e l+e
f(s, 1)= f(s-1 1)= f(0 1)

s+l s+l s 2

7+-..+-}) < e-(-’) 7 << e-(1-e)(--r+ f"+ dx 2-e

(8 q-" 1) l-e"

Assume now that t >_ 2, s >_ 1. Then by (6) and the induction hypothesis it suffices to
show that

s+et
s+t

(t ln(t + 1)) t et ((t 1) In t) (t ln(t + 1))14,+ <
s1-’ s + t s1-" (s + 1) 1-’

i.e., that

t et (1 s + et

(s+t)sl-’’((t-1) lnt) <_(tln(t+l))
(s+l)l-e- (s+t)s-Multiplying by (s + 1)l-esl-e(s -t- t) we conclude that it suffices to prove that

(8)
(t et)(s + 1) 1-e. ((t 1)In t) 1--14e

_< (t ln(t + 1)) (81-e(8 -t- t) (8 - t)(8 -- 1)1-’).

Notice that

81-e(8 -t- t) (8 - t)(8 -- 1) 1-e 81-e 8 -- t 1 +

>_ sl-e (s + t (l +) (s + et)) s-e(s(t-1) est et).

(s + et))
Since t _> 2, the right-hand side is at least s-’(s(t 1) 4es(t 1)) > 0, and thus by (8)
it suffices to show that

(9) s(t 1)-est-e- <- (t 1)lnt

But the left-hand side of (9) is at most

(t et)(s + l) st est + t et
=1+(lO) s(t_l)_est_et-- st-est-s-et

s+t
st- est- s- et

s+t s+t
=1+ <1+

s(t 1) est et s(t 1) 4es(t 1)
s+t

=1+ _<1+
s(t 1)(1 4e)

1 2
+(t 1)(1 4e) s(1 4e)"

ROBUST COIN-FLIPPING GAMES 413

for all t > 2 we haveSince In (1 +) >_ N

(11)

t ln(t + 1)
1 + 1 +t- 1 lnt - i lnt

()(1) 1 11
1+ >1+ +>_ l+t_l 2tlnt t-1 2tlnt

By (9), (10), and (11) it suffices to show that

1 1)134 1 2
>1+ +1 + t- 1 + 2tlnt (t- 1)(1-4e) s(1 4e)

By Bernoulli’s inequality,

1 1
1+

t- 1 + 2tint
>1+

(t 1)(1 4)
1

2t In t(1 4e)"

Therefore, it suffices to check that

1
1+ +(t i)(I 4e)

1 1 2

2tlnt(1-4e)
> 1 + (t- 1)(1-4e) + s(1 4e)’

i.e., that

(12) s > 4t In t.

But for s, t satisfying s > 1 that violate (12) we have

(s + 1) 1-" _< s + 1 <_ 2s <_ 8tlnt _< 8 (flog2 t) 14"

and thus for this case (7) is trivial (as its right-hand side is greater than 1), completing
the proof. [3

3.2. Amplification via attine planes. In this subsectionwe describe a pseudorandom
property of projective planes which is applied in [2], [3] and show how affine planes have
a similar property. Affine planes better fit our purposes here. The property we need can
be proved by an eigenvalue argument; here we present a more direct proof, as in [3].

LEMMA 3.2 [2], [3]. Let 79 (P, L) be a projective plane of order p with a set P of
n pZ + p + 1 points and a set L ofn lines. IfA c P,]A[en, then

Z (I’N AI-’(P+ e(1 e)p. n.

Proof. Clearly

(13) le N.AI (p + 1)IAI (p + 1)n.
EL

Also by double counting the number of ordered triples (g, a, b) where g L, a, b E A,
a b we get

IAI(IAI- 1) en(en 1) E leAl(le[A[- 1) E legAl legAl.

414 NOGAALONAND MONI NAOR

Thus

(14) le AI en(en 1) + (p + 1)en en(en + p).

The two equations (13), (14) enable us to compute for each polynomial q(z) of degree
at most two the sum]ez q(le f’)AI). In particular,

1))2 E(IeNAIz- 2e(p+ 1)leNA + e2(p + 1)2)
eeL

e.n(en + p) 2e(p + 1)(p + 1)e.n + ne2(p + 1)2

,n(,n + p e(p + 1)2) ,n(p ep) e(1 e)pn,

completing the proof. [q

COROLLARY 3.3. Let A (P, L) be an affineplane oforder p, obtained by deleting a
line from the projective plane of that order. Put m pZ ILl and recall that each
E L has ppoints. Suppose that A c P, AI ern, and suppose that 5 > O. Then

e(p: +p+ 1) < e
+ e).

Proof. Let x I{l e L I A > (e + 5) P}I. Embed ,4 in the projective plane
or order p, 79 (P, L). Observe that IAI/(p + p + 1) ep/(p + p + 1), and hence
(IAI/(p + p + 1))(p + 1)= ep2(p + 1)/(p2 + p + 1) < ep. By Lemma.3.2,

leNAI- +p+ l(p+ 1) <_ ,p(p + p +

Each line among the x defined above contributes to the left-hand side at least 62p2. Thus
x6p < ep(p + p + 1), implying the desired result. [3

Remark. For every p 2k there is an affine plane of order p. Our algorithm uses
the planes of order 2zk Note that the number of points in a plane of order 2ek is equal
to the number of points in one line of a plane of order 2z+l This is used for recursive
application of the algorithm.

Remark. The first author has suggested previously using projective planes as a con-
struction meeting some of the requirements of [7]. (See [9] for details.) As we shall
see, unlike the Byzantine case, for our purposes it is not essential that the size of the
committees be small (logarithmic in n).

Remark. The construction is an instance of graphs called dispersers that have many
other applications. (See [8] for an extensive survey of constructions and applications.)
There are several other constructions of dispersers that can be used for our purposes.

3.3. The construction. We are now ready to present the construction in detail. We
can assume without loss of generality that n is of the form 2j" otherwise, let n’
2eroo .a and make each of the n participants play the role of [- or .[’’,.q in a game of
n participants. The ratio of bad players has not increased by more than .

The scheme is as follows: form committees by treating each player a as a point a P
in the affine plane A (P, L) of order 2zj-1 Each committee corresponds to a line
e L, i.e., a player a is in committee t? if and only if a L

ROBUST COIN-FLIPPING GAMES 415

Set m threshold.
If n < m, then choose leader by baton passing. Otherwise,
(1) Construct committees via affine planes.
(2) g +-- first committee.
(3) Repeat

(a) Let g choose a leader recursively;
(b) Let the leader of g choose a committee g’ as yet unselected;
(c) e ,-- e’;

until there are no unselected committees.
(4) The leader of the last chosen committee e is crowned as the leader of all

players.
The value of threshold is a function of e. We let it be the smallest number of the form

10022., where r is an integer, such that 22* > () (Note that for this choice ()100
_<
Observe that the total amount ofwork done by each player is polynomial in n, since

at each stage of the recursion every two players are together in exactly one committee.
The next theorem implies that no set smaller than some linear threshold can control

the leadership.
THEOREM 3.4. There are #, c > 0 such that V0 < e < # the protocol specified above

with an appropriately chosen threshold (as a function of) is ce robust against en cheaters.
To prove this theorem we need the following two lemmas.
LEMMA 3.5. Suppose that ourprocedure has the property that with 22k partici-

pants, for every set of (e + 6)x/- badparticipants, theprobability that a bad leader is elected
22k+is at most f f(e +). Thenfor n participants, for every set ofn badparticipants

theprobability that one ofthe badparticipants is elected is at most

(15) 8(t log2(t + 1))13,,
(8 ._l_ 1)1_f -+’f,

where s + t + 1 n and t L(/- + 2)J.
Proof. Call a committee good if it has at most (e +)v/- bad participants and bad

otherwise. By Corollary 3.3 there are at most t (x/ + 2) bad committees.
To compute a lower bound on the probability that the last committee is good we

can use the analysis of Lemma 3.1 of the faulty baton-passing game: assume that a bad
committee is completely bad and that a good committee has probability f to elect a
bad leader (i.e., to turn bad). These assumptions clearly only increase the probability
of ending in a bad committee. Thus by Lemma 3.1 the probability of ending in a bad
committee is at most

8(t log2 (t + 1))
(8+1)1-/’

Ifwe end in a good committee, then by the hypothesis the conditional probability to end
in a bad leader is at most f. Hence the result.

LEMMA 3.6. There are #, c > 0 such that 0 < < p, 0 < k when the protocol
is executed with Mk m2 players and threshold m chosen as the smallest number of the

1 100,form 22* which is bigger than (-g) for any set of at most ek Mk bad players, Pk; the

probability that a bad leader is elected is at most fk. Here and
kfk ce + ’]i=1 (1/m’3) 2’.

416 NOGAALON AND MONI NAOR

Proof. Apply induction on k. In case k 0 the protocol degenerates to (nonfaulty)
J (1/m0"01baton passing with e0 bad players, e0 e+ Y]i=0) _< 3e. Choose # to be small

enough so that # _< 1/(1800 log(l/#)). Thus, from the analysis of baton passing in [1],
there exists a positive c such that if 3em _< m/3 log m, then the probability of electing a
faulty player is at most c. e f0. Since # satisfies # < 1/(1800 log(l/#)), the condition
above holds, by the choice of m.

Assume that the statement of the lemma holds up to k; we will show that it holds for
k+ 1. Given Mk+l players with at most ek+l fraction ofbad ones, define 5 ek --ek+l
(1/Mk)’. By the induction hypothesis and the previous lemma, the probability of
electing a bad leader when executing the protocol with Mk+ players of whom at most

ek+ fraction are bad is at most

8(t logz(t + 1))
p <_f+

(8 + 1)1-y

where s + t + 1 Mk+l and t ’ (v/Mk+I 2) 6 is as[+ where above. Therefore,

___[k-]-X 2) --f.kh-1 (v/Mk-t-x -1-"2 (w/Mk’k-1 + J < (Mkk-1)0"0l 2) (Mkq_l)

k 2Note that fk ce +]i=0(1/m’3) < 3ec. We choose # small enough so that 3ec <
3#c < i-0" Thus we get that

8(t logz(t + 1)) -’ 16((Mk+x) } log Mk+l) -’}+
+

16((Mk+l)|ogMk+l)- (1 }0.0a f+l.<_ fk + (Mk+l)0.99
<__ fk + Mk+l

Theorem 3.4 now follows, since by the last lemma, pj, the probability that a bad
leader is elected when the protocol is executed with n m2 players,

ej =e-+- E m0.01

fraction of whom are bad, is at most fj < 3ce. Thus this probability is certainly at most
3ce if the fraction of bad players is only e.

Observe that by adjusting the constant c in this theorem so that it would be bigger
than 1/# we can allow e to be any positive real smaller than 1. We thus have the following.

COROLLARY 3.7. There is a positive constant c such that for every 0 < < 1 our
protocol with an appropriately chosen threshold (as a function of
cheaters.

Remark. We chose to end the recursion by the baton-passing game. Alternatively,
we could have ended when the size of the committee is small enough, say log log log n:
for each possible protocol for that size of the type considered in 2 and of depth, say,
100 log log log n an equal number of committees can be allocated that will elect its leader
accordingly. By the analysis of 2 most protocols are good, and thus most good commit-
tees will elect a good leader.

there is a 6 < 1Remark. As already mentioned we suspect that for every
such that for every n there are coin-flipping and leader-election games that are &robust

ROBUST COIN-FLIPPING GAMES 417

there is such a 6.) Itagainst en cheaters. (The results of 2 show that for every e <
is obvious that the validity of the above statement for leader-election games implies its
validity for coin-flipping games. The converse is not obvious, but is true. Combining
our technique with some of the ideas of [13] concerning slightly random sources, we can
prove the equivalence of these two statements. The details will appear somewhere else.

Note added in proof. R. B. Boppana and B. O. Narayanan (The biased coinproblem,
to appear) have recently extended the main result of [4]. Combining their technique
with our method here it is possible to settle the question mentioned in the last remark
and show that indeed for every < 1/2 there is a 6 < 1 such that for every n there are
coin-flipping and leader-election games that are 6-robust against en cheaters.

REFERENCES

[1] M. AJTAI AND N. LINIAL, The influence oflarge coalitions, IBM Res. Report 7133 (67380), Almaden, CA,
November 1989.

[2] N. ALON, Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory, Combinatorica, 6
(1986), pp. 207-219.

[3 N. ALONAND Z. FOREDI, Legitimate colorings ofprojectiveplanes, Graphs Combin., 5 (1989), pp. 95-106.
[4] N. ALON AND M. O. RABIN, Biased coins and randomized algorithms, in Advances in Computing Re-

search, Silvio Micali, ed., Vol. 5, JmI Press, Greenwich, CT, 1989, pp. 499-507.
[5] M. BEN-ORAND N. LINIAL, Collective coin flipping, robust voting schemes and minima ofBanzhafvalues,

Proc. 26th IEEE Symposium on Foundations of Computer Science, Washington, D.C., 1985, pp.
408-416.

[6] M. BEN-OR, N. LINIAL, AND M. SAKS, Collective coin-flipping and other models ofimperfect information,
Coll. Math. Soc. Jinos Bolyai, 52 (1987), pp. 75-112.

[7] G. BRACHA, An O(log n) expected rounds randomized Byzantine generals protocol, J. Assoc. Comput.
Mach., 34 (1987), pp. 910--920.

[8] A. COHENAND A. WIGDERSON, Multigraph amplification, to appear.
[9] B. CHOR AND C. DWORK, Randomization in Byzantine Agreement, in Advances in Computing Research,

Silvio Micali, ed., Vol. 5, JAI Press, Greenwich, CT, 1989.
[10] R.L. GRAHAM AND A. C. YAO, On the improbability ofreaching Byzantine agreements, Proc. of the 21st

ACM Symposium on Theory of Computing, Seattle, WA, 1989, pp. 467-478.
[11] J. KAHN, G. KALAI, AND N. LINIAL, The influence of variables on boolean functions, Proc. 29th IEEE

Symposium on Foundations of Computer Science, 1988, Washington, D.C., pp. 68-80.
12] M. SAKS,A robustnon-cryptographicprotocolforcollective coin-flipping, SIAM J. Discrete Math., 2 (1989),

pp. 240-244.
[13] U.V. VAZIRANIAND V. V. VAZIRANI, Randompolynomial time is equal to slightly randompolynomial time,

Proc. 26th IEEE Symposium on Foundations of Computer Science, 1985, Washington, D.C., pp.
417-428.

SIAM J. COMPUT.
Vol. 22, No. 2, pp. 418-429, April 1993

1993 Society for Industrial and Applied Mathematics
015

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS*
HERBERT EDELSBRUNNERt, RAIMUND SEIDEL*, AND MICHA SHARIR

Abstract. The zone theorem for an arrangement of n hyperplanes in d-dimensional real space says that
the total number of faces bounding the cells intersected by another hyperplane is O(nd- 1). This result is the
basis of a time-optimal incremental algorithm that constructs a hyperplane arrangement and has a host ofother
algorithmic and combinatorial applications. Unfortunately, the original proof of the zone theorem, for d > 3,
turned out to contain a serious and irreparable error. This paper presents a new proof of the theorem. The
proof is based on an inductive argument, which also applies in the case of pseudohyperplane arrangements.
The fallacies of the old proof along with some ways of partially saving that approach are briefly discussed.

Key words, discrete and computational geometry, arrangements, hyperplanes, zones, counting faces, in-
duction, sweep

AMS(MOS) subject classification. 52B30

1. Introduction. A set H of n hyperplanes in d-dimensional space l:ta decomposes
l:ta into open cells of dimension d (also called d-faces) and into relatively open faces of
dimension k between 0 and d 1. These cells and faces define a cell complex which is
commonly known as the arrangement A(H) of H. We define the complexity ofa cell in
A(H) to be the number of faces that are contained in the closure of the cell.

For a hyperplane b (not necessarily in H) the zone of b is defined to be the set of
all cells in ,A(H) that intersect b. Define the complexity of a zone to be the sum of the
complexities of the cells in the zone. A fundamental result on hyperplane arrangements
is presented in the following theorem.

ZONE THEOREM.Any zone in any arrangement ofn hyperplanes in Ra has complexity
O(nd-1).

Various algorithmic and combinatorial applications of this theorem appear through-
out the computational and combinatorial geometry literature [5]. For the case d 2 a
number of different and fairly straightforward proofs are known, following paradigms
such as induction [5]; sweep [3], [11]; tree construction [8]; and Davenport-Schinzel se-
quences [9]. Only the sweep proof was extended to three and higher dimensions. How-
ever, this generalization turned out to be too sweeping. The authors of this paper dis-
covered an irreparable error in that proof, which left the zone theorem unproven for
dimensions d > 2.

This paper presents a new proof of the general zone theorem. It is based on a rel-
atively straightforward inductive argument whose simplicity fosters confidence that this
time the proof is actually correct. The new proof does not exploit the "straightness" of
hyperplanes and thus it applies also to arrangements of pseudohyperplanes [4]. The va-
lidity of the zone theorem for such arrangements had been considered an open question.

Received by the editors January 28, 1991; accepted for publication (in revised form) January 10, 1992.
tDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois

61801. The research of this author was supported by the National Science Foundation under grant CCR-89-
21421.

*Department of Electrical Engineering and Computer Science, University of California, Berkeley, Cali-
fornia 94720. The research of this author was supported by National Science Foundation Presidential Young
Investigator grant CCR-90-58440.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and the Courant Insti-
tute of Mathematical Sciences, New York University, New York 10012. The research of this author has been
supported by Office of Naval Research grant N00014-90-J-1284, by National Science Foundation grant CCR-
89-01484, an by grants from the United States-Israeli Binational Science Foundation, the German-Israel
Foundation f6r Scientific Research and Development, and the Fund for Basic Research of the Israeli Academy
of Sciences.

418

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 419

Section 2 contains the new proof. Explanations of why the old sweep-based proof
fails and of how it can be partially saved are presented in the appendix.

A few bibliographical remarks: After the incorrectness of the old sweep proof of the
zone theorem was announced, we soon learned of two partial proofs of the theorem, one
by Houle [13] dating back to 1987, and the other by Matouek [15]. They showed that
the zone theorem is correct if the complexity of a cell is defined to be just the number of
its facets, i.e., the number of (d- 1)-dimensional faces contained in the cell’s boundary.
In the terminology of the following section, they showed that zl (n, d) O(na-). In-
terestingly, Houle and Matouek’s proofs methods are virtually identical, and in essence
are also the same as the saved version of the sweep proof presented in the appendix.
Attempts to adapt this proof method to the general zone theorem have failed so far.

2. The new proof. For a d-polyhedron P let gk(P) denote the number of faces of P
ofcodimension k (i.e., dimension d- k). For a hyperplane b and a set of hyperplanes H in
Ra, let Zone(b; H) denote the set of cells in the arrangement A(H) that intersect b, and
for 0 < k < d let zk(b; H) denote CZonc(b;n) g(C), where (7 denotes the topological
closure of (7. Finally, for n > 0, d > 0, and 0 < k < d, let z (n, d) denote the maximum
of z(b; H) over all hyperplanes b and all sets H of rt hyperplanes in Ra. Our goal is to
prove the following.

THEOREM 2.1. z(n, d) O(na-) for each d > 0 and 0 < k < & In particular, for
all n > O, d > O, and 0 < k < d, we have

zk(n,d) < ck k d- 1 +
k<_j<d-1

where co 1, and ck a
3- (6k + 2k) for k > O.

As will be explained in 3, the constant can be slightly improved to ck 6k + -} 2k.
First note that, for any fixed k, zk(b; H) achieves its maximum when b and H are

in generic position, i.e., every k hyperplanes in H t2 {b} intersect in a (d k)-flat, for
1 < k _< d+ 1. This can be proved using a standard perturbation argument: translating b
slightly can only enlarge Zone(b; H) and displacing a hyperplane ofH by a small amount
can only increase the complexities of the cells in Zone(b; H) through vertex truncation
or the actions dual to vertex pulling or pushing (see [12, pp. 78-83]).

Next note that Theorem 2.1 does not state an explicit upper bound for the num-
ber of vertices in a zone. However, it is easily seen that in the generic case zd(b; H) <_
-Zd- (b; H) holds, since in the generic (i.e., simple) case every vertex of a d-polyhedron
P is incident to d edges, and each edge ofP is incident to at most two vertices. Therefore
we obtain from Theorem 2.1 the bound

za(n,d)_< Za-l (n, d) _< ca-1 d-1

The most important ingredient for our proof of Theorem 2.1 is the following lemma.
LEMMA 2.2. For all d > 1, 0 <_ k < d, and n > k we have

(1) zk(n,d) <
n

n- k (zk(n- 1, d)+ zk(n- 1, d- 1)).

Proof. Let H be a set of n hyperplanes in Rd, and let b be some other hyperplane.
Because of the remarks above we assume that the hyperplanes in H t {b} are in generic
position. A face f in A(H) of codimension k now lies in exactly k hyperplanes of H

420 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

and is part of the boundary of 2 cells of A(H). More than one of these cells can lie in
Zone(b; H), and thus the contribution of the face f to z(b; H) can be larger than one.
In order to have entities that contribute at most one to the count z(b; H), we define
a border of codimension k to be a pair (f, C), where f is a face of codimension k in
A(H) and C is a cell that has f on its boundary. Thus z(b; H) counts all borders of
codimension k in Zone(b; H), i.e., borders (f, (7) for which C is in Zone(b; H).

Now let h be some hyperplane in H, and let H/h be {j fq hlj E H\{h}}. Note that
H/h forms a (d- 1)-dimensional arrangement ofn- 1 "hyperplanes" within h. Consider
the expression

zk(b; H\{h}) + zk(b fq h; H/h).

We claim that it is at least as large as the number of borders (f, C) of codimension k in
Zone(b; H), for which f is not contained in h. Note that every such border is equal to
or contained in a border in Zone(b; H\{h}). Our strategy is thus to consider borders in
this latter zone, and analyze what happens to them when h is added back to H. So let
(f, C) be a border of codimension k in Zone(b; H\{h}).

Case 1. hAC q. The border (f, C) gives rise to exactly one border of codimension
k in Zone(b; H), namely, itself.

Case 2. h C : but h f }. Let hI be the (open) halfspace bounded by h that
contains f, and let C’ (7 fq hI. If C’ intersects the base hyperplane b, then (f, (7) gives
rise to one border of codimension k in Zone(b; H), namely, (f, C’); otherwise it gives
rise to no border in Zone(b; H).

Case 3. h C and h fq f }. Let h’ and h/’ be the two open halfspaces bounded
by h and let C’ C q h’ and C" C N h". If only one of C’ and C" intersect b
(say, C’), then (f, C) gives rise to one border of codimension k in Zone(b; H), namely,
(f h’, C’). However, if both C’ and C" intersect b, then (f, C) gives rise to two borders
in Zone(b; H), namely, (f fq h’, C’) and (f fq h", C"). But in that case C f3 h is part of
Zone(b fq h; H/h) and (f fq h, C fq h) is a border of codimension k in Zone(b fq H; H/h).
(Note that, in generic position, the border (f h, (7 h) uniquely determines the border
(f,C).)

Since all borders (f, C) of codimension k in Zone(b; H) for which f is not contained
in h must arise as described in the three cases, it follows that the number of such borders
is at most zk(b; H\{h}) + z(bh; H/h), as claimed. But from this we can conclude that

(n k)zk(b; H) < (zk(b; H\{h}) + zk(b fq h; H/h)),
hH

since every border (f, C) of codimension k in Zone(b; H) is counted in the sum n k
times, once for each hyperplane h that does not contain f. From this last inequality the
statement of the lemma follows immediately. U

The recurrence of Lemma 2.2 is a bit unwieldy. However, it becomes more manage-
able by putting zk(n, d) ()wk(n, d), for n _> k, which transforms the recurrence (1)
into

Wk (n, d) <_ wk (n 1, d) + wk (n 1, d 1),

for all d > 1, 0 < k < d, and n > k. By iterating this new recurrence on the first
summand one obtains

(2) wk(n, d) < wk(k, d) + wk(m, d- 1),
k<_m<n

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 421

valid again for all d > 1, 0 < k < d, and n > k.
Proving the asymptotic version of Theorem 2.1 is now an easy induction on d. The

base case z(n, 2) O(n) for k 0, 1, 2 is proved separately using any one of the proofs
offered in [3], [5], [8], [9] (or also in Lemma 2.3).

Now let d > 2 and assume inductively that zk(m, d- 1) O(ma-2), for all k < d- 1
(where the constant of proportionality depends on k and d). Then wk(m, d 1)
O(md-2-k), and thus by (2)

wk(n, d) wk(k, a) + Z O(md-2-k)’
k<_m<n

which implies wk (n, d) O(nd--k), thereby showing that zk (n, d) O(nd-), pro-
vided k <_ d 2. When k d 1 this approach yields only an O(nd- log n) bound.
However, one can now establish the desired zk(n, d) O(nd-) for k d- 1 and
k d as follows: Euler’s relation states that for any cell C in an arrangement the sum
,O<k<d(--1)d-kgk() evaluates to 0 or 1, depending on whether C is bounded (see [12,
pp. 130-140]). Thus it follows that in Rd for any set H of n >_ d hyperplanes and any
hyperplane b in generic position

Z (--1)d-kzk(b; H) > O.
0<k<d

Recalling that zd(b; H) < -Zd-l(b; H), we obtain the relation

(3) (1-) Zd_l(b;H) < Zd_l(b;H) zd(b;H) < Z (--1)d-kzk(b;H)"
0<k<d-2

But as d > 2 and we have proven already that zk(b; H) < zk(n, d) O(nd-) for 0 <
k < d- 2, and since zd(b; H) < -Zd- (b; H), relation (3) yields that zk(b; H) O(nd-)
holds for all k. As this is true for any H and b in generic position and since it suffices to
consider only generic position we can conclude that z(n, d) O(nd-l) for 0 < k < d.
This completes the proof of the asymptotic version of Theorem 2.1.

The proof for the more exact, nonasymptotic version follows the same inductive
scheme, except that we will use a slightly different method for dealing with the case
k > d 2. First we need a few small lemmas. Recall that when arguing about zk(n, d)
we need only to consider simple arrangements with the zone-producing hyperplane b in
generic position.

LEMMA 2.3. z (n, 2) _< 6n.

Proof. Ofcourse this is just the Zone Theorem for arrangements of lines in the plane,
and we could refer to a number of different proofs ([3], [5], [8], [9]; in fact, [3] gives a
slightly better boundsee 3). For the sake of completeness, however, we include here
yet a different proof.

Let H be a set of n lines in the plane, and let b be some other line. Without loss
of generality we assume that H t_J {b} is in generic position (no three lines intersect, but
every two do), and we assume that b is "horizontal." We need to show that the sum of
the edges of the cells in Zone(b; H) is at most 6n.

Since no line in H is parallel to the horizontal line b, it makes sense to talk about
the left bounding edges and the right bounding edges of a cell. It suffices to show that
the total number of all left bounding edges of the cells in Zone(b; H) is at most 3n.
This is clearly true when H is empty. So let h be the line in H that intersects b fur-
thest to the right. By induction the total number of left bounding edges of the cells in

422 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

Zone(b; H\{h}) is at most 3n 3. The addition of h to the arrangement formed by
H\{h} can increase this number at most by 3.]

LEMMA 2.4. Forany set H ofn hyperplanes and any hyperplane b in genecposition in
Ra with d > 2 we have

za-(b;H)>2d-3 (d-l)(d :1) +2a-z(d-2) (d n2)3 2 1

Proof. Assuming generic position of a set H of n hyperplanes and an additional hy-
perplane b, every 2-face in the (d- 1)-dimensional arrangement induced byH in b derives
from a 3-face in A(H) that is in the boundary of 2a-a cells of A(H), all of which are in
Zone(b; H). It now suffices to observe that in a simple (d- 1)-dimensional arrangement
of n hyperplanes the number of 2-faces is

(d-l-i)(d nl i) > (d-1)(dnl)+ (d-2)(dn2)
o<i<2

2- i 2 1

(see [6, p. 7]). D
LEMMA 2.5. For all d > 2 andfor all n > d 1 we have

(d-l) zd-2 -1)(d 1) + (d-2)]"2
Zd-l(rl,,d) < 3(d-2) (n,d)-.62d-3 I(d 2 -n (d-2)nl

Proof. Lemma 2.4 implies that it suffices to show the validity of the inequality

(d 1) (b; H) < 3(d 2)Zd-2(b; H) 6Zd-3(b; H)
2 Zd-

for any set H of n hyperplanes in Rd and any hyperplane b in generic position (recall
that it suffices to consider only generic position).

Since in a simple arrangement of n > d 1 hyperplanes in Rd every face is pointed
(i.e., has a vertex) it suffices to show that for any pointed simple d-polyhedron P with
d > 2, the inequality (dl)fl < 3(d- 2)f2 6f3 holds, where f/= 9d-i is the number
of/-dimensional faces of P.

Let F3 be the set of three-dimensional faces of P, and for a 3-face c E F3 let e(c)
denote the number of edges of c and let s(c) denote the number of 2-faces of c. For
j 1, 2 let Ij,a denote the number of pairs (X, Y) so that Y is a 3-face of P, and X is a
j-face of Y.

Because of the simplicity of P every 1-face is contained in (a) faces of dimension
3, and thus I, (a-)f. Similarly I2, (d- 2)fz. On the other hand I,3 can
also be expressed asa e(c), and I2, as -a s(c). Euler’s relation in any three-
dimensional pointed polyhedron with e edges and s facets implies the inequality e <
38 6. Hence,

2 fl Z e(c) < (3s(c) 6) 3/2,3 6f3 3(d 2)f2 6f3,
cFa cF

as asserted.
We now have everything ready to give a complete inductive proof of our main The-

orem 2.1, which claims that for each d > 0 the following holds for all n > 0 and for each
0<k<d:

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 423

(d-l)(n) 2k ()(.)(4) zk(n, d) <_ Zk(n, d) =_ ck k d 1 +
k<_j<d-1

where co 1, andck (6k+2k) fork > 0. Fork > l it is easy to check that
ck 6(Ck- 2-2) with Cl 6.

We first dispose of a few easy cases. The bound (4) is trivially correctwhen d 1. So
assume d > 1 and consider n < k < d. In this case the bound Zk (n, d) in (4) evaluates
to 0, which is correct since there cannot be any face with codimension k when there are
fewer than k hyperplanes.

Finally we can dispose of the case n k < d since in an arrangement of k < d
hyperplanes in generic position there is exactly one face of codimension k and it is in the
boundary of 2k cells, all ofwhich are intersected by the zone hyperplane. Thus zk(k, d)
2k < Zk(k, d), as desired. From now on we will thus assume that d > i and n > k.

Applying the binomial product identity (BA) (aC) (BC) (AC-BB) to each term on the
right side of (4), and using the substitution zk(n, d) (’)wk(n, d) as before, we can
rewrite (4) equivalently as

n-k) 2kwk(n, d) <_ Wk(n, d) =_ ck d- 1- k +

We can now prove the bounds (4) by induction on d. For the base case d 2 Lemma
2.3 implies that indeed zl(n, 2) < 6n Z1 (n, d); the fact that zo(n, d) < n+1 Z0(n, d)
is trivial.

Now let d > 2 and assume inductively that for 0 < k < d 1 and for all m >
k the bounds zk(m, d- 1) < Zk(m, d- 1) and therefore also the equivalent bounds
wk(m, d- 1) < Wk(m, d- 1) hold.

Recall that for 0 _< k < d, and n > k Lemma 2.2 implies the inequality (2)

Wk(n, d) < wk(k, d) + wk,(m, d 1).

Clearly wk(k, d) zk(k, d) and hence wk(k, d) 2k. Thus employing our inductive
assumption and exploiting the binomial identities (0A) 1 and -]0_<,<a () (BI) if
B > 0, we obtain

wk(n, d) <_ 2k +

=2k+

Wk(m,d-1)

k<_m<n k<_j<d-2

"--2k-t Ck d-l-k + -" j+l-k
k<_j<d-2

n-k) 2k=Ck d- 1-k + (-kk) =Wk(n,d),
k<_j<d-1

as desired.

424 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

Thus we have established for all n > k the desired wk (n, d) < Wk (n, d) and equiva-
lently z(n, d) < Z(n, d)--however, only for 0 < k < d- 1. For k d- 1 our inductive
assumption does not hold.

To prove the desired bound for k d- 1 we proceed as follows. We need only
consider the case n > k d 1. We just proved that

Zd_2(n,d) Zd_2(n,d)= Cd-2(d- 1)
d- 1 + d- 2

Plugging this in the inequali

1 [3(d_2)Zd_2(n,d) _6.2d_3(d--1)(n)Zd_(n,d) (dl) 2 d- 1

ofmma 2.5 yields the desired

[(d 1)(n)Zd-l(n, d) (a) 3(d- 2)Cd-2
d- 1 + 3(d- 2)2d-2

d- 2

n

=6(Cd-2--2d-3)(n =Cd-(n

This completes the induction on d and the proof of Theorem 2.1.

3. Remark. First let us point out that our proof of the zone theorem does not ex-
ploit the "straightness" ofhypewlanes per se, but only the restricted kinds of intersection
patterns that are possible amongst hypewlanes. Thus the proof applies equally well to
arrangements of pseudohypewlanes which can be modeled combinatorially by oriented
matroids (see [4]).

For the o-dimensional case Bern et al. [3] prove the slightly stronger bound of
z (n, 2) n, which is tight up to an additive constant in the worst case. Using this
bound as an induction basis in our proof yields a slightly better value for the constants
ck, namely, ck 6k + 2k for k > 0.

The definition of a zone that we use in this paper is slightly different from definitions
used before. We define Zone(b; H) to be the set of all cells in the arrangement A(H)
that intersect the hypewlane b, and the cells were defined to be open sets. Previously
the zone used to be defined as the set of all cells whose closure intersects b. t us call this
set Czone(b; H). Note that in degenerate cases Czone(b; H) can be substantially more
extensive than Zone(b, H). Nevertheless the O(nd-l) upper bound also applies to the
sum of the completies of the cells in Czone(b; H). This can most easily be seen by
obseing that Czone(b; H) Zone(b+; H) Zone(b-; H), where b+ and b- are o
hypewlanes parallel to b, one on each side of b and sufficiently close to b.

Deriving the exact value of zk(n, d) looks like a fairly challenging problem. For a
start, tight lower bounds on zk(n, 3) are desired.

Finally, we remark that the proof techniques of this paper, in particular mma 2.2,
bear some similari to the so-called combination lemma techniques; see [7], [10], [16].

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 425

It would be interesting to see to what extent it can be generalized and applied to re-
lated discrete geometry problems. Recent successful applications have been achieved
by Aronov et al. [1], who derive bounds on the sum of squares of cell complexities in a
hyperplane arrangement, by Aronov and Sharir [2], who prove bounds on the complexity
of the zone of a convex or fixed-degree algebraic hypersurface in a hyperplane arrange-
ment, and by Houle and Tokuyama [14], who give bounds on the complexity of the zone
of a flat in a hyperplane arrangement.

4. Appendix: Why the sweep proof fails in the general case and how it can be par-
tially saved. In this appendixwe first show what is wrong with the old sweep-based proof
of the zone theorem as presented in [11] or [6], and then we show how the sweep ap-
proach can be used to still prove the zone theorem in the three-dimensional case, and a
weak version of the theorem in the general d-dimensional case, which counts only facets.

Before we get to the details of the old proof let us change the problem slightly:
Firstly we rename the base plane b of the previous sections h, and secondly we could the
number of faces bounding the cells in A(H t3 {h}) that lie on one side of h and have a
facet in h. In the generic case (which we can again assume without loss of generality),
even ifwe ignored the faces contained in h, this number, for at least one side of h, would
be at least half the complexity of the zone of h in A(H) as defined in 1.

Choose a coordinate system so that h is the hyperplane za 0 and consider the
cells above h (in the half-space za > 0) that have a facet in h. Call these cells and their
faces active. As above, when we count the active faces we will count a face once for each
active cell it bounds. We therefore continue to use the notion of borders, and define
2a-k k-borders (f, C) for each k-face f, one for each cell C it bounds. Call a k-border
(f, C) active if and only if cell C is active.

4.1. The notion of a chain. The basic idea of the sweep proof is to move a hyper-
plane ht continuously over the active cells. Think of t _> 0 as the time and define
ht xd t. So h0 h and ht moves upwards as t increases. At any point in time t
the cross section of t 4(H) within ht is an arrangement defined by n hyperplanes in
Ra-1, which we denote as .At.

Let us index the vertices of A above h as vl, v2,..., v, and define points in time ui
so that vi h, for 1 _< i < m. We assume that 0 u0 < 21 (’/Z2 ((m (

um+l cx. Unless t u for some i, 4t is a simple arrangement. If t ui then
exactly d of the hyperplanes defining At meet in a common point, and otherwise the
hyperplanes are in a generic position. Let t and t be so that u_l < t < u < t < ui+l
for some 1 _< _< m and call the transition from .At to At, an elementary step. Ignoring the
positional differences ofthe hyperplanes in 4t and .At,, the only combinatorial difference
between the two arrangements is that a (d 1)-simplex in .At reverses its orientation in
4t,. This is illustrated in Fig. 4.1, which shows three cross sections of an arrangement of
three planes in R3.

Let hi, h2,..., ha be the hyperplanes (in Ra) that intersect at vi. The faces of A
that intersect ht are the same as the faces that intersect ht,, except for a group of faces
that have v as their topmost vertex (they intersect ht but not ht,) and another group of
faces that have v as their bottommost vertex (they intersect ht, but not ht). For each
1 < k < d, we identify a k-face f in the first group with a k-face fr in the second group if
f and f’ span the same k-fiat. Similarly, we identify the k-borders (f, C) and (f’, C’) if f
and f’ are identified and C and C’ lie on the same side of each hyperplane that contains
f and f’. The identification effectively defines equivalence classes of faces and borders.
We call an equivalence class of k-borders a k-chain, for 1 < k < d. For example, a

426 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

FIG. 4.1. The triangle defined by three lines (the cross sections of three planes) changes orientation as ht
sweeps through the vertex where the threeplanes meet.

1-chain is a sequence of 1-borders (sided edges) on a line, a 2-chain is a sequence of 2-
borders in a common 2-flat, and so on and so forth. Figure 4.1 shows the cross sections
of four 1-chains (the four-sided versions of a sequence of edges) and of two 2-chains in
a three-dimensional arrangement.

4.2. 2-chains do not necessarily die. The sweep proof of the zone theorem hinges
on the claim that whenever we sweep through an active vertex there is at least one chain
that dies. A chain is said to be dead at time t if it contains no further active borders,
that is, all borders of the chain that intersect some ht, with t’ > t are inactive. Since
the number of chains is O(na- 1), this claim implies the Zone Theorem. We show below
that, unfortunately, this claim is incorrect starting in dimension d 3.

For a vertex v call the cell for which v is the topmost vertex the cell below v, and
consider the three types of elementary steps shown in Fig. 4.2. In type 1 the 3-chain
whose first cell is the cell below v dies. Indeed, every 3-chain has only one active cell,
namely, its first cell. In type 2 the 1-chain labeled a dies. This is because all future
1-borders of this 1-chain lie on an edge of a triangular cone disjoint from h and their
associated cells lie inside this cone. We now demonstrate that in type 3 the 2-chain
labeled e does not die, contrary to the claim in [11].

\ /

type type 2 type 3

FIG. 4.2. We distinguish three types of elementary steps associated with a vertex v in a three-dimensional
arrangement. For each type the cross section ofthe active cell is shaded. In type 1 the cell below v is active, in type
2 the cell below v shares an edge with the active cell, and in type 3 the cell below v shares a 2-face with the active
cell. Elementary steps where more than one cell bounded by v are active are decomposed into instances ofthe three
basic types.

The example that we use consists of four planes, hi, h2, h3, ha. We choose hi 371
0, h2 z2 0, and h3 :1 +x2 +:3 1. Now choose ha so that it meets the line hfqh3 at
a point with negative x2-coordinate and so that the central triangle (the 2-face that lies
in h3 and in front of h, hi, and h) lies just slightly behind ha. In Fig. 4.3 only the lines of
intersection of ha with h and h3 are shown. Of the three shaded 2-borders, which belong
to a 2-chain, the first and the third are active and the middle one is inactive. Indeed, the

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 427

middle 2-border is within the dead cone defined by hi, hz, ha, but the third 2-border is
not. When we sweep through vertex v h N h2 f3 ha we have type 3 as shown in Fig.
4.2, but the 2-chain labeled e does not die.

FIG. 4.3. The shaded 2-borders (theyface the observer) belong to a 2-chain. Thefirst and the third 2-borders
are active, the middle one is inactive.

4.3. Fixing the sweep proofin three dimensions. In spite of the fact that in type 3 no
chain dies we can still argue that the zone theorem is correct for d 3 using the sweep
approach and the type classification illustrated in Fig. 4.2. The reason is that 1-chains
still die and 2-chains are linked to 1-chains in elementary steps of the sweep.

At time t O. to is a two-dimensional arrangement defined by n lines. Because
we assume generic position it consists of uo () vertices, e0 n edges, and 4o
() + n + 1 Z-faces (see, e.g., [6, p. 7]). So we have 4uo 1-borders each starting a a-chain,
2eo 2-borders each starting a 2-chain, and bo cells each starting a 3-chain. All these
1-borders, 2-borders, and cells are active.

Type 1. Recall that in this case the cell below the vertex v that is swept over is active.
The corresponding 3-chain dies. So type 1 can occur at most b0 times. Indeed, it occurs
exactly once for each bounded Z-face in 40 and therefore exactly 71 b0 2n ()
n/1 times. Each time an elementary step is of type 1 we encounter a new active 0-border,
and, respectively, three active 1-borders and 2-borders no longer intersect hr.

Type 2. Here, the cell below v shares an edge with the active cell. One 1-chain on the
corresponding line dies and a new active 2-border is encountered. Since there are only
4u0 1-chains, this type can occur only "), < 4u0 times. Besides the new active 2-border
we also encounter two new active 1-borders and one new 0-border at v.

Type 3. Here, the cell below v shares a 2-face with the active cell. The number of
active 2-borders that intersect ht decreases by one. Type 3 thus occurs % < 2e0 / ’371 < 2n2 + (g) + 3n 3 times because there are 2e0 active 2-borders initially, we get
one more at each occurrence of type 2, and 371 2-faces disappear in elementary steps of
type 1. Notice that we encounter one new active 1-border and one new active 0-border.

428 HERBERT EDELSBRUNNER, RAIMUND SEIDEL, AND MICHA SHARIR

We count the active borders when they are encountered by hr. Initially, we have 4vo
0-borders, 2co 1-borders, and o 2-borders, all active and all in h. We also have 4vo 1-
chains each starting with an active 1-border, and 2co 2-chains each starting with an active
2-border. So we get

4vo+71+72+T3<4()+()-n+i+4()+2n2+()+3n-3=Tn2+O(n)
active 0-borders,

+

active 1-borders, and

0 + 2e0 + 72 + n + 1 + 2n2 + 4 + O(n)

active 2-borders. This proves the zone theorem for d 3.
What kind of upper bounds does this yield for zk(n, 3)? Note that here we are

counting the borders just on one side of the plane h, but we include the borders con-
tained in h. Thus to get good bounds for zk(n, 3) from the above bounds, we need to
subtract the borders contained in h, multiply by o, and subtract the borders that in-
tersect h. Doing this yields the bounds z (n, 3) 6n + O(n), z2(n, 3) 15n2 + O(n),
and z3(n, 3) 10n + O(n). Note that the coefficients of the n2 terms agree with the
corresponding coefficients of Theorem 2.1 as proved in 2. Thus, with the improved
coefficients mentioned in 3, we have better bounds than those derived above.

4.4. The sweep proof for facets. The of the sweep proof described in 4.3 does
not extend beyond three dimensions. For example, in dimension d 4 the sweep links
1-chains with 3-chains and 2-chains with other 2-chains. Since 1-chains still die we can
bound the number of active 3-borders, but currentlywe are not able to bound the number
of active k-borders, k 2, using the sweep approach. Below we show how to bound the
number of active (d 1)-borders for arbitra dimension d.

As before, let H be a set of n hyperplanes in generic position and let h H be the
d-1hyperplane Xd 0. There are i=0 () active (d- 1)-borders in h, and initially, there

d-1are 2 i=1 i() (d- 1)-chains, each starting with an active (d- 1)-border. We encounter
a new active (d 1)-border at an elementa step if and only if it is of the pe that the
cell below the passed vertex shares (only) an edge with the active cell. However, in this
case a 1-chain on the shared edge dies. So this pe of elementa step can occur at most
2d- (d1) times, once for each 1-chain. It follows that there are at most

d-1 d-1

d-1
=(+2d-l)

d-1
+O(nd-

i=o i=1

active (d- 1)-borders.
The bound given here implies the bound z(n,d) <_ (2d 4- 2d- 2) (dn_l) 4- O(nd-2),

which in terms of its leading coefficient is substantially worse than the bound for z (n, d)
given in Theorem 2.1.

ON THE ZONE THEOREM FOR HYPERPLANE ARRANGEMENTS 429

REFERENCES

1] B. ARONOV, J. 1VIATOUEK, AND M. SHARIR, On the sum ofsquares of cell complexities in hyperplane ar-
rangements, in Proceedings of the 7th ACM Symposium on Computational Geometry, Association
for Computing Machinery, New York, 1991, pp. 307-313.

[2] B. ARONOV AND M. SHARIR, On the zone of a surface in a hyperplane arrangement, in Proceedings of
the 2nd Workshop on Algorithms and Data Structures, 1991, pp. 13-19; Springer-Verlag, Lecture
Notes in Computer Science 519, Berlin, New York, 1991.

[3] M. BERN, D. EPPSTEIN, P. PLASSMANN,AND F. YAO, Horizon theoremsfor lines andpolygons, Discrete and
Computational Geometry: Papers from the DIMACS Special Year, J. Goodman, R. Pollack and
W. Steiger, eds., American Mathematical Society, Providence, RI, to appear.

[4] A. BJORNER, M. LAS VERGNAS, B. STURMFELS, N. WHITE, AND G. ZIEGLER, Oriented Matroids, in prepa-
ration.

[5] B. CHAZELLE, L. J. GUIBAS, AND D. T. LEE, Thepower ofgeometc duality, BIT, 25 (1985), pp. 76-90.
[6] H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, Germany,

1987.
[7] , The upper envelope ofpiecewise linearfunctions: Tight bounds on the number offaces, Discrete

Comput. Geom., 4 (1989), pp. 337-343.
[8] H. EDELSBRUNNERAND L. J. GUIBAS, Topologically sweeping an arrangement, J. Comput. System Sci., 38

(1989), pp. 165-194.
[9] H. EDELSBRUNrER, L. J. GUIBAS, J. PACH, R. POLLACI, R. SEIDEL, AND M. SHARIR, Arrangements of

curves in theplane: Topology, combinatorics and algorithms, in Proceedings of the 15th International
Colloquium on Automata, Languages and Programming, 1988, pp. 214-229.

[10] H. EDELSBRUNNER, L. J. GUIBAS, AND M. SHARIR, The complexity and construction ofmanyfaces in an
arrangement oflines or ofsegments, Discrete Comput. Geom., 5 (1990), pp. 161-196.

[11] H. EDELSBRUrNER, J. O’ROURKE,AND R. SEIDEL, Constructing arrangements oflines and hyperplanes with
applications, SIAM J. Comput., 15 (1986), pp. 341-363.

[12] B. GRONBAUM, Convex Polytopes, John Wiley & Sons, London, 1967.
[13] M. HOULE,A note on hyperplane arrangements, University of Tokyo, Tokyo, Japan, 1987, manuscript.
[14] M. HOULE AND T. TOKUYAMA, On zones offlats in hyperplane arrangements, University of Tokyo, Tokyo,

Japan, 1991, manuscript.
[15] J. MATOUEK,A simpleproofofthe weakzone theorem, Charles University, Prague, Czechoslovakia, 1990,

manuscript.
[16] J. PACH AND M. SHARIR, The upper envelope ofpiecewise linear functions and the boundary of a region

enclosed by convexplates: Combinatorial analysis, Discrete Comput. Geom., 4 (1989), pp. 291-309.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 431-459, June 1993

() 1993 Society for Industrial and Applied Mathematics
001

LINEAR-PROCESSOR NC ALGORITHMS FOR PLANAR DIRECTED GRAPHS I:
STRONGLY CONNECTED COMPONENTS*

MING-ANG KAO

Abstract. Finding strongly connected components is a fundamental step in many algorithms for directed
graphs. In sequential computation this problem has an optimal linear-time algorithm. In parallel computation,
however, it remains an open problem whether polylogarithmic time and a linear number of processors are
sufficient for computing the strongly connected components on a parallel random-access machine. This paper
provides the first nontrivial partial solution to the open problem: for a planar directed graph of size the
strongly connected components can be computed deterministically in O(log3 n) time with n/log n processors.
The algorithm runs on a parallel random-access machine that allows concurrent reads and concurrent writes
in its shared memory and, in case of a write conflict, permits an arbitrary processor to succeed.

Key words, linear-processor NC algorithms, strongly connected components, planar directed graphs, pla-
nar orientation, planar topology, edge cutting, vertex expansion, vertex contraction

AMS(MOS) subject classifications. 68Q22, 05C99

1. Introduction. A directed graph is strongly connected if for all vertices u and v
there exists a pair of directed paths from u to v and from v to u. A strongly connected
component in a directed graph is a maximal strongly connected subgraph. The problem
of finding strongly connected components is offundamental importance in graph theory.
In sequential computation this problem has optimal linear-time algorithms [2], [9]. In
parallel computation on parallel random-access machines (PRAMs) the best current
algorithm is based on matrix multiplication and for an n-vertex graph requires O(log2 n)
time if n2’36 processors are used [7], [11], [16].

The total number of operations performed by an algorithm can be estimated from
the product of its running time and its processor count. Thus there is a substantial com-
plexity gapbetween the optimal sequential algorithms and the best current PRAM al-
gorithm for strongly connected components. In view of this gap it is important to ask
whether polylogarithmic time and a linear number of processors are sufficient for com-
puting strongly connected components. This paper provides the first nontrivial partial
solution to this open problem: for a planar directed graph of size n the strongly con-
nected components can be computed deterministically in O(loga n) time with n/log n
processors. The algorithm runs on a PRAM that allows arbitrary concurrent reads and
concurrent writes (CRCWs) in its shared memory and, in case of a write conflict, permits
an arbitrary processor to succeed.

A natural approach to computing strongly connected components is to iteratively
contract directed cycles into single vertices. At the end of this contraction process the
strongly connected components become single vertices. Then the strongly connected
components are obtained by undoing the contractions and expanding each single vertex
back to an original strongly connected component.

For this contraction process to be efficient it is necessary to find directed cycles ef-
ficiently. Unfortunately, it is in general very expensive to find directed cycles. In this

Received by the editors January 24, 1990; accepted for publication (in revised form) February 26, 1992.
An outline of this work appeared as one of the two parts of Local Reorientation, Global Order, and Planar
Topology, in Proc. 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, May 15-17,
1989, pp. 286-296.

tDepartment of Computer Science, Duke University, Durham, North Carolina 27706. This research was
supported in part by National Science Foundation grants CCR-8909323 andCCR-9101385. Part of this work
was done while the author was at the Department of Computer Science, Indiana University, Bloomington,
Indiana 47405.

431

432 MING-YANG KAO

paper the planar strongly connected component algorithm focuses on cycle faces; a cy-
cle face in an embedded planar directed graph is one whose boundary forms a directed
cycle. Note that given an embedded planar directed graph of size n, the cycle faces can
be identified in O(log n) time with n/log n processors.

The concentration on cycle faces is coupled with useful observations about compact
strongly connected components; a compact strongly connected component is one that
encloses no other components. Observe that if a compact strongly connected compo-
nent consists of more than one vertex, then this component contains a cycle face. Also
observe that the contraction of a cycle face preserves the compactness of strongly con-
nected components. Therefore, when cycle faces are iteratively contracted, all compact
strongly connected components eventually become single vertices. If the strongly con-
nected components do not enclose one another, then this face-contraction process can
indeed compute the strongly connected components.

There are three major difficulties associated with the above process of contracting
cycle faces. First, contracting cycle faces in general creates new cycle faces. The contrac-
tion process as described may take more than a polylogarithmic number of iterations.
The number of iterations in the planar strongly connected component algorithm is lim-
ited by using an edge-cutting technique to compute and contract large neighborhoods of
cycle faces. Edge cutting and vertex contraction are combined with a vertex-expansion
technique and an orientation structure of primal and dual planar directed graphs. This
combination of techniques has also led to the first linear-processor NC algorithm for
computing directed spanning trees in strongly connected planar directed graphs [17].

Second, an embedded planar directed graph generally contains nested strongly con-
nected components. It is possible that a planar directed graph has no cycle faces, but not
every strongly connected component is a single vertex. Therefore, the face-contraction
process is not enough for contracting all strongly connected components into single ver-
tices. To flatten the nesting of strongly connected components, the component algorithm
uses edge cutting and vertex contraction to manipulate the nesting. The manipulation
is effected through the interaction between graphic and topological structures of pla-
nar directed graphs and is guided by a forestlike construct of the topological nesting of
strongly connected components.

Third, although it is easy to see that the contraction of a cycle face preserves the
compactness of strongly connected components, the contraction of more complex sets
incurs complicated changes in the structure of planar directed graphs. To manage and
analyze these changes, the component algorithm works with structures and properties
of planar directed graphs that are invariant under vertex contraction.

This paper is organized as follows. Section 2 provides basic definitions of and facts
about planar directed graphs, and 3 describes their orientation structures. Section 4
analyzes topological nestings of planar strongly connected components, 5 and 6 dis-
cuss edge cutting and vertex contraction, respectively, and 7 details how to flatten the
nesting of strongly connected components. Section 8 gives the planar strongly connected
component algorithm, and 9 concludes with open problems.

2. Basics of planar directed graphs. A planar directed graph is one that can be
embedded on a plane such that the edges intersect only at common endpoints [4], [5],
[14], [23]. An embedded planar directed graph is one with a given planar embedding.

Remark. The planar strongly connected component algorithm uses only spherical
embeddings, but its analysis uses planar embeddings.

PLANAR STRONGLY CONNECTED COMPONENTS 433

2.1. Canonical graphs. A bridge of a directed graph is an edge whose removal in-
creases the number of undirected connected components in that graph.

A canonical graph is a planar directed graph that is connected, has at least one
vertex, and may have multiple edges but contains no loop edges and no bridges.

Most discussions in this paper focus on canonical graphs for the following reasons.
Permitting a planar graph to have multiple edges but no loop edges, except in the analysis
of contraction invariants in 6.2, makes the effects and invariants of vertex contraction
manageable. The planar strongly connected component algorithm works with planar
graphs and their duals. Because bridges are duals of loop edges, they are also removed
from planar graphs soon after they appear. Note that removing the bridges of a directed
graph does not alter its strongly connected components.

2.2. Faces, boundaries, orientations, and cycle faces. Let G be an embedded canon-
ical graph. If the vertices and edges of G are deleted from its embedding plane, then the
plane is divided into disconnected regions. Exactly one of the regions is infinite; all oth-
ers are finite. Each region is called aface of G. The infinite region is called the external
face; the finite regions are called the internal faces.

Let f be a face of G. The boundary of f, denoted by B(f), is the set of edges and
vertices surrounding f. Because G is connected and bridgeless, B(f) is connected and
bridgeless. Thus if B(f) contains edges, it can be arranged into a unique edge-simple
undirected cycle by having an observer stay inside f and walk around B(f) once. This
cycle is called the boundary cycle of f.

Let d be a boundary edge of f. The orientation of d with respect to f is defined as
follows:

Case (1): f is the external face. The edge d ispositive (respectively, negative) with
respect to f if it points in the counterclockwise (respectively, clockwise) direction on the
boundary cycle of f.

Case (2): f is an internal face. The edge d is positive (respectively, negative) with
respect to f if it points in the clockwise (respectively, counterclockwise) direction on the
boundary cycle of f.

A cycle face is one with a directed boundary cycle. A cycle face is positive (respec-
tively, negative) if its boundary edges are all positive (respectively, negative).

2.3. Subfaces, orientations, and cycle subfaces. Let G be an embedded canonical
graph. Let f be a face of G. A subface g of f is a vertex-simple undirected subcycle of
the boundary cycle of f.

For an edge d of g the oentation of d with respect to g is defined to be the same as
the orientation of d with respect to f.

Acycle subface is one that is a directed cycle. A cycle subface ispositive (respectively,
negative) if its edges are all positive (respectively, negative).

A graph with no cycle faces may still have cycle subfaces. The nonexistence of cycle
subfaces is crucial for obtaining desired structures of planar graphs. The planar strongly
connected component algorithm works with subfaces instead of faces.

2.4. Holes, boundaries, orientations, cycle holes, and subholes. Let G be an em-
bedded canonical graph. Let B be a connected subgraph of G with at least one vertex. If
the vertices and edges of/3 are removed from the embedding plane of G, then the plane
is divided into disconnected regions. Exactly one of the regions is infinite; the others are
all finite. Each region is called a hole of B. The infinite region is called the external hole;
the finite regions are called the internal holes.

434 MING-YANG KAO

The content of a hole is the set of vertices and edges in that hole. An empty (respec-
tively, nonempty) hole is one whose content is empty (respectively, nonempty). Note that
an empty hole of B is a face of G.

Let X be a hole of B. The boundary of X, denoted by/3(X), is the set of vertices
and edges surrounding X. Because B is connected, 13(X) is connected. Thus if 13(X)
contains at least one edge, it can be arranged into a unique undirected cycle by having
an observer stay inside X and walk around/3(X) exactly once. This cycle is called the
boundary cycle of X. It may not be edge-simple because/3(X) may not be bridgeless.

Let d be a boundary edge of X. The orientation of d with respect to X is defined as
follows:

Case (1): X is the external hole of B. The edge d ispositive (respectively, negative)
with respect to X if it points in the counterclockwise (respectively, clockwise) direction
on the boundary cycle of X.

Case (2): X is an internal hole of B. The edge d is positive (respectively, negative)
with respect to X if it points in the clockwise (respectively, counterclockwise) direction
on the boundary cycle of X.

A cycle hole is one with a directed boundary cycle. A cycle hole is positive (respec-
tively, negative) if its boundary edges are all positive (respectively, negative).

Asubhole Z ofX is a vertex-simple undirected subcycle of the boundary cycle of X.
For an edge d on Z the orientation of d with respect to Z is defined to be the same as the
orientation of d with respect to X.

2.5. Combinatorial embeddings and data structures. Let G be a canonical graph.
Algorithmically, a planar embedding ofG is encoded by the boundary of its external face
and the clockwise cyclic order of the edges incident with each vertex. Such an encoding
is called a combinatoal planar embedding of G. Topologically, a planar embedding is
uniquely specified by its corresponding combinatorial embedding.

The cyclic edge incidence in a combinatorial embedding is further encoded by the
following data structure: for each vertex there is a doubly linked circular list consisting
of the edges incident with that vertex in the clockwise order. These lists can be used to
efficiently trace the boundary cycles of the faces of G. They can also be used to trace the
boundary cycles of the holes of a connected subgraph.

Given a canonical graph of size n, a combinatorial planar embedding can be com-
puted in O(logn) time with n log logn/logn processors on a deterministic arbitrary-
CRCW PRAM [24].

3. Planar orientation. This section describes orientation structures of primal and
dual planar directed graphs.

3.1. Dual planar directed graphs. Let G be an embedded canonical graph. The
dual of G, denoted by G, is the embedded canonical graph_ constructed below:

For each face f in G there is a vertex, denoted by f, in that corresponds to f.
The vertex f is called the dual of f.

For each edge d in G there is an edge, denoted by d, in (that corresponds to d.
The edge d is called the dual of d and is determined as follows. Let f and fz be the two
faces in G that share d as a boundary edge. If d is positive (respectively, n_egativ_e) with
respect to f, then d is a directed _edge from 1 to f2 (respectively, from f2 to f).

The planar e_mbedding of G is derived from that of G as follows.~ For each face
f of G the vertex f is placed inside f. For each edge d of G the edge d is obtained by
turning d counterclockwise 90.

PLANAR STRONGLY CONNECTED COMPONENTS 435

Note that the above planar embedding may not be unique because its external face
is not unique. For the purposes of this paper any planar embedding that fits this con-
struction is suitable.

Also note that the dual of the dual of G is the same as G with all _edge directions
reversed. Consequently, each vertex in G also corresponds to a face in G. In particular,
a source (respectively, sink) in G corresponds to a positive (respectively, negative) cycle
face in G.

3.2. Primal-dual orientations. The following theorems are crucial to the planar
strongly connected component algorithm. Some of them have been highlighted in 1.

LEMMA 3.1 (Folklore). Let G be an embedded canonical graph. Ifthe two endpoints
ofan edge d are in the same strongly connected component of G, then the two endpoints of
dare in different strongly connected components of.

Proof. Because the two endpoints ofd are in the same strongly connected component
of G, there is a vertex-simple directed cycle C in G that contains d. (7 divides the plane
into two regions. Let An and Aou be the sets of faces of G in the internal hole and
the external hole of C, r_espective_ly. Let be the set of edges in (that are the duals
of the edges of (7. Let Ain and Aout be the sets of vertices of 0 that are the duals of
the faces in min and Aout, re_spectiv_ely. Observe that by the definition of a dual graph
one of the two endpoints of d is in Ain and the other is in Aou. For the remainder of
the proof, it suffices to show for all vertices z E Ain and v E An that u and v are not
in the same strongly connected component of t. By the definition~ of a dual grap_h if C
is clockwise (respectively,_counter_clockwise), then the edges in C all point from Ain to
ou (respectiv_ely, from Aou to Ai). By this unidirection of 0 no strongly connected
component of G contains both a vertex from/in and one from ou.

THEOREM 3.2. Let G be an embedded canonical graph. Then G is strongly connected
ifand only if is acyclic.

Proof. The proof has two directions. One is to show that if G is strongly connected,
then G is acyclic. Because G is strongly connected, the endpoints of all edges of G are
in the same st_rongly connected component of G. By Lemma 3.1 the~ two endpoints of
each edge of G are in different strongly connected components of G. Thus no strongly
connected component of G can contain any edge, i.e., G is acyclic.

The other direction is to show that if G is not strongly connected, then G is not
acyclic. Because G is not strongly connected, there is a strongly connected component
S in G such that the edges between S and G S all point from S to G S. Because
G S cannot be empty, either there are vertices in the external hole of S or there are
vertices in internal holes of S. These two cases are symmetric, and so it suffices to discuss
the case for which there are vertices in the external hole of S. Let U be the set of these
vertices. Because G is connected, there are edges between S and U. Let D be the set
of these edges. Let/) be the set of dual edges of D in t. Because D contains all edges
around the boundary of the external hole of S and because this boun_dary is connected,
/) forms a undirected cycle in t. By the unidirection of D the cycle D is a directed one.
Thus G is not acyclic.

COROLLARY 3.3. Let G be an embedded canonical graph with more than one vertex.

IfG is strongly connected, then G contains at least onepo_sitive face and one negativeface.
Proof. Note that t) has at least two vertices. Also, G is acyclic by the strong connec-

tivity of G and Theorem 3.2. Thus t has at least one sink and one source. Because G
contains more than one vertex, a source (respectively, sink) in G corresponds to a pos-
itive (respectively, negative) face in G. Therefore, G contains at least one positive face
and one negative face.

436 MING-YANG KAO

4. Planar topology. This section analyzes topological nestings of strongly connected
components.

4.1. Enclosure, compactness, indices, and enclosure forests. Let G be an embed-
ded canonical graph. Let S and T be two strongly connected components of G. 8 en-
closes T if T is in an internal hole of S. S immediately encloses T if S encloses T and no
other strongly connected component both encloses T and is enclosed by S.

A compact strongly connected component is one that does not enclose any strongly
connected components.

The index of a noncompact strongly connected component S is the number of non-
compact strongly connected components immediately enclosed by S.

The enclosure forest of G, denoted by ’(G), is constructed as follows:
Each strongly connected component of G is a vertex in ’(G).
There is a directed edge in ’(G) from S to T if and only if S immediately encloses

To
LEMMA 4.1. Thefollowing statements are true:
1. :(G) is a directedforest.
2. The compact strongly connected components ofG are the leaves of(G).
3. The noncompact strongly connected components of G are the internal vertices of

(G). The index ofa noncompact strongly connected component S in G is the number of
nonleafchildren ofS in .(G).

Proof. The proof is straightforward. E]

The strongly connected component algorithm focuses on converting the index-0 and
index-1 strongly connected components of G into compact ones. The next theorem con-
firms that there are enough noncompact components of these two indices.

THEOREM 4.2. Let G be an embedded canonical graph. Ifnot all strongly connected
components ofG are compact, then more than halfofthe noncompact strongly connected
components are ofindex 0 or 1.

Proof. This theorem follows from Lemma 4.1 and the fact that if a rooted tree has at
least two vertices, then more than half of the internal vertices have zero or one nonleaf
child each.

4.2. Cycle faces and compact strongly connected components. The next lemma was
used in 1.

LEMMA 4.3. Let G be an embedded canonical graph. Let S be a compact strongly
connected component ofG with more than one vertex. Then S contains the boundary ofa
cycleface of G.

Proof. S can be regarded both as a subgraph of G and as a strongly connected com-
ponent. By its strong connectivity the subgraph S is an embedded canonical graph. Be-
cause S has more than one vertex, by Corollary 3.3 the subgraph S contains at least one
positive face and one negative face. If the external face of the subgraph S is a cycle face,
then the subgraph S has at least one internal cycle face; otherwise, the subgraph S has at
least two internal cycle faces. Because the strongly connected component S is compact
in G, an internal face of the subgraph S is also a face in G. Thus at least one of the cycle
faces in the subgraph S is a cycle face in G. q

4.3. Structures of singular compact strongly connected components. The reason
for focusing on index-0 and index-1 components is that the strongly connected com-
ponents enclosed by them have useful structures and thus can be efficiently separated.
Some of these structures are analyzed below.

PLANAR STRONGLY CONNECTED COMPONENTS 437

Let G be an embedded canonical graph. A compact strongly connected compo-
nent S of G is inward (respectively, outward) singular if there is no directed path from a
noncompact strongly connected component to S (respectively, from S to a noncompact
strongly connected component).

LEMMA 4.4. Let T be a strongly connected component of G. Let X be a hole ofT that
contains no noncompact strongly connected components. Then every strongly connected
component in X is a singular compact strongly connected component in G.

Proof. Let S be a compact strongly connected component in X. To prove the lemma
by contradiction, assume that S is not singular. Then there are two directed paths P and
Q with P going from S to a noncompact strongly connected component in G and Q
going from a noncompact strongly connected component to S in G. Because all non-
compact strongly connected components in G are outside X, P, and Q go through T.
Consequently, S and T are in the same strongly connected component, contradicting the
condition that S is in X. [3

4.4. Structures of index-O strongly connected components.
LEMMA 4.5. Let G be an embedded canonical graph. For each index-O strongly con-

nected component S of G, every strongly connected component in the internal holes of S is
a singular compact strongly connected component.

Proof. This lemma follows from Lemma 4.4 and the fact that an internal hole of an
index-0 component contains only compact strongly connected components.

4.5. Structures of index-I strongly connected components. Let G be an embedded
canonical graph. Let S be a strongly connected component of G. Let X be a hole of S in
G. The following notations are used for analyzing index-1 components in this and other
sections:

x(S) is the set of edges between S and the vertices in X.
in(S) is the set of edges between S and the vertices in its internal holes.
ns(S) is the set ofedges ini(S) except those between S and the singular compact

strongly connected components immediately enclosed by S.
LEMMA 4.6. Let S be an index-1 strongly connected component of G. Let X be the

internal hole ofS that contains a noncompact strongly connected component. Thefollowing
statements are true:

1. Every strongly connected component in the internal holes ofS exceptpossibly X is a
singular compact strongly connected component.

2. The edges in S) either allpointfrom S or allpoint to S.
Proof. The first statement follows from Lemma 4.4 and the fact that no internal hole

of S except X contains a noncompact strongly connected component.
The second statement is proved as follows. Let T be the unique noncompact strongly

connected component immediately enclosed by S. It suffices to show the following prop-
erty: for each edge d E ns(S), d can be extended into a directed path between S and T
such that if d points to (respectively, from) S, then that path goes from T to S (respec-
tively, from S to T). Because S and T are different strongly connected components, this
extension property ensures that (S) cannot contain two edges with one pointing to S
and the other pointing from S.

The edge d is extended as follows. Let d u v. There are two cases: either
u E S or v E S. Because these two cases are symmetric, only the case of u S is
described. If v T, then d itself is already a directed path from S to T. Thus, without
loss of generality, assume that v f T. Then v is in some nonsingular compact strongly
connected component R immediately enclosed by S. Because R is nonsingular, there is

438 MING-YANG KAO

a directed path P from R to some noncompact strongly connected component. Because
S is of index 1, the noncompact strongly connected components of G except S and T are
either outside S or inside T. Thus P goes through either S or T. Because d goes from
S to R and because S and R are different strongly connected components, P cannot go
through S and must go through T. Then the edge d, a directed path in R, and a subpath
of P together form a directed path from S through R to T.

5. Edge cutting and vertex expansion. This section describes a procedure called
CutSegment that cuts edges in an embedded canonical graph. CutSegment is coupled
with another procedure called ExpandVertex that eliminates undesirable large-degree
vertices. These two procedures are extremely simple but, surprisingly, together reveal
very useful structures of planar directed graphs: clusters, territories, and chambers. These
procedures and structures are detailed in 5.1 through 5.5, respectively.

5.1. ExpandVertex. The three structures exposed by CutSegment subtly depend on
the nonexistence of vertices with degree greater than three. For this reason, a vertex of
degree four or more is called a large-degree vertex.

A useful operation for eliminating large-degree vertices is to replace each ofthem by
a positive face or a negative face. This operation is called vertex expansion. An example
of vertex expansion is shown in Fig. 1. The procedure ExpandVertex in Algorithm 1
details how to expand vertices into negative faces.

ALGORITHM 1. Procedurefor expanding large-degree vertices into negative faces.
Procedure ExpandVertex
Input: an embedded canonical graph G and a set U of large-degree vertices.
Output: G with each vertex in U expanded into a negative face.
begin

for each vertex E U do
begin

1. Let d,..., d, be the edges incident with u in the counterclockwise order.
2. Create s copies of u, namely, u,..., u,.
3. Replace the u-end of each di by ui.
4. Link the vertices u into a counterclockwise directed cycle, i.e., u

U2 Us--1 -’> Us Ul.
end.

return G with the above changes.
end.

By symmetry a procedure for expanding large-degree vertices into positive faces can be
obtained by reversing the orientations in ExpandVertex.

THEOREM 5.1. Thefollowing statements are tree:
1. The output graph of ExpandVertex is an embedded canonical graph and has the

same strongly connected components as the input graph does.
2. ExpandVertex runs in O(log n) time with n/ log nprocessors for an input graph of

size r

Proof. The first statement is straightforward. As for the second statement, Expand-
Vertex can be performed in a straightforward manner with fundamental techniques, in-
cluding prefix computation [18], [19], and list ranking [3], [7], [15].

5.2. CutSegment. Let G be an embedded canonical graph. Let be a noncycle sub-
face of G. Thepositive (respectively, negative) breakpoints of are the following vertices:

the local sources and sinks of ;

PLANAR STRONGLY CONNECTED COMPONENTS 439

FIG. 1. Example ofexpanding a large-degree vertex into a negativeface.

the vertices shared by g and positive (respectively, negative) subfaces.
Remarks. Cycle subfaces are not assigned breakpoints. Avertex maybe a breakpoint

for a noncycle subface but not for another.
A segment of g is the subpath of t/between two consecutive breakpoints with the

same orientation. Observe that a segment is a directed path. In light of this, a positive
(respectively, negative) segment P of is one with the following properties.

The segment P is between two consecutive positive (respectively, negative) break-
points of .

Every edge of P is a positive (respectively, negative) edge of 9.
With the above definitions Algorithm 2 details the procedure CutSegment.

ALGORITHM 2. Procedurefor edge cutting.
Procedure CutSegment
Input: an embedded canonical graph G and two symbolic parameters z "first" or
"last" and y "positive" or "negative."
Output: G without the z edge of each /segment.
begin

1. Find all /breakpoints of G.
2. Find the z edge of each /segment in G.
3. Delete from (7 all the edges found above.
4. return G.

end.

Figure 2 provides an example for CutScgmcnt.

FIG. 2. Example ofcutting thefirst edge ofeach positive segment.

LEMMA 5.2. Let G be an embedded canonical graph of size n. The following can be
computed in O(log n) time with n/ log nprocessors:

1. the subfaces ofG with their orientations,
2. the positive (or negative) subfaces of G, and

440 MING-YANG KAO

3. the positive (or negative) breakpoints ofthe noncycle subfaces of G.
Proof. Observe that the subfaces of a face f are just the biconnected components of

B(f). Similarly, the subfaces of G are the face boundaries of the subgraphs that are in-
duced by the biconnected components of G. On the basis of these observations, the sub-
faces of G can be computed in a straightforward manner in O(log n) time with n/log
processors. This computation uses optimal algorithms for planar connectivity [14], pla-
nar biconnectivity [14], list ranking [3], [7], [15], and prefix computation [18], [19]. Once
the subfaces of G are obtained, it is straightforward to identify the cycle subfaces of G
and the breakpoints of the noncycle subfaces in O(log n) time with n/log n processors.

THEOREM 5.3. CutSegment runs in O(log n) time with n/ log nprocessorsfor an em-
bedded canonicalgraph ofsize r

Proof. Let G be the input graph to CutSegment. By symmetry it suffices to prove the
case of deleting the first edge of each positive segment. The subfaces and the positive
breakpoints of G are obtained by means of Lemma 5.2. The first edges of the posi-
tive segments are simply the positive edges outgoing from positive breakpoints on the
subfaces. These edges can be easily found and deleted in O(log n) time with
processors. Thus CutSegment runs within the stated complexity.

5.3. Clusters. Let G be an embedded canonical graph. Two positive (respectively,
negative) subfaces h and hz of G are linked if there is a sequence of positive (respec-
tively, negative) subfaces ,..., / such that h #, hz , and for 1 < < s 1,
and /+x share at least one vertex.

Apositive (respectively, negative) cluster of G is a maximal set of positive (respec-
tively, negative) subfaces that are linked.

LEMMA 5.4. Let G be an embedded canonical graph ofsize r Then the positive (or
negative) clusters ofG can be computed in O(log n) time with n/ log nprocessors.

Proof. The positive (respectively, negative) subfaces ofG are computed by means of
Lemma 5.2. Then the positive (respectively, negative) clusters can be found in O(log n)
time with n/log n processors by using an optimal parallel algorithm for planar connec-
tivity [14]. fq

The following lemma gives a preliminary analysis of CutSegment(G, first, positive).
Similar lemmas for the other parameter combinations can be obtained by symmetry.

LEMMA 5.5. Thefollowing statements are true:
1. A cluster ofG is contained in a strongly connected component of G.
2. CutSegment(G, first, positive) contains everypositive cluster of G.
3. CutSegment(G, first, positive) has no edges outgoingfrom positive clusters.
4. Ifthe degree ofa vertex z is at most three in G, then the outdegree ofz is at most one

in CutSegment(G, first, positive).
Proof. The statements are proved as follows.
Statement 1. This statement follows from the fact that a cluster consists of linked

directed cycles.
Statement 2. By definition a positive subface has no positive breakpoints and thus

no positive segments. Thus no edge of a positive subface is cut, and every positive cluster
is in CutSegment(G, first, positive).

Statement 3. Let d be an edge from a positive cluster of G to a vertex not in .
It suffices to show that d is cut in CutSegment(G, first, positive). Let d z --. v with

and v . Let t/t and tb be the two noncycle subfaces that contain d such that d
is positive on #t and negative on 9b. Let Pt be the positive segment of 9t that contains d.

PLANAR STRONGLY CONNECTED COMPONENTS 441

Then d is cut in CutSegment(G, first, positive) because u is a positive breakpoint and d
is the first edge of Pt.

Statement 4. There are two cases based on whether u is on a positive subface of G
or not.

Case (1): u is on a positive subface g. The statement is trivially true if the outdegree
of z is at most one in G. Thus, without loss of generality, assume that the outdegree of z,

is two or three in G. Then, because u has at most three incident edges in G and at least
two of them are outgoing, z, has exactly two outgoing edges and one incoming edge.
Exactly one of the outgoing edges is not on any positive subface and thus is an outgoing
edge from the positive cluster containing g. By the third statement of this lemma that
edge is cut.

Case (2): u is not on a positive subface. This case is further divided into subcases.
Let Case (il, i2, i3) denote the case that the degree, indegree, and outdegree of z, in G
are il, i2, and i3, respectively. The statement is trivially true for i < 1. Thus it suffices
to discuss Cases (2,0,2), (3,1,2), and (3,0,3).

Case (2,0,2). Let d u v and d2 v2 be the two edges adjacent with z.
Let gt and b be the noncycle subfaces that contain d and d2 such that d is positive on
tt and negative on tb. Let Pt be the positive segment of tt that contains d. Let Pb be
the positive segment of gb that contains d2. The edge dl is cut in CutSegment(G, first,
positive) because it is the first edge of Pt. Similarly, d2 is cut.

-Case (3,1,2). Let d z v, d z v2, d z, va be the edges adjacent
with u in the clockwise order around u. Let #1,2, g2,a, 3, be the noncycle subfaces
that contain, respectively, d and d2, d2, and da, and da and d. Let P2,a be the positive
segment of g2,a that contains d2. Let Pa,1 be the positive segment of #a,1 that contains d
and da. The edge d may or may not be cut in CutSegment(G, first, positive), depending
on whether vl is a positive breakpoint of ga,. The edge d2 is cut because it is the first
edge of P,2. The edge da is not cut because it cannot be the first edge of Pa,.

-Case(3,0,3). Letd u vl, d2 u vz, d3 z va be the edges
adjacent with u in the clockwise order around u. Let t,2, gz,a, ga, be the noncycle
subfaces that contain, respectively, d and d2, d2 and da, and da and d. Let P,2 be the
positive segment of g,2 that contains dr. Let Pz,a be the positive segment of g2,a that
contains d2. Let Pa, be the positive segment of g3,x that contains da. The edge dl is cut
in CutSegment(G, first, positive) because it is the first edge of P,2. Similarly, d2 and da
are cut. E]

5.4. Territories. Let G be an embedded canonical graph that has no large-degree
vertices except possibly in positive clusters. A territory of a positive cluster ofG is a vertex
subset as defined by the procedure in Algorithm 3.

ALGORITHM 3. Procedurefor computing thepositive territories.
Procedure ComputePositiveTerritories
Input: an embedded canonical graph G with no large-degree vertices except possibly in
positive clusters.
Output: the positive territories of G.
begin

1. Let G CutSegment(G, first, positive).
2. Let Ga CutSegment(G, last, positive).
3. for each positive cluster ,I of G do

begin
3-1. Let C(,I) be the connected component in G, that contains .

442 MING-YANG KAO

3-2. Let Ca() be the connected component in Gd that contains ,I,.
3-3. Let S() be the subgraph of G induced from the vertices shared by

C() and Cd().
3-4. Let T(), the territory of , be the connected component in S(I,)

that contains .
4. return all T() computed above.

end.

For brevity a territory of a positive cluster is called apositive territory. Anegative territory
is defined by substituting "negative" for "positive" in the above definition.

Territories are the key neighborhoods of directed cycles contracted in the planar
strongly connected component algorithms. The following analysis focuses on positive
territories. A similar analysis for negative territories can be obtained by symmetry.

The next theorem provides the basis for contracting territories in the planar strongly
connected component algorithm.

THEOREM 5.6. Thefollowing statements are true:
1. C(), Ca(), and T() exist.
2. Each connected component in Ge (or Ga) contains at most one positive cluster of

G. Consequently, distinctpositive clusters have disjoint territories.
3. Each T() is connected and is in the strongly connected component ofG that con-

tains

Proof. The statements are proved as follows.
Statement 1. The existence ofC() follows from Lemma 5.5(2) and the connectivity

of. By symmetryCa() exists. The existence ofT() readily follows from that ofC()
and Ca(e).

Statement 2. By symmetry it suffices to show the statement for G. To prove by
contraction, assume that G contains an undirected vertex-simple path P u,..., u
between two distinct positive clusters and ofG with u andu z. Without
loss of generality, further assume that the internal vertices of P are not in any positive
cluster of G.

Because uz is not in 1, by Lemma 5.5(3) the edge of P between ux and uz points
from u to u. Similarly, the edge of P between u_ and u points from u_ to u.
Therefore, P has at least three vertices, and at least one internal vertex u ofP is a local
source of P. By the vertex-simplicity of P the outdegree of u is at least two in G. On
the other hand, because u is not in any positive cluster of G, the degree ofu is at most
three in G by the degree condition of G. Thus by Lemma 5.5(4) the outdegree of ui in
G is at most one. This contradicts the above conclusion that the outdegree of u is at
least two in G.

Statement 3. The connectivity ofT() is required by the definition of a territory. For
the remainder of the proof, by Lemma 5.5(1) it suffices to show that tT() (respectively,
tTd()) contains a directed path P from each vertex u to (respectively, from to each
vertex u). By symmetry it suffices to prove this claim only for :(). Let P v,..., v,
be an undirected path in t7() with v u and v, 6 I, such that P is vertex-simple and
intersects with only at v,. The goal is to show that P is a directed path.

If s 1, then P is obviously a directed path. So, without loss of generality, assume
that s > 1. Then by the second statement of this theorem v,..., v,-1 are not in any
positive cluster of G. By the degree condition of G the degrees of v,..., v,_x are at
most three in G. Because v_x is not in , by Lemma 5.5(3) the edge of P between v,_
and v, points to v,. Furthermore, by Lemma 5.5(4) the outdegree of v,_ in () is at

PLANAR STRONGLY CONNECTED COMPONENTS 443

most one. Because vs-1 already has an edge pointing to vs, the edge of P between v-2
and v,_ points to v,_. Repeating this argument inductively shows that P is indeed a
directed path.

THEOREM 5.7. Let n be the size ofG. Thepositive tertories ofG can be computed in
O(log n) time with n/ log nprocessors.

Proof. The complexity of the procedure in Algorithm 3 is analyzed as follows. Steps
1 and 2 are computed by means of Theorem 5.3. To start Step 3 the positive clusters
of G are computed by means of Lemma 5.4. Then Steps 3-1-3-4 can be computed in
O(log n) time with n/log n processors. These four steps use Theorem 5.6(2) and an
optimal parallel algorithm for planar connectivity [14]. Thus the positive territories can
be computed with the stated complexity.

The next theorem is crucial for analyzing the contraction procedures of the planar
strongly connected component algorithm.

THEOREM 5.8. Let g be a noncycle subface in G. Let P be a directed subpath of
that has at least one internal vertex and consists ofpositive edges of. Ifthe endpoints ofP
are in positive territories ofG but its internal vertices are not, then the endpoints ofP are in
differentpositive territories.

Proof. Let P pl,..., p. To prove by contradiction, assume that px and ps are
in the same positive territory T(). It suffices to show P c_ 7"(), contradicting the
condition that the internal vertices of P are not in any positive territory.

Because the internal vertices of P are not in any positive territory of G, they are
not in any positive cluster of G. Because P is a directed path, the internal vertices of
P are not local sources or sinks on . Thus the internal vertices of P are not positive
breakpoints for . Furthermore, because
the path P is a subpath of a positive segment Q of

Let Q q,..., qt. After the first edge of Q is cut, the path Q q,..., qt remains
in Go. Because the path Pc p2,..., p, is a subpath of Qc, the path Pc is connected to
ps in Go. Because p8 E 7"() c_ Cc(), the path Pc is in tTc(). The vertex pl is also
in Cc() because p E T() c_ tTc(). Thus P is in tTc(). By symmetry P is also in
Ca(). Consequently, P is in S(). Because P is connected to T(), the path P lies in

5.5. Chambers. Let G be an embedded canonical graph. Let S’ be a strongly con-
nected component in G with more than one vertex. A chamber of S is a nonempty hole
X of S with the following properties:

The edges in x(S) either all point from S or all point to S.
X is a cycle hole.

Remark. As shown by Lemma 4.6, index-1 components hold a unidirectional prop-
erty very similar to the first property above. In fact, a key stage of the planar strongly
connected component algorithm is to derive chambers from index-1 components.

The edges in x(S) are called the chamber edges of X. The chamber X is inward
(respectively, outward) if the edges in x(S) all point to X (respectively, all point to S).
The chamberX ispositive (respectively, negative) if it is a positive (respectively, negative)
hole.

Note that if the chamber edges of X can be found efficiently, then these edges can
be cut to efficiently separate S from the content of X. This section discusses how to use
CutSegment to find the chamber edges of G. The discussion focuses on positive outward
chambers. The first part of the discussion assumes that G has no large-degree vertices.
The second part allows G to have large-degree vertices.

444 MING-YANG KAO

5.5.1. Chamber edges of graphs without large-degree vertices.
THEOREM 5.9. Let G be an embedded canonical graph with no large-degree vertices.

Let A be the set of biconnected components in CutSegment(G, first, positive) that each
contain at least two edges. Then each component in A is a directed cycle. Moreover, A
consists ofthepositive subfaces in G and the boundary cycles ofpositive outward chambers.

Proof. This theorem is based on the following claims:
1. CutSegment(G, first, positive) contains all positive subfaces and all boundary

cycles of positive outward chambers of G.
2. A vertex-simple undirected cycle in CutSegment(G, first, positive) is either a

positive subface of G or the boundary cycle of a positive outward chamber.
3. Two distinct vertex-simple undirected cycles cannot share a vertex in the graph

CutSegment(G, first, positive).
With the above claims the theorem is shown as follows. If a biconnected component

of CutSegment(G, first, positive) contains more than one edge, then that component
contains at least one vertex-simple undirected cycle. By the third claim, that component
contains exactly one such cycle. By the second claim, that cycle is a positive subface or
the boundary cycle of a positive outward chamber of G. Conversely, by the first claim
CutSegment(G, first, positive) preserves the positive subfaces and the boundary cycles
of the positive outward chambers in G. These cycles are preserved in the biconnected
components of CutSegment(G, first, positive) that each contain more than one edge.

Claim 1. The claim for positive subfaces follows from Lemma 5.5(2). The claim for
chambers is proved as follows. Let X be a positive outward chamber in G. Let G’ be
the boundary cycle of X. Because G has no large-degree vertices, (7 is vertex-simple.
Assume by symmetry that X is an internal hole of a strongly connected component.
Then C’ is a clockwise-directed cycle and the chamber edges ofX are inside C’. Because
the chamber edges point to C, the heads of the chamber edges divide C’ into directed
subpaths. Let d be a chamber edge. Let d be the chamber edge next to d in the
clockwise order on (7. Let P be the subpath of (7 from the head of dx to the head of
d. Observe that because dl points to C’, the edge d and the path P are contained in a
positive segment Q. Because d precedes P in Q, the boundary edges of X in P cannot
be the first edge of Q and thus cannot be cut in CutSegment(G, first, positive).

Claim 2. Let C be a vertex-simple undirected cycle in G. It is equivalent to show that
if (7 is neither a positive subface nor the boundary cycle of a positive outward chamber,
then at least one edge of G’ is deleted in CutSegment(G, first, positive). There are two
cases based on whether G’ is a directed cycle or not.

Case (1): C’ is not a directed cycle. Then there is a local source on C with two
outgoing edges. Because G has no large-degree vertices, by Lemma 5.5(4) CutSegment
deletes at least one of these two edges.

Case (2)" C’ is a directed cycle but is neither a positive subface nor the boundary
cycle of a positive outward chamber. There are two subcases based on whether G’ runs
clockwise or counterclockwise. Assume by symmetry that G’ runs clockwise. Because
C’ is not a positive subface, C encloses some edges. In particular, there is an edge d
incident with G’ and inside C’. Because C’ is not the boundary cycle of a positive outward
chamber of G, there is an edge residing inside (7 and pointing from C’. Without loss of
generality, assume that dx points from a vertex of C. Let dz and da be the two edges on
C’ with dz entering u and da leaving u. Because G has no large-degree vertices, the edges
d are the only edges incident with u in G. Observe that d and da are on a noncycle
subface and da is the first edge of a positive segment of that subface. Thus da is cut in
CutSegment(G, first, positive).

PLANAR STRONGLY CONNECTED COMPONENTS 445

Claim 3. To prove by contradiction, assume that there are two vertex-simple undi-
rected cycles C’ and (7 in CutSegment(G, first, positive) that share at least one vertex.
Because G has no large-degree vertices, C’1 and C’2 share at least one edge. By the sec-
ond claim C’1 and C’2 are directed cycles. There are three cases: (1) both C’ and C’ run
clockwise, (2) both C andC run counterclockwise, or (3) C andC are in the opposite
directions. Because these three cases are symmetric, only Case (1) is discussed. Because
C’ and Cz share at least one edge, one cycle is inside the other. Assume by symmetry
that C’z is inside C. Then C is not a positive subface. Also, the internal hole of C’ is
not a positive outward chamber because C’z violates the unidirectional property of that
hole as a chamber. These two conclusions contradict the second claim.

THEOREM 5.10. Let G be an embedded canonical graph with no large-degree vertices.
Let n be the size ofG. Theprocedure inAlgorithm 4 computes the chamber edges ofpositive
outward chambers ofG in O(log n) time with n/ log nprocessors.

ALGORITHM 4. Procedurefor computing the chamber edges ofpositive outward cham-
bers ofgraphs without large-degree vertices.
Procedure ComputePOCE
Input: an embedded canonical graph G with no large-degree vertices.
Output: the chamber edges of positive outward chambers in G.
begin

1. Let G CutSegment(G, first, positive).
2. Let A be the set of biconnected components of Gc that contain at least two edges

each.
3. Delete from A the positive subfaces of G.
4. Find the chamber edges of the positive outward chambers of G, whose boundary

cycles are now in A.
5. return all edges computed at Step 4.

end.

Proof. The correctness of ComputePOCE follows directly from Theorem 5.9. As
for its complexity, Steps 1-4 of the procedure can be performed in O(log n) time with
n/log n processors as follows. Step 1 is performed by means of Theorem 5.3. Step 2
uses an optimal parallel algorithm for planar biconnectivity [14]. Step 3 is performed by
means of Lemma 5.2(2). To collect the desired chambers edges, Step 4 uses list ranking
and prefix computation to process the doubly linked circular lists of the combinatorial
embedding of G. Thus the total complexity of ComputePOCE is as stated.

5.5.2. Chamber edges of graphs with large-degree vertices.
THEOREM 5.11. Let G be an embedded canonical graph that may have large-degree

vertices. Let G be the graph constructed by expanding each large-degree vertex ofG into a
negativeface. Thefollowing statements are tree:

1. G is an embedded canonicalgraph with no large-degree vertices.
2. The chamber edges of the positive outward chambers of G’ are originally the edges

incident with the large-degree sinks of G and the chamber edges of the positive outward
chambers of G.

Proof. The first statement is obtained by straightforward observation. To prove the
second statement, observe that G and G’ have the same strongly connected components.
Also, each strongly connected component has the same nonempty holes in G and G’. Let
S be a strongly connected component in G. Let X be a nonempty hole of S in G. Let S’
and X’ be the versions of S and X in G’. Observe that x(S) and x,(S’) consist of the
same edges with the same directions to or from S and S’.

446 MING-YANG KAO

These observations permit the second statement to be proved by showing that the
positive outward chambers of G’ are originally the external holes of the large-degree
sinks of G and the positive outward chambers of G. This claim follows directly from the
following case analysis on B(X) for the second property of a chamber.

If B(X) contains no large-degree vertices, then B(X’) B(X). Otherwise, vertex
expansion inserts new positive edges into 13(X). There are three cases.

Case (1): If B(X) consists of a large-degree vertex, then X’ is the external hole of
S and is a positive one.

Case (2): If X is a positive hole, then X’ is also a positive hole.
Case (3): If X has more than one boundary vertex but is not a positive hole, then

X’ is not a positive hole.
THEOREM 5.12. Let G be an embedded canonical graph. Let be the size of G. The

procedure in Algorithm 5 computes the chamber edges ofpositive outward chambers ofG
in O(log n) time with / log nprocessors.

ALGORITHM 5. Procedurefor computing the chamber edges ofpositive outward cham-
bers.
Procedure ComputePositiveOutwardChamberEdges
Input: an embedded canonical graph G.
Output: the chamber edges of positive outward chambers in G.
begin

1. Let G’ be the graph constructed by expanding each large-degree vertex of G into
a negative face.

2. Let D’ be the set of the chamber edges of positive outward chambers of G’ com-
puted by the procedure in Algorithm 4.

3. Let D be the set of edges in G that correspond to those in D’ and are not the
edges incident with the large-degree sinks of G.

4. re;urn the edges in D.
end.

Proof. The correctness of the procedure follows from Theorems 5.10 and 5.11. As
for its complexity, Steps 1 through 3 of the procedure can be performed in O(log n) time
with n/log n processors as follows. Step 1 is performed by means of Theorem 5.1(2).
Step 2 is performed by means of Theorem 5.10. Step 3 is performed by identifying the
sinks of G in O(log n) time with n log n processors. Thus the total complexity of the
procedure is as stated. [

The above discussion has described how to compute the chamber edges of positive
outward chambers. The chamber edges of the other groups of chambers can be similarly
computed on the basis of the symmetry summarized in Table 1.

6. Vertex contraction. Throughout this paper vertex contraction always satisfies the
following specifications:

Vertex contraction keeps all multiple edges and deletes all loop edges that it
creates.

Vertex contraction contracts only connected vertex subsets of strongly connected
components.

Note that deleting all loop edges simplifies contracted strongly connected compo-
nents. Keeping all multiple edges maintains crucial contraction invariants. In particu-
lar, each uncontracted edge keeps a unique identity because its link remains unchanged,
whereas its endpoints may be altered by contraction.

PLANAR STRONGLY CONNECTED COMPONENTS 447

TABLE
Symmetryfor computing chamber edges.

Chambers Vertex Expansion CutSegment Discarded Edges

sinkspositive outward

positive inward

negative outward

negative inward

negative faces

negative faces

positive faces

positive faces

first positive

last positive

first negative

last negative

sources

sinks

sources

Also note that contracting only connected vertex subsets preserves planarity. Con-
tracting only subsets of strongly connected components preserves the strongly connected
components.

In fact, the planar strongly connected component algorithm contracts only terri-
tories and vertex subsets expanded from large-degree vertices. Theorem 5.6(3) ensures
that a territory satisfies the second specification above. The vertex subset expanded from
a large-degree vertex clearly satisfies the second specification.

The detailed discussion of vertex contraction is divided into four parts. Section 6.1
gives the definition of a planar embedding induced by vertex contraction, 6.2 discusses
contraction invariants, 6.3 describes contraction procedures, and 6.4 analyzes contrac-
tion effects.

6.1. Planar embeddings induced by vertex contraction. Let (7 be an embedded ca-
nonical graph. Let/3 be the subgraph induced by a connected vertex subset of a strongly
connected component of G. Let G’ be the graph constructed from G by contracting
B into a vertex B’. If/3 consists of at most one vertex, then G’ and G are the same.
Otherwise, a planar embedding for G’ is specified as follows:

For every vertex z /3 the clockwise cyclic order of the edges incident with u is
the same in G and G’.

The edges around each nonempty hole X of B stay together around B’, and their
clockwise cyclic order around/3’ is the same as their cyclic order around the boundary
cycle ofX in the negative direction of X.

All uncontracted edges on the boundary of the external face of G remain on that
of G’ and have the same orientations with respect to both external faces.

If/3 contains a boundary vertex of the external face of G, then B’ is on the bound-
ary of the external face of G’.

In general, such a planar embedding is not unique. For the purposes of this paper
any planar embedding that fits this construction is suitable.

THEOREM 6.1. Given an embedded canonical graph of size n, a planar embedding
induced by contracting a disjoint family of connected vertex subsets can be computed in
O(log n) time with n/ log nprocessors.

Proof. The edges around a new vertex of G’ are collected by processing the dou-
bly linked circular lists of the combinatorial embedding of G. The computation takes
O(log n) time and n/log n processors and uses optimal parallel algorithms for list rank-
ing [3], [7], [15], prefix computation [18], [19], tree contraction [1], [6], [9], [12], [17],
[20], and planar connectivity [14]. l-1

448 MING-YANG KAO

6.2. Contraction invariants. The next four lemmas describe contraction invariants
for subfaces, paths, holes, and subholes. The lemmas for subfaces, paths, and subholes
are false if multiple edges are not kept.

To prove the invariant lemmas, note that.the above definition ofvertex contraction is
not directly suitable for analyzing contraction invariants because it permits many struc-
tural changes to occur simultaneously. This difficulty is resolved by observing that vertex
contraction can be done by performing a sequence of contracting a nonloop edge and
deleting a loop edge. The planar embedding induced by contracting a nonloop edge is
constructed by topologically shrinking that edge into a single vertex. The planar embed-
ding induced by deleting a loop edge is constructed by simply deleting that loop.

The proofs of the invariant lemmas are obtained by straightforward induction based
on direct observations about the effects of deleting a single loop edge and contracting a
single nonloop edge. For contracting a connected vertex subset there may be several se-
quences of contracting and deleting edges. Different sequences may result in different
planar embeddings. These planar embeddings all satisfy the definition of vertex con-
traction, and thus every sequence of deletions and contractions suffices for proving the
invariant lemmas.

6.2.1. Subface invariants. Let G be an embedded canonical graph. Let G’ be a
contracted version of G. Let g be a subface in G. Let D be the set of edges of g. Let D’
be the set of edges in D that remain in G’.

LEMMA 6.2. There is a face y’ in G’ such that the subfaces ofy’ can bepartitioned into
two collections Anew and Aod with thefollowingproperties:

1. The subfaces in Anew contain no edgesfrom D’.
2. The subfaces in Aod consist ofexactly the edges in D, and each edge in D’ has the

same orientation with respect to y and y’.
Proof. See the above discussion. [3

6.2.2. Path invariants. Let G be an embedded canonical graph. Let G’ be a con-
tracted version of G. Let ’ be a subface in G’. Let P’ be a subpath of g’ whose internal
vertices are original vertices in G.

LEMMA 6.3. P’ originally is a subpath ofa subface 9 in G, and each edge ofP’ has the
same odentation on 9 and 9’.

Proof. See the above discussion.

6.2.3. Hole invariants. Let G be an embedded canonical graph. Let G’ be a con-
tracted version of G. Let S and T be two strongly connected components in G. Let S’
and T’ be the versions of S and T in G’.

LEMMA 6.4. Thefollowing statements are true:
1. The content ofan internal hole of S’ is the union of the contents ofsome internal

holes of S.
2. The content ofthe external hole ofS’ is the union ofthe contents ofthe external hole

ofS andpossibly some internal holes of S.
3. Distinct holes of S’ do not share the contentfrom the same hole of S.
4. If S does not enclose T, then S’ does not enclose T’.
5. If S is compact, then S’ is compact.
6. IfS has exactly one nonempty internal hole, then S’ either is compact or has exactly

one nonempty internal hole.
Proof. See the above discussion.

PLANAR STRONGLY CONNECTED COMPONENTS 449

6.2.4. Subhole invariants. Let G be an embedded canonical graph. Let G’ be a
contracted version of G. Let S be a strongly connected component in G. Let X be the
external hole of S. Let S’ and X’ be the versions of S and X in G’. Let D be the set of
boundary edges of X. Let D’ be the set of edges in D that remain in G’.

LEMMA 6.5. The subholes ofX’ can be partioned into two collections Anew and Aold
with thefollowingproperties:

1. The subholes in Anew contain no edgesfrom D’. These subholes are all subfaces in
G, and each ofthem has the same orientation in both contexts.

2. The subholes in Aod consist ofexactly the edges in D’, and each edge in D’ has the
same orientation with respect to X and X’.

Proof. See the above discussion.

6.3. Contraction procedures. The planar strongly connected component algorithm
uses three high-level procedures for vertex contraction: ContractPositive, ContractNeg-
ative, and ContractBoth.

ContractPositive is described in Algorithm 6.

ALGORITHM 6. Procedurefor contractingpositive subfaces.
Procedure ContractPositive
Input: an embedded canonical graph G.
Output" an embedded canonical graph that is a contracted version ofGwith no positive
subfaces.
begin

repeat
1. Expand into a negative face each lagc-dcgcc vctcx of G that is not on any

positive subfaces.
2. Contract each positive territory of G into a single vertex.
3. Contract back into single vertices the vertices in G that are duplicates of the

vertices expanded at Step 1.
until G has no positive subfaces.
return the resulting G.

end.

ContractNegative is obtained by reversing all orientations in the description of Contract-
Positive. ContractBoth is simply the composition of ContractNegative and ContractPos-
itive, i.e., ContractBoth(G) ContractNegative(ContractPositive(G)).

Note that the output specifications of these procedures contain some subtleties that
are prone to overexpectations and may result in mistaken theorems or proofs. In par-
ticular, although the output graph of ContractNegative has no negative subface, it may
have positive subfaces even if its input graph has no positive subfaces. Consequently,
ContractBoth(G) may have positive subfaces or even compact strongly connected com-
ponents that contain positive subfaces.

The following analysis focuses on ContractPositive. A similar analysis for Contract-
Negative can be obtained by symmetry.

The next lemma examines the size of G at different steps of ContractPositive and
measures the progress made by an iteration of the repeat loop in ContractPositive.

LEMMA 6.6. At a given iteration of the repeat loop in ContractPositive let Go be the
input graph to Step 1. For E {1, 2, 3} let Gi be the output graph from Step i. Let n be
the initial size of G. For i {0, 1, 2, 3} let ni be the size of Gi and let be the number of
positive clusters in Gi. Thefollowing statements are true:

1. ni < 5nfori {0,1,2,3}.

450 MING-YANG KAO

2. <_ o/2.
Proof. The first statement is obtained by induction by using the fact that n _< 5n0,

n2 _< n, and n _< n0. To prove the second statement, it suffices to show that 3 50,
2 <_ 1/2, and 3s _< 32 as follows.
3 50. This is true because Step 1 does not create, destroy, split, or merge positive

clusters.
2 <_ /2. It suffices to show that each positive subface in G2 contains at least

two contracted positive territories of G. To prove by contradiction, assume that there
is a positive subface g2 in G2 that contains at most one contracted positive territory of
G. If g2 contains no contracted positive territory of G, then g2 is a positive subface
in G, contradicting the fact that every positive cluster of is contracted at Step 2.
Thus, without loss of generality, assume that g2 contains exactly one vertex u that is a
contracted positive territory of G1. Consider g2 as a path P2 from u to u. By Lemma 6.3
the path P2 is originally a positive subpath P1 of a noncycle subface in G1 such that the
endpoints ofP are in positive territories ofG but its internal vertices are not. Because
G2 has no loop edges, P has at least one internal vertex. By Theorem 5.8 the endpoints
of P are in different positive territories of, contradicting the proof assumption that
g2 contains only one contracted positive territory of G.
3 _< 32. By Lemma 6.2 each negative face created by vertex expansion at Step 1

remains unchanged, becomes a collection of smaller negative subfaces, or disappears
altogether in G2. Step 3 in effect contracts these remaining negative subfaces. Contract-
ing a negative subface does not create new positive subfaces and may merge old positive
clusters. Therefore, the desired inequality is true.

THEOREM 6.7. ContractPositive correctly computes an embedded canonical graph
that is a contracted version ofthe input graph with nopositive subfaces. Theprocedure runs
in O(log2 n) time with n/ log nprocessorsfor an input graph ofsize

Proof. Steps 2 and 3 of ContractPositive ensure that the output graph is a contracted
version of the input graph. Moreover, the output graph is an embedded canonical graph
because vertex contraction preserves connectivity and bridgelessness. The termination
condition of the repeat loop ensures that the output graph contains no positive subfaces.

Because G has at most n positive clusters, by Lemma 6.6(2) in log2(n + 1)] iter-
ations of the repeat loop G has no positive cluster and thus no positive subface. For
the remainder of the proof, the following analysis shows that Steps 1 through 3 and the
termination condition can all be done in O(log n) time with n/log n processors. Step
1 is performed by means of Theorem 5.1(2) and Lemmas 5.2(2) and 6.6(1). Next, by
Theorem 5.1(1) and by the effect of vertex expansion the graph produced by Step 1 is
an embedded canonical graph with no large-degree vertices except possibly in positive
clusters. Thus Step 2 can be performed by means of Lemma 6.6(1) and Theorems 5.7
and 6.1. Step 3 is performed by means of Theorem 6.1 and an optimal parallel algorithm
for planar connectivity [14]. The termination condition is tested by means of Lemmas
5.2(2) and 6.6(1).

6.4. Contraction effects. Section 6.4.1 examines the effects ofvertex contraction on
compact strongly connected components. Section 6.4.2 analyzes the effects on singu-
lar components and their contracted versions, singular vertices. These components and
vertices are closely related to index-0 and index-1 components. Section 6.4.3 details the
effects on strongly connected components that each have exactly one nonempty internal
hole. These components can be derived from index-1 components.

PLANAR STRONGLY CONNECTED COMPONENTS 451

6.4.1. Effects of contraction on compact components.
THEOREM 6.8. Let G be an embedded canonical graph. Then every compact strongly

connected component ofG becomes a single vertex in ContractBoth(G).
Remark. This theorem is false if the loop edges created by contraction are kept.
Proof. Let G ContractPositive(G). Let G2 ContractNegative(Gx). Let S be a

compact strongly connected component in G. Let S and Sz be the versions of S in G
and G2. Let X1 and X2 be the external holes of S’1 and S2. The goal is to show that S2
is a single vertex. To prove by contradiction, assume that $2 is not a single vertex. Then
S is also not a single vertex.
S can be regarded both as a subgraph ofG and as a strongly connected component.

Because S is compact in G, by Lemma 6.4 the component S is compact in G. Thus
every internal subface of the subgraph S is an internal subface of G with the same
orientation in both contexts. Similarly, the boundary of the external face of the subgraph
S is the boundary of the external hole of the component S with the same orientation
in both contexts.

Because the subgraph $1 is strongly connected and has at least two vertices, by
Corollary 3.3 it has at least one positive face and one negative face. Because G has
no positive subface, the subgraph Sx has no internal positive subface and thus no inter-
nal positive face. Therefore, the external face of the subgraph S is a positive one, i.e.,
X is a positive hole. By symmetry X2 is a negative hole because Gz has no negative
subface. Then because G is contracted from G, by Lemma 6.5(2) 13(X) contains no
edge from 13(XI). Next, by Lemma 6.5(1) each subhole Z of X2 is also a subface in G2
with the same orientation in both contexts. Consequently, Z is a negative subface in G2,
contradicting the fact that G ContractNegative(G).

6.4.2. Effects of contraction on singular components and vertices. An inward (re-
spectively, outward) singular vertex is one such that there is no directed path from any
directed cycle to that vertex (respectively, from that vertex to any directed cycle). Sin-
gular vertices and components are related by means of the following theorem.

THEOREM 6.9. LetG be an embeddedcanonicalgraph. Then every inward (respectively,
outward) singular compact strongly connected component ofG becomes an inward (respec-
tively, outward) singular vertex in ContractBoth(G).

Proof. By symmetry it suffices to prove the theorem for the inward case. Let G’
ContractBoth(G). Let S be an inward singular compact strongly connected component
in G. Let S’ be the version of S in G’. Because S is compact in G, by Theorem 6.8
S’ is a single vertex in G’. To prove by contradiction, assume that S’ is not an inward
singular vertex in G’. Then G’ contains a directed path from a directed cycle C’ to the
vertex S’. Consequently, by Theorem 6.8 C’ must be part of a noncompact strongly
connected component T in G. Furthermore, there is a directed path from T to S in G
because vertex contraction preserves reachability. This contradicts the condition that S
is an inward singular component in G.

The reason forworkingwith singular vertices is as follows. For computing the strong-
ly connected components it is useful and easy to determine whether a vertex is a source
or a sink or neither. If a vertex is a source or a sink, it is a strongly connected component
by itself. Note that a source is inward singular and a sink is outward singular. Moreover,
if the sources are removed, new sources may appear, and if the sinks are removed, new
sinks may appear. The inward singular vertices are exactly the sources created by itera-
tively removing sources, and the outward singular vertices are exactly the sinks created
by iteratively removing sinks. The iterative process of removing sources and sinks can
be parallelized by means of the following theorem.

452 MING-YANG KAO

THEOREM 6.10. Let G be an embedded canonical graph. Let be the dual of G. Let
D be the set ofedges in G incident with the outward and inward singular vertices. Let) be
the set ofduals ofthe edges in D. Then the edges of all disappear in ContractBoth(O).

Proof. Let ContractPositive(0). Let 02 ContractNegative(0). Let Uo and
U be the sets of outward and inward singular ve_rtices in G. Let Do and D be the sets of
edges in G incident with Uo and U. Let Do and Di be the sets of duals of the edges in Do
and Di. Note that ContractBoth(O) and/) =/)o t3/)i. Because is contracted
from , it suffices to show that the edges of/)o disappear in and that the edges of
/)i disappear in 2. Because these two claims are symmetric, only the former claim is
proved, as follows.

Because Uo as an induced subgraph of G is an acyclic directed graph, it can be re-
garded as a partial order. By induction on this partial order, Do consists of the incoming
edges to Uo in G. To prove by contradiction, assume that for some vertex u Uo and
for some incoming edge d of u in G, the dual edge d of d remains in . Without loss of
generality, further assume that u is a minimal element in the partial order Uo with such
a property.

By the minimality of u, G contains no duals of the incoming edges of the descen-
dants of u in Uo. Because the outgoing edges of u are i_ncoming edges of its descendants
in Uo, the duals of outgoing edges of zt all _disappear in G. In other words, only incoming
edges of u may have duals remaining in Gx.

Let D’ be the set of incoming edges of u in G whose duals remain in t. Let/)’ be
the set of duals of the edges in D’. Recall that the dual 2 of the vertex u is a face in 0.
Because the edges in D’ are incoming edges of u, the edges in/)’ are positive bounda_ry
edges of 2. Also, the edges in D’ are the only remainin8 boundary edges of 2 in G.
Therefore, by Lemma 6.2/)’ forms positive subfaces in G, contradicting the fact that
G ContractPositive(G).

6.4.3. Effects ofcontraction on one-hole components. In the next lemma let G be an
embedded canonical graph. Let G ContractPositive(G), and then let G
ContractNegative(G). Let S be a strongly connected component in G with exactly one
nonempty internal hole. Let S and Sz be the versions of S in G and

LEMMA 6.11. IfS is not compact in Gz, then thefollowing statements hold:
1. Sx and S each have exactly one nonempty internal hole.
2. At least one ofthe nonempty internal holes ofS and Sz is a cycle hole.
Proof. Because Sz is not compact in G, by Lemma 6.4 S is not compact in G.

Because S has exactly one nonempty internal hole, by Lemma 6.4 S and S each have
exactly one nonempty internal hole. This proves the first statement.

To prove the second statement, let X and X be the external holes of S and S.
Let Y and Y be the nonempty internal holes of S and S. The goal is to show that
B(Y) or 13(Y) forms a directed cycle. To prove by contradiction, assume that neither
B(Y1) nor B(Y) forms a directed cycle.
S can be regarded both as a subgraph ofG and as a strongly connected component.

The boundary of X is that of the external face h of the subgraph $1 with the same
orientation in both contexts. The boundary Y1 is that of an internal face k ofthe subgraph
S with the same orientation in both contexts. Because B(Y) does not form a directed
cycle, k is not a positive face of the subgraph S:. If a face f of the subgraph S is neither
h nor k, then f is also a face ofG with the same orientation in both contexts. Moreover,
because G has no positive subfaces, f is not a positive face of the subgraph S.

Because the subgraph S is strongly connected with more than one vertex, by Corol-
lary 3.3 it has at least one positive face. Thus h is a positive face of the subgraph $1, i.e.,

PLANAR STRONGLY CONNECTED COMPONENTS 453

X1 is a positive hole. Symmetrically, X2 is a negative hole because G2 has no negative
subfaces. Because B(Xx) and B(Xz) have the opposite orientations, by Lemma 6.5(2)
13(Xz) contains no edges from B(Xx). By Lemma 6.5(1) B(Xz) forms negative subfaces
of G, contradicting the fact that G ContractNegative(G1).

7. Flattening the nesting of strongly connected components. As highlighted in 1,
a major difficulty in computing planar strongly connected components is that these com-
ponents may be nested within one another. This section details a procedure called Flat-
tenNesting that breaks the nesting of strongly connected components by contracting and
separating them. The procedure is detailed in Algorithm 7, and its overview and analysis
are given below.

ALGORITHM 7. Procedurefor breaking the nesting ofstrongly connected components.
Procedure FlattenNesting
Input" an embedded canonical graph Gin.
Output: an embedded planar directed graph Go,t with the following properties:

1. Gout is constructed from Gin by edge cutting and vertex contraction and has the
same strongly connected components as Gin does.

2. Each connected component of Gou is an embedded canonical graph.
3. If the strongly connected components ofG are not all compact, then the total

number of noncompact strongly connected components in the connected com-
ponents of Gou is fewer than half that of Gin.

4. Every singular compact strongly connected component of Gin becomes an iso-
lated vertex in Go.

begin
Stage 1: contracting compact strongly connected components.

1-1. Let G be ContractBoth(Gi).
Stage 2: cutti_ng off singular vertices.

2-1. Let G be the dual graph of G.
2-2. Let G be ContractBoth(G1).
2-3. Let Dz be the set of edges in G whose duals disappear in
2-4. Let G be G without the edges in D2.
2-5. Let Gz be G without its bridges.

Stage 3" creating chambers and cutting off chamber edges.
3-1. Let G[be the graph constructed by applying ContractPositive to every con-

nected component of G.
3-2. LetG be the graph constructed by applying ContractNegative to every con-

nected component of G.
3-3. Let Dz be the set of chamber edges in G[and G.
3-4. Let G’ be G without the edges in D3.
3-5. Let Gou be G’ without its bridges.

return Gout.
end.

7.1. An overview ofFiattenNesting. In the planar strongly connected component al-
gorithm FlattenNesting is iteratively applied to each connected component of its output
graph.

The first output property ofFlattenNesting ensures that the strongly connected com-
ponents of the input graph remain the same throughout iterations of FlattenNesting.
The second output property permits such iterations by ensuring that each connected
component ofan output graph is canonical and therefore maybe an input to FlattenNest-

454 MING-YANG KAO

ing. The third output property measures the progress of FlattenNesting in breaking
the nesting of strongly connected components. The fourth output property measures
the progress of FlattenNesting in contracting and separating strongly connected compo-
nents.

Based on Theorem 4.2, FlattenNesting focuses on compact, index-0, and index-1
strongly connected components of Gin. These components correspond to the leaves, and
the internal vertices of index 0 or 1 in the enclosure forest ’(Gin). They are processed
in three stages as outlined below.

Stage 1 contracts all compact strongly connected components of Gi into single
vertices. Let G1 be the resulting graph. Intuitively, this stage preprocesses the leaves of
"(Gin). It has one major effect:

All singular compact strongly connected components of Gin become singular ver-
tices in G1. These components include all those enclosed by index-0 components in Gin
and almost all those enclosed by index-1 components.

Stage 2 cuts off the singular vertices in Gx. Let G2 be the resulting graph. Intu-
itively, this stage cuts off the edges in ’(Gin) between the internal vertices with index 0
or 1 and their leaf children. This stage has three major effects:

Every singular compact strongly connected component of Gin becomes an isolated
vertex in G.

Every index-0 strongly connected component of Gin becomes compact in a con-
nected component of G2.

All remaining nonempty internal holes of index-1 strongly connected components
ofG become very similar to chambers in G.

Stage 3 converts into chambers all remaining nonempty internal holes of index-1
components of Gin and then cuts off their chamber edges. Let Gout be the resulting
graph. Intuitively, this stage cuts the edges in ’(Gin) between the index-1 internal ver-
tices and their nonleaf children. This stage has one major effect:

Every index-1 strongly connected component of Gn becomes compact in a con-
nected component of Gout.

The three stages of FlattenNesting are analyzed in 7.2, 7.3, and 7.4, respectively.
These analyses are summarized in 7.5.

7.2. Analysis of Stage 1 of FlattenNesting.
LEMMA 7.1. Let n be the size of Gin. Thefollowing statements are true:
1. Stage i ofFlattenNesting runs in O(log n) time with n log nprocessors.
2. G has the same strongly connected components as Gin does.
3. G is an embedded canonical graph.
Proof. This lemma follows directly from Theorem 6.7 and a symmetric theorem for

ContractNegative. [3

LEMMA 7.2. Thefollowing statements are true:
1. Every compact strongly connected component of Gin becomes a single vertex in G1.
2. Every singular compact strongly connected component of Gin becomes a singular

vertex in G.
3. For each index-O strongly connected component S of Gin every strongly connected

component in the internal holes of S becomes a singular vertex in G1.
4. Let T be an index-1 strongly connected component of Gin. Let X be the internal

hole of T that contains a noncompact strongly connected component. Then the strongly
connected components in internal holes ofT exceptpossibly X all become singular vertices
in G.

PLANAR STRONGLY CONNECTED COMPONENTS 455

Proof. The first statement follows from Theorem 6.8, the second statement follows
from Theorem 6.9, the third statement follows from Lemma 4.5 and Theorem 6.9, and
the fourth statement follows from Theorem 6.9 and Lemma 4.6(1). [3

7.3. Analysis of Stage 2 of FlattenNesting.
LEMMA 7.3. Let n be the size ofGi. Thefollowing statements are true:
1. Stage 2 ofFlattenNesting runs in O(log n) time with n/ log nprocessors.
2. G has the same strongly connected components as G1 does.
3. Every connected component ofG is an embedded canonical graph.
Proof. The third statement is straightforward. The proofs of the other statements

are detailed below.
Statement 1. Step 2-1 uses list ranking and prefix computation to process the doubly

linked circular lists of the combinatorial embedding of G. This takes O(log n) time with
n/log n processors. Step 2-2 is performed in O(log n) time with n/log n processors by
means of Lemma 7.1(3), Theorem 6.7, and a symmetric theorem for ContractNegative.
Steps 2-3 and 2-4 are straightforward and take O(log n) time with n/log n processors.
Step 2-5 is performed in O(log n) time with n/log n processors and an optimal parallel
algorithm for planar biconnectivity [14]. Thus the total complexity is as stated.

Statement 2. By the second specification of vertex contraction, the dual of each
edge in D is in a strongly connected component of (. Then by Lemma 3.1 each edge
in Dg. is between different strongly connected components of G1. Therefore,
have the same strongly connected components. Next, because removing bridges does not
change the strongly connected components of a directed graph, G] and G2 have the same
strongly connected components. Thus G1 and G2 have the same strongly connected
components.

LEMMA 7.4. Thefollowing statements are true:
1. Every singular vertex ofG is isolated in G2.
2. Every index-O strongly connected component ofGin becomes compact in a connected

component of
3. Every index-1 strongly connected component of Gin either becomes compact or has

exactly one nonempty internal hole in a connected component of G2.
4. Let S be an index-1 strongly connected component in Gin. Let S2 be the version of

S in G. Then the edges in in ($2) either allpointfrom S or allpoint to

Proof. The statements are shown as follows.
Statement 1. By Theorem 6.10 D2 includes all edges in G that are incident with

singular vertices. Thus all singular vertices of G1 become isolated in G. Because Gz is

G without its bridges, the singular vertices of G1 remain isolated in G.
Statement 2. The proof readily follows from the first statement of this lemma and

Lemmas 7.2(3) and 6.4.
Statement 3. The proof readily follows from the first statement of this lemma and

Lemmas 7.2(4) and 6.4.
Statement 4. Because G is obtained from G by edge cutting and vertex contraction,

by Lemma 6.4 in($2) C_ in(S). Note that in() ns() consists of the edges between
S and the singular compact strongly connected components enclosed in S. By Lemma
7.2(2) and the first statement ofthis lemma these edges are cut in Stage 2. Thus in(Sz) C_
n(S). By Lemma 4.6(2) this statement is true.

7.4. Analysis of Stage 3 of FlattenNesting.
LEMMA 7.5. Let n be the size of Gin. Thefollowing statements are true:
1. Stage 3 ofFlattenNesting runs in O(log n) time with n log nprocessors.

456 MING-YANG KAO

2. Gout has the same strongly connected components as G2 does.
3. Every connected component ofGout/s an embedded canonical graph.
Proof. The third statement is straightforward. The proofs of the other statements

are detailed below.
Statement 1. Because the contraction procedures are applied to disjoint parts of G,

by Lemma 7.3(3) and Theorem 6.7 and by symmetry Steps 3-1 and 3-2 take O(log2 n)
time and n log n processors. By Theorem 5.12 and by symmetry Step 3-3 takes O(log n)
time and n log n processors. Step 3-4 can obviously be performed in O(log n) time and
with n/log n processors. Step 3-5 is performed in O(log n) time with n/log n processors
by using an optimal parallel algorithm for planar biconnectivity [14]. Thus the complexity
of Stage 3 is as stated.

Statement 2. The proof follows from the fact that a chamber edge in D3 is between
different strongly connected components ofG and that a bridge in G’ is between dif-
ferent strongly connected components of G. [3

LEMMA 7.6. Every index-1 strongly connected component of Gin becomes compact in
a connected component ofGo,.

Proof. Let S be an index-1 strongly connected component in Gin. Let Sz be the
version of S in G2. Let H be the connected component of G2 that contains S2. Let
H ContractPositive(Hz). Let H’ ContractNegative(H). Let S and S’ be the
versions of $9. in H and H’.

To prove the lemma, by Steps 3-3 and 3-4 of FlattenNesting it suffices to show that
at least one of the following statements is true:

1. S’ is compact in H’.
2. S has exactly one nonempty internal hole, and this hole is a chamber in H.
3. S’ has exactly one nonempty internal hole, and this hole is a chamber in H’.

For proof of this claim it suffices to show that if S’ is not compact in H’, then either the
second statement or the third statement is true. Because S’ is not compact in H’ and
because S is index-l, by Lemmas 7.4(3) and 6.4 S and S’ have exactly one nonempty
internal hole each. Let X’ and X" be the nonempty internal holes of S and S’. Then
by Lemma 6.11 either B(X’) is a directed cycle or B(X") is a directed cycle. Futher-
more, because x,(S) c_ 8in(S), by Lemma 7.4(4) $x,(S) is unidirectional. Similarly,
x,,(S’) is unidirectional. Thus either X’ is a chamber in H or X" is a chamber in

H’. [3

7.5. Summary analysis of FlattenNesting.
THEOREM 7.7. FlattenNesting correctly computes an outputgraph as specified. It runs

in O(log2 n) time with / log nprocessors for an input graph ofsize r

Proof. The complexity of FlattenNesting follows from Lemmas 7.1(1), 7.3(1), and
7.5(1). The correctness of FlattenNesting is shown as follows. Property i of the output
follows from Lemmas 7.1(2), 7.3(2), and 7.5(2). Property 2 of the output follows from
Lemma 7.5(3). Property 3 of the output follows from Theorem 4.2 and Lemmas 6.4,
7.4(2), and 7.6. Property 4 of the output follows from Lemmas 7.2(2) and 7.4(1). [3

8. Computing strongly connected components. The main results of this paper are
stated in the next two theorems. One is for embedded planar graphs, and the other is
for planar graphs without given embeddings.

8.1. Strongly connected components of graphs with embeddings.
THEOREM 8.1. Let G be an embedded canonical graph. Let n be the size of G. Let

be the number of noncompact strongly connected components in G. Then Algorithm
correc@ computes the strongly connected components of G in O([log(a + 2)]. log n)

PLANAR STRONGLY CONNECTED COMPONENTS 457

time with n/ log nprocessors on a deterministic arbitrary-CRCW PRAM.Note that because
cz < n, the time complexity is O(loga n).

ALGORITHM 8. Procedure for computing the strongly connected components of an
embeddedplanargraph.
Procedure ComputeSCC
Input: an embedded canonical graph
Output: the strongly connected components of G.
begin

1. repeat
Apply FlattenNesting to each connected component of G.

until every vertex in G is isolated.
2. Expand every vertex in the current G into a strongly connected component of the

initial G.
3. return the strongly connected components computed above.

131111.

Proof. The correctness of ComputeSCC is proved as follows. Because G is bridge-
less, it can be input to FlattenNesting at the beginning of Step 1. Then by the second
output property of FlattenNesting Step 1 can iteratively apply FlattenNesting to each
connected component of its output graphs. By the first output property of FlattenNest-
ing the strongly connected components of G remain the same throughout the iterative
applications of FlattenNesting. Therefore, at the end of Step 1 every isolated vertex is
indeed contracted from an original strongly connected component of G. Consequently,
Step 2 can expand each isolated vertex into an original strongly connected component
of G.

The complexity of ComputeSCC is analyzed as follows. Step 2 of the algorithm
can be performed by tree contraction in O(log n) time with n/log n processors. Thus it
suffices to show that Step 1 takes O([log2 (c + 2)]. log2 n) time with n/log n processors.

By the third output property of FlattenNesting, within [log2(c/2 + 1)] iterations of
FlattenNesting at Step 1 the strongly connected components of G all become compact
in their respective connected components of the current G. The absence of noncompact
strongly connected components ensures that all strongly connected components ofG are
singular in their respective connected components. Thus by the fourth output property
of FlattenNesting, with one more application of FlattenNesting the strongly connected
components of G all become isolated vertices. Therefore, the repeat loop of Step 1
iterates at most log2(c + 2) times.

Because at each iteration of the repeat loop at Step 1 FlattenNesting is applied to
disjoint parts of G, the connected components of G at each iteration of the repeat loop
can be computed in O(log n) with n/log n processors [14]. Similarly, by Theorem 7.7 the
body of the repeat loop takes O(log2 n) time and n/log n processors. Checking the ter-
mination condition of the repeat loop takes only O(log n) time and n/log n processors.
Thus each iteration of the repeat loop takes O(log2 n) time and n/log n processors, and
the complexity of Step 1 is as desired.

8.2. Strongly connected components of graphs without embeddings.
THEOREM 8.2. Let G be a planar directed graph ofsize n. Then Algorithm 9 correctly

computes the strongly connected components ofG in O(log3 n) time with n/ log nprocessors
on a deterministic arbitrary-CRCW PRAM.

458 MING-YANG KAO

ALGORITHM 9. Procedurefor computing the strongly connected components ofa pla-
nar directed graph.
Procedure ComputeStronglyConnectedComponents
Input: a planar directed graph
Output: the strongly connected components of G.
begin

1. Delete all bridges from G.
2. Compute a planar embedding for each connected component of G.
3. Compute the strongly connected components of G by applying the procedure in

Algorithm 8 to each connected component of G.
4. return the strongly connected components computed above.

end.

Proof. The correctness of Algorithm 9 follows from Theorem 8.1 and the fact that a
strongly connected component contains no bridges. The complexity of the algorithm is
analyzed as follows. Step 1 takes O(log n) time and n/log n processors when an optimal
parallel algorithm for planar biconnectivity is used [14]. Step 2 takes O(log n log log
time and n/log n processors [24]. Because ComputeSCC is applied to disjoint parts of
G, by Theorem 8.1 Step 3 takes O(loga n) time and n/log n processors. Thus the total
complexity is as stated.

9. Open problems. This paper has shown that for a planar directed graph of size
n the strongly connected components can be computed in O(loga n) time with n log n
processors. Asubsequent paper will show that given a strongly connected planar directed
graph of size n, a directed spanning tree rooted at a specified vertex can be built in
O(log2 n) time with n/log n processors. There are several fundamental problems left
open in this paper. Perhaps the most important is toefficiently compute planar breadth-
first search. Currently, the best algorithm for this problem is given by Pan and Reif
[23]. Their algorithm computes the shortest paths in O(log2 n) time with nl"/logn
processors for undirected planar graphs. The algorithm is based on matrix operations
and uses a randomized planar separator algorithm given by Gazit and Miller [10]. It
would be significant to reduce to linear the processor complexity of planar breadth-first
search.

Acknowledgments. The author wishes to thank Philip Klein, Gary Miller, Vijaya
Ramachandran, and Greg Shannon for many helpful discussions and suggestions and to
thank Fang Wan for helping to prepare some of the figures.

REFERENCES

[1] K. ABRAHAMSON, N. DADOUr, D. G. KIRKPATRICK, AND T. PRZYTYCKA, A simple tree contraction algo-
rithm, J. Algorithms, 10 (1989), pp. 287-302.

[2] A. AHO, J. HOPCROFT,AND J. ULLMAN, The Design andAna!ysis ofComputerAlgorithms, Addison-Wesley,
Reading, MA, 1974.

[3] R.J. ANDERSON AND G. L. MILLER, Deterministic parallel list ranking, Algorithmica, 6 (1991), pp. 859-
868.

[4] C. BERGE, Graphs, 2nd revised ed., North-Holland, New York, 1985.
[5] B. BOLLOB,S, Graph Theory, Springer-Verlag, Berlin, New York, 1979.
[6] R. COLEAND U. VISHKIN, The accelerated centroid decomposition techniquefor optimal tree evaluation in

logarithmic time, Algorithmica, 3 (1988), pp. 329-346.
[7] Fasteroptimalprefixsums and list ranking, Information and Computation, 81 (1989), pp. 334-352.
[8] D. COPIERSMITH AND S. WItOGRAD, Matrix multiplication via arithmetic progressions, J. Symbolic Com-

put., 9 (1990), pp. 251-280.

PLANAR STRONGLY CONNECTED COMPONENTS 459

[9]

[10]

[11]

[12]

[13]

[14]
[151

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

T. H. CORMN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1991.

H. GAZlT AND G. L. MILLER,A parallel algorithm forfinding a separator in planar graphs, in Proc. 28th
Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 238-248.

.,An improved parallel algorithm that computes the BFS numbering of a directed graph, Inform.
Process. Lett., 28 (1988), pp. 61-65.

H. GAZlT, G. L. MILLER, AND S. H. TENG, Optimal tree contraction in the EREWmodel, in Concurrent
Computations: Algorithms, Architecture, and Technology, S. T. Dickinson, B. W. Dickinson, and
S. Schwartz, eds., Plenum Press, New York, 1988, pp. 139-156.

A. M. GIaaONS AND W. RYTrER, An optimalparallel algorithm for dynamic expression evaluation and its
applications, in Proceedings of the 6th Conference on Foundations of Software Technology and
Theoretical Computer Science, Lecture Notes in Computer Science 241, Springer-Verlag, Berlin,
New York, 1986, pp. 453-469.

T. HAGERUP, Optimalparallel algorithms on planargraphs, Inform. Comput., 84 (1990), pp. 71-96.
Y. HAN,An optimal linked listprefix algorithm on a local memory computer, IEEE Transactions on Com-

puters, 40 (1991), pp. 1149-1153.
E HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
M.-Y. KAO AND G. E. SHANNON, Linear-processor NC algorithms]orplanar directed graphs II: Directed

spanning trees, SIAM J. Comput., 22 (1993), pp. 460-481.
R. KARPAND V. RAMACHANDRAN,A survey ofparallel algorithmsfor shared-memory machines, in Hand-

book ofTheoretical Computer Science, J. van Leeuwen, ed., Elsevier, New York, 1990, pp. 869-941.
S. R. KOSARAJUAND A. L. DELCHER, Optimalparallel evaluation oftree-structured computations by raking,

in Proceedings of the 3rd Aegean Workshop on Computing: VLSI Algorithms and Architectures,
J. H. Reif, ed., Lecture Notes in Computer Science 319, Springer-Verlag, Berlin, New York, 1988,
pp. 101-110.

C. P. KRUSKAL, L. RUDOLPH, AND M. SNIR, The power ofparallel prefix, IEEE Trans. Comput., C-34
(1985), pp. 965-968.

R. E. LADrER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27 (1980),
pp. 831--838.

G. L. MILLER AND J. H. REIF, Parallel tree contractions and its applications, in Proc. 26th Annual IEEE
Symposium on Foundations of Computer Science, 1985, pp. 478-489.

V. PAN AND J. H. REIF, Fast and efficient solution ofpath algebra problems, J. Comput. System Sci., 38
(1989), pp. 494-510.

V. RAMACHANDRANAND J. H. REIF,An optimalparallel algorithmforgraphplanarity, in Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science, 1989, pp. 282-287.

W. TtrrrE, Graph Theory, Vol. 21 ofEncyclopedia ofMathematics and Its Applications, Addison-Wesley,
Reading, MA, 1984.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 460-481, June 1993

() 1993 Society for Industrial and Applied Mathematics
002

LINEAR-PROCESSOR NC ALGORITHMS FOR PLANAR DIRECTED GRAPHS II:
DIRECTED SPANNING TREES*

MING-YANG KAO AND GREGORY E. SHANNON*

Abstract. It is a fundamental open problem whether polylogarithmic time and a linear number of pro-
cessors are sufficient for computing the strongly connected components of a directed graph and constructing
directed spanning trees for these components. This paper provides the first nontrivial partial solution to the
tree problem: for a strongly connected planar directed graph of size n a directed spanning tree rooted at a
specified vertex can be computed in O(log2 n) time with n/log n processors. This result complements an
algorithm by Kao that computes the strongly connected components of a planar directed graph in O(loga n)
time with n/log n processors. Both algorithms run on a deterministic parallel random-access machine that
permits concurrent reads and concurrent writes in its shared memory and, in case of a write conflict, allows an
arbitrary processor to succeed.

Key words, linear-processor NC algorithms, directed spanning trees, strong connectivity, planar directed
graphs, planar orientation, vertex expansion, vertex contraction, edge cutting, tree rerooting, duplicate re-
moval

AMS(MOS) subject classifications. 68Q22, 05C99

1. Introduction. The problems of finding directed spanning trees and strongly con-
nected components frequently appear in more complex problems involving directed
graphs. In sequential computation both problems have optimal linear-time algorithms
[2], [10]. In parallel computation on a parallel random-access machine (PRAM), the
best algorithms for these two problems are based on matrix multiplication and require
O(log2 n) time and n2"376 processors for an n-vertex directed graph [8], [12], [17].

The work of an algorithm can be estimated by the product of its time and processor
complexities. Thus there is a substantial gap between the work done by the above se-
quential and parallel algorithms. In light of the gap it is a fundamental problem whether
the strongly connected components and their directed spanning trees can be computed
in polylogarithmic time with a linear number of processors.

This paper offers the first nontrivial partial solution to the spanning-tree problem:
for a strongly connected planar directed graph of size n, a directed spanning tree rooted
at a given vertex can be computed in O(log2 n) time with n/log n processors. This result
complements an algorithm by Kao that computes the strongly connected components
of a planar directed graph in O(loga n) time with n/log n processors [18]. Both algo-
rithms run on a deterministic PRAM that allows concurrent reads and concurrent writes
(CRCW) in its shared memory and, in case of a write conflict, permits an arbitrary pro-
cessor to succeed.

An insight used in the tree algorithm is as follows. A cycle face of the input graph
is one whose boundary forms a directed cycle. A positive face is a cycle face whose
boundary cycle runs clockwise. If the graph has only one positive face and its maximum
degree is at most three, then a directed spanning tree is obtained by deleting a boundary

Received by the editors April 4, 1990; accepted for publication (in revised form) February 26, 1992. An
extended abstract of this work appeared as one ofthe two parts ofLocaIReorientation, Global Order, andPlanar
Topology, in Proc. 21st Annual Association for Computing Machinery Symposium on Theory of Computing,
Seattle, Washington, May 15-17, 1989, pp. 286-296.

Department of Computer Science, Duke University, Durham, North Carolina 27706. This research was
supported in part by National Science Foundation grants CCR-8909323 and CCR-9101385. Part of this work
was done while the author was at the Department of Computer Science, Indiana University, Bloomington,
Indiana 47405.

*Department of Computer Science, Indiana University, Bloomington, Indiana 47405.

460

PLANAR DIRECTED SPANNING TREES 461

edge of the positive face and thefirst edge of eachpositive segment (a maximal clockwise-
directed boundary path of a noncycle face); see Fig. 1.

root

FIG. 1. CD-pair ofspanning trees obtained by edge cutting.

The correctness of the technique derives from a fundamental orientation property:
if an embedded planar directed graph is strongly connected, then its dual directed graph
is acyclic. This acyclicity induces a partial order on the faces of the primal graph. This
order, in turn, induces an ear decomposition for the primal graph with the boundary of
the positive face being the first ear and the positive segments being the remaining ears.
Then, for computation of a directed spanning tree for the primal graph, it suffices to
remove an edge of the first ear and the first edge of each remaining ear.

A directed tree is convergent (respectively, divergent) if each edge points from a ver-
tex to its parent (respectively, child). A CD-pair of spanning trees is a convergent span-
ning tree and a divergent spanning tree with the same root. The spanning tree con-
structed above is convergent. A divergent spanning tree can be computed by deleting
a boundary edge of the positive face and the last edge of each positive segment. These
two spanning trees form a CD-pair of spanning trees if the two boundary edges deleted
from the positive face are chosen appropriately (see Fig. 1).

It is efficient to reroot this CD-pair, i.e., to compute another CD-pair of spanning
trees rooted at a specified vertex. Therefore, the edge-cutting technique in effect com-
putes a spanning tree with a specified direction and a specified root.

The edge-cutting technique fails in two cases. If the maximum degree of the input
graph is four or greater, then the edge-cutting technique may produce a subgraph con-
taining directed cycles (see Fig. 2). If the graph has two or more positive faces, then the
edge-cutting technique may produce a CD-pair of spanningforests by deleting an appro-
priate pair ofboundary edges of each positive face and the first and the last edge of each
positive segment. (A CD-pair of spanning forests is a convergent spanning forest and a
divergent spanning forest with the same roots.) (See Fig. 3.)

462 MING-YANG KAO AND GREGORY E. SHANNON

root

FIG. 2. Effect oflarge-degree vertices on edge cutting.

root root

root root

FIG. 3. Effect ofmultiplepositivefaces on edge cutting.

The tree algorithm resolves these two difficult cases by reducing the input graph to
one with exactly one positive face and a maximum degree at most three.

Reducing the number of positive faces is coupled with merging the CD-pair of span-
ning forests produced by the edge-cutting technique. Let T1 and T2 be two disjoint di-
vergent trees. Let d ul z2 be a directed edge from T to T. Merging T and T1

PLANAR DIRECTED SPANNING TREES 463

through d involves two cases. If z2 is the root of T2, then a larger divergent tree is readily
formed by d, T1, and Tz. Otherwise, merging Tz to T1 through d requires changing the
root of

A key property of the CD-pair of spanning forests produced by the edge-cutting
technique is that the boundary of each positive face is covered by a unique convergent
tree and a unique divergent tree. These trees cover different vertices but share a well-
structured neighborhood of that positive face. Their common root and opposite orien-
tations may be used to reroot them efficiently at any vertex in the shared neighborhood.
Moreover, this neighborhood can be contracted to reduce by half the number of posi-
tive faces. Of course, vertex contraction may produce large-degree vertices, and the two
difficult cases of the edge-cutting technique must be resolved in concert.

To remove large-degree vertices, the spanning-tree algorithm expands them each
into a cycle face (see Fig. 4). Let G be the input graph. Let G’ be obtained from G by
expanding the large-degree vertices into cycle faces. The tree algorithm first computes
a spanning tree T’ for G’. Then the problem is that T’ contains several duplicates for
each large-degree vertex of G. The tree algorithm uses a duplicate-removal technique
to convert T’ into a spanning tree of G.

FIG. 4. Example ofexpanding a large-degree vertex into a negative face.

This paper is organized as follows. Section 2 gives basics of planar directed graphs
and CD-pairs of trees, and 3 describes the orientation structure of primal and dual pla-
nar directed graphs. Section 4 presents the vertex expansion technique, 5 discusses the
vertex-contraction technique, 6 analyzes the edge-cutting technique, and 7 elaborates
on the techniques of tree rerooting and duplicate removal. Section 8 uses the preceding
techniques to design the directed spanning tree algorithm, and 9 concludes with open
problems.

2. Basics of planar directed graphs and CD-pairs of trees. The following defini-
tions and facts are useful.

2.1. CD-pairs of trees and forests. A divergent (respectively, convergent) tree is a
directed tree in which every edge points from a vertex to its child (respectively, parent).
A divergent (respectively, convergent) forest is a directed forest in which every tree is
divergent (respectively, convergent).

A CD-pair of trees is a convergent tree and a divergent tree with the same root.
A CD-pair of spanning trees for a directed graph G is a CD-pair of trees that are also
spanning trees of G.

A covering tree of a vertex subset U is a tree of G that contains at least the vertices
in U. A CD-pair of covering trees for U is a CD-pair of trees that are also covering trees
of U.

464 MING-YANG KAO AND GREGORY E. SHANNON

A CD-pair of forests is a convergent forest and a divergent forest with the same
roots. A CD-pair of spanning forests for G is a CD-pair of forests that are also spanning
forests of G.

2.2. Normal graphs. A planar directed graph is one that can be embedded on a
sphere such that in the embedding the edges intersect only at common endpoints [5], [6],
[15], [24]. An embedded planar directed graph is one with a given spherical embedding.

A normal graph is a planar directed graph that is strongly connected, has at least
two vertices and may have multiple edges but has no loop edges.

Note that both multiple edges and loop edges can be deleted to simplify a strongly
connected directed graph without affecting the existence of directed spanning trees. In
this paper, however, the multiple edges created by vertex contraction must be kept in
order to manage contraction invariants. For this reason most discussions in this paper
focus on normal graphs.

2.3. Combinatorial embeddings and data structures. Let G be a normal graph. A1-
gorithmically, a spherical embedding of G is encoded by the clockwise cyclic order of
the edges incident with each vertex. Such an encoding is called a combinatorial spher-
ical embedding of G. Topologically, a spherical embedding is uniquely specified by its
corresponding combinatorial embedding.

The cyclic edge incidence in a combinatorial embedding is further encoded by the
following data structure: for each vertex there is a doubly linked circular list consisting
of the edges incident with that vertex in the clockwise order.

Given a normal graph of size n, a combinatorial spherical embedding can be com-
puted in O(log n) time with n log log n/log n processors on a deterministic arbitrary-
CRCW PRAM [26].

2.4. Faces, boundaries, orientations, cycle faces, subfaces, and clusters. Let G be
an embedded normal graph. If the vertices and edges of G are deleted from its embed-
ding sphere, then the sphere is divided into disconnected regions. Each region is called
aface of G.

Let f be a face of G. The boundary of f, denoted by B(f), is the set of edges and
vertices surrounding f. B(f) can be arranged into a unique edge-simple undirected cycle
by having an observer stay inside f and walk around B(f) once. This cycle is called the
boundary cycle of f. A boundary path of f is a subpath of its boundary cycle.

Let d be a boundary edge of f. The orientation of d with respect to f is defined
as follows: the edge d is positive (respectively, negative) with respect to f if it points in
the clockwise (respectively, counterclockwise) direction on the boundary cycle of f with
respect to an observer standing inside f.

A face is called a cycle face if its boundary cycle is a directed cycle. A cycle face
f is called a positive (respectively, negative) face if every boundary edge of f is positive
(respectively, negative) with respect to f.

Asubface of a face f is a vertex-simple undirected subcycle of the boundary cycle of
f. The boundary cycle of f can be partition into subfaces. Furthermore, if f is a cycle
face, then its subfaces are all directed cycles.

TWO positive (respectively, negative) faces 91 and 99. of G are linked if there is a
sequence of positive (respectively, negative) faces fl,..., f such that 91 fl, 99. f,
and for 1 _< i <_ s 1, f and f+ share at least one boundary vertex.

Apositive (respectively, negative) cluster of G is the set of boundary cycles of a max-
imal family of linked positive (respectively, negative) faces.

PLANAR DIRECTED SPANNING TREES 465

The planar directed spanning tree algorithm is described mainly in terms of positive
faces and clusters. By symmetry the algorithm can also be described by using mainly the
negative orientation.

LEMMA 2.1. Let G be an embedded normal graph of size r The following can be
computed in O(log n) time with n/ log nprocessors:

1. the boundary cycles ofthefaces,
2. the boundary cycles ofthepositive faces,
3. thepositive clusters, and
4. the subfaces ofthepositive faces.
Proof. The boundary cycles ofthe faces can be computed by tracing the doubly linked

circular lists of the combinatorial embedding of G. This is done by list ranking [3], [8],
[16] in O(log n) time with n/log n processors. Next it is straightforward to determine
the boundary cycles of the positive faces in O(log n) time with n/log n processors. Then
the positive clusters can be computed in O(log n) time with n/log n processors by using
an optimal parallel algorithm for planar connectivity [15].

To compute the subfaces of the positive faces, observe that the subfaces of a face f
are just the biconnected components of B(f). Similarly, the subfaces of G are the face
boundaries of the subgraphs that are induced by the biconnected components of G. On
the basis of these observations the subfaces of G can be computed in a straightforward
manner in O(log n) time with n/log n processors. This computation uses optimal algo-
rithms for planar connectivity [15], planar biconnectivity [15], list ranking [3], [8], [16],
and prefix computation [21], [22]. [3

2.5. Holes, boundaries, and orientations. Let G be an embedded normal graph.
Let B be a connected subgraph of G with at least two vertices. If the vertices and edges
of B are removed from the embedding sphere of G, then the sphere is divided into dis-
connected regions. Each region is called a hole of B.

Let X be a hole of B. The boundary ofX, denoted by B(X), is the set ofvertices and
edges surrounding X. 13(X) can be arranged into a unique undirected cycle by having
an observer stay inside X and walk around B(X) exactly once. This cycle is called the
boundary cycle of X. It may not be edge-simple.

Let d be a boundary edge of X. The orientation of d with respect to X is defined
as follows: the edge d is positive (respectively, negative) with respect to X if it points in
the clockwise (respectively, counterclockwise) direction on the boundary cycle ofX with
respect to an observer standing inside X.

3. Planar orientation. This section describes orientation structures of primal and
dual planar directed graphs.

3.1. Dual plan_ar directed graphs. Let G be an embedded normal graph. The dual
of G, denoted by G, is the embedded normal graph constructed below:

* For each face f in G there is a vertex, denoted by , in that corresponds to f.
The vertex is called the dual of f.. For each edge d in G there is an edge, denoted by d-, in that corresponds to d.
The edge d is called the dual of d and is determined as follows. Let fl and f2 be the two
faces in G that share d as a boundary edge. If d is positive (respectively,_negative) with
respect to fx, then d is a directed ed_ge from to f2 (respectively, from f to f).. The spherica_l embedding of G is derived from that of G as follows.~ For each face
f of G the vertex f is placed inside f. For each edge d of G the edge d is obtained by
turning d counterclockwise 90.

466 MING-YANG KAO AND GREGORY E. SHANNON

Note that the dual of the dual ofG is the same as G with all_edge directions reversed.
Consequently, each vertex in G also corresponds to a face in G. In particular, a source
(respectively, sink) in (corresponds to a positive (respectively, negative) cycle face in
G.

3.2. Primal-dual orientations. The following theorem is crucial to the planar di-
rected spanning-tree algorithm.

THEOREM 3.1. Let G be an embedded normalgraph. Then G is acyclic. Consequently,
G has at least onepositiveface and one negativeface.

Proof. For a detailed proof, see the companion paper on computing planar strongly
connected components [18].

4. Vertex expansion. The planar directed spanning-tree algorithm is sensitive to
vertices of degree greater than three. For this reason such vertices are called the large-
degree vertices.

A useful operation for eliminating large-degree vertices is to replace them each by
a positive face or a negative face, as shown in Fig. 4. This operation is called vertex
expansion.

In another important application vertex expansion is used to destroy cycle faces and
may apply to vertices of degree two. Moreover, for technical uniformity, if the graph in
question consists of a single vertex, then this vertex is expanded into a cycle face with
two boundary edges.

The procedure in Algorithm 1 details how to expand vertices of degree two or more
into negative faces.

ALGORITHM 1. Procedurefor expanding vertices into negative faces.
Procedure ExpandVertex
Input: an embedded normal graph G and a set U of vertices.
Output: G with each vertex in U expanded into a negative face.
begin

for each vertex v E U do
begin

1. Let dl,..., d8 be the edges incident with v in the counterclockwise order.
2. Create s copies of v, namely, vl,...,
3. Replace the v-end of each di by vi.
4. Link the vertices v into a counterclockwise directed cycle, i.e., v

"--+ ?38--1 ?38 -----r 731.
end.

return G with the above changes.
end.

The procedure for expanding vertices into positive faces can be obtained by symmetry.
THEOREM 4.1. Thefollowing statements are true:
1. The output graph ofExpandVcrtex is an embedded normal graph.
2. ExpandVertcx runs in O(log n) time with n/ log nprocessors for an input graph of

size r

Proof. The first statement is straightforward. As for the second statement, Expand-
Vertex can be done in a straightforward manner with fundamental techniques, including
prefix computation [21], [22] and list ranking [3], [8], [16].

5. Vertex contraction. Throughout this paper vertex contraction always satisfies the
following specifications:

PLANAR DIRECTED SPANNING TREES 467

Vertex contraction keeps all multiple edges and deletes all loop edges that it cre-
ates.

Vertex contraction contracts only connectedvertex subsets ofan embedded normal
graph.

Contracting only connected vertex subsets preserves planarity. Deleting all loop
edges simplifies a contracted graph. Keeping all multiple edges maintains crucial con-
traction invariants. In particular, each uncontracted edge keeps a unique identity be-
cause its link remains unchanged although its endpoints may be altered by contraction.

5.1. Spherical embeddings induced by vertex contraction. Let G be an embedded
normal graph. Let B be the subgraph induced by a connected vertex subset of G. Let G
be the graph constructed from G by contracting B into a vertex B. If B consists of at
most one vertex, then G and G are the same. If B consists of all the vertices of G, then
G is a single vertex. Otherwise, a spherical embedding for G is specified as follows:

For every vertex v B the clockwise cyclic order of the edges incident with v is
the same in G and G.

The edges around each nonempty hole X of B stay together around B, and their
clockwise cyclic order around/3’ is the same as their cyclic order around the boundary
cycle of X in the negative direction of X.

In general, such a spherical embedding is not unique. For the purposes of this paper
any spherical embedding that fits this construction is suitable.

THEOREM 5.1. Given an embedded normal graph of size n, a spherical embedding
induced by contracting a disjoint family of connected vertex subsets can be computed in
O(log n) time with n/ log nprocessors.

Proof. The edges around a new vertex of G’ are collected by processing the dou-
bly linked circular lists of the combinatorial embedding of G. The computation takes
O(log n) time and n/log n processors, using optimal parallel algorithms for list ranking
[3], [8], [16], prefix computation [21], [22], tree contraction [1], [10], [13], [18], [21], and
planar connectivity [15]. U

5.2. Contraction invariants. Let G be an embedded normal graph. Let G’ be a
contracted version of G. Let f’ be a face in G’. Let P’ be a boundary path of f’ whose
internal vertices are original vertices in G.

LEMMA 5.2. P’ originally is a boundarypath ofa face f in G, and each edge ofP’ has
the same orientation with respect to f and f.

Note. This lemma is false if multiple edges created by contractions are not kept.
Proof. Vertex contraction can be done by performing a sequence of contracting a

nonloop edge and deleting a loop edge. The proof of the lemma is by straightforward
induction and is based on direct observations about the effects of deleting a loop edge
and contracting a nonloop edge.

6. Edge cutting. Section 6.1 describes a procedure, called CutSegment, for the edge-
cutting technique. Section 6.2 uses CutSegment to find a CD-pair of spanning trees for
a positive cluster.

Section 6.3 uses CutSegment to compute a CD-pair of spanning forests for an em-
bedded normal graph with no large-degree vertices. Section 6.4 uses these forests to find
key neighborhoods of positive faces called biconnected territories. These neighborhoods
are contracted in the planar directed spanning tree algorithms.

6.1. CutSegment. The procedure CutSegment is detailed in Algorithm 2, which is
based on a generalization of the standard ear decomposition [23].

468 MING-YANG KAO AND GREGORY E. SHANNON

ALGORITHM 2. Procedurefor edge cutting.
Procedure CutSegment
Input:

1. a directed graph G,
2. a symbolic parameter z "first" or "last,"
3. the set II of ears in a multihead ear decomposition of G. Remark: The partial

order of the decomposition is not part of the input.
Output" G without the z edge of each path in II.
begin

1. Delete from G the z edge of each path in II.
2. return the resulting G.

end.

Let G be a directed graph. An ear of G is an internally vertex-simple directed path,
i.e., the internal vertices appear only once in the path. Adecomposition ofG is a partition
of its edges into ears. An ordered decomposition is one whose ears are arranged into a
partial order. Ahead is an ear that is a minimal element in the partial order. Amultihead
ear decomposition of G is an ordered decomposition with the following properties:

The endpoints of each head are the same. Two distinct heads may not intersect at
all.

The endpoints of each nonhead ear must be in some smaller ears, but its internal
vertices may not be in any smaller or incomparable ears.

Remark. A standard ear decomposition is a multihead ear decomposition with a
total order [23].

THEOREM 6.1. Let n be the size ofG. Let Gc CutSegment(G, first, II). Also, let Ga
CutSegment(G, last, II). Then thefollowing statements are true:

1. CutSegment runs in O(log n) time with n/ log nprocessors.
2. Gc and Gaform a CD-pair ofspanningforests for G with the properties below:
(a) The vertices ofeach head are in exactly one tree in each forest.
(b) In each forest each tree contains the vertices ofexactly one head.
(c) Each tree is rooted at the endpoint ofits corresponding head.
Proof. The first statement is straightforward. The second statement is proved by

induction on the partial order of the ears. The idea is to add to an initially empty graph
the ears one by one, starting with the heads.

6.2. Computing spanning trees for positive clusters. Algorithm 3 is a procedure
ComputeClusterSegments that computes the ears in a one-head ear decomposition for
a positive cluster .

ALGORITHM 3. Procedurefor computing an ear decomposition with one headfor each
positive cluster.
Procedure ComputeClusterSegments
Input: a positive cluster of an embedded normal graph G that may have large-degree
vertices. Remark: G is not part of the input.
Output: the set II of ears in a multihead ear decomposition of with only one head.
begin

1. Compute an auxiliary graph ’ for as follows:
1-1. Let F be the set of subfaces of the faces in .
1-2. Let U be the set of vertices shared by cycles in F.
1-3. ’ is the connected planar undirected graph defined below:

PLANAR DIRECTED SPANNING TREES 469

The vertex set of ’ consists of the vertices in U and the cycles in F with
each cycle treated as a single vertex.
For C E F and z E U there is an undirected edge in ’ between C and
z if and only if z is a vertex in C.

2. Impose a total order on the cycles in F as follows:
2-1. Compute an arbitrary undirected spanning tree T of ’.
2-2. Compute a preorder numbering of T. Remark: This preorder numbering

naturally induces a total order on the cycles in F.
3. Use the above total order to construct II:

3-1. Compute the breakpoints of each cycle in F defined as follows:
For the cycle with the smallest preorder number the breakpoint of that
cycle is an arbitrary vertex in it.
For each other cycle the breakpoints are the vertices shared by that cycle
and those with smaller preorder numbers.

Remark: A breakpoint is defined with respect to a cycle. A vertex may be a
breakpoint for a cycle but not for another.

3-2. Compute the segments of each cycle (7 in F defined as follows:
If (7 has only one breakpoint, then the segment of (7 is the directed sub-
path of (7 from that breakpoint to itself.
If (7 has two or more breakpoints, then a segment of (7 is the directed
subpath of (7 between two consecutive breakpoints.

3-3. Let II be the set of segments computed above.
4. return H.

end.

Based on Theorem 6.1, this procedure and CutSegment together can compute a
CD-pair of spanning trees for .

THEOREM 6.2. Let n be the size of . Then the procedure in Algorithm 3 correctly
computes an output as specified in O(log n) time with / log nprocessors.

Proof. The correctness of the procedure is shown as follows. Because the cycles in
F are vertex-simple, the segments are internally vertex-simple. By the construction of

and by the preorder of T, every cycle in F except the smallest-numbered one shares a
vertex with a smaller-numbered cycle. Thus every cycle in F has at least one breakpoint
and is partioned into segments, i.e., II is a decomposition of .

II is an ordered decomposition with respect to the following partial order -<: for
L1, L2 II that are, respectively, segments of C1, C2 F, L -< L if and only if the
preorder number of C is smaller than that of C.

The segment of the smallest-numbered cycle in F is the only head. Thus the first
property for a multihead ear decomposition is satisfied. Because the preorder on F is
a total order, by the choice of the breakpoints the second property for a multihead ear
decomposition is also satisfied.

As for the complexity of the procedure, it suffices to show that Steps 1-1 through 3-3
each take O(log n) time with n/log n processors. By Lemma 2.1, Step 1-1 runs within
the desired complexity. Step 1-2 is obvious. Step 1-3 is also straightforward; it need
not compute a combinatorial embedding of ’. By the planarity of ’, Step 2-1 uses an
optimal algorithm for planar connectivity [15]. Because the size of /,’ is O(n), Step 2-1
runs within the desired complexity. Step 2-2 uses the Euler tour [4]. Steps 3-1 through
3-3 are straightforward. U

THEOREM 6.3. For an embedded normalgraph ofsize n, a CD-pair ofspanning trees

for each positive cluster can be computed in O(log n) time with n/ log nprocessors.

470 MING-YANG KAO AND GREGORY E. SHANNON

Proof. The procedure in Algorithm 4 computes a CD-pair of spanning trees for each
positive cluster within the desired complexity.

ALGORITHM 4. Procedurefor computing a CD-pair ofspanning treesfor eachpositive
cluster.
Procedure ComputeClusterCDTrees
Input: an embedded normal graph G.
Output: a CD-pair of spanning trees for each positive cluster of G.
begin

1. Compute the positive clusters of G.
2. for each positive cluster do

begin
2-1. Let II ComputeClusterSegments().
2-2. Let CutSegment(, first, II).
2-3. Let I’a CutSegment(I,, last, H).

end.
3. return c and a for each .

end.

The correctness and the complexity of the procedure follow from Lemma 2.1 and The-
orems 6.1 and 6.2. lq

6.3. Computing spanning forests for embedded normal graphs. The procedure
ComputePositiveSegments in Algorithm 5 computes a useful set of ears for an embedded
normal graph without large degree vertices.

ALGORITHM 5. Procedurefor computing the ears in an ear decomposition for an em-
bedded normalgraph.
Procedure ComputePositiveSegments
Input: an embedded normal graph G with no large-degree vertices.
Output: the set II of ears in a multihead ear decomposition of G. Remark: The partial
order of the decomposition is not part of the output.
begin

1. Compute the boundary cycles of the faces of G and those of the positive faces.
Remark: Because G has no large-degree vertices, these cycles are vertex-simple.

2. Compute the breakpoints of each face of G defined as follows:
For a positive face the breakpoint of that face is an arbitrary boundary vertex
of that face. A negative face has no breakpoint.
For a noncycle face the breakpoints of that face are the local sources and
sinks on its boundary cycle.

Remark: A breakpoint is defined with respect to a face. Avertex may be a break-
point for a face but not for another.

3. Compute thepositive segments of each face f of G defined as follows:
If f has only one breakpoint, then the segment of f is the directed boundary
path of f from that breakpoint to itself.
If f has two or more breakpoints, then a segment is the directed boundary
path of f between two consecutive breakpoints.
Apositive segment of f is one whose edges are all positive with respect to f.

4. Let II be the set of positive segments computed above.
5. return II.

end.

PLANAR DIRECTED SPANNING TREES 471

Based on Theorem 6.1, this procedure and CutSegment together compute a useful CD-
pair of spanning forests.

THEOREM 6.4. Thefollowing statements are true:
1. For an input graph ofsize n theprocedure in Algorithm 5 runs in O(log n) time with

n/log nprocessors.
2. The output of the procedure consists of the ears in a multihead ear decomposition

whose heads are exactly the segments ofthe positive faces of G.
Proof. The two statements are proved as follows.
Statement 1. By Lemma 2.1, Step 1 takes O(log n) time with n/log n processors.

Then Steps 2-4 can be done in a straightforward manner in O(log n) time on n/log n
processors. Thus the total complexity is as stated.

Statement 2. Because the boundary cycles of the faces of G are vertex-simple, the
positive segments are internally vertex-simple. Because an edge is positive on exactly
one face, the positive segments partition the edges of G. Thus II is a decomposition of
G.

As for a suitable partial order on II, by Theorem 3.1 G is acyclic and can be regarded
as a partial order -<y on the faces ofGwith the positive faces being the minimal elements.
The order -<f induces the following partial order -<8 on II: let fl and f2 be two faces.
Let L1 and L2 be two positive segments of f and f2, respectively. Then L -’<8 L2 if and
only if fl f f2.

Because the positive faces are the minima in -,, their segments are the heads. Be-
cause a positive face has only one breakpoint, the two endpoints of a head are the same.
Because G has no large-degree vertex, no two positive faces share a boundary vertex.
Thus, the heads are disjoint, satisfying the first property for a multihead ear decomposi-
tion.

As for the second property of a multihead ear decomposition, let L1 be a nonhead
ear. Let L2 be a distinct segment intersecting L at a vertex v. There are two cases: (1) v
is an endpoint of L1 or (2) v is an internal vertex of L. These two cases are symmetric.
Case (1) leads to the first half of the second property. Case (2) leads to the second half
of that property. Only Case (1) is discussed below.

Let f be the face of which L is a positive segment. By definition v is a source
or a sink of/3(f); by symmetry assume that v is a source. By the strong connectivity
and the degree condition of G the degree of v is three. Let w, w2, w3 be the vertices
incident with v in the clockwise order. Assume that Wl, w2 13(f) but w3 B(f).
Then the edges incident with v are dl v w, d2 v ---r w2, d3 w3 +- v. Because
dl, d2 13(fl), L is the positive segment off that contains d. Let f2 be the face whose
boundary contains d2 and d3. Then L2 is the positive segment of f2 that contains d2 and
d3. Notice that f2 -<f fx. Thus L2 -’s L1. 1-]

THEOREM 6.5. Thefollowing statements are true:
1. For an inputgraph ofsize n theprocedure in Algorithm 6 runs in O(log n) time with

n/log nprocessors.
2. The output G and Ga of the procedure form a CD-pair ofspanning forests for G

with the followingproperties:
(a) For eachpositiveface the boundary vertices ofthatface are contained in exactly one

tree in each forest.
(b) In each forest each tree contains the boundary vertices ofexactly onepositive face.
(c) Each tree is rooted at the breakpoint ofits correspondingpositive face.
ALGORITHM 6. Procedurefor computing a CD-pair ofspanningforestsfor an embed-

ded normalgraph.

472 MING-YANG KAO AND GREGORY E. SHANNON

Procedure ComputeCDForests
Input: an embedded normal graph G with no large-degree vertices.
Output: a CD-pair of spanning forests G, and Ga for G.
begin

1. Let II ComputePositiveSegments(G).
2. Let G, CutSegment(G, first, II).
3. Let Ga CutSegment(G, last, II).
4. return G and Gd.

end.

Proof. The theorem follows from Theorems 6.1 and 6.4. Note that the partial orders

-< and -< are implicit and require no computation at all. [3

THEOREM 6.6. Given an embedded normal graph of size n with exactly one positive
face and no large-degree vertices, a CD-pair ofspanning trees can be computed in O(log n)
time with n/ log nprocessors.

Proof. This a corollary of Theorem 6.5. Because the given graph has exactly one
positive face, there is only one tree in each of Gc and Gd. [3

6.4. Biconnected territories. Let G be an embedded normal graph with no large-
degree vertices. Abiconnected territory of a positive face ofG is a vertex subset as defined
by the procedure in Algorithm 7.

ALGORITHM 7. Procedurefor computing the biconnected territories.
Procedure ComputeBiconnectedTerritories
Input: an embedded normal graph G with no large-degree vertices.
Output: the biconnected territories of G.
begin

1. Let II ComputePositiveSegments(G).
2. Let G CutSegment(G, first, II).
3. Let Ga CutSegment(G, last, II).
4. for each positive face f of G do

begin
4-1. Let Cc(f) be the connected component inG that contains the bound-

ary vertices of f.
4-2. Let Cd(f) be the connected component in Gd that contains the bound-

ary vertices of f.
4-3. Let S(f) be the subgraph of G induced from the vertices shared by

C(f) and Cd(f).
4-4. Let 13T(f), the biconnected territorg of f, be the biconnected com-

ponent in S(f) that contains 13(f).
end.

5. return all BT(f) computed above.
end.

6.4.1. Computing biconnected territories. The next theorem analyzes the proce-
dure in Algorithm 7.

THEOREM 6.7. Thefollowing statements are true:
1. C(f), .d(f), and BT(y)exist.
2. The .subgraphs C f), Cd(f), and 137"(f for distinct positive faces are respectively

disjoint.

PLANAR DIRECTED SPANNING TREES 473

3. Let n be the size ofG. The biconnected territories ofG can be computed in O(log n)
time with n/ log nprocessors.

Proof. The statements are proved as follows.
Statement 1. The existence of tTc(f) and Ca(f) follows from Theorem 6.5(2a). The

existence of BT(f) derives from that of iTs(f) and Ca(f) and the fact that B(f) is bicon-
nected because G has no large-degree vertices.

Statement 2. The disjointness of tTc(f)’s and the tTa(f)’s follows from Theorem
6.5(2b). The disjointness of 137r(f)’s follows from that of tTc(f)’s and tTa(f)’s.

Statement 3. The complexity of the procedure in Algorithm 7 is analyzed as follows.
Steps 1 through 3 are performed by means of Theorem 6.5(1). Step 4 is started by com-
puting the positive faces of G via Lemma 2.1. Steps 4-1 through 4-4 can be computed
in O(log n) time with n/log n processors by using the second statement of this theorem
and optimal parallel algorithms for planar connectivity and biconnectivity [15]. Thus the
biconnected territories can be computed with the stated complexity. [3

6.4.2. Contracting biconnected territories. Contracting biconnected territories is a
key step in reducing the number of positive faces.

Let G be an embedded normal graph with no large-degree vertices. Let G’ be the
graph constructed from G by contracting each biconnected territory into a vertex.

Because G has no large-degree vertices, its positive faces have disjoint boundaries.
The contraction of the biconnected territories may create large-degree vertices in G’.
Thus positive faces in G’ may cluster together. The next two propositions relate the
number of positive clusters in G’ to that of positive faces in G.

LEMMA 6.8. Let f be a noncycle face in . Let P be a directed boundary path of f
that has at least two edges and consists ofpositive edges of f. If the endpoints of P are in
biconnected territories of but its internal vertices are not, then the endpoints of P are in
different biconnected territories.

Proof. Let P p,..., p,. To prove by contradiction, assume that p and p are in
the same biconnected territory BT(f). It suffices to show that P c_ BT(f), contradicting
the condition that the internal vertices of P are not in any biconnected territory.

Note that P is a subpath of a positive segment Q of f. Let Q q,..., qt. After
the first edge of Q is cut, the subpath Q’ q,..., qt remains in Go. Because the path
Pc p,...,p is a subpath of Q’, the path P is connected to p, in
BT(f) c_ Co(f), the path Pc is in Co(f). On the other hand, becausep
p is also in tTc(f). Thus P is in Co(f). By symmetry P is also in Ca(f). Thus P is in S(f).
By the proof assumption P is connected to BT(f) at both p and p. Because (7 has no
large-degree vertex, the union of P and BT(f) is biconnected in S(f). Consequently, P
lies in 13T(f).

THEOREM 6.9. The number ofpositive clusters in G is at most half the number of
positive faces in G.

Proof. It suffices to show that the boundary of each positive face in G’ contains at
least two contracted biconnected territories of G. To prove by contradiction, assume
that there is a positive face f’ in G’ whose boundary contains at most one contracted
biconnected territory of G. If B(f’) contains no contracted biconnected territory of G,
then f’ is a positive face in G, contradicting the fact that every positive face of G is
contracted in G’. Thus, without loss of generality, assume that B(f’) contains exactly
one vertex v’ that is a contracted biconnected territory of G. Let P’ be a vertex-simple
directed boundary path of f’ from v’ to v’ with at least one edge. By Lemma 5.2 P’ is
originally a positive boundary path P of a noncycle face in G such that the two endpoints
of P are in biconnected territories of G but its internal vertices are not. Because G’ has

474 MING-YANG KAO AND GREGORY E. SHANNON

no loop edges, P has at least two edges. By Lemma 6.8 the endpoints ofP are in different
biconnected territories of G, contradicting the proof assumption that B(f’) contains only
one contracted biconnected territory of G.

7. Tree rerooting and duplicate removal. Tree rerooting and duplicate removal are
useful techniques for computing directed spanning trees. When they are used together,
duplicate removal provides crucial flexibility to tree rerooting so that forests can be
merged efficiently. These two techniques are detailed in 7.1 and 7.2. Their combi-
nation and applications are described in 7.3 and 7.4.

7.1. Tree rerooting. The procedure in Algorithm 8 describes the technique ofchang-
ing the roots of trees and the next theorem analyzes the procedure.

ALGORITHM 8. Procedurefor changing the root ofa CD-pair oftrees.
Procedure RerootCDTrees
Input:

1. a CD-pair of trees Tc and Te of a directed graph G (remark: G is not part of the
input),

2. the common root r of the two trees,
3. a vertex r’ shared by the two trees.

Output: a CD-pair of trees T’ and T of G with the following properties:
1. T’ and T are both rooted at r’.
2. T’ and T share at least the vertices originally shared by Tc and
3. T’ and T together contain at most the vertices originally contained in T and Te

together.
begin

1. Compute T’ as follows:
1-1. Let Pe be the tree path in Te from r to r’.
1-2. Let T’ be T with Pe added.
1-3. For every vertex v E T’, if v has two outgoing edges, delete the one not in

Pa. Also, delete from T’ the outgoing edge of r’.
2. Compute T symmetrically.
3. return T and T.

end.

THEOREM 7.1. Let n and nd be the numbers ofvertices in T and Td. Theprocedure
inAlgorithm 8 correctly computes an output as specified in O(log(nc + rid)) time with (n +
ha)/log(n + ha) processors.

Proof. The correctness of the procedure is straightforward. As for the complexity,
the key fact is that Pa can be computed in the desired complexityby using tree contraction
[1], [10], [13], [18], [21].

7.2. Duplicate removal. The procedure in Algorithm 9 describes the technique for
removing duplicates from a tree and the next theorem analyzes the procedure.

ALGORITHM 9. Procedurefor removing the duplicatesfrom a tree.
Procedure RemoveDuplicates
Input:

1. a directed graph G,
2. a directed spanning tree T of G,
3. disjoint vertex subsets U,..., U of G,
4. the directed graph G’ constructed from G by contracting each Ui into a vertex.

PLANAR DIRECTED SPANNING TREES 475

Output" a directed spanning tree T’ of G’ with the same orientation and root as those
ofT.
begin

1. For all i let ui be the highest vertex of Ui in T; if there are two vertices or more
at the same smallest depth, choose one of them arbitrarily.

2. For all delete from T all edges between the vertices in U-{z} and their parents.
3. Construct T’ from the above T by contracting U into
4. return T’.

end.

THEOREM 7.2. Theprocedure in Algorithm 9 correctly computes an output as specified
in O(log n) time with n/ log nprocessorsfor an input graph ofsize

Proof. The correctness of the procedure is straightforward. As for the complexity,
the key fact is that the representatives z can be found in O(log n) time with n/log n
processors by using tree contraction [1], [10], [13], [18], [21].

7.3. Combining tree rerooting and duplicate removal. The procedure in Algorithm
10 combines the techniques of tree rerooting and duplicate removal and the next theo-
rem analyzes the procedure.

ALGORITHM 10. Procedureforcombining the techniques oftree rerootingand duplicate
removal
Procedure RerootAndRemoveDuplicates
Input:

1. a strongly connected directed graph G,
2. disjoint vertex subsets U1,..., U8 of G,
3. a CD-pair of forests for G that consists of a CD-pair of covering trees S,c and

Si,d for each U,
4. the directed graph G’ constructed from G by contracting each U into a superver-

tex ui,

5. a CD-pair of spanning trees T’ and T for G’.
Output: a CD-pair of spanning trees Tc and Td for G.
begin

1. Compute Tc as follows:
1-1. Find a local root r for each Ui:

if is the root of T’, then let ri be an arbitraryFor each supervertex z,
vertex in Ui.

in T’. Let d be the originalOtherwise, let d’ be the outgoing edge of ui
of d’ in G. Let r U be the start vertex of d.

1-2. For each ui apply the procedure in Algorithm 8 to Si, and S,d to find a
convergent tree R of G covering U and rooted at r.

in T’ into Ri:1-3. Create duplicates to prepare for expanding
For each vertex v in G replace each occurrence of v in the trees R with a
distinct duplicate of v. Also collect the duplicates for v.

into R:1-4. Undo the contractions in T’ by expanding each
For each edge d’ T’ let d v - w be its original in G. If v is in some
Ui, then replace the v-end of d by the duplicate of v for R. Perform the
same replacement to the w-end. Let To" be the resulting T’.
Let Tc be the tree formed by T" and all trees R. Remark: The dupli-
cates prevent cycles from being created in T; in fact, T is a convergent
spanning tree of G with duplicates.

476 MING-YANG KAO AND GREGORY E. SHANNON

1-5. Use the procedure in Algorithm 9 to remove duplicates from T,.
2. Compute Ta symmetrically. To maintain the same root for T and To, if the root

then choose the same r for U at Step 1-1 forof T’ and T is a supervertex u,
both T, and To.

3. return Tc and
ellao

THEOREM 7.3. Let n be the size of G. Then the procedure in Algorithm 10 correctly
computes an output as specified in O(log n) time with n/ log nprocessors.

Proof. The correctness of the procedure is analyzed as follows. First, the procedure
in Algorithm 8 can be used at Step 1-2 because r E U c_ S,c fq

is a convergent spanning tree of (7 with duplicates. This tree property follows from the
creation of duplicates, the choice of r, and the fact that R covers U and is rooted at r.
After the duplicates are removed at Step 1-5, the resulting T is a convergent spanning
tree of G. By symmetry Ta found by Step 2 is a divergent spanning tree of (7. If the root

then by the choice of r at Step 2, T and Ta have theof T and T is a supervertex
then T, Td, T’, and T allsame root. If the root of T’ and T is not a supervertex u,

have the same root.
As for the complexity, by symmetry it suffices to show that Steps 1-1-1-5 each take

O(log n) time with n/log n processors. Step 1-1 is straightforward. By Theorem 7.1,
Step 1-2 takes O(log n) time with n/log n processors. Because the trees Si,c’s and the
trees Si,d’S are respectively disjoint, by the third output property in Algorithm 8 each
vertex of G has at most three copies in T’ and the trees Ri. Thus Steps 1-3 and 1-4
each take O(log n) time with n/log n processors. Then by Theorem 7.2, Step 1-5 takes
O(log n) time with n/log n processors.

7.4. Applications of tree rerooting and duplicate removal. Four applications are
given below.

7.4.1. Changing the root of a CD-pair of spanning trees. Let G be a strongly con-
nected directed graph of size n.

COROLLARY 7.4. Given a CD-pairofspanning treesfor G, a CD-pairofspanning trees

for G rooted at a specified vertex can be computed in O(log n) time with n/ log nprocessors.
Proof. This is a straightforward corollary of Theorem 7.1.

7.4.2. Undoing vertex expansion. Let G be an embedded normal graph of size n.
Let G’ be constructed from G by replacing some vertices each with a positive face or a
negative face.

COROLLARY 7.5. A CD-pair ofspanning treesfor G can be computed in O(log n) time
with n/ log nprocessors given G, G’, and a CD-pair ofspanning treesfor G’.

Proof. This is a corollary of Theorem 7.2 with G and G’ in reversed roles. The key
observation is that for each expanded vertex of G there is a U consisting of the vertices
of the corresponding cycle face in G’. As for the complexity, note that the size of G’ is
at most 5n.

7.4.3. Undoing the contraction of biconnected territories. Let G be an embedded
normal graph without large-degree vertices. Let n be the size of G. Let G’ be the graph
constructed by contracting each biconnected territory of G into a vertex. Let
be the graphs constructed by removing, respectively, the first edge and the last edge of
each positive segment of G.

PLANAR DIRECTED SPANNING TREES 477

COROLLARY 7.6. A CD-pairofspanning treesfor G can be computed in O(log n) time
with n/ log n processors given G, its biconnected tertories, Go Gd, G’, and a CD-pair of
spanning treesfor G’.

Proof. This is a corollary of Theorem 7.3 with each Ui being a biconnected territory.
By the definition of a biconnected territory and by Theorem 6.5, G and G consist of a
CD-pair of covering trees for each Ui. [3

7.4.4. Undoing the contraction of positive clusters. Let G be an embedded normal
graph of size n. Let G’ be the graph constructed by contracting each positive cluster of
G into a vertex.

COROLLARY 7.7. A CD-pair ofspanning treesfor G can be computed in O(log n) time
with n log n processors given G, its positive clusters, a CD-pair ofspanning trees for each
positive cluster of, the graph G, and a CD-pair ofspanning treesfor G’.

Proof. This is a corollarY of Theorem 7.3 with each U consisting of the boundary
vertices of a positive cluster.

8. Computing directed spanning trees. Section 8.1 gives a directed spanning tree
algorithm for normal graphs without large-degree vertices, and 8.2 generalizes this al-
gorithm for normal graphs that may have large-degree vertices.

8.1. Spanning trees for graphs without large-degree vertices. Algorithm 11 describ-
es a directed spanning-tree algorithm for embedded normal graphs without large-degree
vertices, and the algorithm is analyzed below.

ALGORITHM 11. Procedure for computing CD-pairs ofspanning trees for graphs with
no large-degree vertex.
Procedure ComputeCDT
Input: an embedded normal graph G without large-degree vertices.
Output: a CD-pair of spanning trees for G.
begin

if G has exactly one positive face
then T CutSegment(G)
else

begin
Stage 1:

1-1. Let Gc be the graph constructed by deleting the first edge of each
positive segment of G.

1-2. Let Ga be the graph constructed by deleting the last edge of each
positive segment of G.

1-3. Find the biconnected territories of G from Gc and
1-4. Construct G from G by contracting each biconnected territory

into a single vertex.
Stage 2:

2-1. Compute the positive clusters of G1.
2-2. Compute a CD-pair of spanning trees for each positive cluster of

2-3. Construct G2 from G1 by contracting each positive cluster into a
single vertex.

Stage 3:
3-1. Construct Ga from G by expanding into a positive face each con-

tracted positive cluster of G. Remark: As stated in 4, for techni-
cal uniformity, if G2 is a single vertex, it is expanded into a positive

478 MING-YANG KAO AND GREGORY E. SHANNON

face with two boundary edges. Also, if a contracted positive clus-
ter of Gx is of degree two in G2, it is also expanded into a positive
face with two boundary edges.

3-2. Construct G4 from Ga by expanding each large-degree vertex into
a negative face.

Stage 4:
4-1. T4 ComputeCDT(G4).
4-2. Compute from T4 a CD-pair Ta ofspanning trees for Ga via Corol-

lary 7.5.
4-3. Compute from Ta a CD-pair T2 ofspanning trees for Gg. via Corol-

lary 7.5.
4-4. Compute a CD-pair T1 of spanning trees for G1 via Corollary 7.7

from T2, the positive clusters of G1, and the CD-pairs of spanning
trees computed at Step 2-2.

4-5. Compute a CD-pair T of spanning trees for G via Corollary 7.6
from Tx, Go, Gd, and the biconnected territories of G.

end.
return T.

end.

LEMMA 8.1. Let n be the size of G. Let ni be the size of G for i E { 1, 2, 3, 4}. Let
fl and 4 be the numbers ofpositive faces in G and G4. Then the following statements are
true:

1. G4 is an embedded normalgraph without large-degree vertices.
2. f14 <_ fl/ .
3. ni < nfori {1,2,3,4}.
Proof. The statements are shown below.
Statement 1. Step 3-1 ensures that G4 contains at least two vertices. Next, because

G4 is obtained from G by vertex expansion and vertex contraction, G4 remains an em-
bedded normal graph. Step 3-2 ensures that G4 has no large-degree vertices.

Statement 2. Let fll (respectively, fla) be the number of positive clusters (respec-
tively, faces) in G1 (respectively, G3). By Theorem 6.9,/3 </3/2. Step 2-3 destroys the
positive faces of G but may create new positive faces in G2. Next, because the bound-
ary of each positive face in G2 must contain at least one contracted positive cluster of
G, Step 3-1 destroys all positive faces of G2. Thus/33 =/31. Step 3-2 cannot destroy or
create positive faces, and so/34 =/33. In sum, the statement is true.

Statement 3. Because vertex contraction does not increase the size of a graph, n2 <
n

_
n. ALSO, 2 T3

_
n4 because vertex expansion does not decrease the size of a

graph. It remains to show n4 < n.
Note that G4 is in effect expanded from G2. Also, G is in effect contracted from G.

Let u be a vertex of G2 that is expanded in G4. Let U be the connected vertex subset of
G that is contracted into u.

U is shown to be biconnected in G as follows. A vertex in G2 can be expanded at
most once either at Step 3-1 or Step 3-2. Thus there are two cases based on which step
expands u.

Case (1): u is expanded at Step 3-1. Then u is contracted from a positive cluster
ofG that contains contracted biconnected territories of G. Thus by the small degree of
G the set U is biconnected in G.

Case (2): u is expanded at Step 3-2. Then u is a contracted biconnected territory
of G. Thus U is biconnected.

PLANAR DIRECTED SPANNING TREES 479

The biconnectivity of U is used to estimate the change from n to n4 as follows. For an
edge (respectively, vertex) set X let IXl be the number of edges (respectively, vertices) in
X. Let Db (respectively, Do) be the set of edges in G with both endpoints (respectively,
only one endpoint) in U. By the small degree of G and the biconnectivity of U, IDol <_
IDbl and IDol < IUI. The contraction of U loses U and Db, gains u, and keeps Do. The
expansion of u keeps Do, loses u, and gains IDol new edges and IDol new vertices. Thus
in the conversion from G to G4 the net gain concerning U is 2IDol- IUI- IDbl, which is
at most zero by the above two inequalities. Therefore, n < n. [3

THEOREM 8.2. Let G be an embedded normalgraph without large-degree vertices. Let
n be the size ofG. Let be the number ofpositivefaces in G. ThenAlgorithm 11 computes
a CD-pair ofspanning trees for G in O([log(/3 + 1)] log n) time using n/log nprocessors
on a deterministic arbitrary-CRCW PRAM.

Proof. By Lemma 8.1(1), Step 4-1 can recurse on G4. Then the correctness of the
algorithm follows from Theorem 6.6 and Corollaries 7.5, 7.6, and 7.7.

As for the complexity, by Lemma 8.1(2) the recursion depth is [log(/3 + 1)]. Thus
it suffices to show that each stage runs in O(log n) time with n/log n processors. By
Lemma 8.1(3) the size of the graph processed by each step at each level of recursion is
at most n. Based on this bound, the desired complexity for the stages follows from the
implementation below.

The if-condition is tested by means of Lemma 2.1(1). The then-statement is per-
formed by means of Theorem 6.1(1). Stage 1 is done by means of Theorems 6.1(1),
6.7(3), and 5.1. Stage 2 is done by means of Lemma 2.1(3) and Theorems 6.3 and 5.1.
Stage 3 is performed by means of Theorem 4.1(2). Stage 4 is performed by means of
Corollaries 7.5, 7.6, and 7.7.

8.2. Spanning trees for graphs with large-degree vertices. Algorithm 12 describes
a directed spanning-tree algorithm for embedded normal graphs that may have large-
degree vertices, and the algorithm is analyzed below.

ALGORITHM 12. Procedurefor computing a CD-pair ofspanning trees.
Procedure ComputeCDTrees
Input: an embedded normal graph G.
Output: a CD-pair of spanning trees for G.
begin

Stage 1:
i-1. Compute the positive clusters of G.
1-2. Compute a CD-pair of spanning trees for each positive cluster of G.
1-3. Construct G1 from G by contracting each positive cluster into a single

vertex.
1-4. Construct G from G by expanding into a positive face each contracted

positive cluster of G. Remark: As stated in 4, for technical uniformity, if
G1 is a single vertex, it is expanded into a positive face with two boundary
edges. Also, if a contracted positive cluster of G is of degree two in Gx,
it is also expanded into a positive face with two boundary edges.

1-5. Construct G’ from G2 by expanding each large-degree vertex into a neg-
ative face.

Stage 2:
2-1. T’ - ComputeCDT(G’).
2-2. Compute a CD-pair T2 of spanning trees for G via Corollary 7.5 from

T

480 MING-YANG KAO AND GREGORY E. SHANNON

2-3. Compute a CD-pair T1 of spanning trees for G1 via Corollary 7.5 from

2-4. Compute a CD-pair T of spanning trees for G via Corollary 7.7 from T
the positive clusters of G, and the CD-pairs of spanning trees computed
at Step 1-2.

return T.
end.

LEMMA 8.3. Let n, nl, n2, and n’ be the sizes of G, G1, G2, and G. The following
statements are true:

1. G is an embedded normalgraph without large-degree vertices.
2. The number ofpositive faces in G’ equals that ofpositive clusters in G.
3. n’/5 < n2 < nl < n.

Proof. The third statement is straightforward. As for the other two statements, note
that Stage 1 of Algorithm 12 combines Stages 2 and 3 of Algorithm 11. Thus the proof
for the first statement is similar to that for Lemma 8.1(1). The proof for the second
statement is similar to that for Lemma 8.1(2).

THEOREM 8.4. Let G be an embedded normal graph. Let
be the number ofpositive clusters in G. Then Algorithm 12 computes a CD-pair ofspan-
ning trees for G in O([log(/ + 1)] log n) time with n/ log n processors on a deterministic
arbitrary-CRCW PRAM. Consequently, by Corollary 7.4 a CD-pairofspanning trees rooted
a specified vertex can be computed with the same complexity.

Proof. The proof is similar to that of Theorem 8.2. The key points are as follows. By
Lemma 8.3(1), Step 2-1 may apply ComputeCDT to G’. The cost of this step dominates
the complexity of the algorithm. By Lemmas 8.3(2) and 8.3(3) this step takes O([log(/3+
1)] log n) time with n/log n processors.

THEOREM 8.5. For a normal graph ofsize n without a given embedding, a CD-pair of
spanning trees rooted at a specified vertex can be computed in O(log
processors on a deterministic arbitrary-CRCW PRAM.

Proof. To use Theorem 8.2, a spherical embedding for the input graph is first com-
puted in O(log n log log n) time with n/log n processors [26]. The complexity follows
from the fact that there are at most n positive clusters in the input graph with any em-
bedding.

9. Open problems. This paper has shown that for a strongly connected planar di-
rected graph of size n, a directed spanning tree rooted at a specified vertex can be com-
puted in O(log n) time with n/log n processors. This result complements the linear-
processor NC algorithm by Kao for computing the strongly connected components of
a planar directed graph [18]. There are several fundamental problems left open in this
paper. Perhaps the most important one is to compute planar breadth-first search trees
efficiently. Currently, the best algorithm for this problem is by Pan and Reif [25]. Their
algorithm computes the shortest paths in undirected planar graphs in O(log n) time with
n1"5/log n processors. The algorithm is based on matrix operations and uses an almost
optimal randomized algorithm for planar separators of Gazit and Miller [11]. Reducing
to linear the processor complexity of planar breadth-first search would be of significant
impact.

Acknowledgments. The authors thank Fang Wan for helping to prepare some of
the figures. M.-Y. Kao gratefully acknowledges Philip Klein, Gary Miller, and Vijaya
Ramachandran for many helpful discussions and suggestions.

PLANAR DIRECTED SPANNING TREES 481

REFERENCES

[1] K. ABRAHAMSOq, N. DAOOtm, D. G. KIRKPATRICK, AND T. PRZYTYCKA, A simple tree contraction algo-
rithm, J. Algorithms, 10 (1989), pp. 287-302.

[2] A./dkI-IO, J. HOPCROFT,AND J. ULLMAN, TheDesign andAnalysis ofComputerAlgorithms Addison-Wesley,
Reading, MA, 1974.

[3] R.J. ANDERSON AND G. L. MILLER, Deterministic parallel list ranking, Algorithmica, 6 (1991), pp. 859-
868.

[4] M. ATALLAH AND U. VISHKIN, Finding Euler tours in parallel, J. Comput. System Sci., 29 (1984), pp.
330-337.

[5] C. BERGE, Graphs, 2nd revised ed., North-Holland, New York, 1985.
[6] B. BOLLOB/i,S, Graph Theory, Springer-Vedag, Berlin, New York, 1979.
[7] R. COLEAND U. VISHKIN, The accelerated centroid decomposition techniquefor optimal tree evaluation in

logarithmic time, Algorithmica, 3 (1988), pp. 329-346.
[8] ,Fasteroptimalprefixsums and list ranking, Information and Computation, 81 (1989), pp. 334-352.
[9] D. COPPERSMrrH AND S. WIIOGRAD, Matrix multiplication via arithmetic progressions, J. Symbolic Com-

put., 9 (1990), pp. 251-280.
[10] T.H. CORMEN, C. L. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge,

MA, 1991.
11] H. GAzrr AND G. L. MILLER,A parallel algorithm forfinding a separator in planar graphs, in Proc. 28th

Annual IEEE Symposium on Foundations of Computer Science, 1987, pp. 238-248.
[12] ,An improved parallel algorithm that computes the BFS numbering of a directed graph, Inform.

Process. Lett., 28 (1988), pp. 61-65.
[13] H. GAZIT, G. L. MILLER, AND S. H. TENG, Optimal tree contraction in the EREW model, in Concurrent

Computations: Algorithms, Architecture, and Technology, S. T. Dickinson, B. W. Dickinson, and
S. Schwartz, eds., Plenum Press, New York, 1988, pp. 139-156.

[14] A. M. GIBBONS AND W. RYTFER, An optimal parallel algorithm .for dynamic expression evaluation and
its applications, in Proc. 6th Conference on Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science 241, Springer-Verlag, Berlin, New York,
1986, pp. 453-469.

[15] T. HAGERUP, Optimalparallel algorithms on planargraphs, Inform. Comput., 84 (1990), pp. 71-96.
[16] Y. HAN,An optimal linked listprefix algorithm on a local memory computer, IEEE Transactions on Com-

puters, 40 (1991), pp. 1149-1153.
[17] E HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[18] M.-Y. KAO, Linear-processor NC algorithms forplanar directed graphs I: Strongly connected components,

SIAM J. Comput., 22 (1993), pp. 431-459.
[19] R. KARP AND V. RAMACHANDRAN,A survey ofparallel algorithms.for shared-memory machines, in Hand-

book ofTheoretical Computer Science, J. van Leeuwen, ed., Elsevier, New York, 1990, pp. 869-941.
[20] S.R. KOSARAJUAND A. L. DELCHER, Optimalparallel evaluation oftree-structured computations by raking,

in Proceedings of the 3rd Aegean Workshop on Computing: VLSI Algorithms and Architectures,
J. H. Reif, ed., Lecture Notes in Computer Science 319, Springer-Verlag, Berlin, New York, 1988,
pp. 101-110.

[21] C.P. KRUSKAL, L. RUDOLPH,AND M. SNIR, Thepowerofparallelprefir, IEEE Transactions on Computers,
C-34 (1985), pp. 965-968.

[22] R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Mach., 27 (1980),
pp. 831-838.

[23] L. LovAsz, Computing ears and branchings, in Proc. 26th Annual IEEE Symposium on Foundations of
Computer Science, 1985, pp. 464-467.

[24] G.L. MILLER AND J. H. REIF, Parallel tree contractions and its applications, in Proc. 26th Annual IEEE
Symposium on Foundations of Computer Science, 1985, pp. 478-489.

[25] V. PAN AND J. n. REIF, Fast and efficient solution ofpath algebra problems, J. Comput. System Sci., 38
(1989), pp. 494-510.

[26] V. RAMACHANDRANAND J. n. REIF,An optimalparallel algorithm.forgraphplanarity, in Proc. 30th Annual
IEEE Symposium on Foundations of Computer Science, 1989, pp. 282-287.

[27] W. TtrrrE, Graph Theory, Vol. 21 ofEncyclopedia of Mathematics and Its Applications, Addison-Wesley,
Reading, MA, 1984.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 482-499, June 1993

() 1993 Society for Industrial and Applied Mathematics
003

BLOCKING SMALL CUTS IN A NETWORK, AND RELATED PROBLEMS*
DANIEL BIENSTOCK AND NICOLE DIAZ

Abstract. Let G be a graph with weights on the edges, S a subset ofvertices, and k an integer. The problem
of computing a minimum-weight subset of edges that meets all the cuts of cardinality _< k that separate pairs
of vertices in S is considered. This problem is motivated by issues in network survivability. Assuming [S[2,
it is shown that although this problem is NP-hard, it can be solved in linear time for each fixed value of k.
Furthermore, if ISI > 2, the problem is NP-hard even for small values of k but can be solved in linear time for
each fixed k and IS[.

Key words, graph algorithms, connectivity, complexity

AMS(MOS) subject classifications. 05, 68

Introduction. An increasingly important issue in communications networks design
in the problem of building "survivability" into networks. Typically one wants to meet
connectivity requirements between various pair of nodes. Such requirements are usually
fairly small, as we are trying to guard against the unlikely (but not impossible) event of
connection failures due to external factors. From a mathematical point of view, the
problem can be stated as follows: Given a graph G, we want to add edges to G so that
in the resulting graph, the edge connectivity between each pair i, j of vertices is at least
a given number r(i,j) (usually r(i,j) < 3, and possibly r(i, j) 0). Moreover, each
candidate edge has a certain cost associated with it, andwe want to add to G a minimum-
cost set of edges that is feasible in the above sense. This model has been considered by
many authors, see [MMP], [BBM] for the cases r(i, j) 2, and r(i, j) k, respectively.
GrStschel and Monma [GM] consider a cutting-plane algorithm for the case where r(i, j)
is of the form min{ri, r). If in addition we have constant edge-costs, the problem is
polynomially solvable (see [F]).

In order for the addition of an edge to be meaningful from a faulty-tolerance point
of view, the geometrical layout of this edge must be physically diverse from the rest of
the network. In some practical settings this requirement may make the addition of edges
prohibitively expensive. On the other hand, the following may be possible: By paying a
certain cost, we may be able to "reinforce" an existing edge, so as to make it immune to
the type of damage under consideration. (See [C] for a different approach.)

In this new model (reinforcing existing edges instead of adding edges), the surviv-
ability problem can be stated as follows. We are given a graph G, a subset S c_ V(G),
and a weight function w on E(G). We wish to find a minimum-weight subset of E(G),
whose contraction yields a graph with desired connectivity levels between vertices of S.
Equivalently, we seek a minimum-weight subset Z c_ E(G) such that Z fq C for
every "small" cut C separating members of S. In the case where the r(i, j) are equal to
a constant k (for pairs i, j in S), we denote the problem by Po (S, G), and its value by
To(S, G). This paper begins the study of such problems, and we will primarily concen-
trate on the case ISI 2. The case ISI > 2, which is substantially more intractable, will
be considered in a future paper [BD]. However, the case ISI 2 is already quite difficult
and interesting from a theoretical point of view. Moreover, we expect that studying this
special case will give insights useful for the general case.

Received by the editors April 8, 1991; accepted for publication (in revised form) January 29, 1992. Par-
tially supported by a National Science Foundation Presidential Young Investigator award, the Center for
Telecommunications Research (Columbia), and a consulting agreement with Bellcore.

tDepartment of Industrial Engineering and Operations Research, Columbia University, New York, New
York 10027.

482

BLOCKING SMALL CUTS IN A NETWORK 483

Hence, given vertices s and t and a positive integer k, we want to block all s-t cuts of
cardinality < k. We abbreviate, e.g., P0 ({s, t}, G) as P, (s, t, G). Not surprisingly, this
class of problems is NP-hard (shown in 1) even when w(e) 1 for all e. However, the
proof produces values of k that grow with IV(G)l, and as stated above, we are mainly
concerned in those cases where k is small. The main result of this paper, given in 2,
is that for each fixed value of k there is a linear-time algorithm for the problem. The
proportionality constant grows rapidly with k, of course, but for k < 5 the algorithm
should be useful.

Sections 3 and 4 consider some related aspects of the problem. Viewed as an inte-
ger program, P,o(s, t, G) is a set-covering problem. We expect that a cutting-plane al-
gorithm will yield good computational results, especially when generalized for the case

ISl > , and some initial computational experience suggests that this is the case [BD].
However, as shown in 3, there is a serious technical difficulty here in that solving the
linear-programming relaxation of this set-covering problem turns out to be NP-hard. In
4 we return to the general case ISI > 2 and show that Po(S, G), is NP-hard already for
k 8 (although it is linear-time solvable for fixed k and fixed ISI).

The graphs we consider in this paper have no loops but may have parallel edges (all
results are easily extended to simple graphs). IfA is a set and f is a function from A to the
reals, then for X c_ A, we write f(X) or ,(f(i) X} to indicate the sum ofvalues of
f over X. We use the following notation, corresponding to a graph G. If X, Y c_ V(G),
then 6o(X, Y) denotes the set of edges with one end in X the other in Y. We denote
6o(X, V(G)\X) by 6o(X), and do(X) I(X)l (if X {u} we write 6o{u}, etc.).
For X, Y c_ V(G), Ao(X, Y) denotes the maximum number of edge-disjoint paths from
X to Y. A cut is a set of the form 6o(X). A cut 6o(X) separates vertex subsets A and
/3 or is an A-B cut if (say) A c_ X and (say) B c_ V(G)\X. A small cut is one with at
most k edges. If D is a digraph and X c_ V(D), we write 6+D (X) for the set of edges with
tail in X and head in V(D)\X, and d+D(X) ID+(X)I(6(X) and d(X) are defined
in a similar way). We say a set Z of edges is a dicut if for some X, Z 6+D(X), and
 B(x)

1. Blocking small cuts separating two vertices is NP-hard. In this section we show
that the problem Po(s, t, G) is NP-hard, even if w(e) 1 for every edge e. More pre-
cisely, we show that the recognition problem: Given G, s, t, k, and r _> 0, is T1 (S, t, G) <_
r?, is NP-complete.

The reduction is from the Steiner tree problem on graphs, defined as follows. Let
H be a graph and Z c_ V(H). A tree in H that spans Z (possibly together with other
vertices) is called a Steiner treefor Z. Let n be an integer. Does H contain a Steiner tree
for Z with at most n edges? This problem is NP-hard [GJ1]. We denote such an instance
of the Steiner tree problem by (H, Z, n).

LEMMA 1.1. The recognition version ofthe small cut blockingproblem in NP-complete,
even ifall weights are polynomially bounded.

Proof. Consider an instance (H, Z, n) of the Steiner tree problem. We next construct
a problem Po(s, t, O). The graph G is defined by V(G) V(H) U {t}, where t is a new
vertex and E(G) consists of E(H), together with u. copies of the edge {t, z} (for each
z Z), where u. IE(H)[+ 1.

Define w by

w(e) 1 if e e E(H), w(e) n + I otherwise.

Set

k u IZI- 1.

484 DANIEL BIENSTOCKAND NICOLE DIAZ

Finally, choose s E Z arbitrarily. Now consider the following three facts:
(i) , I1 > k. Consequently, if 6o(X) is a cut separating s and t, with do(X) < k,

it must be the case that (V(G)\X) fq g # O.
(ii) Suppose Y c_ V(H) is such that Y Z # 0 and (V(G)\Y) Z # O. Without

loss of generality, assume s E Y. Then 6o(Y) separates s from t and do(Y) <_ IE(H)] +
IYlu, _< IE(H)I / (IZl- 1)u. k.

(iii) If S c_ E(G) is such that w(S) < n, then S c_ E(H).
From (i) to (iii) we deduce that ro(s, t, G) < n if and only if H contains a Steiner tree
for Z with at most n edges. This concludes the proof.

LEMMA 1.2. The small cut blockingproblem is NP-complete even with unit costs.

Proof. Consider an instance Po(s, t, G), where w(e) > 0 for every e E(G). Con-
struct a new graph G’ as follows. Every edge e {x, y} E(G) is replaced by a path
p(e) with ends x and y of length w(e), with internal vertices not in V(G). Further, for
each pair e # e’, the set of internal vertices ofp(e) is disjoint from the corresponding set
for p(e’). It is seen that 7-o (s, t, G) rl (S, t, G’), which concludes the proof.

We remark that the case k A(s, t) can be solved in polynomial time. The algo-
rithm makes use of a min-max relation and is sketched in 3.

2. The case of fixed k. In this section we study the problems Po(s, t, G) in the case
when k is fixed and show that there is a linear-time algorithm for such problems, i.e., an
algorithm with complexity O(IE(G)I). The constant in this O() is, in the worst case, a
doubly exponential function of k. Hence, for k > 10 this algorithm may not be useful
from a practical point of view. But, as stated before, in practice one would not be in-
terested in such relatively high values of k. For k < 5, we expect the algorithm to be
computationally practicable.

2.1. Preliminaries. We use the following terminology. If G is a graph, a separation
in G is a triple {A, B, X}, where A and B are subgraphs of G such that V(A) t3 V(B)
V(G), X V(A) fq V(B), E(A) fq E(B) 0, and E(A) t_J E(B) E(G). We say the
separation is at X. If IXI _< k, we say the separation is small.

DEFINITION. Let G be a graph, and {A, B, X} a separation in G. Let Z c_ V(B)
with IZI _< 2, and let R c_ E(G). The B-consolidation of G, with respect to R and Z, is
the graph G. obtained in the steps (i) and (ii) given next.

(i) Forevery0 # Y c_ X andeachz Z, define a set F(Y, z) c_ E(B)\Rasfollows.
If possible, choose W such that (1) Y c_ W c_ V(B)\((X\Y) t3 z), (2) in(W) fq R 0,
(3) de(W) minimum subject to (1) and (2), and (4) W minimal subject to (1)-(3). If such
a W exists and de(W) < k, we set F(Y, z) 5n(W). Otherwise, we set F(Y, z) O.

(ii) Let F OF(Y, z) (over all Y, z as in (i)). Obtain G* by contracting (in G) all
edgesinE(B)\F.

See Fig. I for an example.
Remark 2.1.1. Notice that G* has a separation of the form {A*, B*, X* }, where A*

is obtained from A by identifying elements of X (which maps X into X*) and B* is
obtained from B by the edge contractions in the definition. For convenience, we regard
E(A*)(E(B*)) as a subset of E(A) (respectively, E(B)). Also notice that the number
of edges in B* is at most k21XI.

DEFINITION. Atype I smallgraph is a connected graphHwith a distinguished subset
X c_ V(H) and a distinguished vertex p, such that

(1) IXI < k and IE(U)l < k2k.
(2) > k.

We say that X and p are the boundary and thepole of H, respectively.

BLOCKING SMALL CUTS IN A NETWORK 485

k=3

m "F((3,4},-)

El vertices in X 0 vertices in V(A)\V(B) vertices in V(B)\V(A)

Z {z }, edges in R shown in bold

FG. 1

Remark 2.1.2. Let {A, B, X} be a small separation in a graph G, R c_ E(G),p
V(B). Let G* be the B-consolidation of G (with respect to R and p) and consider the
separation {A*, B*, X* } in G*. Let p* V(B) be the image ofp in G*. If An. (p*, X*) >
k, then B* is a type 1 small graph.
In what follows, given a problem Po(s, t, G), a set S c_ E(G) is calledfeasible if it inter-
sects every small cut separating s and t.

PROPOSITION 2.1.1. Let {A, B, X} be a small separation in G such that A and 13
are connected, w is a weight function, s V(A), and t V(B). Let S c_ E(G) be an
optimal solution to the problem Po(s, t, G). Consider the problem Po(s*, t*, G*), where
G* is the B-consolidation of G (with respect to 6; and t), t* (respectively, s*) is the image
of t (respectively, s) in G* and the weight function is extended by setting w(e) +o if
e q[E(A). Finally, let L* c_ E(A) be an optimal solution to Po (s*, t*, G*). Then

(i) T(S*,t*,C*)= E{w(e) e e SE(A)}.
(ii) L* t3 (S E(B)) is an optimal solution to P(s, t, G).
(iii) B* is a type 1 small graph, with boundary X* andpole t*.
Proof. First we show (i) and (ii). We claim that
(a) T(S*, t*, G*) <_ {w(e) e e S E(A)}.

Consider a small cut C* separating s* and t* in G*. Now in G, the edges of C* form a
small cut separating s and t. Consequently, since S is feasible for P(s, t, G), SC* O.
Further, since (S E(B)) C*) (or else at least one member of C would have been

486 DANIEL BIENSTOCKAND NICOLE DIAZ

contracted in the construction of G*) we must therefore have (SNE(A)) N (7* . Thus
S E(A) is feasible for Po(s*, t*, G*) and (a) follows.

Next we claim
(b) To(s*,t*, G*) > E{w(e) e S E(A)}.
Write R S E(B). To show (b) we prove that L* t_J R is a feasible solution to

Po(s, t, G). Consider a small cut C 5a(D) separating s and t in G, with s D. If
C c_ E(A), then also C c_ E(A*) and it separates s* and t*; consequently L* C :
0. Assume that C f E(B) O. Write Dx D f X and D D V(B). Then
5n(D) CfqE(B) separates Dx from t in B. Suppose that 0 RN5n(Dn)(RfqC).
Since C is small, dn(D) < k and in the construction of G*, we must have defined
F(DX,t) 5n(W), for some W c_ V(B) with dn(W) <_ dn(D) and Dx c_ W.
Consequently, (C fq E(A)) t3 5n(W) is the set of edges in a small cut in G* separating s*
and t*. By definition of L* we then have that L* (C fq E(A)) O. We conclude, for
any small cut C in G separating s and t, (L* t9 R) C O. This settles (b). Hence (i)
holds, and L* t_J R is an optimal solution to Po(s, t, G), i.e., (ii) holds as well.

In order to prove (iii) we have to show that n. (t*, X*) > k (see Remark 2.1.2).
If this does not hold, then there is a small cut C* c_ E(B*) separating t* and X*. But
then, in G, C* c_ E(B) separates t and X, and therefore it separates s and t, whereas
R C* O. This is impossible, since C* is small. This concludes the proof.

Remark 2.1.3. We stress that in Proposition 2.1.1 {B, A, X} is also a small separa-
tion, and so a corresponding result holds with A and B interchanged.

Remark 2.1.4. Proposition 2.1.1 forms the basis of an algorithm for computing
To(S, t, G). Namely, construct a small separation {A, B, X} of G as in the statement
(and it is easy to see that such a separation exists if A(s, t) < k). Then, recursively,
solve the small cut blocking problem for all possible graphs obtained by "glueing" to
A a type 1 small graph "at" X. Since IXI < k the total number of such problems is
bounded by a function of k. We keep track of an optimal solution to each such problem
(call it an A-solution). Next, (recursively) we solve the small cut blocking problem for
all possible graphs obtained by glueing to/3 a type 1 small graph, at X, and keep track
of all such B-solutions. Finally, try all possible combinations of an A-solution and a B-
solution, and from among all those combinations that are feasible for Po(s, t, G), select
a minimum-weight one. Proposition 2.1.1 guarantees that this algorithm yields the cor-
rect answer. But in order to turn this into a polynomial-time algorithm, further tools are
needed and will be given below. Nevertheless, Proposition 2.1.1 contains the main ideas
in the algorithm we describe.

DEFINITION. A type 2 small graph is a graph H with a distinguished subset Y _c
V(H) and a pair of distinguished vertices pl, pz, such that

(1) IYI <_ 2k and]E(H)I _< 2k22k.
(2) If i j, AH(pi, Y t2 pj) > k.

(3) Every vertex ofH is in the same component asp or p2 (and hence H has at most
two components).
We say that Y is the boundary and {p, p2 } are thepoles of H. Nowwe have the following
analogue of Proposition 2.1.1.

PROPOSITION 2.1.2. Consider a problem P(s,t, G), where G has a separation
{H, J, X} with s, t V(H) and IX[<_ 2k. Suppose J is connected and that every ver-
tex ofH is in the same component as s or t. Let S be an optimal solution to the problem
P(s, t, G). Let G* be the H-consolidation ofG with respect to S and {s, t}. Consider the
problem P(s*, t*, G*), where s* (respectively, t* is the image of s (respectively, t) in G*

BLOCKING SMALL CUTS IN A NETWORK 487

and the weightfunction w is as before extended by setting w(e) +cx ife E E(H). Finally,
let R* c_ E(J) be an optimal solution to Po (s*, t*, G*). Then

(i) T,o(s*,t*, G*)= -:{w(e) e E S fq E(J)}.
(ii) (S fq E(H)) R* is an optimal solution to Po(s, t, G).
(iii) H* is a type 2 small graph, with boundary X* andpoles {s*, t* }.
Proof. The proof is similar to that of Proposition 2.1.1.

2.2. The digraph of minimum cuts. Write q AG(s, t). Consider the graph lq
obtained from G by contracting every edge that is not in any s-t cut of size q (i.e., we
contract the edges that do not appear in any min-cut). The following properties of 17’q are
well known. Suppose {u, v} E(rq). We orient {u, v} as (u, v) if there is a minimum s-t
cut 6G(X) with u X and v X. This orientation is well defined (i.e., every minimum
s-t cut containing {u, v} yields the same orientation). The resulting digraph A has the
properties (i)-(v) (where s’ and t’ are the images of s and t, respectively):

(i) A is acyclic.
(ii) Every dicut 6A+(X) satisfies +(X)l q, s* x and t* x.
(iii) The edges in every dicut (X) form a minimum s-t cut in G and vice versa.
(iv) Every edge of A is contained in a directed path from s to t.
(v) d+A (x’) d(t’) q, dx (s’) d+A (t’) 0.

We use the topological ordering of V(A). Herewe number the vertices ofA by 1, 2,..., N
(say), so that s’ 1, t’ N, and for 1 < i < N 1, there are no edges (u, v) with
v {1,...,i} and u E {i + 1,..., N}. Although every acyclic digraph has such an
ordering, notice that in our case it also implies that for 1 <_ <_ N- 1, d+A ({1,..., i}) q.
In the algorithm given below, we use this numbering of the vertices, but apply it instead
to the graph Fq.

2.3. Linear-time algorithm for computing To(S, t, G). Given a subgraph A of G, we
denote by t,v(A) those vertices of A that are incident with edges not in A. For the case
k q, the problem Po(s, t, G) is easy. Here we want a minimum-weight set that blocks
all dicuts in A, and the properties of this digraph imply that the elements of the blocker
of the hypergraph of all s-t dicuts is {X there is an s-t path p where X set of
forward edges in p}. The minimum-weight element of this blocker can be easily found
as a shortest path problem in an auxiliary digraph.

In what follows, we assume k > q. Notice that each vertex i of Fq corresponds to a
subset V(i) of vertices of G (possibly a single vertex) contracted in the construction of
Fq. We use the following notation (see Fig. 2 for an example).

For 1 < i < N, A(i) is the subgraph of G induced by t_J{V(j) 1 < j < i}. For
1 < < N, J(i) is the subgraph induced by V(i). For 1 < i < N 1, B(i) is the union
of the subgraph of G induced by t2{V(j) < j < N}, together with all edges with only
one end in V(A(i)).

Remark 2.3.1. For 1 < i < N- 1, G has a separation {A(i),B(i),X(i)} (where
X(i) c(A(i)) (B(i))). This separation is small, since the number of edges of G
with only one end in V(A(i)) equals q < k.

For 1 < i < N 1, D(i) is the union of A(i), and all the edges with one end in
V(A(i)) and the other in V(i + 1). For 2 < < N 1, n(i) is D(i 1) t_J B(i).

Remark 2.3.2. For 2 < _< N- 1, G has a separation {H(i),J(i),Y(i)} (with
Y(i) v(H(i)) G(J(i))). Further, IY(i)I < 2k.

Remark 2.3.3. For 1 <_ < N, J(i) is connected (as we obtained it by contracting
edges of G into a single node of Iq). For i < i <_ N, A(i) is connected, and for 1 <
i _< N 1, B(i) and D(i) are connected (this follows by property (v) of the topological

488 DANIEL BIENSTOCKAND NICOLE DIAZ

q=3

5

$

1"

with topological ordering

5 8 10

ll
j(l) J(2)

J(3)

ot

J(4)

sz
D(1)

B(2) 7

61 I0

FIG. 2

ordering of V(A); see 2.2). Similarly, for 2 < i < N 1, every vertex of H(i) is in the
same component of H(i) as s or t.

Suppose S is a feasible solution to Po(s, t, G). For 1 < i < N- 1, consider the B(i)-
consolidation ofG with respect to S and t. Then by Proposition 2.1.1, its subgraph/3* (i)
is a type 1 small graph. Similarly, for 2 < < N 1, consider the H(i)-consolidation of
G with respect to S and {s, t}. Then its subgraph H* (i) is a type 2 small graph. In fact,
we can say more.

PROPOSITION 2.3.1. Let S be a feasible solution to Po(s, t, G). Then
(i) Let I* be the/3(1)-consolidation ofG with respect to S and t.

Then Ai.(s*,t*) >_ q + 1.
(ii) For 2 < i < N 1, let M* (i) be the H(i)-consolidation ofG with respect to S and

{s,t}. Then AM.(O(s*,t*) >_ q + 1.

BLOCKING SMALL CUTS IN A NETWORK 489

Proof.
(i) Recall that I* has a separation of the form {A*(1), B*(1), X*(1)}. Consider any

cut C separating s* and t* in I*. If C c_ E(B*(1)), then C separates t* from X*(i) and
thus [C > k + 1 _> q + 1 since B* (1) is a type 1 small graph. Suppose (7 intersects
E(A*(1)). Then (7, now regarded as a cut in G separating s and t, intersects E(A(1)).
But all edges in A(1) were contracted in generating the graph Fq that contains all min-
cuts. Thus again IC[_> q + 1.

(ii) This proof follows in a similar manner.

Description of the algorithm. Consider the algorithm sketched in Remark 2.1.4.
This algorithm works correctly, but is not necessarily polynomially bounded because the
amount of recursive work may grow too fast. This obstacle is overcome by using the
structure of Fq. Essentially, we solve all problems obtained by glueing to A(i) each pos-
sible type 1 small graph at X(i). Below we show that there is an easy inductive way to
solve these problems for increasing i, so that the only recursive work we carry out in-
volves graphs that are at least q + 1 edge-connected between s and t. Since k is bounded,
the total depth of recursions is bounded.

Our first step is to make formal the process of "glueing" two graphs. Let A be a
graph and B be a type 1 small graph with boundary X. Let Z c_ V(A), with [Z >
IX[r, say. Aglueing of A and B, at Z, is specified by a partition 7r of Z into r classes
{C(1),..., C(r)} and a labeling a of B as {b(1),... ,b(r)}. The glueing is the graph
obtained by identifying (for I _< j < r) all vertices of C(j) into a single vertex and then
identifying this vertexwith b(j). We denote this graph by A(R)B(Tr and a will be clear from
the context). Suppose s E V(A), that t is the pole of B, and w is a weight function on
E(A). Let s* (respectively, t*) be the image of s (respectively, t) in the glueing A (R) B.
Then the canonical problem P(s*, t*, A (R) B) is that in which we extend w by setting
w(e) + if e E E(B). Similar definitions apply with regards to glueing a type 2 small
graph and another graph.

Now we can describe our algorithm. The reader may already guess this algorithm,
but we can formally describe it as follows.

Algorithm Block(s, t, G, w)
Step 1 Test whether q At(s, t) > k. If so, set To(s, t, G) 0 and stop.
Step 2 Construct the graph Fq.

Step 3 Execute algorithm Ext given below, which returns
(a) an optimal solution to the canonical problem Po(s*, u*, D(N 1) (R) B)
for every possible glueing of D(N 1) and a type 1 small graph B with pole
u, at v(D(N 1)), such that AO(N-1)(R)B(s*, u*) _> q + 1, and
(b) an optimal solution to the canonical problem P(t*, v*, J(N) (R) A) for
every possible glueing of J(N) and a type 1 small graph A with pole v, at
(J(N)), such that Aj()(R)A(t*, v*) >_ q + 1.

Step 4 Set To(s, t, G)
min{w(SN_l) + W(RN)"
SN-I is an optimal solution to one of the problems in (a),
RN is an optimal solution to one of the problems in (b), and
SN- U RN is feasible for pw (s, t, G) }

End

In the description of algorithm Ext, a level problem (1 _< i _< N 1) will be a
canonical problem of the form Po(s*, u*, A(i) (R) B), where B is a type 1 small graph
with pole u.

490 DANIEL BIENSTOCKAND NICOLE DIAZ

Algorithm Ext
1 Recursively (i.e., using Block), solve every possible level 1 problem

Po(s*, u*, A(1) (R) B) such that AA(1)(R)n(S*, u*) >_ q + 1.
2 For/= 1,2,...,N- 1, Do

(a) Solve every problem Po(s*, u*, D(i) (R) B), where B is a type 1 small graph
with pole u, and the glueing is at (D(i)), as follows:
rw(s*, u*,D(i) (R) B) min{w(Li) + w(Z,)

L is an optimal solution to one of the level i problems,
Zi is a subset of the edges 5G(V(A(i)), V(i + 1)), and
Li t.J Z is feasible for Po(s*, u*,D(i) (R) B)}.

[COMMENT: For N- 1, (a) computes some the data required in step 3(a) of Block.]
(b) If i < N 1, recursively solve every problem Po(u*, v*, J(i + 1) (R) H)
where H is a type 2 small graph with poles {u, v}, such that Aj(i+I)H(U*, v*) >_
q + 1 and the glueing is at G(J(i + 1)).
(c) If i < N 1, solve each level (i + 1) problem Po(s*, u*, A(i + 1) (R) B) as
follows:
Tw(S*,u*,A(i + 1) (R) B) min w(S) + w(J+)
such that

Si is an optimal solution to one of the problems in (a),
J+ is an optimal solution to one of the problems in (b), and
Si t3 Ji+l is feasible for Po(s*, u*, A(i / 1) (R) B).

End For
3 Recursively, solve the problem Po(t*, v*, J(N) (R) A) for every possible type 1

small graph A with pole v, such that AJ(N)(R)A (t*, V*) _> q + 1.
End

The correctness of algorithm Block follows from Proposition 2.1.1 (also recall Re-
marks 2.1.3 and 2.1.4, 2.1.2, and 2.3.1). Next we study its run time and show that it is lin-
ear in IE(G)I for every fixed value of k. To this effect, we set T(m, q) to be the maximum
amount ofwork required by Block to solve a problem Po(s, t, G) when Av(s, t) q. We
will show (by induction on k q) that

T(m, q) < f(k q)m + g(k q),

for certain functions f and g. We have
(i) Step 1 of Block requires O(km) time. This follows because it is not necessary

to compute Aa(s, t); rather, we want to see if G has at least k + 1 edge-disjoint paths
from s to t, and any "augmenting path" algorithm does so in O(km) time (see [T]).
Consequently, T(m, q) O(km) for any ra and q > k.

(ii) To construct Fq we must identify those edges ofG that are contained in minimum
s-t cuts, contract all others, and obtain the topological ordering. It is not difficult to see
how to implement the last two tasks in O(m) time. Further, the identification can be
implemented in O(qm2) time; but as we show in Appendix A, with some care this step
can be carried out in O(qam) time.

(iii) In Step 4 of Block, each feasibility test requires O(km) work, and if we write
n(k) number of type 1 or type 2 small graphs, then the total number of tests is at most
((k)).

(iv) Next we analyze the complexity of one call to Ext.
Consider first the recursive work. The recursive work appears in step 1 of Ext (in-

volving graph A(1) J(1)), in step 2(b) (involving J(i), where 2 < i _< N 1) and in

BLOCKING SMALL CUTS IN A NETWORK 491

step 3, involving J(N). Now any (type 1 or 2) small graph has at most 2k22k edges. So
if J(i) has re(i) edges, then any recursive call to Block involving J(i) is on a graph with
at most 2k2’km(i) edges. Further, the different graphs J(i) are edge-disjoint. Finally,
the recursive calls are on graphs with edge-connectivity at least q + i between the two
relevant vertices. Hence, the total recursive work in one call to Ext is at most

E {n(k)T(2k22:m(i)’q + 1)" 1 <i < N},
which by induction (using (*)) is at most

n(k)2k22kf(k q 1)m + n(k)2k22kg(k q 1).

Now for the nonrecursive work in Ext. The major part of it is made up of the feasibility
tests in steps 2(a) and 2(c). It is not difficult to see that each test can be carried out in
O(km) time, but this would lead to a bound O(m2) bound for all the tests. As we show in
Appendix B, with some care we can attain an overall O(n2 (k)m) bound for the feasibility
tests.

(v) In summary, we obtain the following bound for q _< k:

T(m, q) <_ O(q3m) + O(n2(k)m) + n(k)2k22kf(k q 1)m + n(k)2k22kg(k q 1)

+O(n2(k)m) < f(k q)m + g(k q),

for appropriately defined f and g, as desired. This completes the proof of (*).
Remark 2.3.4. The function n(k) is doubly exponential in k. From the analysis

above, we conclude that the overall algorithm for Pw(s, t, G) has complexity O(h(k)ra),
where h is doubly exponential in k.

3. The linear programming relaxation. The small cut blocking problem Po (s, t, G)
can be equivalently restated as the following set covering problem:

rw(8, t, G)= min E{w(e)x(e) e E(G)}

such that

Ax> 1,

x _> 0 integral,

where A is the incidence matrix of small s-t cuts versus edges of G, and i is the column
of l’s. Even for k moderately small it may be convenient to view the problem Po(s, t, G)
in this manner, since we may be able, for example, to obtain good approximations faster
than the run time of the (theoretically efficient) exact algorithm described in 2. Indeed,
cutting plane algorithms have been successfully used to effectively solve many types of
combinatorial optimization problems, and one hopes that that would be the case here
as well. Moreover, an understanding of the polyhedral structure of this set covering
problem would probably be useful with regards to the general version Po (S, G) of the
small cut blocking problem (which is NP-hard even for small k, as shown in the next
section).

An important element in developing a cutting-plane algorithm for solving the inte-
ger program above would be the efficient solution of its linear-programming relaxation,
whichwe denote Po(s, t, G)*, with value ro(s, t, G)*. The fact that the matrix A is poten-
tially very large presents a difficulty: Even for k small, A could have many rows, and the

492 DANIEL BIENSTOCKAND NICOLE DIAZ

practical computation of 7-o(s, t, G)* could be costly (although theoretically efficient).
For general k, it is not even clear how to solve the linear program in polynomial time.
One wonders in that case if there is a compact reformulation of the linear program (one
where the constraint matrix has polynomially many rows and columns). The main re-
sult in this section is negative: for general k, it is NP-hard just to compute the quantity
T(S, t, G)* (and therefore, unless P NP, there is no compact reformulation, even
allowing for different variables).

We denote by B(s, t, G) the polyhedron (where d IE(G)I){m Ia" Az >_ 1, z >_
0}. Given a polyhedron Q c_ ll’, the separation problem for Q is the following: Suppose
z E IR’. Then either decide x E Q or provide a hyperplane that separates z and Q.

In the proof below, we make use of the max-cut problem. In this problem (whose
recognition version is NP-complete [GJ1]), we are given a simple graph H and asked to
produce a subset z c_ V(H) such that dn(X) is maximum.

LEMMA 3.1. The separation problem forpolyhedra B(s, t, G) is NP-hard.
Proof. Consider an instance of the recognition version of the max-cut problem with

graph H, where we seek cut of size > L. We assume IE(H)I > L and H nonbipartite
(otherwise the max-cut problem is trivial). We construct a graph G as follows. First, let
denote the complement graph of H, and set m IE(H)I. Then V(G) V(H) tA {s, t}.
E(G) contains E(H), as well as m+ 2 copies of the edge {s, v} and one copy of the edge
{t, v}, for every v V(H).

We next define a vector x. Write n IV(H)I. Choose a fixed u V(H). For
e E(G), set

x(e) (n(n 1)/2 L + 1) -1 if e e E(/), and

x(e) 0 if e is incident with s or t, with one exception: z({u, t}) 1.

Finally, set k (m + 2)n 1.
Suppose 6v(Y) is a cut separating s and t with s E Y. Then k < (m + 2)n implies

that if this cut is small, we must have V(H) f3 Y : . Moreover, if x(6(Y)) < 1, then
also V(H) V(G)\Y , and moreover, the number of edges of H with one end in
V(H) fq Y and the other in V(H) f (V(G)\Y) must be at most n(n 1)/2 L. In
summary, if 6v(Y) is a small cut with x(6(Y)) < 1, then dH(V(H) Y) > L, and the
converse to this follows in a similar way. Hence, x q[B(s, t, G) if and only if there is a
W c_ V(H)with dH(W) <_ L. This concludes the proof. D

Now consider a problem Po(s, t, G) with d [E(G)I > 1. Let e E Ia be the vector
of l’s. Clearly e E B(s, t, G). Let Q c_ Ia be the polyhedron defined by Q {z E
]d Z(X e) < 1 for all x B(s, t, G) }. Q is called the polar of B(s, t, G). It is not
difficult to see that Q is well behaved: It contains a full-dimensional sphere with center
(-1/d)e and polynomially bounded inverse radius. Using well-known results concerning
the ellipsoid method [GLS], Lemma 3.1 implies that it is NP-hard to compute the value
(s,t,)*.

COROLLARY. Unless P NP, there is no compact reformulation ofPo (s, t, G)*.
How well does To(S, t, G)* approximate Po(s, t, G)? We conjecture that on the av-

erage the approximation will be fairly good. However, in the worst case it is quite poor,
as we show next.

LEMMA 3.2. There exist examples with T1 (S, t, ()/T1 (8, t, ()* arbitrarily large.
Proof. Let m be a positive integer. Consider the hypergraph of (m + 1) subsets

of {1, 2,..., 2m} and let S(m) denote the set covering problem whose corresponding
matrix is the edge-vertex incidence matrix of this hypergraph. It is not difficult to see

BLOCKING SMALL CUTS IN A NETWORK 493

that the value of S(m) is m, but that the value of the LP-relaxation is (only) 2m/(m + 1)
(Remark: This example is similar to one mentioned in [S].) Next we construct a graph
G. We begin with vertices s, t and { 1, 2,..., 2m} and for 1 < i < 2m, the edge {i, t} and
two copies of {s, i}. Next, we subdivide each edge incident with s, 2m 1 times (i.e.,
each such edge is replaced by a path of length 2m). The resulting graph is G. Color all
edges of G incident with t blue, and all other edges, red. Set k 3m 1, and consider
P(s,t, a).

We observe: (1) Suppose 5a(Z) is a minimal s-t cut with s Z. Write z IZ
{1, 2,..., 2m}l. Then da(Z) 4m z, and consequently, 5a(Z) is small if and only
if z _> m + 1. Moreover, (2) Suppose x is an optimal solution to either Pl(S, t, G) or
Pl(S, t, G)*, chosen so that in addition x(R) is minimized, where R is the set of red
edges. It is not difficult to see that in this case x(e) 0 for every red edge e (x must
be constant on each "subdivided edge" between s and some i). (1) and (2) imply that
Pl(S, t, G) and P (s, t, G*) are isomorphic to S(m) and its LP-relaxation, respectively.
ThusTl(s,t,G)/’l(s,t,G)* (m + 1)/2, as desired. [3

We note that the lower bound achieved in Lemma 3.2 grows linearly in k. This is
best possible since the rows of the matrix A have at most k l’s (see [HH]).

In spite of the negative results given in this section, one hopes that an effective cut-
ting plane algorithm can be developed for problems P(s, t, G), and this is an interesting
topic which we plan to study shortly. We remark that there is a different formulation of
the problem Po (s, t, G), as a mixed-integer program. Herewe have, besides the 0-1 vari-
ables z(e), additionalflow variables for the edges. Then we want to select a minimum-
weight subset of edges, each ofwhich will be assigned capacity k + 1 (and all other edges
are assigned capacity 1), so that in the resulting network there is a flow of k + 1 units
from s to t. This program is compact, but its LP-relaxation can be far weaker than the
one we considered above (and it is never better).

There is one special case where the linear program described above has integer so-
lutions and can be solved in polynomial time. This is the case where k Aa(s, t). Re-
call the digraph of minimum cuts A described in 2.2. This digraph has the property
that every dicut 6 +zx (X) satisfies [6 +A (X)[k,s* X and t* X and con-
versely. We use this fact as follows: For a given undirected s t path p in A, define
F(p) {e e is a forward edge in p}. Then, as stated in 2.3, it can be verified that the
blocker of the clutter of dicuts in A (in this case) is the set of all sets F(p). Using this
fact, one can reduce the problem Po(s, t, G) to a shortest path problem in a related di-
graph. Further, this fact yields a min-max relation: -o (s, t, G) is equal to the maximum
number of s-t cuts of size k (in G), such that no edge e is contained in more than w(e)
of the cuts.

4. Blocking small cuts between many vertices. In this section we consider the small
cut blocking problem, in the more general case Po (S, G) where we are interested in the
cuts or cardinality < k separating pairs of vertices in some set S c_ V(G). One might
expect that for k fixed this problem would be polynomially solvable. Indeed, at first
glance it may appear that the algorithm in 2 could be generalized, so that instead of
using a linear ordering of the graph (that decomposes the graph into small separations)
one would use a tree-decomposition of small width (see [BLW] for an early reference)
and then proceed with dynamic programming as in 2.

However, the problem is intractable even for small values of k. In fact, we show that
it is NP-hard for k 8 (and, thus, for any k > 8). On the other hand, using arguments
very similar to those in 2, one obtains a linear-time algorithm for the case < 2. We
remark that this particular algorithm may be practical and also useful (since with k 2

494 DANIEL BIENSTOCKAND NICOLE DIAZ

we effectively achieve 3-edge connectivity between vertices of S). Similarly, there is a
linear-time algorithm for every fixed k and fixed ISI (the complexity is singly exponential
in ISI). We omit the description of this algorithm, which is essentially a more complicated
version of that given in 2 (we use small graphs with many poles).

In the rest of this section we show that the class of instances Px (S, G) is NP-hard for
k 8. We show that the general weighted version is NP-hard; the rest of the proof (unit
weights) proceeds as in 1.

The reduction is from the vertex cover problem in cubic graphs. Given a cubic graph
H (i.e., H 3-regular) we seek a subsetX c_ V(H), with IXI minimum, such that Xfqe 0
for every edge e. The fact that this problem is NP-hard can be deduced from the results
in [GJ2].

Thus, consider an instance of the vertex cover problem in a cubic graph H on at
least three vertices, where we seek a cover with at most N vertices. We next construct a
problem Po (S, G). The graph G is obtained as follows.

First, for every vertex z of H (incident, say, with edges a, b, and c), G has three ver-
tices z(a), z(b), and z(C), which induce a triangle. We write T(z) {z(a), z(b), z(c)}.

Next, for every edge a {z, y} of H, G has a vertex Sa, and the edges {s, z(a)}
and {Sa, y(a)}.

All edges f described so far have w(f) 1.
Finally, there is a vertex s* and two copies of {s*, x(a)} for every x V(H) and

a E(H) such that x and a are incident. We also have six copies of the edge {s*, s}
for every a E(H). All edges incident with s* have weight 21V(H)[+ N + 1. We set
S V(G), and as we said above, k 8.

The following is easily obtained by counting:
CLAIM 4.1. Consideran inclusion minimal cut (Z) with da(Z) < 8, where s*

_
Z.

Then either (i) Z {s}, for some a {x, y}
T(x) and IZI <_ 2. Conversely, all Z as in (i) or (ii) have da(Z) <_ 8.

Let us color all edges of G contained in triangles T(x), x V(H), red; the edges
incident with s*, blue; and all other edges, green.

CLAIM 4.2. Suppose we can choose an optimalsolution to Po S, G) with no blue edges.
Let B be such an optimal solution, such that in addition B has a minimum number ofred
edges. Then

(i) Let x V(H), and suppose that B includes at least one green edge with one end in
T(x). Then B includes allgreen edges with one end in T(x), and BfE(T(x)
Conversely, if B E(T(x) , then B includes all green edges with one end in
T(x).

(ii) IfB f3 E(T(x)) , then B includes at least two edges with both ends in T(x).
(iii) The set {x V(H) B includes all green edges with one end in T(x)} is a vertex

cover in H.
Proof (i) Let a, b, and c be the three edges incident with x in H. Suppose first that

(say) B includes {Sa, X(a)} but not {Sb, x(b)}. Consider the cuts 6a(X), where X
{x(b)} or X {x(b),x(c)}. In order for B to meet these two cuts, it must be the case
that either B includes {s,x(c)} and at least one edge from T(x) or that B includes at
least two edges from T(x). In either case, B’ (B\E(T(x))) tO {{Sb, x(b)}, {s, s(c)}},
then B is an optimal solution to P(S, G) with no blue edges and fewer red edges than
B, a contradiction. Consequently B includes {Sb, x(b)} and {s, x(c)}, and the fact that
B f3 E(T(x)) now follows immediately. The converse statement follows from the
first. (ii) (respectively, (iii)) follows from (i), and the fact that for all x(a), d(x(a)) <_ 8
(respectively, for all s, d(s) < 8).

BLOCKING SMALL CUTS IN A NETWORK 495

CLAIM 4.3. Suppose S is a vertex coverfor H. Define B c_ E(G) asfollows: For each
z V(H), if z S, then B includes all green edges with one end in T(z), otherwise B
includes two edges with both ends in Tx (arbitrarily chosen). Then B is a feasible solution
to Po(S, G), and w(B) 21v(n)l /

Proof. The proof follows from Claim 4.1.
Putting together the above claims, we obtain the following theorem:
THEOREM 4.4. H has a vertex cover ofcardinality at most N, ifand only ifTo(S, G) <

21V(H)I / N.
Proof. The only observation needed is that the bound on ’o (S, G) excludes the edges

incident with s* from being used.

5. Conclusion and related problems. One important future task is to better under-
stand the problem Po(S, G) for small values of k. We conjecture that it is NP-hard
already for k 3. On the other hand, does there exist a polynomial-time algorithm for
this problem, with fixed performance bound? Because of the similarity with the set cov-
ering problem, we again conjecture that the answer is negative. However, there is hope
that a cutting-plane algorithm could be effective here from a practical point of view, as
discussed in 3. Some early computational experience is promising [BD]. A polyhedral
study of the problem would be the first step in this direction, and this will be our next
area of work.

A problem that is seemingly related to blocking small cuts is that of blocking short
paths between two vertices s and t in a graph. Here an adversary has to pay a price
for removing any edge from the graph, and the adversary wants to remove edges (at
minimum cost) so as to make the distance from s to t larger than some given amount h.
For h < 3, this problem can be solved in polynomial time by reducing it to a matching
problem. However, for h > 5, it is NP-hard (the proof of this fact uses essentially the
same paradigm as the proof in 4). Here, again, one expects a cutting-plane algorithm
to be effective.

Appendix A. In this appendix we provide a linear-time algorithm for finding those
edges that are contained in min-cuts. More precisely, given G, selected vertices s and t,
q Aa(s, t) and m IE(G)I, in time O(q3m) the algorithm below finds which edges of
G are contained in s-t cuts of size q (for short we will refer to these cuts as min-cuts).
We call such edges critical.

In what follows, we use the following convention: Any time that we speak of a cut
(A(X) separating s and t (in some graph A), we assume that s X. First, we make some
observations.

If 6c(X) and 6(Y) are min-cuts, then so are 6G(XY) and 6G(XtOY) (this follows
using the submodular inequality). Hence, if Z c_ V(G)\t is such that A(ZU {s}, t) q,
then there is a unique minimal subset W c_ V(G), with {s} t3 Z c_ W, such that 6(W)
is a min-cut. We call this cut the Z-minimal rain-cut (and a similar definition is possible
with maximal instead of minimal cuts). It is also seen that

if 6c(X) and 6(X’) are, respectively, the Z- and Z’-minimal min-cuts,
(A.1)

then 6(X X’) is the (Z tO Z’)-minimal min-cut.

Consequently, let 6(S) be an s-minimal min-cut (in other words, a min-cut closest to
s), and 6(V(G)\T) an s-maximal min-cut. By contracting S and T, respectively, into
single vertices s’ and t, we have that in the resulting graph s’ and t’ have degree q.
For convenience, we retain the G, s, t notation for the new graph. Hence, we have the
following:

496 DANIEL BIENSTOCKAND NICOLE DIAZ

(A.2) Without loss of generality, 6a(s) and 6a(X(G)\t) are min-cuts.

Next, consider a family {pl, p2,..., pq} of q pairwise edge-disjoint s-t paths in G.
Clearly every critical edge is contained in one of these paths, and each min-cut C and
each path p intersect at precisely one edge. Now suppose that for some vertex w #
s, t, r > 1 of these paths are incident with w. For simplicity assume these are paths
p, 1 < i < r, and that the edges of p incident with w are {u(i), w} and {w, v(i)}.
We modify our graph as follows. First, we remove w, and then we add r new vertices
w(i), 1 < i < r, which induce a tree (say, a star). Next, for each we add the edges
{u(i), w(i)} and {w(i), v(i) }. It is clear that in the new graph there is a system of q edge-
disjoint paths each ofwhich is incident with a different vertex w(i) and that the s-t edge
connectivity has not changed. Furthermore, the set of critical edges in the new graph
is isomorphic to the set of critical edges in the old graph (this follows because the w(i)
induce a connected graph). Hence, we have the following:

(A.3)
We may assume that the paths p, 1 < i < q,

are pairwise internally vertex disjoint.

We point out that the transformation above increases the number of edges by at
most a factor of 2. Denote by Ipl the number of edges in p, 1 < i < q. Let us color the
edges in the paths p green and all other edges, red. Next, we label each vertex in p by
p [j], where 0 < j < [p[is the distance from s to the vertex along p.

Our approach is as follows: For each i and j, we compute the p [jl-minimal min-cut
Cj[j]. This is useful since the green edge {pij, pi[j + 1]} is critical if and only if it belongs
to C [j]. Recall that any min-cut intersects any path pi on at least one edge and therefore
on precisely one edge. Hence, we can describe any min-cut by specifying on which edge
it intersects each path p. Thus we can describe each min-cut with O(q) data.

We use the following notation. Let 1 < a, b < q (possibly a b). For each vertex
pa[j], we define a number f(pa[j], b). First, let

R(p[j], b) (9" there is a red edge {p[h],pb[9]} with h < j}.

Next, set

g(Pa[j], b) max{g e R(pa[j], b)}, if R(pa[j], b) =/= 0 and g(p,[j], b) 0 otherwise.

Finally,

f(Pa[j], b) 9(Pa[J], b) if a # b, and f(p,[j], a) max{j, g(p,[j], a)}.

Later we shall show how to compute all numbers f(p[j], b) in O(q2m) time.
The algorithm we use to compute the cuts Ci[j] is inductive. For i < h < q, let G[h]

denote the subgraph of G induced by vertices in the paths p, 1 < i < h. It is seen that
,k[h](s, t) h. For each vertex v in G[h], let Ah(v) denote the v-minimal min-cut in
G[h]. Inductively (that is, in increasing values of h), our algorithm computes all the cuts
Ah(Pij]), where 1 < i < h and 0 < j < Ipl. For h q, this yields the cuts we desire
(Aq(p]) C[j]).

An algorithm for computing the cuts Ah (Pi [j]). Consider first the case h 1. Then
AG[1](s, t) 1, and it is seen that for each j, the cut A (px[j]) consists of the edge
{p[z],pq[z + 1]}, where z f(p[j], 1).

BLOCKING SMALL CUTS IN A NETWORK 497

Now for the general inductive step. Suppose wc have computed all the cuts
Ah-1 (pi[j]). Next we compute all cuts Ah(pi[j]), beginning with the cuts Ah(ph[j]). Fix

For I _< i < h- 1, write (I)(, i) f(Ph[j], i) and let B(i,) c_ V(C(h- 1)) be such that
5G[h-1](B(i,j)) is the pi[(j,/)]-minimal min-cut in G[h 1]. Define Bj U{B(i,j)
< i < h 1}. Then (refer to A.1) we have the following:

(A.4)
5[h-1] (Bj) is the {px [(j, 1)],

pz[(j, 2)],... ,Ph-[(j, h 1)]} minimal min-cut in G[h 1].

We compute the cuts Ah(ph[j]) in decreasing order ofj. Thus, let j* be such that Ph[j*
1] t. We have the following claims:

CLAIM 1. Ah(Phj*]) 6G[h-1](Bj*) k.J {Ph[j*],Ph* q- 1]).
Proof. It is clear that 6[h_](Bj.) t3 {Phj*],Ph* d- 1]} is a min-cut in G[h] (recall

(A.2)). Now let X c_ V(G[h]) be such that 6G[h](X) Ah(Ph*]), and let X’ X
V(G[h 1]). Now 6V[h-1](X’) Ah(Ph’*]) f’) E(G[h 1]) is a min-cut in G[h 1].
Further, pi[(j*, i)] E X for 1 < i < h- 1. Therefore B. C_ X’, and then the minimality
of Ah(Ph[j*]) and (A.4) imply that B. X’, which proves the claim.

Next, assume we have computed all the cuts Ah(Ph[j]) for each j’ > j. Define
Fi max{f(pi[(j, i)], h) 1 < i < h 1}. We have the following claim:

CLAIM 2. Ah(Phj]) Ah(Ph[Fj]) if F > j, Ah(Ph[j]) 6G[h-1](Bj) U {Ph[j],
Ph [j -1- 1] } otherwise.

Proof. The proof follows by an argument similar to that in the proof of
Claim 1.

Finally, we compute all cuts Ah(pi[j]), 1 < i < h, as follows. Fix i < h, and con-
sider any vertex p[j], 0 < j < IPil. Let D c_ V(G[h 1]) be such that 6G[h_](D)
Ah-(p[j]). Set H max{f(v,h) v D} and let X c_ V(G[h]) be such that
6[h](X) Ah(ph[H]). Then we have the following claim:

CLAIM 3. Ah(pi[j]) + G[h](D I,.) X).
Proof. First, 6V[h] (DUX) is a min-cut in G[h]. This follows because this cut contains

no red edges. Moreover, if X’ is such that 6G[h](X’) Ah(p[j]). Then clearly D
X’ Cq V(G[h 1]). Thus D t_l X c_ X’, which proves the claim.

Complexity ofthe algorithm for computing the cuts Ah (Pi [j]). We next show that the
total workload in computing all the cuts Ah(Pi[j]), 1 <_ h <_ q, is O(qam). First we show
how to compute all numbers g(Pa[j], b) in O(qZm) time (from which we immediately
have the numbers f(p[j], b)). For fixed a and b, this is easily done for increasing values
of j. Suppose we know g(Pa [j], b). Then

g(p,[j + 11, b) max{g(pa[j], b), max{d {P,[jl,Pb[dl} is a red edge}t

and a similar formula yields g(px [0], b). Notice that for given a and b, the total amount
of work involved in computing all numbers g(p[j], b) is (at most) proportional to the
number of edges with one end in p. Hence the computation of all the g(p,[j], b) (over
all a, b, and 0 < j < IPI) takes time O(qZm) (with more care it can be done in O(m),
but that is not crucial here).

Next, recall that if a min-cut 6a[h](X) in G[h] contains an edge {pi[j], pi[j + 1]}, then
X contains all vertices pi[r], 1 < r < j, and consequently, we can compactly describe
any min-cut by specifying just what edge of each path pi it contains (i.e., using O(h) data
in G[h]). As a result, suppose, for example, that 6a[hl(X) and 6a[h](Y) are min-cuts in
G[h], described as just stated. Then we can compute the min-cut 6[h] (X t_J Y) in O(h)
time (by computing the maxima of h sets of h numbers). Using this fact, it is not difficult

498 DANIEL BIENSTOCKAND NICOLE DIAZ

to see that the operations leading to Claims 1-3 can be implemented in time O(hZm),
assuming we already have the Ah-1 (Pi[j]) data.

Consequently, in O(q3m) time we can compute all cuts Aq(pi[j]), i.e., the
minimal min-cuts in G, as desired.

Appendix B. In this appendix we sketch how to efficiently carry out the "feasibility"
tests in algorithm Ext.

The main thrust is as follows. Consider the level i problems. Let us write S(i, 13) for
the optimal solution to Po(s*,u*,A(i) (R) B) that is computed by Ext. Then,
besides storing the solutions S(i,B), we also compute their compatibility: For
every pair 13, B’ of small graphs that we consider, we record where S(i, 13) isfeasible for
Po(s*, u*, A(i) (R) 13’). We also compute similar compatibility data for problems of the
form P(s*, u*, D(i) (R) B).

Suppose we have computed these data for the level i problems. Consider now one of
the problems in step (a) of Ext, i.e., a problem P(s*, u*, D(i)(R)B). Here we have to test
for each subset Zi of the edges 5(V(A(i)), V(i + 1)) and each optimal solution S(i, B’)
whether S(i, B’)UZi is feasible for Pw(s*, u*, D(i)(R)B). We do this as follows: Let K(i)
be the graph made up by the union of B and 3G(V(A(i)), V(i + 1)). Then we compute
the K(i)-consolidation of D(i) (R) B (with respect to Zi and u*, with a slight abuse of
notation here: We really mean the image of K(i) in D(i) (R) B). Clearly, this graph is of
the form A(i) (R) F, for some small graph F, and therefore, using the compatibility data,
we can look up the answer to the feasibility test. Moreover, this consolidation operation
can be carried out in 0(2k2ak) time (a bounded number of tests for small rain-cuts in
a graph with a bounded number of edges). We also compute compatibility data for the
optimal solutions to problems involving D(i) in a similar way.

Finally, consider a level (i + 1) problem, i.e., a problem P(s*, u*, A(i + 1) (R) B).
In the feasibility tests here we consider pairs of the form Si, Ji, where Si is an optimal
solution to a problem of the form P(s*, u*, D(i) (R) B’), and J is an optimal solution
to a problem of the form P(u*, v*, J(i + 1) (R) H) considered in step (b) of Ext. Here,
as in the previous paragraph, we proceed with the feasibility test by first computing the
B-feasibility of A(i + 1) (R) B with respect to Si U Ji and u*. Having done so, once more
the answer to the feasibility test is available from the compatibility data for the problems
involving D(i). Moreover, it is not hard to see that the consolidation operation can be
carried out in time O(2k22km(i + 1) + k2ak), where m(i + 1) denotes the number of
edges in J(i + 1): We perform, at most, 22k tests for small min-cuts in a graph with at
most m(i + 1) + k2ak edges. The compatibility data for the level (i + 1) problems is
computed in a similar way.

Since the J(i + 1) are pair,vise edge-disjoint subgraphs of G, the overall complexity
of the feasibility tests is thus O(2k22km), as desired.

[BBM]

[BD]

[BLW]

[Cl

REFERENCES

D. BIENSTOCK, E. E BRICKELL, AND C. L. MONMA, On the structure ofminimum-weight k-connected
spanning networks, SIAM J. Discrete Math., 3 (1990), pp. 320-329.

D. BIENSTOCKAND N. DIAZ,A cutting-plane algorithm]’or blockingsmall cuts in a network, in prepa-
ration.

M. W. BERN, E. L. LAWLER, ANDA. L. WONG, Why certain subgraph computations require only linear
time, Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, 1985, pp.
117-125.

W. H. CUNNINGHAM, Optimal attack and reinforcement ofa network, J. Assoc. Comput. Mach., 32
(1985), pp. 549-561.

BLOCKING SMALL CUTS IN A NETWORK 499

IF]

[GJ1]

[GJ2]

[GLS]

[GM]

[HH]

[MMP]

IS]

[T]

A. FRANK, Augmenting graphs to meet edge-connectivity requirements, unpublished manuscript,
1990.

M. R. GAREYAD D. S. JOHSOr, Computers and Intractability, W. H. Freeman, San Francisco,
1979.

Some simplified NP-complete graph problems, Theoret. Comput. Sci., 1 (1979), pp. 237-
267.

M. GROTSCHEL, L. LovAsz, AND A. SCHRIJVER, The ellipsoid method and its consequences in com-
binatorial optimization, Combinatorica, 1 (1980), pp. 169-197.

M. GROTSCHELAND C. L. MONMA,Integerpotyhedra associated with certain networkdesignproblems
with connectivity constraints, SIAM J. Discrete Math., 3 (1990), pp. 502-523.

N. G. HALLAND D. S. HOCHBAUM,A fast approximation algorithm for the multicoveringproblem,
Discrete Math., 15 (1986), pp. 41-54.

C. L. MONMA, B. S. MUNSON, AND W. R. PULLEYBLANK, Minimum-weight two-connected spanning
networks, Math. Programming, 46 (1990), pp. 153-171.

P. D. SEYMOUR, The matroids with the max-flow min-cut property, J. Combin. Theory Ser. B, 23
(1977), pp. 189-222.

R. E. TARJAN, Data Structures and NetworkAlgodthms, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, 1983.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 500-526, June 1993

() 1993 Society for Industrial and Applied Mathematics
004

FLOOR-PLANNING BY GRAPH DUALIZATION:
2-CONCAVE RECTILINEAR MODULES*

KOK-HOO YEAPt A MAJID SARRAFZADEHt

Abstract. Given a planar triangulated graph (PTG) G, the problem of constructing a floor-plan F such
that G is the dual of F and the boundary of F is rectangular is studied. It is shown that if only zero-concave
rectilinear modules (CRM) (or rectangular modules) and 1-CRM (i.e., L-shaped) are allowed, there arc PTGs
that do not admit any floor-plan. However, if 2-bend modules (e.g., T-shaped and Z-shaped) are also allowed,
then every biconnected PTG admits a floor-plan. Thus, the employment of 2-bend modules is necessary and
sufficient for graph dualization floor-planning. A linear-time algorithm for constructing a 2-CRM floor-plan
of an arbitrary PTG is proposed.

Key words, floor,planning, planar graphs, graph dualization, CRM

AMS(MOS) subject classifications. 05C85, 68Q20, 68Q35, 68R10

1. Introduction. Floor-planning is an early step in VLSI chip design where one de-
cides the relative location of functional entities in a chip. The most immediate repre-
sentation of a floor-plan is the partition of a rectangular chip area into modules (usually
rectilinear polygons) where each module represents a functional entity. Such a partition
can be represented by a partition graph where faces of the graph correspond to mod-
ules, edges represent the sides of modules, and vertices are junctions. Figure l(a) shows
a floor-plan represented in partition graph.

The dual graph of a partition is a graph where each vertex represents a module and
each edge (i, j) represents adjacency of module i and module j. Given a partition, its
dual graph is easily and uniquely determined. However, given a dual graph specifying
adjacency requirements, it is not readily converted into a partition. In this formulation
of floor-planning problem, we are given a graph specifying the connection requirements
of circuit modules and wish to find a rectilinear partition on a rectangular chip area.

For simplicity, most floor-planning systems are restricted to 0-concave rectilinear
modules (0-CRM), i.e., rectangles. The dual graph of a rectangular floor-plan is a planar
triangulated graph (PTG). However, there exist planar triangulated graphs that do not
have any dual floor-plans. Kozminski and Kinnen developed the necessary and sufficient
conditions for the existence of a 0-CRM floor-plan [2]. They also showed a technique to
transform one floor-plan to another where the adjacency requirements were preserved
[3]. A linear time algorithm for constructing a rectangular floor-plan, if one exists, was
reported in [1]. An algorithm to enumerate all rectangular floor-plans was reported in
[13]. An algorithm for sliceable floor-planning was proposed in [14].

The construction of a floor-plan is complicated by the existence of complex triangles
(CTs) (a cycle of three edges that is not a face) because the dual of a rectangular floor-
plan does not contain any CT. One approach eliminates all CTs to obtain a rectangular
floor-plan [12]. This technique introduces new vertices and edges in the original PTG,
producing empty spaces in the floor-plan. If the empty spaces are considered as part
of some adjacent modules, this approach produces general rectilinear-shaped modules.
The weighted CT elimination problem has been shown to be NP-complete [11].

*Received by the editors February 11, 1991; accepted for publication (in revised form) March 24, 1992.
This work was supported in part by the National Science Foundation under grant MIP-8921540.

fDepartment of Electrical Engineering and Computer Science, Northwestern University, Evanston,
Illinois 60208.

500

FLOOR-PLANNING BY GRAPH DUALIZATION 501

Adjacency requirements of CTs can be achieved by introducing more complicated
shapes instead ofrectangular modules. A 1-concave rectilinear module (1-CRM) with 1-
bend is required to satisfy the adjacency requirements of a CT. Similarly a 2-concave rec-
tilinear module (2-CRM) can satisfy adjacency requirements of twoC simultaneously.
In some sense, the introduction of more complicated shapes is analogous to eliminating
CTs. However, this approach maintains the adjacency requirements without arbitrarily
adding new vertices and edges to the input PTG.

In this paperwe examine 0-CRM (rectangle), 1-CRM, and 2-CRM. A 1-CRM refers
to a rectilinear polygon that consists of six sides, five convex and one concave comers.
Similarly, a 2-CRM refers to a rectilinear polygon with eight sides, six convex and two
concave comers. A 2-CRM can be viewed as two adjacent 1-CRMs. In actual imple-
mentation, a 1- or 2-CRM can be represented by a set of adjacent rectangles.

The necessary and sufficient conditions for the existence of a 1-CRM floor-plan are
given in [10]. However, there exist PTGs, as we will show, where 1-CRM floor-plan
is not sufficient. Obviously, an arbitrary PTG admits a floor-plan if we allow general
rectilinear-shaped modules, i.e., k-CRM for arbitrary large k. It was an open problem
to find the least k in which some floor-plans exist for any PTG. We show that any bi-
connected PTG admits a 2-CRM floor-plan. A linear-time algorithm for constructing
one is presented. The biconnected requirement is not a restrictive condition.. By adding
edges, a 1-connected planar graph can be transformed into a biconnected graph without
loosing planarity and adjacency. We thus establish that employment of 2-bend modules
is both necessary and sufficient.

The restriction of the dual graphs to PTG is a natural constraint. The dual of a
floor-plan is planar since a floor-plan is planar by definition. Also, PTG represents the
most dense planar graph. Any planar graph can be triangulated by adding edges. In the
floor-planning process, an adjacency graph is first planarized and triangulated to yield a
PTG. The PTG then serves as the input to the floor-planning problem.

This paper is organized as follows: Section 2 discusses the major issues arising in the
floor-plan construction of a PTG, especially the local adjacency requirements. Section 3
presents a key theorem for the establishment of the sufficient conditions for dualization.
An algorithm for floor-plan construction is proposed in 4.

2. Graph dualization. In this section, we discuss major issues arising in graph du-
alization of a PTG. We examine the local adjacency requirements of a PTG and show
that a 1-CRM floor-plan is not sufficient. The notion of sharing, which is crucial to dual
construction, is also discussed.

2.1. Floor-plan and its dual. Afloor-plan F is a plane graph where
1. Each edge is either a horizontal or vertical line segment.
2. The boundary of F is rectangular.
3. Each vertex has either degree 2 or 3.
A degree 4 vertex can be represented by two vertices of degree 3 and an edge e0 of

zero length, as shown in Fig. 1(b). Thus we can assume that each vertex ofF has degree 2
or 3 without loss of generality. Also we assume that there is no degree 2 vertex as shown
in Fig. l(c), because it can be represented by a single edge.

A face of a floor-plan is also called a module. An angle formed by two neighboring
edges el and e2 incident to a common vertex v is called a comer. A corner is denoted
by an ordered pair of edges (el, e2) with el preceding e2 in a clockwise manner centered
at v. There are three types of corners in F: convex (90), aligned (180), and concave
(270). Because modules are confined by horizontal an vertical line segments, the num-

502 K.H. YEAP AND M. SARRAFZADEH

(b) (c)

FIG. 1. A floor-plan and its restctions.

ber of convex comers minus that of concave corners is always four. For the purpose of
discussion, we always assume that F is confined by four infinite regions r, u, l, and b as
shown in Fig. 2.

5

r

FIG. 2. A floor-plan F and its dual G.
b G

The dual of a floor-plan F is a plane graph G (V, E), where each vertex in V
corresponds to a face in F and each edge of G corresponds to an edge of F. A face
bounded by three edges is also called a triangle. A face bounded by two parallel edges
is called a biface. There is a one to one correspondence between the edges of F and
that of G. Given F, the dual G is easily and uniquely determined. Figure 2 shows a
floor-plan F and its dual G. If the vertices r, u, l, b (and incident edges) are deleted from
G, the remaining subgraph Gc is called the core of G and G is called an extended graph
of Go. The vertices of G are called core vertices. Because corners are defined by two
edges, there is also a one to one correspondence between corners of F and that of G.
The bounded faces of F correspond to the core vertices of G.

In the graph dualization approach to floor-planning, we are given a core G and wish
to find a floor-plan F where the dual G has core G. The very first step in the dualization
process is to append the vertices r, u, l, b (and edges) to G to obtain G that matches the
configuration shown in Fig. 3. This is not a trivial process. An excellent discussion on
the details is contained in [2] and we shall not address this problem here. From now on,
we will assume that G is given and conforms to the configuration as shown in Fig. 3. If
F is restricted to 0-CRM modules, the dual G is a PTG. For a 1-CRM or 2-CRM floor-
plan, the dual is also a PTG if we eliminate one parallel edge of each biface. Thus, it is
reasonable to restrict our input G to PTGs. A PTG is also the most dense planar graph.
Given a core G that specifies adjacency requirements of modules, we assume that some
preprocessing has been performed to planarize and triangulate Gc to obtain G.

FLOOR-PLANNING BY GRAPH DUALIZATION 503

r

Gb

FIG. 3. Configuration ofa dual

2.2. Alternate representation of a floor-plan with its dual. Let G be the dual of a
floor-plan F. An F-labeling [3] of G is a labeling of edges and comers of G where

1. Dual edges of horizontal line segments are labeled H.
2. Dual edges of vertical line segments are labeled V.
3. Dual corners of G are labeled convex, aligned, or concave.
An edge label is also called orientation. The comers of the infinite face of G (e.g.,

((1,), (, r))) are not labeled because they are not interesting in our discussion. Figure
4 shows an example of F-labeling. Vertical edges are denoted by thick lines, whereas
horizontal edges are shown with thin lines. A corner formed by two edges of identical
orientations is an aligned corner. A corner formed by two edges of different orientations
is concave if there is an arrow pointing to the vertex, otherwise it is convex.

r

FIG. 4. An example ofF-labeling.

An arbitrary F-labeling of G may not correspond to a floor-plan. We call an F-
labeling legal if a corresponding floor-plan exists. There is a one-to-one correspondence
between a legal F-labeling of G and a floor-plan F. Given G, the task of finding F can
be viewed as finding a legal F-labeling in G.

Consider a legal F-labeling in G. By the definition of floor-plan, a legal F-labeling
exhibits the following properties:

P1. All incident edges of z and b have horizontal orientation.
P2. All incident edges of and r have vertical orientation except (u, l), (z, r), (b, 1),

and (b, r).
P3. Let the convex, aligned, and concave comers be assigned cost 1, 0, and -1,

respectively. The sum of all comer costs incident to a core vertex is exactly 4. The sum

504 K.H. YEAP AND M. SARRAFZADEH

costs of u, b is 0, and l, r is 2. Also, the total comer cost of a triangle of G is 2, and the
total cost of a biface is 0. This property is a consequence of rectilinear faces in F.

P4. Each triangle ofG has at least one horizontal edge and at least one vertical edge.
Each biface has exactly one horizontal and one vertical edge.

P$. No biface is incident to vertices r, u, l, b. All incident corners of r, u, l, b are not
concave.

It is also evident that if an F-labeling of G satisfies the above conditions, it is a legal
F-labeling. We can reconstruct the horizontal and vertical line segments of floor-plan F
with the proper comers specified by the F-labeling. Thus a dualization process from G
to F corresponds to finding an F-labeling satisfying the above conditions.

2.3. Complex triangles. A complex triangle (CT) is a nonface cycle containing ex-
actly three edges. For our discussion, CTs are only defined on dual G. Figure 5 shows
two examples of complex triangles.

b c b c

FIG. 5. CTs.

Consider the dualization of a CT Aabc. If only 0-CRM is allowed in the floor-plan,
it is impossible to satisfy the adjacency requirements of the edges (a, b), (b, c), and (a, c)
simultaneously. However, if 1-CRM is allowed, a floor-plan exists as shown in Fig. 6. A
0-CRM floor-plan does not exist if and only ifG contains a CT [2]. Note that the concave
corner of module 3 contributes to the existence of a floor-plan. A biface is formed in the
dual due to the concave corner ofvertex 3. For clarity, some edges of the floor-plans are
not shown in the duals.

As far as the CT is concerned, any of the vertices 1, 2, :3 may be chosen to bear a
concave corner so that the adjacency requirements are satisfied. We call such choice the
assignment of a CT to a vertex. Vertices 1 and 2 are also suitable for assignment.

Intuitively, the assignment of a CT to a vertex v can be seen as adding a concave
corner to module v, thus bending it to satisfy the adjacency of the CT. To construct a
floor-plan, all CTs in G must be assigned. The number of assignments on a vertex is
related to the number of concave corners in the final floor-plan. Since we only allow
2-CRM, the number of assignments on any vertex shall not exceed 2.

Aperfect assignment of a dual G is a set of assignments of all CTs of G where
1. Every CT is assigned to a core vertex.
2. No vertex carries more than two assignments.
3. Noncore vertices of G (i.e., r, zt, l, and b) are not assigned.

In a perfect assignment, a core vertex may be assigned zero, one, or two times.
In our algorithm, if a vertex is not assigned, its corresponding module in F is a rect-

angle. If a vertex is assigned once, it is a 1-CRM. There is only one type of 1-CRM if
we disregard module orientations. A 1-CRM is also called an L-shaped module. If a
vertex is assigned twice, a 2-CRM is formed. There are four classes of 2-CRM as shown
in Fig. 7.

FLOOR-PLANNING BY GRAPH DUALIZATION 505

1

2 3
1 4

2 3

2

FG. 6. Floor-plans ofCTs.

L
-9 r-

Z T W U

FIG. 7. Four classes of2-CRM: Z, T, W, and U.

2.4. Insufficiency of 1-CRM duals. Given a PTG G, some vertices of a CT must
be at least 1-CRM to satisfy the local adjacency requirements. Kozminski and Kinnen
proved the necessary and sufficient conditions for a graph to admit a 0-CRM (rectangu-
lar) floor-plan [2]. Itwas further generalized by [10] to prove the necessary and sufficient
conditions for the existence of a 1-CRM floor-plan. The primary condition for the exis-
tence of a 1-CRM floor-plan is that all nonoverlapping (i.e., one is not contained in the
other) CTs can be assigned to some vertices and each vertex is not assigned more than
once. If a vertex is assigned, it becomes a 1-CRM in the corresponding floor-plan; other-
wise it is a rectangle. However, there exist PTGs that do not admit 1-CRM floor-plans.
In particular, consider the graph shown in Fig. 8: The graph contains seven nonover-
lapping CTs and only six vertices are available for assignment. There is no assignment
that can satisfy the necessary conditions for the existence of a 1-CRM floor-plan. This
suggests that the dualization of a PTG requires more complicated shapes. In this paper,
we prove that generalization to 2-CRM is necessary and sufficient for the existence of a
floor-plan for any biconnected PTG.

2.5. Complex triangle graph and containment tree. Acomplex trianglegraph (CTG)
of G (V, E)is CTG(G) (V, Ec), V c_ V and Ec c_ E where

V { v v belongs to some CTs of G },
E { e e belongs to some Cq of G }.

Given G, it is easy to construct the CTG thereof. ACT is always assigned to a vertex in V.
Therefore, it suffices to consider CTG(G) in search of a perfect assignment. In general,
CTG(G) may not be connected. However, it is easy for our assignment algorithm to be

506 K.H. YEAP AND M. SARRAFZADEH

FG. 8. A PTG that does not admit any 1-CRMfloor-plan.

repeated for each connected component of CTG(G). Therefore, we will assume that
CTG(G) is connected.

There is a natural hierarchy among the CTs of G. Formally, we say that CT Aabc
contains CT Aaey if the vertices d, e, and f lie in the region bounded by the edges (a, b),
(a, c), and (b, c). The area of Aay must be strictly less than that of Ab. We say that
/ctbc immediately contains Aae/if there exist no triangles contained in Abc, which con-
tain Aa/. If two complex triangles have no containment relation, we say that they are
independent. Figure 9 illustrates the containment relationship.

2 3

FIG. 9. A PTG and its corresponding containment tree.

Given G, we can construct the containment tree representing the hierarchy of the
CTs. Each tree node represents a CT, and a parent node immediately contains its child
nodes. A parent and a child can share at most two vertices. A pseudo-root node is
added as the parent of top-level CTs, if needed. Traversing the tree top-down allows us
to process all CTs hierarchically.

2.6. Sharing assignments. Consider two CTs/Nabc and/ade where/abc immedi-
ately contains Ad. Suppose Ab is assigned to vertex a. To satisfy the adjacency
requirements of Ad, we can naturally assign it to vertex a to reduce the number of
assigned vertices (see Fig. 10(b), where/Xabc /123, /Xade /x124, a 1). Such as-
signment of the child Aad is called sharing assignment because Aade shares the same
concave corner of a to satisfy its adjacency requirements. Certainly, Aad has the free-

FLOOR-PLANNING BY GRAPH DUALIZATION 507

dom of being assigned to d or e, but the final floor-plan will have more nonrectangular
modules, an undesirable feature (see Fig. 10(c), modules I and 4).

2 3

4 3

/123

FIG. 10. Shaing assignment." (a) adjacency graph, (b)/X123 and/X124 share vertex 1; and (c)/123 and

124 have independent assignments.

When the child triangle/Xad shares an assignment with its parent, it does not add
more bend to module a. Therefore, we do not increase the assignment count on vertex
a when sharing occurs. All descendants of a CT can share its assignment as long as they
have a common vertex. We will later see that sharing is necessary for the existence of
2-CRM floor-plans.

3. 2-CRM floor-plans. In this section, we first develop the properties of dual de-
composition under a cut (to be defined). We then show that given a graph G with per-
fect assignment, we can construct a floor-plan where modules are 0-CRM, 1-CRM, or
2-CRM. The floor-plan construction is based on top-down recursive decomposition of
G and a case analysis. The problem of floor-planning is thus reduced to finding a perfect
assignment on G.

Apath is an ordered set of vertices (vl,..., v,) in G (V, E), where vi E V, i
1,..., n, and (vi, v+l) E E, 1,..., n 1. v,..., v, are distinct. We consider the
decomposition of G into two subgraphs G1 and G2. Let P (v u,..., v, b) be
a path in G that begins on vertex u and ends on vertex b. The path P decomposes G
into left and right subgraphs Gt and Gr as shown in Fig. 11(a). Note that the vertices of
P are duplicated in both subgraphs and vertices r’ and l’ are appended to Gt and Gr,
respectively. Gt and G both conform to the configuration of Fig. 3. For a nontrivial
decomposition, the path should be chosen such that Gt and G each contains at least
one core vertex (of G) not in P. An edge (v, vj) where i j > 2 is called a chord
(with respect to P). The existence of a chord will create a new CT in a subgraph when
G is decomposed along P. If P does not contain chords and generates nontrivial de-
composition of G to left and right subgraphs, we call P a vertical cut. A horizontal cut is
defined similarly where upper and lower subgraphs are decomposed. A cut is either a
vertical or horizontal cut.

In our algorithm, a floor-plan is constructed by recursive subdivision based on cuts
that decompose G into G1 and G2. Such a decomposition has the properties stated in
Lemma 1.

508 K.H. YEAP AND M. SARRAFZADEH

U

G
b

U

r

k

b

Xi

b b

FIG. 11. Decomposition by a cut: (a) decomposition ofG to Gl and Gr; and (b) mergingfloor-plans o.t" GI
and Gr to obtain thefloor-plan of.

LEMMA 1. Let P* (u Vl,..., vn b) be a vertical cut in G where no edges
(chords) (vi, vj), i j > 2 exist. Let Gt and Gr be two subgraphs decomposed by P*,
then

1. CT(C) CT(Gt) 3 CT(Gr) and
2. CT(Gt) fq CT(G) ,

where CT(G) denotes the set ofCTs of G.
Proof. There is no chord among vertices of P*. Thus the introduction of vertices r’

and l’ will not create new CTs since r’ and l’ are only adjacent to vertices of P*.

FLOOR-PLANNING BY GRAPH DUALIZATION 509

1. Since Gt r’ and Gr l’ are subgraphs of G, CT(G)

_
CT(Gt) t_J CT(Gt)

trivially holds.. To show that CT(G) c_ CT(G) t.J CT(Gr), we consider the converse: If
it is true, there must be some CT/abc CT(Gt) t.J CT(Gt) but/abc E CT(G). The
edges (a, b), (b, c), and (c, a) cannot appear simultaneously in Gt or G. Assume, without
loss of generality, that (a, b) is in Gt and (b, c), (c, a) are in G. Since a, b appears in both
subgraphs, a, b e P*. Let a vi and b v for some integer i, j. If i j 1,/b
will be in G, a contradiction. Thus i j > 2 since a and b are distinct. But this would
imply that (a, b) is a chord, another contradiction.

2. If CT(G) A CT(G) is not empty, let/b be a CT of CT(G) fq CT(G). Since
the common vertices of G and G are only the vertices of P*, a, b, and c must be in
P*. Because P* contains no chords, edges (a, b), (b, c), and (c, a) cannot form a CT. We
reach a contradiction.

A similar lemma applies to horizontal cuts. Intuitively, Lemma 1 says that the set
of CTs in G can be decomposed into two disjoint sets by a cut. Such a decomposition
preserves the "identity" of each CT in G, i.e., a complex triangle must be found in either
G1 or Gz, exclusively. Furthermore, no new CT is introduced by the decomposition nor
does it destroy existing CTs. If (a, b) is an edge of some CT and a vi, b vj are
vertices of the cut, i j 1 must hold true. The lemma also suggests a method for
recursive construction of floor-plans, which leads to our main result.

THEOREM 1. IfG has a perfect assignment, a 2-CRMfloor-plan F exists with dual G
and G is obtainedfrom G by eliminating one edgefrom each biface ofG.

Proof. We prove the theorem by constructing an augmentedgraph Ga from the per-
fect assignment of G. By induction on the number of vertices of Ga, we generate a legal
F-labeling on G. A 2-CRM floor-plan can thus be constructed.

For each assignment of CT/b to a, we chose an edge (a, x), x {b, c} in the
CT and duplicate (a, x) to create a biface with an arrow pointing to vertex a. The re-
suiting graph is Ga. The procedure is demonstrated in Fig. 12. There is a one-to-one
correspondence between an assignment and a biface.

FIG. 12. Transforming G to augmented graph Ga.

We now show that there exists a legal F-labeling of G, thus implying the existence
of a 2-CRM floor-plan.

Induction Basis: This is trivially true for G with five vertices.
Induction Hypothesis: There exists a legal F-labeling of G with no more than n

vertices.
Induction Step: The initial labeling procedure is as follows:
1. All incident edges of u and b are labeled H.
2. All other unlabeled edges incident to and r are labeled V.
3. If (x, y) is an edge where (u, x, y) or (b, x, y) is a face, label (x, y) as V.
4. If (x, y) is an edge where (1, x, y) or (r, x, y) is a face, label (x, y) as H.

510 K.H. YEAP AND M. SARRAFZADEH

In the labeling process, we only label the edges. The corners are implicitly labeled
when their edges are labeled. The implicit rules for corner labeling are as follows:

1. If the two edges of a corner have identical labels, the comer is labeled
aligned (180).

2. If the two edges of a corner have distinct labels and there is an arrow point-
ing to the comer, the corner is labeled concave (270); otherwise the corner is labeled
convex (90).

We first try to find a vertical cut P in G. The procedure is rather straightforward:
1. Path search. Find a path P (v,..., v, b) where there is at least one

core vertex on the left and right of P.
2. Chord elimination. If a chord (v, v), (i < j) exists in P, remove vertices v from

P, where i < k < j. Repeat this procedure until all chords in P are eliminated.
If the resulting path P* meets the criteria of a vertical cut, we decompose the graph

as shown in Fig. 11. Vertices of P* are duplicated and the vertices r’, l’ and correspond-
ing edges are added. When the vertices of P* are duplicated, the assignments are carried
along with corresponding CTs that contributed to the assignments. Thus if A was as-
signed to v and A appears on the left subgraph after decomposition, vertex v on the left
subgraph will carry the assignment of A. The duplicated vertex v on the right subgraph
will not carry the assignment of A. However, the vertex v on the right subgraph may
carry assignment of other CTs. It can be easily seen that if G has a perfect assignment,
the subgraphs also have perfect assignments. Thus the induction hypothesis applies since
each subgraph contains one less vertex. A similar procedure is applied to a horizontal
cut.

By Lemma 1, CTs are not decomposed by a cut. Thus an edge of a cut cannot be
an edge of a biface because a biface only exists in a CT. The decomposition process is
depicted in Fig. 11. The resulting floor-plan F is constructed by merging the left and
right floor-plans F and F as shown. Modules (of and F) corresponding to vertices
in the vertical cut P* are coalesced when F and F are merged.

Ifvertical or horizontal cuts do not exist, we proceed with the following case analysis
on Ga

Case A. At least one of the noncore vertices has degree 3.
Case B. All noncore vertices have degree at least 4.
CASE A. At least one ofthe noncore vertices has degree 3.
Without loss of generality, we assume r has degree 3. The configuration ofG with

its initial labeling is shown in Fig. 13. Consider the distinguished vertex v adjacent to r.
Vertex v has at least three edges (v, r), (v, u), (v, b). There are three possibilities for v:

A.1. v is not assigned.
A.2. v is assigned once.
A.3. v is assigned twice.
CASE A.1. v is not assigned.
We delete vertex r and its associated edges. We then relabel vertex v as r’. There

is no biface incident to v since v is not assigned. All unlabeled incident edges of r’ are
labeled V except (u, r’) and (b, r’), which have been labeled H. The resulting graph
has one less vertex and thus the induction hypothesis applies. The F-labeling and corre-
sponding floor-plans are demonstrated in Fig. 14. As before, thick edges have vertical
orientation and thin edges have horizontal orientation. The orientations of dotted edges
are not determined yet. One can easily verify that the F-labeling of vertex v does not vi-
olate the properties stated in 2.2.

FLOOR-PLANNING BY GRAPH DUALIZATION 511

b Ga

FIG. 13. Graph ofCase A.

v

b Ga Floor-plan of Ga

r’ G r’

I
Floor-plan of Ga {r}

FIG. 14. Floor-plans and duals in Case A.1.

CASE A.2. v is assigned once.
Let (xs, v) be the biface of the assignment of v. Refer to the configuration of Ga in

Fig. 13. Let P {u Xl,..., zs,..., xv b} be the path from u to b in counterclock-
wise order where all vertices of P are adjacent to v. The general configuration of the
graph is shown in Fig. 15.

The biface represents a concave corner of module v. Let {el (u, v),..., e,
(x, v), e+l (x, v), %+1 (b, v)} be the set of edges in counterclockwise order
with (es, e8+1) as the biface. We claim that the other edges cannot form bifaces. Suppose

512 K.H. YEAP AND M. SARRAFZADEH

FG. 15. Graph ofCase A.2.

for contradiction that e,, e,+ is also a biface. If the convex comer of the biface is
incident to v, v will have an assignment count of more than one. If the convex comer is
incident to some other vertex, v must lie strictly inside some CT. From the configuration
of Fig. 15, it is impossible for v to lie in any CT.

We perform a local transformation to the graph G so that the resulting graph has
one less vertex. The transformation procedure is illustrated in Fig. 16. The initial la-
beling of G, is shown on Fig. 16(a). We delete vertices r, b and their incident edges.
We then split vertex v into two vertices and label them r’ and b’. (See Fig. 16(c).)
Edges {el,..., es} are now incident to r’ and {es+x,..., ep} are incident to b’. Edges
(1, b’) and (r’, b’) are also added. The unlabeled edges {e2,..., e} are labeled V, and
{e+,..., ev} are labeled H, as shown in Fig. 16(d).

Let G’ be the resulting graph after the transformation. All CTs assigned to v, along
with their bifaces, are disintegrated by the transformation process. From the floor-plan
of Fig. 16(e), we see that the concave corner (biface) is eliminated by the introduction of
edge (r’, b’). The merging of the floor-plan of G’ with 1-CRM module of v, is illustrated
in Fig. 16(b). A degenerate case where Zv_ is illustrated in Fig. 17. We can verify
that the labeling of vertex v and P conforms to the properties stated in 2.2.

CASE A.3. v is assigned twice.
Refer to the general configuration of Fig. 13 again. Since v is assigned twice, there

must be two bifaces incident to v. Let (z, v) and (z2, v) be the bifaces. As before,
we consider the vertices adjacent to v. Let P {z z, z,, z,, zv b}
be the path from u to b in counterclockwise order where all vertices of P are adjacent
to v. Also let {e,..., e81, e+,..., ez+, e,z+z,..., ev+z } be the incident edges with
bifaces (esl, e81+) and (e,+, ez+z). Since z, and z, are located in two independent
CTs, s2 > sl + 2 must hold true. Thus there is a vertex z,(sl < s < s2) not located in
any of the two C-.

We claim that there are no vertices to the left of P. Otherwise, we can apply the
chord elimination procedure to P to obtain the vertical cut P* since vertices of P are
adjacent to v. Because of the absence of such vertices, vertex zv_ must be adjacent to
(by triangulation) or Zv_ I. (If not, we would have a vertex z with edge (z, b) on

the left of (Zv_ b), where z is on the left of P.) We consider the general case where
Zv_X (Fig. 18) and treat the case where Zv_ as a degenerate case (Fig. 19).

Consider the path Q (r, V, Zs,Zs+I,... ,Zs2,... ,Zp--l,/). Applying the chord
elimination procedure (as described in the beginning of this proof) to the subpath Q’

FLOOR-PLANNING BY GRAPH DUALIZATION 513

X2

(b)

(d) (e)

FIG. 16. Transformation ofGa in Case A.2.1.

(Xs, Xs+l, Xs2, Xp--1, /), we obtain a path Q* (yl r, y2 v, ya
xs,..., Yq-1 Xt, yq 1). We have assumed that no horizontal cut existed in our case
analysis implying Q* is not a cut. However, all chords of Q* must be incident to vertex
v; otherwise they would have been eliminated by the chord elimination of Q’ when con-
structing Q*. Thus, the only condition that disqualify Q* as a cut are the chords (yj, v)
for some j.

Despite the fact that Q* is not a cut, we will decompose Ga along the horizontal path
Q* and give special treatment to the chords (yj, v). Let the upper and lower subgraphs
be G, and Gb. The decomposition process is depicted in Fig. 18. Edges (yi, b’) are
appended to G, and edges (yi, u’) are appended to Gb, for i 1,..., q. Because of the
chords (y, v), the addition of edges (y, u’) in Gb results in new CTs/ujw’, which may
not exist in G. However, from the figures, we can assign the concave comer of these

514 K.H. YEAP AND M. SARRAFZADEH

r X,p_ --
xp=b

FIG. 17. A degenerate graph ofCase A.2.

x2

CTs to v. The assignment is a sharing assignment (see 2.6) using the concave comer of
the biface (zz, v). Other CTs ofG are handled as if Q* is a cut. We can verify that the
vertices along Q* do not violate the properties given in 2.2.

Note that in some cases we may have zt zp-1 or zt z8 (see Fig. 18 for xt),
however, x8 and xp_l are distinct by our construction. A degenerate example where
xp_ is illustrated in Fig. 19.

CASE B. All noncore vertices have degree at least 4.
This is impossible as we shall show that we can construct a cut on Ga. The general

configuration of the graph is shown in Fig. 20. Note that, there are at least four more
distinct vertices v, v, va, v4 in G as shown in the figure. We consider two possibilities:

B.1. Some of the edges (V3, U), (V3, r), and (Vl, b) exist.
B.2. None of the edges (v3, u), (v3, r), and (vl, b) exist.
CASE B.1. Some ofthe edges (V3, U), (V3, r), and (Vl, b) exist.
Since the edges are topologically identical, we assume that (v3, r) exists. The path

(l, v3, r) is a horizontal cut. Thus we have a contradiction.
CASE B.2. None ofthe edges (v3, u), (v3, r), and (v, b) exists.
We scan adjacent vertices of v3 clockwise to obtain the path (1, x,..., x,, b). Simi-

larly, we scan adjacent vertices of b clockwise to obtain the path (v3, y,..., Yn, r). Note
that x, yl and yn v2. We construct the path P (1,Xl,...,x, yl,...,yn, r)
(see Fig. 21). Vertex u cannot appear in P due to the nonexistence of (v3, u). Also,
cannot appear in P, otherwise we have a horizontal cut (l, v3, Vl, r). We apply the chord
elimination procedure to P and obtain a horizontal cut P*. This is another contradic-
tion.

From Theorem 1, the problem of the existence of a 2-CRM floor-plan is reduced
to finding a perfect assignment in G. For a given G, there may be more than one per-
fect assignment. Different assignments correspond to different floor-plans. In the next
section, we present an algorithm to obtain a perfect assignment in G.

4. An algorithm for perfect assignment. In this section, we first demonstrate that
assignment sharing is necessary for the existence of a 2-CRM floor-plan. We then pro-
pose a hierarchical assignment algorithm to obtain a perfect assignment in a PTG. The
algorithm can be easily adapted to the extended dual (7, as described in 4.3. Finally, we
present an example.

FLOOR-PLANNING BY GRAPH DUALIZATION 515

u

r

r

G

Xt Xs

XP-1

b F

b’ f

b

FIG. 18. Dual decomposition ofCase A.3.

4.1. Necessity ofsharing assignments. Sharing assignment refers to the assignment
of a child CT that uses the concave corner of its parent CT to satisfy its adjacency re-
quirements. The notion of sharing has been discussed in 2.6, and Fig. 10 illustrates an
example of a sharing assignment. An assignment can be shared by more than one gen-
eration of CTs. Sharing reduces the number of nonrectangular modules in a floor-plan.
In some graphs, sharing is even necessary to achieve perfect assignments.

Consider a series of PTGs Gi as shown in Fig. 22. G, is obtained by adding a vertex
and three edges to each bounded face of G,-I. The containment tree of G,, is a full

516 K.H. YEAP AND M. SARRAFZADEH

r

p-
r

Xp b Ga

b Gu

u

b G

u J

b F

u

T, s2

FIG. 19. A degenerate example ofCase A.3.

ternary tree. Let f(n) denote the number of bounded faces in G, and CT(G,) denote
the number of CTs in Gn. From G, to Gn+l, each bounded face of G, becomes a CT of
G,+1. Because f(n) 3’, we have

CT(Gn+I) CT(Gn) + 3n,
CT(Go) O.

n>O,

FLOOR-PLANNING BY GRAPH DUALIZATION 517

FIG. 20. Graph ofCase B.

b Ge

FIG. 21. Graph ofCase B.2.

Go G G

FIG. 22. Family ofgraphs to show the necessity ofsharing assignment.

Solving the recurrence equations gives

CT(G.)--(3n- 1)/2,

which is also the number of nodes in the containment tree of G,. Let V(G,) denote
the number of vertices available for assignment in G, (this number is not equal to the
number of vertices in G,). For n > 1, we have

518 K.H. YEAP AND M. SARRAFZADEH

v(v) +
v(a)

n_>l,

Solving the recurrence equations gives

(3 + 5)/2.

Since each vertex can carry at most two assignments, the maximum number of assign-
ments A(G,) in G, is

A(G,) 2V(G,) 3’-I + 5.

For n > 4, CT(G) > A(G,). If each assignment of a CT is counted once, it is impossi-
ble to obtain a perfect assignment since the number of CTs outnumber that of available
assignments. This is also intuitively evident from the fact that each newvertex introduces
three CTs but only two new assignments.

We thus see that sharing is necessary to achieve a perfect assignment. When a CT
shares its assignment with its parent, we do not increase the assignment count on the
vertex because sharing does not result in more complicated shapes. The assignment of
a vertex is counted twice only if it is assigned by two independent CTs (i.e., one does not
contain the other and vice versa). From the practical point of view, sharing should be
encouraged whenever possible since we prefer simpler shaped modules.

4.2. Hierarchical assignment algorithm for PTG. The hierarchy of CTs suggests a
recursive assignment procedure. We proceed in breadth-first manner in the containment
tree. At each step of the recursion, we only consider the CTs that have identical parent.
Let G be the graph induced by the CTs in step i, i.e., the CTG of siblings having identical
parent A. We also call A the parent of G. We assume that G is connected. If not, our
algorithm will be applied to each connected component of G. After G is assigned, the
algorithm is recursively applied to the children of each CT ofG in the containment tree.

We define the following terms on G: An edge (a, b) is called a boundary edge if it is
an edge of the infinite face of G; otherwise it is called an internal edge. Avertex is called
a boundary vertex if there are some boundary edges incident to it; otherwise, it is called
an internal vertex. From the definition, the following properties hold on graph G"

PI. A boundary edge has exactly one triangle on one side.
P2. A boundary vertex has at least two boundary edges incident to it.
P3. A boundary vertex is adjacent to at least two other boundary vertices.
We call a vertex saturated if it has already been assigned twice. Consider vertices of

Gi. Let "/abc be the the parent of Gi. Vertices a, b, c may appear in Gi. In the worst case,
all of them may be saturated due to previous recursive assignment steps. Suppose Aab
is assigned to vertex a in the previous recursive step. Because of the sharing scheme,
vertex a is allowed to carry one more assignment in G. Therefore, even if the vertex is
already saturated from its previous assignments, we canforce (artificially set the assign-
ment count) it to take one more assignment in G. Thus at most two vertices (b and c)
are saturated in G, and both of them are boundary vertices. In fact, the vertex a is also
allowed to carry assignments of any descendant of Ab as long as the assignments are
shared.

As the algorithm proceeds, we delete edges and vertices ofG that do not have unas-
signed triangles incident to them. We always maintain the following invariant properties:

FLOOR-PLANNING BY GRAPH DUALIZATION 519

QI. At most two boundary vertices are saturated. The other boundary vertices may
have zero or one assignment.

Q2. Internal vertices have zero assignment.
We choose an unsaturated vertex v from the set of boundary vertices. Such a ver-

tex always exists since a nontrivial Gi has at least three boundary vertices, of which
at most two are saturated. We scan the vertices adjacent to v counterclockwise. Let
v0,..., v, n > 1 be the vertices, where (v, v0) and (v, v) are boundary edges. (Note
that v0 and v, are boundary vertices.) There are at most n triangles/1, A, incident
to v, where/i is/v,_l v, . There are two possible cases:

Case 1. Vl,..., 3n-1 are all internal vertices.
Case 2. Some of Vl,..., v,_l are boundary vertices.
CASE 1. Vl,. v,_l are all internal vertices.
If vl,..., v_x are all internal vertices, we will assign/ to v for i 1,..., n- 1 and

assign/, to v. If a/ does not exist, we simply ignore its assignment. We delete vertex
v and edges (v, v0),..., (v, v,) since all incident triangles have been assigned. Each of
the edges (vi, vi+), i 0,..., n 1 and vertices v, i 0,..., n is deleted if it has
no more incident triangles. The remaining vertices in (v,..., v_x } are added to the
set of boundary vertices. The resulting graph is smaller and the invariant properties Q1,
Q2 are maintained. If G is not connected, the assignment algorithm is applied to each
connected component. The vertex v, which has been deleted, is assigned at most twice.
The procedure is shown in Fig. 23.

FIG. 23. Assignment when Vl Vr-- are internal vertices.

CASE 2. Some ofV1,..., Vn_l are boundary vertices.
In this case, we will not make any assignment. Instead we will decompose G into

two smaller subgraphs where the invariant properties Q1, Q2 are maintained in both
subgraphs. Let v,, (1 < m < n 1) be the boundary vertex with the smallest index
m. Consider the edge (v, v,) where v and v, are boundary vertices. The edge (v, Vm)
decomposes Gi into two subgraphs Gir and Git with (v, v,) appearing in both subgraphs.
There are two cases:

Case 2.1. v, is saturated.
Case 2.2. v, is not saturated.
CASE 2.1. v, is saturated.
There are only two saturated vertices in G and by our selection, v is not saturated.

Without loss of generality, we can assume that the other saturated vertex v8 is in
Weforce vertex v in Gr to be saturated, thus not allowing triangles in Gi to be assigned

520 K.H. YEAP AND M. SARRAFZADEH

to v. Gi has exactly two saturated vertices: v, and v (forced saturation), so does Git:
v, and v,. Vertex v in Ga will keep whatever assignment it carries in G but it will not
be assigned by triangles in G. Thus vertex v in G will not be oversaturated due to the
forced saturation of v in G. The decomposition is depicted in Fig. 24.

Vm

Gir

() saturated vertex

unsaturated vertex

FIG. 24. Decomposition when Vm is saturated.

CASE 2.2. Vm is not saturated.
Let the two saturated vertices be v81 and v82. v,x (v2) appears in exactly one of

the subgraphs after decomposition. If v,1 E Gi and vz E G, we force v and v, of
Gt to be saturated. If v81 Gi and v2 Ga, we force v of Git and Vm ofG to be
saturated. If vl 9 Gi and v, q[Gi, we force v and v, of Gi to be saturated. In any
case, Gi and Git have exactly two saturated vertices, v (v,) of Git is saturated if and
only if v (v,) of Gi is not saturated. Thus v and v, will not be oversaturated in Gi. The
decomposition is shown in Fig. 25.

FIG. 25. Decomposition when vm is not saturated. (a) re1, re2 E Gr, (b) vsx Gir, vs2 Gil, (c)
Vs2 - Gir.

From the above discussion, we either eliminate some triangles or decompose G
into smaller subgraphs. Thus, we have an assignment algorithm on G with the invariant
properties as induction hypothesis. If G has only one triangle, the assignment problem
is trivial.

A formal description of the algorithm is as follows:

FLOOR-PLANNING BY GRAPH DUALIZATION 521

ALGORITHM ASSIGN(CTG, TREE, root)
INPUT: CTG is a complex triangle graph of a planar triangulated graph and TREE

is the corresponding containment tree. root is the parent node of the set of
complex triangles to be assigned in the current recursive step.

OUTPUT: A perfect assignment ASSIGN {(A, v),..., (A,, v,)}, where/
/,b,, is a descendant complex triangle of root and v (a, b, c}.

BEGIN
Let root be/kabc and assume it was assigned to a.
Find the subgraph Gi (V, Ei) induced by the children of root.
Force v81 b and v82 c to be saturated.
If a is saturated, force a to have an assignment count of 1.
ASSIGN .
For each connected component Gi of Gi do

LetC (Y, E).
B CONNECTED_ASSI(N(Gi, (b, c) f3 V).
ASSIGN ASSIGN t_J B.

End For.
For each/%v Gi do

LetG be the subgraphs induced by children of/v.
C ASSIGN(G, TREE,/).
ASSIGN ASSIGN t_J C.

End For.
Return (ASSIGN).

END algorithm.

PROCEDURE CONNECTED_ASSIGN(G, SATURATED)
INPUT: G (V, E) is a connected planar graph induced by children of a node in the

containment tree. SATURATED c V is the set of saturated boundary vertices
of G, SATURATED I<_ 2.

OUTPUT: A perfect assignment A {(/1, vl),..., (A,, v,)}, where/i /ab,
is a complex triangle of G and vi e {ai, bi, c}.

BEGIN
Find the set of boundary edges Eb C_ E.
Find the set of boundary vertices Y c_ V.

Find a vertex v E (Vb-- SATURATED).
Let v0,..., vn, n >_ 1 be the vertices where (v, v0), (v, vn) Eb and v0, v, Y.
If {v,..., v,_ } are all internal vertices then

/* CASE 1, assign/k to v and/, to v */
Let/ =/v_l v ., i 1,..., n.
For i 1to n- 1do

A A t_J {(Zk, v)} if/k exists.
A A t2 {(/,, v)} if/, exists./* last triangle */
Delete vertex v and incident edges.
Delete vertex v, i 0,..., n from G if it has no more incident triangle.
Delete edge (vi, v+), i 0,..., n I from G if it has no more incident triangle.
For each connected component Gc (Vc, E) of the remaining graph do

522 K.H. YEAP AND M. SARRAFZADEH

Else
A AU CONNECTED_ASSIGN(G, SATURATED nv).

/* CASE 2, decompose G into Gt and G */
Let v, and v, be two vertices of SATURATED.
Let v, {v,..., v,_ } f’) 14 where v,..., v,_ V.
SATURATEDL .
SATURATED_R .
Decompose G into Gt and G with (v, v,) G fq G.
Ifv SATURATED then

/* CASE 2.1 */
Let v v,, without loss of generality.
If v,z in Gt then

SATURATED {v,2, v,. }.
SATURATED_R {v, Vm}.

Else
SATURATED_L {v, Vm}.
SATURATED_R {v,2, Vm }.

End If.
Else /* v, q SATURATED */

/* CASE 2.2 */
Ifv, G then

SATURATED_R SATURATED_R (.J {v,1}.
SATURATEDL SATURATEDL t3 {v}.

Else
SATURATED_R SATURATED_R t3 {v}.
SATURATED_L SATURATED t2 {Vsl }.

End If.
Ifv2 Gt then

SATURATED_R SATURATED_R U {Vm }.
SATURATED SATURATED_L J {v,2 }.

Else
SATURATED_R SATURATED t2 {Vm }.
SATURATEDL SATURATED_L t2 {v2 }.

End If.
End If.
B CONNECTED_ASSIGN(Gt, SATURATEDL).
C CONNECTED_ASSIGN(G, SATURATED).
A=AUBUC.

End if.
Return (A).

END procedure.

Notice that the sharing assignment scheme is implicitly incorporated by forcing ver-
tex a of/k in ASSIGN() to reduce its assignment count. Data structures that sup-
port ASSIGN() and CONNECTED_ASSIGN() are relatively simple. A doubly
connected edge list [8] can be used to find CTs incident to a vertex. The algorithm visits
each CTwithout backtracking. Thus the complexity of the assignment algorithm is O(c),
where c is the number of CTs. c is O([VI) in a planar graph. Therefore the overall time
complexity is O(IVI) and we have the following theorem:

FLOOR-PLANNING BY GRAPH DUALIZATION 523

THEOREM 2. Given a PTG, a perfect assignment can be constructed in 0(1V l) time,
where IV is the number ofvertices ofthe PTG.

4.3. Perfect assignment for extended graph. In general the algorithm will make an
assignment to any nonsaturated vertex of Gi. We have pointed out that in a perfect as-
signment of G, the four noncore vertices r, u, l, b are not allowed to carry assignment.
This may violate the invariant properties because in the worst case, we may have four
saturated vertices to begin with. However, we know that all core vertices have an assign-
ment count of zero initially. We can exploit this fact to decompose G into two subgraphs
satisfying the invariant properties.

Given a biconnected PTG Go, we construct an extended graph G by adding the
vertices r, u, l, b. We force the vertices r, u, l, b to be saturated. Consider the graph
G’ G {(r, u), (u, 1), (1, b), (b, r) }. Since Gc is biconnected, the edges (r,), (, 1),
(1, b), and (b, r) do not appear in any CT of G. Therefore the CTG of G’ and that of G
are identical, and we will only consider decomposition of G’.

If each connected component of CTG CTG(G’) contains no more than two sat-
urated vertices, we are done. Suppose a connected component of CTG(G’) contains
three or more saturated vertices. We identify the first boundary vertex v of G’, which is
clockwise adjacent to r. Similarly we find yr. (See Fig. 26.) Since G is biconnected, v
and v must be distinct. We find a path P (v,..., v) in G’ and construct a path P*
by applying the chord elimination procedure. By our selection, v and v are located at
the infinite face of G’. We cut G’ into G and G[along the path P*, as shown in Fig. 26.
CTG(G) (CTG(G)) has at most two saturated vertices since G (G) has at most two
saturated vertices. Vertices of P* in CTG(G) and CTG(G) are forced to have assign-
ment count of one. Therefore vertices of P* in CTG(G’) will not be oversaturated after
we apply the assignment algorithm to CTG(G) and CTG(G).

G

FIG. 26. Initial decomposition of G.

THEOREM 3. Given any extended graph G constructedfrom a biconnected PTG G, a
perfect assignment can be constructed in 0(I V I) time, where V is the number ofvertices

ofG.
Note that the biconnected condition ofG is needed only for the initial decomposition

of Gt. The assignment algorithm is still valid for some classes of weakly connected core
graphs as long as the initial decomposition exists. However, not all extended graphs of
planar graphs can be decomposed in this manner. Figure 27 is an example of such a
graph.

As a direct result of Theorems 1 and 3, we have the follwing theorem:

524 K.H. YEAP AND M. SARRAFZADEH

FIG. 27. An example ofG that does not have a perfect assignment.

THEOREM 4. Given any biconnectedPTG Gc with VI vertices, a 2-CRMfloor-plan F
can be constructed in o(IvI) time, where the dual ofF has core Gc whenparallel edges are
eliminated.

Example. We demonstrate an example of the construction process using the graph
of Fig. 8, which does not admit any 1-CRM floor-plan. The results are shown in Fig. 28:
(a) is the core graph and (b) shows an extended graph. (c) is a perfect assignment and
(d) gives the 2-CRM dual floor-plan constructed with the perfect assignment in (c).

5. Conclusion. We have presented a linear time algorithm for floor-plan construc-
tion using a graph dualization technique. By allowing more general shapes, 1-CRM and
2-CRM, we have shown that all adjacency requirements of a PTG can be satisfied on a
rectangular chip. The construction ensures that no unnecessary adjacency is added in
the final floor-plan, thus paves the way for a more compact layout. If the input graph is
planar but not triangulated, a floor-plan is still possible by introducing trivial adjacency.
The most complicated shape created is 2-CRM but most modules are rectangular. The
1-CRM and 2-CRM can be easily incorporated in the widely used rectilinear systems.
The expected number of CTs for a randomly generated PTG is approximately 16% of
the number of vertices [14].

The algorithm presented serves as a theoretical basis for floor-planning based on
the graph dualization approach. For practical applications, other requirements such as
area, aspect ratio, and perimeter constraints should be considered. We are currently
looking at the applications of the results obtained from this study. Sizing and aspect ra-
tio is one of our major focuses. Only when such issues are resolved could one propose
dualization-based floor-planning as a practical alternative. The floor-plan sizing prob-
lem has been shown to be NP-complete for general rectangular floor-plans [9]. Future
research is focused on approximate solutions or restriction to special classes of floor-
plans, for example, sliceable floor-plans, which are more promising in practice. More
information can be found in [7] and in Chapter 7 of [5].

One interesting problem is to enumerate all floor-plans with identical duals. For
rectangular floor-plans, the problem have been studied [3], [13]. For 1- and 2-CRM
floor-plans, the problem has yet to be studied. Planarization of the circuit is especially
not well understood. Current solutions are based on heuristic approaches [6]. Many
problems related to graph dualization need to be investigated even for rectangular floor-
plans.

FLOOR-PLANNING BY GRAPH DUALIZATION 525

r

b

11
3

FIG. 28. An example ofdual construction: (a) core graph Gc; (b) an extended graph constructedfrom Gc;
(c) a perfect assignment; and (d) a floor-plan constructedfrom theperfect assignment in (c).

[10]

REFERENCES

[1] J. BHASKER AND S. SAHNI, A linear algorithm to find a rectangular dual of a planar triangulated graph,
Algorithmica, 3 (1988), pp. 247-278.

[2] K. KOZMINSKI AND E. IONNEN, Rectangular dual ofplanargraphs, Networks, 15 (1985), pp. 145-157.
[3] Rectangular dualization and rectangular dissection, IEEE Trans. Circuits and Systems, 35 (1988),

pp. 1401-1416.
[4] Y.T. LAI AND S. M. LEINWAND, Algorithms forfloor-plan design via rectangular dualization, IEEE Trans.

Computer-Aided Design, 7 (1988), pp. 1278-1289.
[5] T. LENGAUER, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, New York,

1990.
[6] B. LOKANATHAN AND E. KINNEN, Performance optimized floorplanning by graph planarization, Proc. of

26th Design Automation Conference, 1989, pp. 116-121.
[7] R.H.J.M. OTrEt,Automaticfloorplan design, Proc. of 19th Design Automation Conference, 1982, pp.

261-267.
[8] E PREPARATAAND M. SHAMOS, Computational Geomeay--An Introduction, Springer-Verlag, Berlin, New

York, 1985.
[9] L. STOCrMAYER, Optimal orientation ofcells in slicingfloorplan designs, Inform. and Control, 57 (1983),

pp. 91-101.
Y. SotAND M. SARRAFZADEH,Floorplanningbygraph dualization: L-shapedmodels, Proc. ofIEEE Inter-

national Symposium on Circuits and Systems, 1990, pp. 2845-2848; also to appear in Algorithmica.

526 K.H. YEAP AND M. SARRAFZADEH

[11]

[12]

[13]

[14]

Y. SUN AND K. H. YEA, Edge covering ofcomplex triangles in rectangular dualfloorplanning, J. Circuits
Systems Comput., to appear.

S. TSUKn’AMA, K. KOIKE, AND I. SnIm,AWA,An algorithm to eliminate all complex triangles in a maximal
planar graph for use in VLSIfloor-plan, Proc. of IEEE International Symposium on Circuits and
Systems, 1986, pp. 321-324.

S. TSUKn’AMA, K. TANI, AND T. MARUYAMA, A condition for a maximal planar graph to have a unique
rectangular dual and its application to VLSlfloor-plan, Proc. of IEEE International Symposium on
Circuits and Systems, 1989, pp. 931-934.

K. H. YEAr Am) M. SARaaZADEH,A theorem ofsliceability, 2nd Great Lakes Computer Science Con-
ference, Western Michigan University, Kalamazoo, MI, 1991.

SIAM J. COMPLrE
Vol. 22, No. 3, pp. 527-551, June 1993

() 1993 Society for Industrial and Applied Mathematics
OO5

A QUADRATIC TIME ALGORITHM FOR THE
MINMAX LENGTH TRIANGULATION*

HERBERT EDELSBRUNNER AND TIOW SENG TANt

Abstract. It is shown that a triangulation of a set ofn points in the plane that minimizes the maximum edge
length can be computed in time O(n2). The algorithm is reasonably easy to implement and is based on the
theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph
of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.

Key words, computational geometry, point sets, triangulations, two dimensions, minmax edge length,
normed metrics

AMS(MOS) subject classifications. 68Q25, 68U05, 65D05

1. Introduction. A triangulation of a (finite) point set S in N2 is a maximal con-
nected straight-line plane graph whose vertices are the points of S. Maximality implies
that, with the exception of the unbounded face, each face of the graph is a triangle. The
number of different triangulations of S depends on n IS[and on the relative location
of the points. As implied by a result in [ACNS82], 10ta’ is an upper bound on the num-
ber of triangulations of any set of n points in 2. Furthermore, if S is in convex position,
then it admits (4) > 2n-3 different triangulations. In order to choose an optimal
triangulation, under some criterion, it is thus not feasible to exhaustively search the set
of all triangulations.

Indeed, except for a handful of particular optimality criteria, the problem of finding
an optimal triangulation for a given point set is hard, that is, no polynomial-time algo-
rithms are known. Among these exceptions are the maxmin angle criterion [Sibs78],
the minmax angle criterion [ETW92], the minmax smallest enclosing circle criterion
[Raja91], and the minmax circumscribed circle criterion. The optimum under the first,
third, and fourth criteria is achieved by the Delaunay triangulation which can be con-
structed in time O(n log n) [De134], [PrSh85], [Ede187].

In this paper we study the complexity of minimizing the maximum edge length. A
triangulation that minimizes the length of its longest edge is called a minmax length trian-
gulation. It is related to the so-called minimum length (or minimum weight) triangulation
that minimizes the sum of the edge lengths. The latter problem has been studied by
Plaisted and Hong [PIHo87], Lingas [Ling87], and others. In spite of the lack of a proof
that the problem is NP-hard, no polynomial time algorithm for constructing a minimum
length triangulation is currently known. Even more annoying is the lack of a constant
approximation scheme, that is, an algorithm that in polynomial time constructs a triangu-
lation guaranteed to have total edge length of at most some constant times the optimum.
The current best approximation scheme, described in [P1Ho87], guarantees a factor of
O(log n).

In view of the apparent difficulty of computing minimum length triangulations, it
is somewhat surprising that we are able to provide a polynomial, in fact, a quadratic
time algorithm, for constructing a minrnax length triangulation. To our knowledge it is

Received by the editors March 20, 1991; accepted for publication (in revised form) March 4, 1992.
tDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

The work of this author was supported by the National Science Foundation grants CCR-8921421.
Department of Information Systems and Computer Science, National University of Singapore, Republic

of Singapore. The work of this author was done during his study leave at the University of Illinois at Urbana-
Champaign.

527

528 HERBERT EDELSBRUNNER AND TIOW SENG TAN

the first polynomial-time algorithm for this problem. Although there is evidence for the
potential usefulness of such a triangulation (see [BrZI70], [WGS90]), we consider the
additional insight into optimum triangulations under edge length criteria to be the main
contribution of this paper.

The reader might find it instructive to rule out seemingly promising approaches to
computing minmax length triangulations before diving into the occasionally involved
developments of the forthcoming sections. Note first that the Delaunay triangulation
does not minimize the maximum edge length (see also 2). Second, the incremental
greedy method, which repeatedly adds the shortest edge that does not intersect any pre-
viously added edge, also fails to minimize the maximum edge length. Third, let us take
a brief look at the decremental greedy method that throws away edges in the order of
decreasing length. It stops the deletion process if another deletion would render the
set of edges so that it does not contain any triangulating subset (see Wismath [Wism80,
p. 81]). The trouble with this approach is that it is not clear how to efficiently decide
whether the evolving edge set is still sufficient to triangulate the point set. Indeed, Lloyd
[Lloy77] proves that the general version of this problem (to decide whether a given edge
set contains a triangulation) is NP-complete. Finally, the iterative methods that use
the edge-flip [Laws77] or the more general edge-insertion operation [ETW92] can get
caught in local optima. The approach taken in this paper is entirely different from the
above paradigms.

The organization of this paper is as follows. Section 2 reviews a few results on rela-
tive neighborhood graphs and other subgraphs of the Del.aunay triangulation. Section 3
formulates the global algorithm; its straightforward implementation using dynamic pro-
gramming takes time O(na). The only intricate part of this algorithm is the proof of
correctness provided in 4. Sections 5 and 6 present a specialized polygon triangulation
algorithm that can be used to speed up the general algorithm to time O(n2). Whereas
2-6 assume that the Euclidean metric is used to measure length, 7 demonstrates that
all results extend to general normed metrics. Indeed, the arguments in 2-6 are ax-
iomatically derived from a few basic lemmas in order to minimize the number ofchanges
necessary to generalize the results. Finally, 8 briefly discusses the contributions of this
paper and states some related open problems.

2. Subgraphs of the Delaunay triangulation. Our approach to constructing a min-
max length triangulation first adds enough edges to decompose the plane into simple
polygonal regions and then (optimally) triangulates these regions. Both Plaisted and
Hong [P1Ho87] and Lingas [Ling87] used this approach to compute approximations of
the minimum length triangulation. In our case the initial set of edges is provided by the
(boundary of the) convex hull and the relative neighborhood graph of the point set S.
The remainder of this section formally introduces these graphs, along with the Delaunay
triangulation and the minimum spanning tree of S, and reviews some basic facts about
their relationships. If z, y, z are three points in 2, then zy denotes the relatively open
line segment with endpoints z and , Iz l denotes its length, and zlz denotes the open
triangle with vertices z, y, z.

The Delaunay angulation of S, denoted by dr(S), contains an edge ab, a, b E S, if
there is a circle through a and b so that all other points lie outside the circle. If the points
are in general position, then dt(S) is indeed a triangulation.

As mentioned in 1, the Delaunay triangulation does not minimize the length of the
longest edge. Take, for example, the points a (-2, 0), b (1, x/-), c (1,-v/-),
d (2 e, 0), with 0 < e < 1. They form a convex quadrilateral abdc, and the Delaunay
triangulation uses ad as the fifth edge. As e approaches 0 the length of ad approaches

MINMAX LENGTH TRIANGULATION 529

2/x/ times the length of the longest edge in the alternative triangulation. Indeed, 2/x/
is the worst possible ratio, as can be shown by using the result of [Raja91] that the Delau-
nay triangulation minimizes the radius of the maximum smallest enclosing circle, where
the maximum is taken over all triangles. If the radius of this circle is 1, then the longest
edge of the Delaunay triangulation has length of at most 2. By the optimality result ev-
ery minmax length triangulation has a smallest enclosing circle of radius at least 1 and
therefore an edge of length at least (see also [WGS90]).

The convex hull of S is the smallest convex polygon that contains S. We define ch(S)
as the graph defined by the edges of this polygon. In the (degenerate) case in which three
or more collinear points lie on the boundary of this polygon we think of each such point
as a vertex of the polygon. Thus edges are taken only between adjacent collinear points.
Each convex hull edge is an edge of every triangulation of S and therefore also of every
minmax length triangulation.

An edge ab belongs to the relative neighborhood graph of S, denoted by rn9(S), if

labl _< rain max{lxl,

This definition goes back to Toussaint [TousS0], who modified a similar definition by
Lankford [Lank69] for use in pattern recognition. Alternatively, we can define the lune
of ab as the set (x e 2 max(ixal ixbl } < labl}, and then define rng(S) as the set of
edges ab whose lunes have empty intersection with S.

A minimum spanning tree of S, denoted by mst(S), is a spanning tree of S that
minimizes the total edge length; it also minimizes the maximum edge length.

All four graphs, dr(S), ch(S), rng(S), rest(S), are plane and connected, and, with
the exception of ch(S), they span S. Where convenient we will interpret these graphs
as edge sets. Plainly, ch(S) c_ dr(S), and, as observed by Toussaint [Tous80], we also
have mst(S) c_ rng(S) c_ dr(S). Obviously, ch(S) c_ mlt(S) for every minmax length
triangulation mlt(S), and we will show in 4 that there exists an mlt(S) so that rng(S) c_

3. The global algorithm. As mentioned above, there exists a minmax length trian-
gulation mlt(S) that contains all edges of ch(S) and rng(S). Because ch(S) tO rng(S)
is a connected graph, it decomposes the convex hull of S into simple polygonal regions,
which we define as open sets, that contain no points of S. It is thus natural to construct
mlt(S) by computing ch(S) t_J rng(S) and then (optimally) triangulating each polygonal
region.

Strictly speaking, however, the polygonal regions are not necessarily simple poly-
gons in the usual sense of the term, although their interiors are simply connected. The
difference is that the interior of the closure of a polygonal region is not necessarily the
same as the region itself; it may contain edges of the region, and it may be nonsimply
connected. The most effective way to deal computational!y with this minor difficulty
is to represent each edge by a pair of oppositely directed edges and to represent the
boundary of each region by the collection of directed edges for which the region lies on
their left-hand side. In effect, this means that we interpret each polygonal region as a
genuine simple polygon simply by pretending that its zero-width cracks are opened up a
tiny amount. In most cases this is a convenient interpretation, and the notation will be
adjusted accordingly. Only occasionally will the difference between a simple polygonal
region and a simple polygon be uncovered.

Let us now formally specify the algorithm and give a preliminary analysis.

530 HERBERT EDELSBRUNNER AND TIOW SENG TAN

Input. A set S of n points in .
Output. A minmax length triangulation of S.

Algorithm. 1. Construct ch(S) and rng(S).
2. Determine the polygonal regions defined by ch(S) tA rng(S).
3. Find a minmax length triangulation for each such polygonal region.

Step 1 can be carried out in time O(n log n) by using results documented in [PrSh85]
and [Supo83] (see also [JKY90]). By using the standard quad-edge data structure of
[GuSt85] for storing the plane graph ch(S) tA rn#(S), step 2 can be accomplished in time
O(n). Finally, we can use dynamic programming to compute an optimal triangulation
for each polygon in time cubic and storage quadratic in the number of its vertices (see
[Klin80], [Gilb79]). This adds up to time O(n3) and storage O(n2). The correctness of
the algorithm will be established in 4. Sections 5 and 6 will show how to speed up the
algorithm to time O(n) by using a specialized polygon triangulation algorithm.

4. The Subgraph Theorem. The main result of this section is what we call the Sub-
graph Theorem, which was announced earlier. We begin with two elementary geometry
lemmas about distances between four points in convex and in nonconvex position.

t:]-LEMMA. For a convex quadrilateral abcd we have labl / led[< laal / Ibdl.
Proof. Let x be the intersection point of the two diagonals ac and bd. Clearly, labl /

Icdl < (laxl / Ixbl)/ (Iczl / Ixdl) -lacl / Ibdl.
In words, the total length of the two diagonals of a convex quadrilateral always ex-

ceeds the total length of two opposite sides. This is true even if three of the four vertices
are collinear. It implies that if one diagonal is no longer than one of the edges, then the
other diagonal is longer than the opposite edge.

A-LEMMA. Let a, b, c, d be four distinct points so that the closure of the triangle abc
contains d. Then lad < max{labl, lacl).

Proof. If a, b, c, d are collinear, the result is obvious. Otherwise, let d’ be the inter-
section of the edge bc with the line passing through a and d, and note that lad <_ lad’[.
Of all points on bc only the endpoints can possibly maximize the distance to a. The as-
sertion follows because if d’ is an endpoint of bc, then d d’ and therefore ad is strictly
shorter than ad’. [3

Note that the length of the longest edge of any minimum spanning tree is no longer
than the longest edge of any triangulation of S. This follows trivially from the fact that
every triangulation contains a spanning tree. It is not very difficult to prove that the same
is true for the relative neighborhood graph of S. First we need some notation. The circle
with center x and radius p is denoted by (x, p), and the bisector of two points p and q is
the set of points equidistant to both.

LENGTH LEMMA. Every triangulation of S contains an edge that is at least as long as
the longest edge of rng(S).

Proof. Let pq be the longest edge of rng(S), and let t(S) be an arbitrary triangu-
lation of S. If pq E t(S), there is nothing to prove. Otherwise, pq intersects edges
rl Sl, rs,..., rksk of t(S), sorted from p to q, with all ri on one side of the line through
p and q and all si on the other. If pq is longer than all edges in t(S), then rl and sl are
both inside the circle Up (p, [pq[) because prl and psl are both edges of t(S). By the
definition ofrn(S), rx and s are thus outside or on the circle Cq (q, IPql). Therefore,
r and Sl lie in the half-plane of points closer to p than to q. Symmetrically, rk and s lie
inside C’q and outside or on C’p and therefore in the half-plane of points closer to q than
to p. For each 1 < i < k 1 we have either ri ri+l or si si+, which implies that

MINMAX LENGTH TRIANGULATION 531

there is an index j so that r and 85 do not lie on the same side of the bisector ofpq. But
then the ra-Lemma implies that Irsl > IPq] because Ipql is no longer than each of two
opposite edges of the convex quadrilateral prqs, a contradiction.

The proof of the Subgraph Theorem is similar to that of the Length Lemma, al-
though it is considerably more involved. The basic idea is to assume an extremal coun-
terexample and to contradict its existence by retriangulating parts of it by using no long
edges. In the following we first develop three facts that show the possibilities of retrian-
gulations, and then we prove the theorem.

Let t(S) be a minmax length triangulation of S that does not contain some edge pq
of rng(S). Suppose pq intersects the triangles tl, t2,..., tk of t(S) sorted from p to q
(see Fig. 1 left).

P q P q ,q=c’

FG. 1. To the left are the triangles of t(S) that intersect pq. Ifwe remove the edges that intersect pq we get
a polygon whose boundary is oriented in a counterclockwise order. The prefix P and the sufftx Q defined for this
configuration are illustrated to the right. Although b and a are the samepoint, they refer to different angles ofthis
point.

The deletion of the edges that intersectpq would result in a simply connected region,
which can be interpreted (as in 3) as a polygonal region--we treat each edge in its
boundary as a pair of edges with opposite direction, and we trace the boundary of the
region by traversing all directed edges that have the region on their left side. Any two
consecutive (directed) edges define an angle (see Fig. 1 middle). Note that a vertex
can correspond to many angles, although the common situation is that it corresponds
only to one. We will therefore sometimes ignore the difference between vertices and
corresponding angles. Points p and q correspond to only one angle each. An angle is
convex if the two defining edges form a left turn. Call the sequence of edges from p to
q the lower chain, and the sequence from q to p the upper chain. Each chain contains at
least one convex angle different from p and q.

Aprefix is an initial subsequence of tl,t2,... ,tk, and a suffix is a terminal subse-
quence of tl,t,... ,t. We say that a prefix (suttLx) covers an angle of the polygon
if it contains all triangles incident to this angle. Let i be minimal so that the prefix
P tl, t2,..., t covers a convex angle other than p, and let j be maximal so that the
sufl Q re, re+x,..., tk covers a convex angle other than q. P and Q consist of at least
two triangles each. We let b be the convex angle (vertex) covered by P--it is incident to
both t and t_1--and we let d be the. other vertex common to t and t_1. Furthermore,
c is the third vertex of ti-1 and a is the third vertex of ti (see Fig. 1 right). Symmetri-
cally, define vertices b’, d’, c’, a’ of Q. We say that P (respectively, Q) is type 1 if the last
(respectively, first) two triangles of P (respectively, Q) are the only ones incident to b

532 HERBERT EDELSBRUNNER AND TIOW SENG TAN

(respectively, b’), and we say that it is type 2 otherwise (see Fig. 2). If P is type 1, then
a, b, c belong to the same chain and d belongs to the other chain (this includes the case
that c p), and if P is type 2, then a, b belong to one chain and c, d belong to the other.

b d’

C a

P q

type 1 type 2

Fro. 2. The definitions prefix P with vertices a, b, c, d and the sufftx Q with vertices a’, b’, c’, d’ depend on
pq. P is type 1, and Q is type 2. For illustration purposes the constraint that all vertices must lie outside the lune of
pq has been ignored.

FACT 1. P tl, t2,. ti and Q tj, tj+x,..., tk share at most two triangles, that
is, i-l<_j.

Proof. We show that since the suffix R t_, t,..., tk covers at least one convex
anl other than q, Q cannot be bier than R. If P is type 1, then R covers b, which
is convex. Otherwise, R covers all angles between d and q, d included. Since all anles
between p and d, p and d excluded, are nonconvex, at least one anl between d and q
must be convex, and this angle is covered by R.

It should be clear that abcd and a’b’c’d’ are both convex quadrilaterals by the choice
of their vertices. The next two facts imply that either abcd or a’b’c’d’ or both have alter-
nate triangulations that use ac or a’c’ while the maximum edge length of t(S) is main-
tained. In other words, bd, or b’, or both can be switched. Formally, we call bd (re-
spectively, b’d’) switchable if ac (respectively, a’c’) is no longer than the longest edge of
t(S). Fact 2 shows strong locality constraints for a and d (respectively, a’ and d’) if bd
(respectively, b’d’) is not switchable. Define

A {x e =" Ipl > Ipql and Ixp[> Iql} and

D {x e " Ipl IPql and Iql < Ipql},

with the understanding that A and a belong to one half-plane defined by the line passing
through p and q and that D and d belong to the other (see Fig. 3).

FACT 2. If bd is not switchable then a E A and d D.
Proof. Since bd is not switchable, ac must be longer than the other five edges defined

by a, b, c, d, and by the Length Lemma it must be longer than pq. We first show that
lacl < lap[and then derive the four inequalities needed to establish the claim.

(1) lacl <_ Ipl. We can assume that c # p. Note that c is contained in the closure of
triangle bdp. Since the line passing through b and d separates a from p, the closures of
the two triangles abp and adp cover bdp completely, and therefore one of them contains

MINMAX LENGTH TRIANGULATION 533

FIG. 3. Regions A and D as definedfor the case in which a is on the upper chain.

c. If c lies in the closure of abp, the claim follows from labl < lacl and the A-Lemma for
abp, and if c lies in adp, it follows from ladl < lacl and the A-Lemma for adp.

(2) lapl > Ipql. From the Length Lemma we get IPq[< lacl, and from (1) we get
lacl <_ lapl.

(3) Idql < IPql. Assume Idql > IPql. The -Lemma for paqd implies ladl > lapl and
thus ladl > lacl because of (1), a contradiction.

(4) Idpl >_ Ipql. This is immediate from (3) because pq is an edge of rng(S).
(5) lapl > laql. Assume lapl <_ laql, and recall Idpl > Ipql from (4). By the t:l-Lemma

for paqd we get ladl > laql, which implies ladl > lapl by assumption and ladl > lacl by
(1), a contradiction.

The proof of Fact 2 is now complete because (2) and (5) are equivalent to a E A and
because (3) and (4) are equivalent to d E D. U

Symmetrically, we define regions A’ and D’, which are where a’ and d’ must lie if
b’d’ is not switchable. Using Facts 1 and 2, we can now show that there is always an edge
that can be switched.

FACT 3. It is notpossible that both bd and b’d’ are nonswitchable.
Proof. If bd and b’d’ are both nonswitchable, then ad lies on q’s side of the bisector

ofpq and a’d’ lies on p’s side by Fact 2. Because of Fact 1 and because ad is the last edge
of P and a’d’ is the first edge of Q, we have {a, d, a’, d’} {a, b, c, d} {a’, b’, c’, d’}.
Furthermore, the fact that bd and b’d’ are both edges of t(S) implies that they are the
same and thus that b d’, d b’, a c’, c a’ (see Fig. 4). It follows that the
polygonal region has the shape of a diamond, with p, b, q, d as the only convex angles.
This contradicts the locality constraints for a, b, c, d stated in Fact 2. In particular, the
chain from p to d D (as indicated by the dotted chain in Fig. 4) is concave or straight
and therefore enclosed by the circle (q, IPql). It follows that this chain is disjoint from
A’, which is where c a’, the predecessor of d in this chain, is supposed to lie. [-1

With the above results and notations we now choose an extremal counterexample
to prove the main result of this section.

SUBGRAPH THEOREM. Every finite point set S in has a minmax length tangula-
tion mlt(S) so that rng(S) c_ mlt(S).

534 HERBERT EDELSBRUNNER AND TIOW SENG TAN

q

FIG. 4. Ifbd and b’d’ are both nonswitchable, then b and d are the only convex angles besides p and q.

Proof. We assume there is a set S so that no minmax length triangulation contains
rng(S). Let t(S) be a minmax length triangulation of S that satisfies the following ex-
tremal properties, where later properties are contingent on earlier ones.

(i) t(S) minimizes the number of edges that intersect pq.
(ii) t(S) minimizes the number of edges incident to b that intersect pq.
(iii) t(S) minimizes the number of edges incident to b’ that intersect pq.

It is conceivable that t(S) is not unique, but it will be sufficient to assume that t(S) is any
one of the remaining triangulations.

By Fact 3 either bd or b’d’, or both are switchable. If bd is switchable and P is type 1,
then the number of edges that intersect pq decreases when bd is switched. This contra-
dicts property (i). Thus P must be type 2 if bd is switchable, and, similarly, Q must be type
2 if b’d’ is switchable. When we switch bd, the degree of b decreases, which contradicts
property (ii). Thus it must be that bd is not switchable and that b’d’ is. But switching b’d’
decreases the degree of b’, which would contradict property (iii) unless the degree of b
increases at the same time. Remember that because (iii) is contingent on (ii), so if (ii) is
not satisfied any more, then we cannot draw any conclusion. Thus the configuration left
for analysis is as shown in Fig. 5.

//

-...[. ,td=d,

FIG. 5. In the final configuration, because bd is nonswitchable, a E A and d D, and because btd’ is
switchable, so Q is type 2. Furthermore, because switching Ud to a c increases the degree of b, so a b, and
therefore P and Q overlap in exactly one triangle. The figure ignores the fact that by rights all points should lie
outside the lune ofpq.

To reach the final contradiction we switch b’d’ and redefine Q on the basis of the
new configuration. Since all angles from (the old) d’ to q are nonconvex, the new points
b’ and a’ are the same as before and the new d’ is the old c’. Thus we can again switch

MINMAX LENGTH TRIANGULATION 535

b’d’, and so on, until Q is type 1 or c’ q, at which point the next switch decreases the
number of edges intersecting pq. This finally contradicts property (i).

Remari A natural extension of minimizing the length of the longest edge in a tri-
angulation is to also minimize the length of the second-longest edge, and so on. Let
mvt(S) be a triangulation that minimizes the entire vector of edge lengths in this fash-
ion. If the points of S are in general position, then tort(S) is unique. Curiously, it is not
always true that (there is an) mv(S) (that) contains rng(S) as a subgraph. The smallest
example that illustrates this observation consists of four points a, b, c, d so that c and d
lie fairly close to b, ab and cd intersect, and c and d both lie outside the circle (a, labl).

5. Triangulating rng-polygons. The goal of this section and 6 is to improve the
cubic-time algorithm of 3 to quadratic time. This is done by using a specialized polygon
triangulation algorithm. The main part of the algorithm and the structural properties of
minmax length triangulations that guarantee its correctness are developed in this section.

Recall that the first two steps of the algorithm in 3 decompose the convex hull of
S into polygonal regions by drawing all edges of ch(S) and me(S); these steps remain
unaltered. Each region is represented by a cyclic chain of directed edges that trace its
boundary in a counterclockwise order around the region. Because rng(S) is a connected
graph that spans S, any polygonal region is bounded by at most one edge not in rn(S);
this edge is in ch(S) rng(S). We call a polygonal region a complete rag-polygon if all
its edges belong to me(S), and we call it an incomplete rag-polygon otherwise.

Obviously, me-polygons are not as general as arbitrary polygonal regions because
for each edge ab, except possibly for one, the lune of ab, ’ab {Z E
< lab }, is free of points of S. We call pq a diagonal of a polygonal region if it lies entirely
in the region. For each diagonal pq of an rng-polygon it must be that A,q contains at least
one point of S. We further distinguish between the cases for which Apq contains points
of S on both sides of pq and those for which it does not.

For a directed edge q let hq be the set of points to the left of or on the directed
line that passes through p and q in this order. Define the half-lune ofq as

V]q Apq CI hq.

By definition, q q, andwe have pq rng(S) if and only ifr/S r]@S
0. We call pq a 2-edge if both half-luncs contain points of S, and we call it a 1-edge if only
one half-lun contains points of S. For a 1-d pq we say that the side where the half-
lun contains points of S is beyond pq and that the other side is beneath pq. Note, for
example, that if pq is a 1-d boundin an incomplete rng-polygon R, then pq
and therefore R is beyond pq. We will s lat that 1-ds arc useful in trianulatin
rng-polyons.

The first lcmma of this section shows that when we triangulate an rng-polygon R,
whether complete o incomplete, we can inor all points outside R. More specifically,
it shows that the type of any diaonal ord ofR remains unchanged when we
all points of S that a not vertices of R.

REDUCTION LEMMA. Let pq be a diagonal or edge ofan rng-polygon TL If rlr con-
tainspoints of S, then it also contains vertices of TL

Proof. If we assume r/ contains points of S but no vertices of R, then it must in-
tersect edges of R without containing their endpoints. Let yy’ be the edge closest to
p and q, and let x be a point in r/p f S. Since x is not a vertex of R, it must lie on
the other side of yy’ as seen from p and q. So yy’ rng(S) ch(S), and therefore
max{Izl, Iz’l} _> Iy’l. Assume without loss of generality that Izyl _> lyy’l. If y’ lies

536 HERBERT EDELSBRUNNER AND TIOW SENG TAN

outside or on the circle (p, IPql), we consider the convex quadrilateral pyxy’. Otherwise,
y’ lies outside or on (q, IPq]), in which case we consider the convex quadrilateral qyxy’.
But now we have Ixyl >_ lyy’l and either Ip’l > Ipxl or Iqy’l > Iqxl, a contradiction to
the -Lemma in both cases. [3

Using the Reduction Lemma, we now address vertices visible from both endpoints
of an edge. We need some notation. TWo points z, inside or on the boundary of a
polygonal region are visible from each other if my is contained in the region. The distance
of a point z to an edge pq is defined as the infimum, over all points z E pq, of Izzl. If
IPq] > max{lpx], Iqzl}, then this distance is referred to as the height of the triangle pqz.

VISIBILITY LEMMA. Let pq be a diagonal or edge ofan rng-polygon R, and let z be a
vertex ofR that lies in and minimizes the distancefrom pq. Then z is visiblefrom p and
alsofrom q.

Proof. Consider the triangle pqz, let z’ pq be the point with minimum distance
from z, and assume without loss of generality that z is not visible from q.. Let ’ be an
edge of R that intersects qz. The proof of the Reduction Lemma implies that at least
one endpoint of yy’ lies in, say, y E r/.. In addition, and y’ lie outside the triangle
pqz because z is closest to pq (see Fig. 6). Hence ’ intersects zp, zq, and all edges

FIG. 6. Quadrilateral xyxy is convex because x pq and y, y . pqx.

xz with z pq. Thus xyx’y’ is a convex quadrilateral, and because of lyx’l >_ Ixx’l by
the choice of x, we have ly ’l > I ’zl from the t2-Lemma. By symmetry, if y’ lies in
Opt, we have > Ixyl, which implies yy’ t[rng(S). This is a contradiction because
yy’

_
ch(S). Thus y’ must lie outside r/. If y’ lies outside or on the circle (p, Ipql), then

Ipy’[> Ipzl and therefore Izyl < lyy’l by the ra-Lemma for py’xy. Symmetrically, we
get Ixyl < lyy’l from the ra-Lemma for qy’xy if y’ lies outside or on the circle (q, IPql).
Together with Izy’l < ly’l this contradicts yy’ rng(S). [

We need one more elementary lemma.
CONTAINMENT LEMMA. Ifz rl, then rlp c_ Apq.
Proof. Take a point z -p and consider the four points p, q, z, z. If z pq, there is

nothing to prove. Otherwise, pzqz or pqzz is a convex quadrilateral (possibly with three
of the four vertices collinear) or z pqz. In each case Iqzl < IPql can be shown by using
the r-Lemma or the A-Lemma. This implies that z pq.

The following lemma is of fundamental importance to the quadratic-time triangu-
lation algorithm.

1-EDGE LEMMA. Let pq be a 1-edge ofan rng-polygon R, and let x be a vertex ofR
that lies in r and minimizes the distance from pq. Then px is either an edge of R or a
1-edge with pqx beneath px, and the same is truefor qx.

MINMAX LENGTH TRIANGULATION 537

Proof. We have x c_ Apq by the Containment Lemma. The part of r/x in O(p
contains no point of S because Oq- fq S 0 by assumption. Also, the part of r/ in
contains no point of S because a point V E r/p tq 0p would be closer to pq than z is,
as can be shown using the rn-Lemma for pz’vz (see Fig. 7). So pz is an edge of R if

contains no point of S either, and it is a 1-edge with triangle pqz on its beneath side
otherwise. The argument for qz is symmetric. [:]

X

FIG. 7. Vertex x is visiblefrom p andfrom q, so pqx is empty. Itfollows that ify l,.’p q then pqyx is a
convex quadrilateral.

5.1. Incomplete rng-polygons. The above lemmas are sufficient for efficiently tri-
angulating an incomplete rng-polygon. As defined earlier, all edges of an incomplete
rng-polygon R are rng-edges, except for one 1-edge, pq ch(S) rng(S), which has R
on its beyond side. The algorithm below can triangulate more general incomplete rng-
polygons, that is, it is not necessary that pq ch(S), but it must be that pq is a 1-edge
and R lies beyond pq.

Input. An incomplete rng-polygon R that lies beyond its 1-edge pq.

Output. A minmax length triangulation of R.

Algorithm. 1. Find a vertex x in Apq that minimizes the distance from pq.
2. Draw edges px and qx. This decomposes R into the triangle pqx

and two possibly empty incomplete rng-polygons R1 and Re.
3. Recursively triangulate R1 and

The correctness of this algorithm follows from the 1-Edge Lemma. Indeed, it implies
that if R1 is nonempty, then it lies beyond px, which is the only 1-edge of R. Similarly,
Re lies beyond its 1-edge qx, provided that Re is nonempty. Thus the input invariant is
maintained all the way through the recursion. This implies that the algorithm success-
fully triangulates. By the choice of point x, the edges px and qx are both shorter than
pq. It follows that the diagonals are monotonically decreasing in length down a single
branch of the recursion, and therefore all diagonals constructed by the algorithm are
shorter than pq. A straightforward implementation of the algorithm takes time that is
quadratic in the number of vertices of R.

Remark. Instead of choosing a vertex x that minimizes the distance to pq, step 1
of the algorithm could also choose other vertices as long as they are visible from p and

538 HERBERT EDELSBRUNNERAND TIOW SENG TAN

q and lie in their lune. An interesting choice among these vertices is the vertex y that
minimizes max(lp], Iql}- As long as is unique, which is the nondegenerate case, this
choice leads to a triangulation of the polygon R that lexicographically minimizes the
sorted vector of edge lengths. Another possible choice is the vertex z that minimizes
Izpl / Izql. This vertex is automatically visible from p and from q and might be useful
in actual implementations because it is often considerably less expensive to compute the
distance between two points than between a point and a line segment.

5.2. Lemma on polygon retriangulation. This subsection presents a technical lemma
on retriangulating a polygonal region. It will find application in 5.3 and 6 and is also of
independent interest. In order to conveniently distinguish between boundary and non-
boundary edges of a triangulation, we call a nonboundary edge a diagonal. Let X be a
polygonal region, let t(X) be a triangulation of X, and let zz’ be a diagonal of X that
is not in t(X). We say that zz’ generates t(X) if it intersects every diagonal of t(X).
We give an algorithmic description of a particular triangulation of X, called thefan-out
triangulation fx (X) with (fan-out) center z. The triangulation is illustrated in Fig. 8.

1. Connect z to all vertices ofX that are visible from z. Call these vertices and also
the two vertices connected to :r by edges of X neighbors of z.

2. Two neighbors of z are said to be adjacent if they are consecutive in the angular
order around z. Connect any two adjacent neighbors z, v of z unless zv is an edge of X.

3. Every edge ztv created in step 2 decomposes X into two parts, and the part that
does not contain z is called the pocket Xv of zw. Assume that u is the endpoint of uv
so that the other incident edge of the pocket zw is partially visible from z. Recursively
construct the fan-out triangulation of X,, with center v.

FIG. 8. Polygonal region X is triangulated byfanning outfrom x, connecting adjacent neighbors of x, and
recursing in the thus createdpockets. The illustration ofthisprocess is schematic and ignores some ofthe inherent
shape constraintsfor X.

We introduce some terminology. Among the diagonals of fx(X) we distinguish be-
tweenfan-out edges constructed in step 1 and cut-off edges constructed in step 2 of the
above algorithm. Each call of the algorithm triangulates part of a pocket and recurses
in each component (pocket) of the remainder. We call a pocket V a child of another
pocket Z if V c Z and V is maximal. The original polygonal region X is also called a
pocket and forms the root of the tree defined by the child relation. This tree is exactly
the recursion tree of the algorithm. Each pocket Z is associated with a fan-out center z.
The maximum distance between z and any other vertex of Z is called the width of Z.

MINMAX LENGTH TRIANGULATION 539

The lengths of the diagonals of f(X) are constrained by the length of the longest
edge of X, the length of the longest diagonal of t(X), and the width of X. More specif-
ically, we prove the following result.

FAN-OUT LEMMA. Let X be a polygonal region, with 61 the length ofits longest edge,
let t(X) be a triangulation ofX, with 6 the length of its longest diagonal, let zc’ be a gen-
erator of t(X), and let 6a exceed the maximum distance of from any vertex of X. Then
Ibl < max{,, a}for every diagonal ab of fz(X).

Proof. Note that the assertion follows if we prove that max{6,6z,6a} exceeds the
width of every pocket Z created during the algorithm. To see this notice that the width
of Z is an upper bound on the length of any fan-out edge emanating from the center
of Z. Each cut-off edge zw that creates a child pocket V of Z is incident to the fan-out
center of V, which implies that the width of V is an upper bound on its length.

The proof of the upper bound on the widths of all pockets proceeds inductively from
the top to the bottom of the tree. The width ofX is less than 6a by assumption, and it is
therefore also less than max{6, 6, 6a}. For the inductive step consider a pocket Z and
a child V of Z. We show that the bound on the width of Z is inherited by V, with some
environmental influence from X and t(X). Let z be the fan-out center of Z, let 6 be the
width of Z, let v be the fan-out center of V, let zv be the cut-off edge that creates V, and
let w be the other vertex of V adjacent to

First, we prove Ivl < max{6, 6}. By the definition of a fan-out center, v lies in-
side the triangle uwz. The A-Lemma thus implies that Ivl < max{lwl, Izl}, and
we obtain the claimed inequality because I ,wl _< 61 and [uz[< 6. Second, we show
that max{6z, 6} exceeds the maximum distance between v and any vertex of V other
than u. Let # v, z be such a vertex, and let ’ be a diagonal of t(X) that inter-
sects zz. Such a diagonal exists because zz’ generates t(X). It follows that ’ inter-
sects uv and that therefore v lies inside the triangle /’z. Using the A-Lemma we get
[yvl < max{lyy’l, [yzl} _< max{62, 6} because lyy’l -< 2 and lyzl <_ . The two bounds
together imply that the width of V is less than max{6x, 6z, 6}, and induction shows that
it is less than max{6, 6, 6a }.

In 6 we will need a result as given in the Fan-Out Lemma but restricted to the
fan-out triangulation on one side of the generator. More specifically, we will need the
following corollary whose proof is almost the same as the one of the Fan-Out Lemma.

FAN-OUT COROLLARY. Suppose that W is apolygonal region, t(W) is a triangulation
of W, xx’ is a generator of t(W), and X is the part ofW on one side of xx’. Let 1 be the
length ofthe longest edge of X, let 2 be the length ofthe longest diagonal oft(W), and let
63 exceed the maximum distance of x from any vertex of X. Then labl < max{6, 62, 63}
for every diagonal ab of f,(X).

Remark. The Fan-Out Lemma can also be formulated without the assumption of
an initial triangulation. The condition on the diagonal xx’ is now that each vertex of X
must be visible from some point of xx’. The parameter 6z needs to be redefined as the
maximum, over all vertices y of X, of the infimum, over all points a of xx’ visible from
y, of the distance between y and a.

5.3. Complete rng-polygons. It will be convenient to assume that no two diagonals
and edges of the rng-polygon R are equally long. With this assumption we can show that
every triangulation of R, and therefore also every minmax length triangulation, contains
a 2-edge. To see this take the longest edge pq of a triangulation. It is not an edge of
R because the third vertex of the incident triangle lies in its lune)pq. It is therefore a
diagonal with incident triangles pqr and pqs, and we have r, s pq by maximality ofpq.
Since r and s lie on different sides of pq it follows that pq is a 2-edge.

540 HERBERT EDELSBRUNNER AND TIOW SENG TAN

We prove below that there is a minmax length triangulation mlt(R) of R that con-
tains only one 2-edge pq. By the argument above pq is the longest edge of mlt(R). We
call pq expandable if there are vertices r and s in Apq, on different sides of pq and both
visible from p and q, so that E {pr, qr, ps, qs} is a set of rng- and 1-edges and the
quadrilateral prqs lies beneath the 1-edges in E. It should be clear that once we draw
an expandable 2-edge, we can complete the triangulation by using the algorithm for in-
complete rng-polygons (5.1). The resulting triangulation uses no 2-edge other than pq,
which is thus the longest edge of the triangulation.

We first present the algorithm, and then we prove its correctness by showing that
every complete rng-polygon R has a minmax length triangulation that contains an ex-
pandable 2-edge. This, however, assumes that no two diagonals or edges of R have
equal length. If this nondegeneracy constraint is not satisfied it is necessary to run the
algorithm with a simulation of nondegeneracy; see [EdMii90]. The side effects of this
simulation and how they can be undone will be discussed in 5.4.
Input. A complete rng-polygon R.

Output. A minmax length triangulation of R.

Algorithm. 1. Find the shortest expandable 2-edge pq, together with
corresponding rng- and 1-edges pr, qr, ps, qs.

2. Triangulate the incomplete rng-polygons defined by pr, qr, ps, qs.

As mentioned in 5.1, step 2 takes time that is only quadratic in the number ofvertices of
R. In 6 we will see how step 1 can be implemented so that it runs in quadratic time too.
We now formulate and prove the lemma that implies the correctness of the algorithm.

2-EDGE LEMMA. Let R be a complete rng-polygon with no two diagonals or edges of
the same length. Then there exists a minmax length triangulation mlt(R) ofR that contains
an expandable 2-edge.

Proof We assume that there is no minmax length triangulation of R that contains
an expandable 2-edge. A contradiction to this assumption will be derived by using a
minmax length triangulation t(R) that is defined as follows. Let pq be the longest edge
of t(R), and let pqr and pqs be the incident triangles. By the nondegeneracy assumption
pq is the longest edge of every minmax length triangulation of R. Choose t(R) so that
the sum of heights of pqr and pqs (that is, the distance of r from pq plus the distance
of s from pq) is a minimum. We will prove below that pq is expandable and that r and
s are witnesses thereof, that is, that the quadrilateral prqs lies beneath every 1-edge in
E {pr, qr, ps, qs}.

Case 1. Assume that prqs lies beyond at least one 1-edge in E, say, beyond pr. Then
we can retriangulate R on this side of pr by using the algorithm for incomplete rng-
polygons. This algorithm removes edge pq, among others, and all new edges are shorter
than pr, which itself is shorter than pq. This contradicts the assumption that t(R) is a
minmax length triangulation.

Case 2. Assume that one of the edges of E, say, pr, is a 2-edge, and assume without
loss of generality that r . Thus there is a nonempty set of vertices z of R contained
in the half-lune y. By the Containment Lemma these vertices z lie in Apq, and by the
Visibility Lemma a nonempty subset S’ of the z are visible from both p and r.

If a vertex z is in S’, then either pz rq or rz fq pq ; see Fig. 9. Let S be
the subset of vertices z of the first kind, and let S’ be the subset of vertices of the second
kind. If S 0, choose z S so that the number of edges of t(R) that intersect pz,

MINMAX LENGTH TRIANGULATION 541

is a minimum. Next, remove all edges from t(R) that intersect pz, and denote by X the
polygonal region thus generated. If, on the other hand, S 0, then choose z S’ 0
so that the number of edges in t(R) that intersect rz is a minimum, again remove all
edges from t(R) that intersect rz, and denote the resulting polygonal region by X. For
convenient reference we set z’ p in the first case and z’ r in the second. In either
case we construct a retriangulation f(X) of X by fanning out from z, as described in
5.2.

q

FIG. 9. Points z lie in the interiorofrlr?b -pqr, which consists ofone ortwo connected components, depending
on whether or not the angle at r in triangle pqr is nonacute.

We will show below that the new triangulation of R has properties that contradict
the assumptions of case 2. Most important, the Fan-Out Lemma of 5.2, together with
a few claims that we are about to prove, imply that the edges of f(X) do not exceed pq
in length.

CLAIM 1. Exceptfor x, all vertices ofX lie outside the half-lune rlrp.

ProofofClaim 1. Let yxy2, y3y4,..., y,-xy, be the edges, sorted from x’ to x, that
are removed from t(R) when X is constructed. Suppose that the claim is not true. Then
there is a smallest index j, 3 < j < m 1, so that one endpoint of yjyj+x, say, yj+x, is
in r/-v. Consider the polygonal region X of t(R) that is created by removing the edges
yy, yay4,..., y-y- from t(R). Since y+ is the only vertex of X that lies in
it is visible from p and from r, inside X. But this means that y+x’ intersects fewer
edges of t(R) than does xx’. This contradicts the choice of x and completes the proof of
Claim 1.

CLAIM 2. For each vertex y ofX we have Ixyl < [Pql.
ProofofClaim 2. Clearly, both px and rx are shorter than pq. So let y be any vertex

different from p, r, x, and let yy’ be an edge of t(R) that intersects x’x. Because of
Claim 1, x is visible within X from p and also from r, so pyxy’ and ryxy’ are convex
quadrilaterals. Since y’ lies outside p it cannot lie inside both of the circles (p, Iprl)
and (r, Iprl), If y’ lies inside (r, Iprl), then IPY’I > Ipxl which implies [YY’I > IxYl by the
tZ-Lemma for pyxy’. Otherwise, we have Iry’l > Irxl which implies lYY’I > Ixyl by the
[]-Lemma for ryxy’. This concludes the proof of Claim 2 because yy’ is an edge of t(R)
and is therefore no longer than pq.

Claim 2 and the Fan-Out Lemma imply that all diagonals of f(X) are shorter than
pq. In the case for which pq fq rx O we now have a contradiction because the retrian-
gulating process ofX eliminates pq and all edges of the resulting new triangulation ofR
are shorter than pq. In the case for which rq fpx 0 the new triangulation still includes
pq. We will show below that the height of the new triangle incident to pq is smaller than
the height of pqr and thus arrive at a contradiction.

542 HERBERT EDELSBRUNNER AND TIOW SENG TAN

So assume rq N pz q}; in this case pq is an edge of the boundary of X and p is
visible from z. If q is also visible from z, then the new triangle incident to pq is pqz with
height Izz’l, where z’ E pq minimizes the distance to z. Analogously, define r’ E pq that
minimizes the distance to r. Since Iprl > Ipxl, we have Irr’l > Ixr’l by the [:]-Lemma for
prxr’. Together with Izr’l > Ixx’l, this implies Irr’l > Izz’l. If q is not visible from x,
then pq belongs to the pocket Xuv defined by a cut-off edge uv. We have u p, w q,
and the center v of X,v lies inside pqx. So again, either pqv is a triangle, and its height
is less than that ofpqx and therefore that ofpqr, or q is not visible from v, in which case
the argument can be repeated. Eventually, we arrive at a triangle incident to pq whose
height is less than that ofpqr. gl

Remark. Recall that the assertion ofthe 2-Edge Lemma is made under the condition
that no two diagonals or edges of the complete rng-polygon R are equally long. Indeed,
the assertion is false without this condition. Take, for example, two equilateral triangles
abc and abd and move d slightly towards the common edge ab. For S {a, b, c, d} we
have that rng(S) {ac, cb, bd, da}, ab is a 1-edge, and cd is a 2-edge. So acbd is a
complete rng-polygon. There is only one minmax length triangulation of acbd, namely,
the one obtained by drawing the diagonal ab. But ab is not a 2-edge.

5.4. Undoing the simulated perturbation. For every finite point set S in 2 there
is an arbitrarily small perturbation S’ so that S’ satisfies convenient nondegeneracy as-
sumptions (see [EdMii90]). For a point p 6 S we denote its perturbed version by p’. In
the case of relative neighborhood graphs and minmax length triangulations this means
that no two pairs of points in S’ define the same distance. Because the perturbation is
arbitrarily small, the nondegenerate properties of S are maintained, that is, for four not
necessarily distinct points p, q, r, s S with IPql < Its[we have IP’q’l < r’8,[

Let us consider the effect of the perturbation on the computation of a minmax length
triangulation. Clearly, if ffq’ rng(S’), then pq rng(S), but not vice versa. The fact
that in the perturbed setting the relative neighborhood graph has potentially fewer edges
than in the unperturbed setting does not adversely influence the triangulation algorithm
since rng(S’) is still connected and spans S’. When the edges of ch(S’) are added and
the polygonal regions defined by ch(S’) t2 rng(S) are triangulated, it can happen that
triangles a’b,c are constructedwhose unperturbed counterparts abc are fiat, that is, a, b, c
are collinear. Although this is not a problem for the algorithm, it is somewhat distressing
when this triangulation is interpreted as a triangulation of S. The remainder of this
section shows how to remedy this deficiency.

Let t(S’) be a minmax length triangulation of S’, and consider its unperturbed ver-
sion t(S), that is, pq t(S) if and only if p’q’ t(S’). A longest edge of t(S) is no longer
than a longest edge of any minmax length triangulation mlt(S) of S since mlt(S’), the
perturbed version of mlt(S), is a valid triangulation of S’ and would otherwise contra-
dict that t(S’) is a minmax length triangulation of S’. The reverse is also true, namely,
that a longest edge of t(S) is no shorter than a longest edge of mlt(S). We show this by
converting t(S) into a minmax length triangulation of S.

Consider the dual graph t*(S’) of t(S’), and call a node a’b’c’ flat if a, b, c, are
collinear. Determine the connected components of the subgraph of t* (S’) induced by
the set of all flat nodes. Each component corresponds to a collection of collinear points
in S interconnected by flat triangles; see Fig. 10. Carry out the following steps for one
component at a time. Remove all edges of the flat triangles of the component, sort the
corresponding points along the supporting line, and add edges connecting points that
are adjacent in the sorted order. This produces regions bounded by more than three
edges, as shown in Fig. 10. All vertices of such a region are collinear, except for one

MINMAX LENGTH TRIANGULATION 543

vertex y that is connected to the first and last of the vertices z. Triangulate this region
by connecting y to all other vertices z. By the A-Lemma the newly introduced edges are
no longer than the longer of the two original edges incident to

FI6. 10. Thefivepoints in the middle ofthe left triangulation are theperturbed versions offive collinearpoints
in the right triangulation.

6. Finding the shortest expandable 2-edge. This section shows how the first step of
the algorithm for triangulating a complete rng-polygon R can be made to run in time
O(n), where n is the number of vertices of R. As in 5.3, we assume that no two diag-
onals or edges of R are equally long; so the shortest expandable 2-edge is unique. For
convenience we also assume that no three vertices of R are collinear.

Input. A complete rng-polygon R.

Output. The shortest expandable 2-edge of R.

Algorithm. 1. Determine the type of each diagonal pq of R.
2. For each 2-edge pq find vertices p’, p", q’, q" that minimize the

counterclockwise angles/p’pq, Zqpp", Zq’qp, Zpqq" contingent on
pp, pp", qq, qq" being -ng-edges or 1-edges with pq on their beneath
sides (see Fig. 11).

3. Return the shortest 2-edge pq for which pp’, qq’, pp", qq" are such
that p’ q" or pp N qq" and that p" q or pp" N qq .

FIG. 11. By the choice ofp the counterclockwise angle/ppq contains no 1-edge with pq on its beneath
side. Symmetric statements holdforp, q, and q.

Below we give the algorithmic details of the above steps.

544 HERBERT EDELSBRUNNER AND TIOW SENG TAN

Step 1. Classifying diagonals. For each vertex p of R we compute all incident diago-
nals pq and their angular order around p. Furthermore, we determine whether or not the
half-lune r/p contains any vertex of R. Recall that by the Visibility Lemma r/p contains
a vertex visible from p if it contains a vertex of R at all. We can thus base the decision of
whether or not r/ is empty of vertices solely on the vertices visible from p. As defined
earlier, pq is a 2-edge if both half-lunes of pq contain vertices of R. Otherwise, pq is a
1-edge and its beyond side is where the half-lune contains vertices of R. We now show
that the computation for p can be done in time O(n). It follows that O(n2) time suffices
for Step 1.

Computing the sorted sequence ofdiagonals ppl, pp2, PPm incident to p is a stan-
dard operation for simple polygons and can be done in time O(n); see, e.g., [E1Av81],
[JoSi87], [Lee83]. Letppo andpp,+l be the two edges ofR incident to p, and assume that
p0, p, p,..., p,,p,+ is in a counterclockwise order around p. To determine whether
there is a vertex of R in the half-lune rh,, for 1 < i < m, we scan the list po,p,... ,Pm+
once, from smallest index to largest. During the scanwe maintain a stack of diagonals ppL
whose half-lunes Op are not yet found to contain any vertex of R. Before pushing pp
onto the stack, we remove all diagonals ppL whose half-lunes contain p. Using a straight-
forward extension of the Containment Lemma, we can show that the order of processing
implies that the edges whose half-lunes containp lie on top of the ones whose half-lunes
do not contain p. Thus the former can be removed by simply repeatedly popping the
topmost diagonal. When the scan is complete, the stack contains exactly all diagonals
ppt whose half-lunes contain no vertex of R. Since a diagonal can be pushed and popped
only once each, the entire process takes constant time per diagonal.

Step 2. Finding rng- and 1-edges. For each vertex p we scan pp, pp,..., pp, in
this order. In the process we keep track of the most recent rng-edge or 1-edge pp whose
beneath side is in the direction of the scan. Initially, pp PP0. When a 2-edge pq is
encountered, then pp is the edge pp’ that belongs to pq. A symmetric scan is carried out
to find the edge pp" that belongs to pq. The total time for all vertices p of R is clearly
O(n).

Step 3. Returning the solution. Step 3 is computationally trivial. It takes time O(n2)
since constant time suffices to test whether or not pp, pp’, qq, qq" satisfy the conditions
of Step 3. However, it is not trivial to see that the edge pq returned in Step 3 is also the
shortest expandable 2-edge. First, note that the shortest expandable 2-edge is no shorter
than pq. This is because all 2-edges shorter than pq fail the test of Step 3. The following
straightforward topological lemma implies that these 2-edges are not expandable.

CROSSING LEMMA. Let v v2 Vn be the sequence ofvertices ofa simplepolygon,
and let vlv and VjVn be two diagonals. Then vv fq vjv ifand only ifj < i.

Proof. The edge vjv, decomposes the polygon into two disjoint polygons with ver-
tex sequences v, v2,..., vj, v, and vj, vj+,..., v,. If j < i, then neither of the two
polygons has v and v on its boundary. It follows that vlv crosses from one polygon
into the other, and because vv is a diagonal, this is only possible by crossing vjv,. To
prove the other direction we assume vv f vv, and observe that Vl and v belong
to different polygons because there is no way that vv can enter the second polygon and
leave it again. Thus j < i.

So it remains to show that the edge pq computed in Step 3 is indeed expandable.
EXPANDABILITY LEMMA. The shortest 2-edge pq ofR that satisfies the conditions of

Step 3 is also expandable.
Proof. We show below that R can be triangulated on both sides of pq by using only

edges shorter than pq. If we now assume that pq is not expandable, we get a contradic-

MINMAX LENGTH TRIANGULATION 545

tion to the 2-Edge Lemma because pq is the longest edge of the triangulation and all
expandable 2-edges are longer than pq.

We describe how to triangulate the part of R to the right of pq; the other part is
symmetric.

Case 1. p’ q". Assume that Iqq"l > IPP’I. Then Iqq"l < IPql, for otherwise
p T]qiTq and qq" would be neither an rng-edge nor a 1-edge with pq on its beneath side.
Ifwe apply the triangulation algorithm for incomplete rng-polygons (5.1), once for pp’
and once for qq", we obtain a triangulation with the desired properties.

Case 2. pp’ f3 qq" :/: . In this case pp’ and qq" are 1-edges. Because pp’ and qq"
intersect, it must be that p’ is closer to q than top or that q" is closer top than to q. Assume
without loss of generality that Iq"Pl < Iq"ql. As in Case 1, we also have Iq"ql < IPql, but
note that we do not necessarily have Ipp’l < Ipql.

We now describe the triangulation process. It takes three steps, illustrated in Figs.
12 and 13.

1. Construct the triangulation tqa,, of R beyond qq" by using the algorithm for in-
complete rng-polygons (see Fig. 12).

2. Find the subset V of vertices of R that lie inside the triangle pqq", and compute
the convex hull C of V t3 {p, q"}. Add the edges of C that are diagonals of R to the
triangulation, and connect q to all vertices of C’ (see Fig. 12).

3. Step 2 creates untriangulated pockets Y,, one for each edge uv of C’ that is a
diagonal of R. Assume that zt precedes v on the clockwise path from p to q" on the
boundary of C. The pocket Y,, is triangulated as follows.

3.1 Set zt: "= v if zv is a 1-edge and pq lies on the beneath side of ztv. Otherwise,
find a vertex uz so that Itztz[< [pq[, ztztz is a 1-edge, pq lies beneath ztzt/, and zztz
does not intersect C’. (The existence of such a vertex u: will be established shortly.)

3.2 Construct the triangulation t,,,, of R beyond ztztz, again using the algorithm
for incomplete vng-polygons, but retain only the triangles that lie completely
inside the pocket Y,. Let X= denote the untriangulated part of Y,.

3.3 Construct the fan-out triangulation f(X,).

P q

FIG. 12. The shadedportion represents the triangulation beyond qq’ itformspart ofthefinal triangulation.

The remainder of the proof establishes that all diagonals of the thus constructed
triangulation are shorter than pq. This is indeed obvious for tqq,, as constructed in step
1. We now prove an easy extension of the A-Lemma that implies that all edges created
in step 2 are shorter than pq.

546 HERBERT EDELSBRUNNERAND TIOW SENG TAN

FIG. 13. The shadedportion ofthepocket Yuv represents thepart ofthe triangulation tuu beyond UUL that
is retainedfor thefinal triangulation. The remainingportion is triangulated byfanning outfrom v.

CLAIM 1. Let abc be a mangle, and let d, e be two points inside aba Then de <
max(labl, lacl, Ibcl}.

Proofof Claim 1. Assume without loss of generality that e lies inside abd. The A-
Lemma for abd implies that Idel < max(ladl, Ibdl}, and the same lemma for abc implies
that max{ladl, Ibdl} < max{labl, lacl, Ibcl}. This completes the proof of Claim 1.

If UUL uv, then lUULI < IPql which implies that all edges of t==, as constructed
in step 3.2, are shorter than pq. In this case the proof is complete since X,. and
no edges are added to Y,. in step 3.3. For the remainder of the proof we thus assume
that UL # v, which is the case only if r/- contains at least one vertex of R. We show that
a vertex UL satisfying the conditions of step 3.1 indeed exists, and that all edges of the
fan-out triangulation f. (X=) are shorter than pq. Assume that the sequence of vertices
of the part of R beyond pp’ is p ul, u2,..., q" UK,..., Um p’ (see Fig. 13).

CLAIM 2. There exists a 1-edge UUL that satisfies the conditions ofstep 3.1.
Proofof Claim 2. Construct a triangulation tvv, of R beyond pp’ by using the algo-

rithm for incomplete rng-polygons. This triangulation contains at least one edge uut
disjoint from C. The main invariant of the algorithm (described in 5.1) implies that
uu is a 1-edge and that pq lies on its beneath side. If luutl < Ipql, then u satisfies the
conditions for UL and we are done.

So assume that luutl > IPql. As we showed for the Containment Lemma, we can
show that the part of r/-. to the left of ut is contained in rh,, and thus contains no
vertex of R. It follows that the vertices in r/ must be among UK+, UK+,..., U_.
By the Visibility Lemma at least one of these vertices is visible from u. Let U be the
subset of vertices that are visible from u (including the ones outside r/v), and let UL E U
minimize the distance to u. We have luuLI < luvl < luu l and, as above, the part of rh,a,.
to the left of utt is contained in rh,. Therefore, this part contains no vertex of R. The
part of y,a,, to the right of ut contains no vertex of R by the choice of UL. It follows
that UUL is a diagonal that satisfies the conditions of step 3.1, which completes the proof
of Claim 2.

We now show two easy facts about t=,,, before examining the edges constructed by
step 3.3.

CLAIM 3. Ifuiujuk, with < j < k, is a triangle oftu=L then uuk is its longest edge.
ProofofClaim 3. The first triangle constructed is uIUtUL, for some I < < L, and

its longest edge is UlUL because ut E)u=L. The general assertion follows by induction,
which completes the proof of Claim 3.

MINMAX LENGTH TRIANGULATION 547

CLAIM 4. The edges of tu,,,, that intersect uv, sorted from u to v, are monotonically
decreasing in length.

ProofofClaim 4. If uiujuk, with i < j < k, intersects uv, u uz and v us, then
eitherl<i<j =i+l < J< korI<i< J<j < k(seeFig. 13). In both cases
uuk intersects uv closer to u than the other intersecting edge, uju or uu. By Claim
3, uu is longer than both, which implies the assertion.

Note that if we delete edges from t,,,, that intersect uv, then we get a polygonal
region, say, W, of which X, is the part on one side of uv. We can thus interpret uv
as a generator of t,,,,, restricted to W,v. Since the edges of Xv and t,,,, are shorter
than IPql, we need to show only that all vertices ofX are closer to v than Ipql, and
the rest follows from the Fan-Out Corollary. Indeed, we prove a stronger bound on the
maximum distance from v to a vertex of X,.

CLAIM 5. For each vertex x ofXu we have that Ivzl _< Ivl.
Proofof Claim 5. Consider the vertices of X,,, in turn from u uz to v us, and

assume inductively that Iw, <_ Iwl for all I < i < j. Consider no and the triangle
Uj-lUjUk in tUUL. By Claim 4, we have that luj_xul > lujul. If Uj_lUjVUk is a convex
quadrilateral, then the -Lemma implies that Ivuj_ll > Ivujl, as desired. Otherwise,
u is contained in vuku_ and therefore also in vuuj_1. The A-Lemma implies Ivul <
max{Ivul, Ivuj_l}, which completes the proof of Claim 5.

This also completes the proof of the lemma, tq

The following theorem summarizes the algorithmic implications of all of this.
MINMAX LENGTH THEOREM. A minmax length triangulation ofa set of n points in

.u can be constructed in time O(nU).
The algorithm that constructs a minmax length triangulation in the claimed amount

of time is a combination of the algorithms given in 3, 5.1, 5.3, and 6. Its correctness
has been demonstrated in 4, 5.3, and 6.

7. Arbitrary normed metrics. An open convex region D c_ that is symmetric
with respect to the origin can be used to impose a norm on" for a point z define

IlXll [IXllD C if x lies on the boundary of c,D {cy E u y E D}. The norm
can then be used to impose a (normed) metric on u: for two points z, y u define

Iz l Iz lD ZlID. D is the unit disk of the metric and the boundary of D is its
unit circle. Notice that the three requirements for a metric are indeed satisfied. First,
labl 0 if and only if a b because Ilzll 0 if and only if z is the origin. Second,
labl Ibal because D is centrally symmetric and therefore Ilzll II- z[I. Third, the
triangle inequality lacl <_ labl / Ibc[follows from the convexity ofD. Examples ofnormed
metrics are the/p-metrics, for 1 < p < o, and the so-called A-metric discussed in
[WWW85] for its applications to VLSI.

In this section we assume that the triangle inequality is strict unless a, b, c lie on a line
in this order. This is the case if and only if the defining convex region D is strictly convex,
that is, no line intersects the boundary of D in more than two points. This assumption
is convenient and, in fact, without loss of generality since every convex but not strictly
convex region D’ can be approximated arbitrarily closely by a strictly convex region D.
Computationally, this approximation can be simulated by defining

IIxlID IlxllD’ + llxll ,

where Ilxll is the Euclidean or/u-norm and e is an arbitrarily small but positive real
number. Clearly, if e is sufficiently small then a minmax length triangulation under D is
also a minmax length triangulation under D’.

548 HERBERT EDELSBRUNNER AND TIOW SENG TAN

In the remainder of this section we point out where the developments in 2-6 need
to be adjusted when the Euclidean metric is replaced by an arbitrary normed metric.
Most important, the graphs defined in 2 can be extended in a natural way. More specif-
ically, the definition of ch(S) remains unchanged since it makes no reference to any
distance notion. If we now stipulate that "circle" means a homothetic copy of the unit
circle as defined above and "lab]" means the distance under the normed metric defined
by D, then the definitions of mlt(S), dr(S), rng/(S), and mat(S) can be taken verbatim.
The minimum spanning tree mat(S) is connected and spans S, and the Delaunay trian-
gulation dt(S) is plane because any two circles intersect in at most two points. Since we
still have mat(S) c_ rng(S) c_ dr(S), we conclude that all three graphs are connected
and plane and that they span S. We remark that these three graphs are not necessarily
plane if D is not strictly convex.

As mentioned in 1, the developments in 2-6 are all based on a small number of
basic facts, namely, the distance relations expressed by the t::]-Lemma and the/-Lemma,
the convexity of the lune of an edge, and the straightness of the bisector of two points.
The t:]-Lemma and the/-Lemma are direct consequences of the triangle inequality and
hold in the stated form (with strict inequality) for arbitrary normed metrics as long as
D is strictly convex. The lune of two points is clearly convex since it is the intersection
of two homothetic copies of D. Unfortunately, the bisector of two points p q, evq
{x Ixpl Ixql}, is not necessarily straight. Nevertheless, epq is still a simple curve
that divides 2 into two unbounded regions, called half-planes, one containing p and the
other containing q. The two half-planes are star-shaped with respect to p and q, that is,
any line through p or q intersects epq in at most one point. In addition, pq is symmetric
with respect to because D is centrally symmetric.

There is only one place where the straightness of the bisector is used in a substantial
way, and that is in the proof of Fact 3 in 4. We restate this fact and show how to prove
it without using the straightness of the bisector. We suggest that the reader go back to
4 and review Facts 1 and 2. Recall, in particular, that bd (respectively, b’d’) is said to be
switchable if ac (respectively, a’c’) is no longer than the longest edge of the triangulation
t(S).

FACT 3. It is notpossible that both bd and Ud are nonswitchable.

Proof. As established in Fact 2, if bd is nonswitchable, then a and d are contained in
the open half-plane defined by fpq that contains q. Symmetrically, if b’d’ is nonswitchable,
then, a’ and d’ are contained in the other open half-plane. Unlike in the Euclidean case,
it is possible that ad and a’d’ intersect epq. It is thus also possible that ad precedes a’d’ in
the order of edges sorted from p to q by their intersections with pq (see Fig. 14). Below
we will argue that if this is the case, then ad (and symmetrically a’d’) is switchable. In
particular, we show that ladl > laPl, which, together with lapl >_ lacl from Fact 2, implies
that ad is switchable.

One characteristic of the described situation is that ad intersects fpq in at least one
point inside the lune ofpq. Let z be such an intersection point closest to
then pdqz is a convex quadrilateral with Ipdl > IPql by construction. The r-Lemma thus
implies that laxl > Iqx] Ipxl. It follows that ladl laxl + laxl > laxl + Ipxl > lapl.
On the other hand, if pq fq dx 0 then consider the point y ad N pq and note that
IPY[< IqYl. We derive Idyl > IPYl from IPYl + Idyl > Ipdl > IPql > 21pyl. Therefore,
ladl layl + Idyl > layl + IPYl > lapl, as desired.

All other steps of the proof of the Subgraph Theorem go through unchanged for
arbitrary normed metrics. We thus obtain the following generalization.

MINMAX LENGTH TRIANGULATION 549

p.

FIG. 14. Although a and d lie on q’s side ofthe bisector and a and d lie on p’s side, ad intemects pq closer
to p than atd does. This is notpossible if the bisector is a line, asfor the Euclidean metric, see Fig. 4.

GENERAL SUBGRAPH THEOREM. Let S be a finite point set in equipped with a
normed metric with strictly convex unit disk. Then S has a minmax length triangulation
mlt(S) so that rng(S) c_ mlt(S).

So the algorithm for computing a minmax length triangulation is clearmit is the
same as for the Euclidean metric, only the length of edges is now measured in terms of
a normed metric that is possibly different from the Euclidean metric. We assume that
the length of an edge in this metric can be computed in constant time. A careful reex-
amination of5 and 6 shows that the specialized polygon triangulation algorithm works
also in the context of arbitrary normed metrics. We remark, however, that it includes
the distance computation between a point and a line segment. Although it is certainly
reasonable to assume that this can also be done in constant time, the observation in
the remark at the end of 5.1 can be used to avoid this computation. We thus have the
following algorithmic result, which generalizes the MinMax Length Theorem of 6.

GENERAL MINMAX LENGTH THEOREM. Let S be a set of n points in 2 equipped
with a normed metric with strictly convex unit disk. Given the relative neighborhood graph,
a minmax length triangulation of 6; can be constructed in time O(n).

The algorithmic result extends to arbitrary normed metrics. As mentioned above, a
norm with nonstrictly convex unit disk can be simulated by one with strictly convex unit
disk. It follows that the quadratic-time bound also holds for arbitrary normed metrics.
The result stated in the General MinMax Length Theorem raises the question of how
fast my(S) can be constructed. The trivial algorithm tests all () edges, each in time
O(n), and therefore takes time O(na). Faster algorithms are known for the/p-metrics
for which O(n log n) time suffices (see [JKY90] and [Lee85]).

8. Discussion. The main contribution of this paper is the first polynomial-time al-
gorithm for computing a minmax length triangulation of a set S of n points in . Given
the relative neighborhood graph of S, the algorithm takes time O(n2). The algorithm
works for arbitrary normed metrics. The polynomial time bound follows because the

550 HERBERT EDELSBRUNNER AND TIOW SENG TAN

relative neighborhood graph of S can be found in polynomial time. The question of
whether or not a minmax length triangulation can be computed in less than quadratic
time remains.

The results of this paper are an outgrowth of our general efforts to understand tri-
angulations that optimize length criteria. There are, however, still many related prob-
lems whose complexities remain open. These include the problem of minimizing the en-
tire vector of edge lengths, the minimum length triangulation problem, and the maxmin
length triangulation problem.

Acknowledgment. The authors thank an anonymous referee for suggestions on the
organization of this paper.

[ACNS82]

[BrZI70]

[De134]

[Ede187]
[EdMii90]

[ETW92]

[EIAv81]

[Gilb79]

[GuSt85]

[JKY90]

[JoSi87]

[Klin80]

[Lank69]

[Laws77]

[Lee83]

[Lee85]

[Ling87]

[Lloy77]

[P1Ho87]

[PrSh85]

[Raja91]

[Sibs78]

REFERENCES

M. AJTAL V. CHVATAL, M. M. NEWBORN, AND E. SZEMERIDI, Crossing-free subgraphs, Ann. Dis-
crete Math., 12 (1982), pp. 9-12.

J. BRAMBLEAND M. ZLANAK, Triangular elements in the finite element method, Math. Comput., 24
(1970), pp. 809-820.

B. DELAUNAY, Sur la sphere vide, Izv. Akad. Nauk SSSR, Otdel. Mat. Estest. Nauk, 7 (1934), pp.
793-800.

H. EDELSaRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.

H. EDELSBRUNNERAND E. P. MOCKE, Simulation ofsimplicity: A technique to cope with degenerate
cases in geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66-104.

n. EDELSBRUNNER, T. S. TAN, AND R. WAUPOTITSCH,An O(r2 log n) time algorithm for the min-
max angle triangulation, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 994-1008.

H. ELGINDY AND D. AVIS,A linear algorithm for computing the visibility polygon from a point, J.
Algorithms, 2 (1981), pp. 186-197.

P. D. GILBERT, New results in planar triangulations, M. Sc. thesis, Department of Computer Sci-
ence, University of Illinois, Urbana, IL, 1979.

L. J. GUIBAS AND J. STOLFI, Primitivesfor the manipulation ofgeneral subdivisions and the compu-
tation of Voronoi diagrams, ACM Trans. Graphics, 4 (1985), pp. 74-123.

J. W. JAROMCZYK, M. KOWALUK, AND E E YAo,An optimal algorithmfor constructing -skeletons
in Lp metric, SIAM J. Comput., submitted.

B. JOE AND R. I. SIMPSON, Corrections to Lee’s visibility polygon algorithm, BIT, 27 (1987), pp.
458-473.

G. T. KLINCSEK, Minimal triangulations ofpolygonal domains, Ann. Discrete Math., 9 (1980), pp.
121-123.

P. M. LANKFORD, Regionalization: Theory and alternative algorithms, Geographical Anal., 1
(1969), pp. 196-212.

C. L. LAWSON, Software for C surface interpolation, in Mathematical Software III, J. R. Rice,
ed., Academic Press, San Diego, CA, 1977, pp. 161-194.

O. T. LEE, Visibility ofa simplepolygon, Comput. Vision, Graphics, and Image Process., 22 (1983),
pp. 207-221.

Relative neighborhood graphs in the L1-metric, Pattern Recognition, 18 (1985), pp. 327-
332.

A. LINGAS,A new heuristicforminimum weight triangulation, SIAM J. Algebraic Discrete Meth.,
8 (1987), pp. 646-658.

E. L. LLOYD, On triangulations ofa set ofpoints in the plane, in Proc. 18th Annual IEEE Sympo-
sium on Foundations of Computer Science, 1977, pp. 228-240.

D. A. PLAISTED AND J. HONG, A heuristic triangulation algorithm, J. Algorithms, 8 (1987), pp.
405-437.

E P. PREPARATAAND M. I. SHAMOS, Computational Geometry--An Introduction, Springer-Verlag,
New York, 1985.

V. T. RAJAN, Optimality ofthe Delaunay triangulation in a, in Proc. 7th AnnualACM Symposium
on Computational Geometry, 1991, pp. 357-363.

R. SIBSON, Locally equiangular triangulations, Comput. J., 21 (1978), pp. 243-245.

MINMAX LENGTH TRIANGULATION 551

[Supo83]

[Tous80]

[WGS90]

[Wism80]

[www85]

K. J. SUPOWIT, The relative neighborhoodgraph, with an application to minimum spanning trees, J.
Assoc. Comput. Mach., 30 (1983), pp. 428-448.

G. T. TOUSSAINT, The relative neighbourhoodgraph ofa finite planar set, Pattern Recognition, 12
(1980), pp. 261-268.

E W. WILSON, R. K. GOODRICH, AND W. SPRATI’E, Lawson’s triangulation is nearly optimal for
controlling error bounds, SIAM J. Numer. Anal., 27 (1990), pp. 190-197.

S. K. WISMATH, Triangulations: An algorithmic study, Tech. Report 80-106, M. Sc. thesis, Depart-
ment of Computer Science, Queen’s University, Kingston, Ontario, Canada, 1980.

E WIDMAYER, Y. E Wu, AND C. K. WONG, Distanceproblems in computationalgeometry withfired
orientation, in Proc. 1st Annual ACM Symposium on Computational Geometry, 1985, pp.
186-195.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 552-559, June 1993

() 1993 Society for Industrial and Applied Mathematics
0O6

INVERTING POLYNOMIALS AND FORMAL POWER SERIES*

K. KALORKOTIt

Abstract. The problem ofinverting a general polynomial ofdegree d > 0, the inverse being a formal power
series with coefficients zo, zl, z2,.., is considered. It is shown that computing zo,..., zn can be carried out
in n + (2d 1) log2 n] + 2 nonscalar operations over any infinite field. A lower bound of n + I for all fields
follows from standard linear-independence arguments. (The model of computation consists of straight-line
algorithms.)

For fields of characteristic 0, it is also shown that computing zn+l,..., zn+s for n _> 0, s >_ 1, requires
at least s + min(n + 1, d)/2 I nonscalar operations. For the case of inverting a general formal power series
a corresponding lower bound of s + (n + 1)/2 1 exists. In particular, computing the nth coefficient of
the inverse of a general formal power series requires at least n/2 nonscalar operations (the coefficients are
numbered from zero).

Key words, algebraic complexity, polynomials, formal power series, inverse

AMS(MOS) subject classifications. 68Q20, 68Q25, 68Q40

1. Introduction. Let k be any infinite field, and let t, xo, xl, x2,.., be indetermi-
nates over k. Define go, Yl, y2,. by

E yit xit
i--0 i:0

-1

Let L, be the nonscalar complexity of computing Yo,..., Y,, i.e.,

Ln L(yo,...,yn).

(See Borodin and Munro [2] for background.) It is easy to see that

for 0,
(1) y __xffl -0= x:yi_: otherwise.

The naive algorithm implied by these equations clearly requires D(n) nonscalar oper-
ations. However, Sieveking [8] showed that L, < 5n 2. Kung [5] improved this to
Ln < 4n log n. Kung also showed that L, > n + 1 and conjectured that L, >
4n (lower-order terms). That the conjecture is false was observed by Sch6nhage [9],
who noted that the second algorithm given in [5] requires at most 3.75n nonscalar oper-
ations. The improvement is obtained from the identity

aiti =-- E aiti aiti + 2 E aiti
i=o i=o \ i=o i=(,+)/2

(mod tn+l),

so that the first n + 1 coefficients of the square can be computed in 3(n + 1)/2 nonscalar
multiplications (this follows from the fact that the coefficients of the product of two
polynomials of degree m and n, respectively, can be computed in m + n + 1 nonscalar
multiplications--e.g., see Winograd [13]). Note that for fields of characteristic 2we have

Received by the editors May 8, 1991; accepted for publication (in revised form) February 27, 1992.
tDepartment of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United

Kingdom.

552

INVERTING POLYNOMIALS AND FORMAL POWER SERIES 553

the equality (a0 + at + + a,)2 a0 +a + + a,,2 which means that the coefficients
can be computed in just n/2 + 1 nonscalar multiplications and that this leads to an upper
bound of 3.25n.

In this paper we examine the problem of inverting a general polomial of degree
d>0. Set

-1

Ziti xit
i=0 i=0

We show that

L(zn+l,..., z,+8) > s + min(n + 1, d)/2 1, n > 0, s > 1,

for all fields of characteristic 0. For arbitrary fields we have

L(z0,...,Zn) > n + 1, n>0.

For an upper bound we have, when s < n + 1,

L(z,+,..., z,+8) <_ L(zo,..., Zn) + s + 2d- 1

for all infinite fields. This yields

L(zo,..., zn) <_ n + (2d- 1)[log2 n] + 2

for all n > 1.
Taking n d- 1, s d, we have

L(Zd, Z2d-X > 1.5d 1

for all fields of characteristic 0. For an upper bound we have

L(Zd,... ,Z2d-) <_ L(zo,... ,Zd-) / 3d- 1

<_ L(yo,..., Yd-) + 3d 1

< 6.75d 4.75.

We also have that for all fields of characteristic 0

L(yn+,..., Yn+s) >_ S + (n q- 1)/2- 1, n>_0, s>l.

Consequently

n
L(yn) >_ -for all n.

It is worthwhile to remark that Kung’s lower bound is, in fact, shown for computing
the first n + 1 coefficients of the inverse of x0 + t. The argument is, therefore, not valid
as a proof of a lower bound on L, for the usual (symbolic) model of straight-line algo-
rithms. However, the lower bound, which holds for all characteristics, is an immediate
consequence of straightforward arguments based on linear independence, such as those
given by Fiduccia [3].

554 K. KALORKOTI

An alternative and more fruitful approach to obtaining a lower bound for L,, due
to Stoss [10], is as follows. Suppose that A is an algorithm that computes g0,..., g,. It
is clear from equations (1) that each y is a polynomial in z- and zl,..., zi. Regard ,4
as having scalars k(z0), and transform it to an algorithm/3, which computes only terms
of degree 2 (Strassen [11]). The nonscalar complexity of B is no higher than that of A,
and its results are the coefficients of

2

For fields of characteristic other than 2 it can be seen that computing the coefficients of
(ao + axt + + artr) mod tr+ (where the a are indeterminates over k) requires at
least r + [(r + 1)/2] 1 nonscalar operations. This yields the lower bound

L, _> (n- 2) + [(n- 1)/2] 1 _> 1.5n- 4,

which seems to be the best that is currently known.
We now give a sketch proof of the lower bound result on squaring polynomials (the

author has not been able to find a proof in the literature and does not have a copy of [9]
so the approach given here might be different). The proof uses the simple observation
that any algorithm which computes linearly independent quadratic forms must use at
least non-scalar steps. Let

bo + bit +." + brtr =- (ao + at +... + artr)2 (mod tr+).

The b are quadratic forms and so, by [11], they can be computed as

(2) (bo, bl, br)T M(u v, Urn x Vm)T

where M is an (r + 1) m matrix of scalars and each ui, vi is a k-linear combination
of a0,..., a,. It is easily shown that the bi are linearly independent (over k), and so
m > r + 1. Now a must be present in some step u x v, and this can be killed by
substituting for a a k-linear combination of a0,..., a_. A similar observation applies
in turn to a_,..., a+l where s [(r + 1)/2]. Thus after killing r s nonscalar steps
in (2) we obtain an algorithm that computes b0,. b, b,+x,..., b, where

bo+.. "+bstS+s+ltS++ .+rU =_ (ao+.. "+asts+lltS+x+ "+lr-U)2 (mod tr+),

where each l is a k-linear combination of a0,..., as. It is now easy to see that the b,
are linearly independent (consider the term asa that occurs in b+ but not in b+ for
< j). Thus the computation of b0,.. b, +,..., requires at least r + i nonscalar

steps and so in (2) we have rn _> r + 1 + r s _> r + [(r + 1)/2] 1.

2. The upper bound. We describe a recursive algorithm for computing z,+,...,
z,+8, where s _< n + 1, from z0,..., z,. (This is the same as the algorithm given in 2 of
[5] but with the power series replaced by a polynomial.)

The order of a formal power series i0 citi is the least i such that ci 0 if this
exists and is undefined otherwise. Trivially,

(E Ziti 1- Ziti xit Ziti.
i=nq-1 i=0 i=0 i--0

INVERTING POLYNOMIALS AND FORMALPOWER SERIES 555

Noting that the parenthesized expression has order at least n + 1, we immediately have

E ziti= 1- zit xit zit (modtn+s+l).
i=n+l i=0 i=0 i=0

Define an+l,..., an+d by

n d n+d

E ziti E xii l + E aiti
i=O i--0 n+l

and note that the ai can be computed in d non-scalar multiplications. Thus

n+s n+d s-1

E z,t’ E a’tiE zit’ (mod
i=n+l n+l i=0

and the product can be computed in s + d i nonscalar multiplications. Thus

L(z+,...,zn+) < L(zo,...,z) + d+ s + d- 1.

From this it follows that

L(zo,..., Zn) < n + (2d- 1)[log2 n + 2.

The lower order terms in this bound could be improved by observing that for n < d

L(zo, zn) L(yo, y) < 3.75n.

The identities

xt Yt E yti =--0 (mod tP+P),
i=0 i=0 i=0

xiti ziti E ziti 0 (mod tPn+P),
i=0 i=0 i=0

can be used to obtain many different recursive algorithms for computing the y and z.
For example, the algorithm given above corresponds to p 2 (and s n + 1), and the
second algorithm of [5] corresponds to p 3.

An alternative way of computing the z for i > d is to view them as the solutions of
a dth-order linear recurrence. Fiduccia [4] shows how to compute z, in O(#(d, k) log n)
operations, where #(d, k) is the cost of multiplying two degree d 1 polynomials in
k[t] and z0,..., Zd-1 are assumed to be given. Interpreting Fiduccia’s results with the
nonscalar complexity measure, we have that z, can be computed in O((2d- 1)logn)
nonscalar operations since zo,..., Zd- can be computed in 3.75(d 1) nonscalar oper-
ations.

3. The lower bounds.

3.1. Preliminaries. This subsection provides a couple of variants of well known re-
sults and various technicalities. Let X, X0 be disjoint finite sets of indeterminates

556 K. KALORKOTI

over k. A step a o b in an algorithm with scalars k and input indeterminates X U X0 is
Xo-inactive if o E { x,/} and one of the following holds

1. bEk,
2. akando=x,
3. a, b e k(Xo)

(see Pan [7] or Borodin and Munro [2]). We define Xo-active operations in the obvious
manner. (When Xo is a singleton set {xo } we abuse notation slightly and write xo-active,
etc.) If Xo 0, then the Xo-active steps are just the nonscalar ones.

Let f, f, k(X, Xo) and set

A(Xx, Xo) E kx + k(Xo).
xX

We say that fix,..., fi. are linearly independent mod Ak(X1, Xo) if whenever

Olfil -’’" - asfis Ak(XI, Xo)

for al,..., as k, then

eel :as :0.

It is easy to show that if f,..., f, has at least r such members, then any algorithm that
computes f,..., fm requires at least r X0-active operations [3] (see also [2]).

Let X { x,... ,Xd }, and suppose that f k(X, xo). Let the formal Laurent
series of f with respect to x0 be

s

where f(X) k(X), and set

coder(f, zo) { f,(x) >).

We define td(f, x0) to be the maximum number of elements of coeff(f, x0) {f0(X)}
that are algebraically independent over k. (See Zariski and Samuel [12] for material
on algebraic independence.) The next lemma gives us a lower bound on the number of
x0-active operations required to compute f in terms of td(f, x0) (see Motzkin [6]).

LEMMA 3.1. Let f be as above. Then any algorithm that computes f has at least
td(f, x0 /2 xo-active operations.

Proof. Let A be an algorithm that computes f and whose results at x0-active steps
are gl,... ,gv and set

C’r coeff(gl, xo) U... U coeff(gr, Xo).

We show by induction on r that Cr has at most 2r elements that are algebraically inde-
pendent over k.

The result is trivial for r 0. For the induction step we have

gr--al oa2

where
r--1

j=l

INVERTING POLYNOMIALS AND FORMAL POWER SERIES 557

with li(X) E -,ex kz, ui(xo) e k(xo), and aij k for 1 _< i <_ 2 and 1 <_ j _< r 1.
Thus Cr depends algebraically on {11 (X), 12(X)}t_JC,._, and so it has at most 2+2(r- 1)
algebraically independent elements. This completes the induction.

Now

f + + Z a,,
i---1

where I(X) e ,ex kx, u(xo) k(xo), and fi k for 1 < i < r. Thus coeff(f, x0)-
{f0(X)} is algebraically dependent on C, and so it has at most 2r algebraically inde-
pendent elements, fl

The next lemma is an analogue to Fiduccia’s method for combining row and column
ranks in lower bounds [3] (see also Aho, Hopcroft, and Ullman [1]). A proof is included
for the sake of completeness.

LEMMA 3.2. Suppose that the sequence f, f,, k(X, xo) has r members that are
linearly independent rood Ak (X, Xo). Let

s min{ td(af +... + a,f,, x0) a,..., a,,, e k, ai : 0, for some i }.

Then any algothm that computes fl, fm requires at least r + s/2 1 nonscalar oper-
ations.

Proof. We may assume that r > O; otherwise, the result is trivial. Let el,..., et be
the sequence of nonscalar steps of an algorithm that computes f,..., f,,. Thus there
is an m x matrix M of elements of k and a column vector a of m elements of k +
-xu{o} kx such that

From the remarks preceding the lemma we know that > r, and so we can partition
M into an m (1 r + 1) matrix M and an m x (r 1) matrix Me. We also set
el (el,..., el-r+l)T and e (e_+,..., e,)T. Thus

Mle + M2e2 + a.

Since M2 has more rows than columns, it follows that there are a,..., a, E k, not all O,
such that (al,..., a,)M O. Thus

Olfl -’- -]- Omfm (O1,... am)Me + (o1,..., am)a.

Lemma 3.1 now implies that r + 1 > s/2.
LEMMA 3.3. Supposethat f,..., fi k(x,. ,xi)-k(xl,. ,xi_)for I <_ i < rn.

Then f,..., fm are algebraically independent over k.
Proof. We claim that x depends algebraically on f, x,..., xi_ for 1 < < m. To

see this, set

558 K. KALORKOTI

where pi, qi E k[xl,..., xi] are coprime and at least one ofthem is not in k[xl,...,
Let be a new indeterminate, and set

P() qi(xl, xi-1,)fi pi(xl, xi-1,).

It is clear from the conditions on fi, pi, and qi that P() 0. Since P(xi) 0, the claim
is established.

The lemma now follows by induction on m. Form 1 we have that x depends alge-
braically on fl, and so fl, must be transcendental over k. For the induction step suppose
that fl,..., fro-1 are algebraically independent but that f, depends algebraically on
fl,..., f,-l. Since fl,..., fro-1 depend on Xl,..., Xm--1, it follows that fm depends
on xl,..., x,_l. Now x, depends on fro, xl,..., x,_ and hence on xl,..., x,_l,

which is a contradiction. D
LEMMA 3.4. For arbitrary fields, Zm is a polynomial in x of degree m + 1 for all

m > O. Moreover, forfields ofcharacteristic 0 and rn > 0

z, p,x"- + p,zxff" +...,

where p, k[xl,. ..,x] k[xx,. ..,x_l]for I <_ i <_ min(m, d).
Proof. We have that

Zm { XI -min(m,d)--X-1
A.i=I XiZm-i

The result now follows from an easy induction on m. [:]

3.2. Lower bound results.
THEOREM 3.5.
1. Let k be anyfield. Then

for m O,
otherwise.

L(zo,..., z,) _> n + 1

for all n > O.
2. Let k be a field ofcharacteristic O. Then

L(Zn+l,..., Zn+s) >_ S + min(n + 1, d)/2- 1

for n > 0 and s > 1.

Proof. 1. Without loss of generality, we may assume that k is infinite. By Lemma 3.4
z is a polynomial in x-1 of degree i + 1 and so the zi are all linearly independent mod
Ak({Xo,...,Xd},O).

2. Suppose that a,+l,..., a,+ k are not all 0, and let a,+ be the last nonzero
member of the sequence. From Lemma 3.4 we have

Oln+lZn+ 2t- - OZnTrZn+r qlx(n+r)-1 if- q2x(n+r) +...,

where for 1 < < min(n + r, d)

min(i,d)-I

qi E (n+r-jPn+r-j,i-j
j=0

INVERTING POLYNOMIALS AND FORMAL POWER SERIES 559

Now p,+r-j,i E k[xl,...,xi]- k[Xl,...,xi-1] and P,+r-j,i-j k[xl,...,xi_j]-
k[xl,... ,xi--l]. Since a,+ 0, it follows that qi k[x,... ,xi] k[Xl,... ,Xi_l]
for 1 < i < min(n + r, d). Lemma 3.3 now implies that

td(n+zn+l +... + an+sZn+s,Xo) >_ min(n + r,d) >_ min(n + 1, d).

An application of Lemma 3.2 completes the proof, lq

COROLLARY 3.6. Let k be a field ofcharacteristic O. Then

L(yn+,..., Yn+s) >_ s + (n + 1)/2 1

forn > Oand s > 1.

Proof. This is an immediate consequence of Theorem 3.5, for if we take d > n + s,
then zi y for 0 < i < n + s.

Acknowledgment. I should like to thank an anonymous referee whose helpful com-
ments led to improvements in the paper.

REFERENCES

[1] A. V.AJ. E. HrcRrANDJ. D. ULLMAN TheDesign andAnalysisfCmputerAlgrithms Addisn-
Wesley, Reading, MA, 1974.

[2] A. BORODINAND I. MUNRO, The Computational Complexity ofAlgebraic and Numeric Problems, Ameri-
can Elsevier, New York, 1975.

[3] C.M. FIDUCCL% Fast matrix multiplication, in Proc. 3rd Annual ACM Symposium on Theory of Com-
puting, (1971), pp. 45-49.

[4] ,An efficientformula for linear recurrences, SIAM J. Comput., 14 (1985), pp. 106-112.
[5] H.T. KUNG, On computing reciprocals ofpower series, Numer. Math., 22 (1974), pp. 341-348.
[6] T.S. MOTZKIN, Evaluation ofpolynomials and evaluation of rational functions, Bull. Amer. Math. Soc.,

61 (1955), p. 163.
[7] V.Y. PAN, Methods ofcomputing values ofpolynomials, Russian Math. Surveys, 21 (1966), pp. 105-136.
[8] M. SIEVEKING,An algorithm for division ofpowerseries, Computing, 10 (1972), pp. 153-156.
[9] A. SCHONHAGE, private communication, 1981.
[10] H.-J. STOSS, unpublished, 1981.
[11] V. STRASSEN, Vermeidung von Divisionen, J. Reine Angewandte Math., 264 (1973), pp. 184-202.
[12] O. ZARISKIAND P. SAMUEL, Commutative Algebra, Vol. I, Springer, Berlin, 1986.
[13] S. WINOGRAD, Some bilinearforms whose multiplicative complexity depends on thefield ofconstants, Math.

Systems Theory, 10 (1977), pp. 169-180.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 560-572, June 1993

() 1993 Society for Industrial and Applied Mathematics
007

NONDETERMINISM WITHIN P*

JONATHAN F. BUSS AND JUDY GOLDSMITH*

Abstract. Classes of machines using very limited amounts of nondeterminism are studied. The P -? NP
question is related to questions about classes lying within P. Complete sets for these classes are given.

Key words, nondeterminism, quasilinear time, computational complexity

AMS(MOS) subject classifications. 68Q15, 68Q05

1. Introduction. Traditional complexity theory gives a distinguished role to the class
P of languages that are computable in polynomial time. Languages not in P are consid-
ered to be computationally intractable. However, the converse assertion, that languages
in P have efficient solutions, is untenable. Historically, one reason for the choice ofpoly-
nomial time bounds was that no smaller class appears to be as robust against change of
model. We consider here subclasses of P, defined (roughly) according to the exponent
of the polynomial bounding the running time and also according to the small amount of
nondeterminism allowed. Of particular interest is the class of languages computable in
deterministic "quasilinear" time, which is less robust than P with respect to change of
model, but is much closer to being a practical notion of feasible computation. We de-
velop a complexity theory based on quasilinear-time many-one reducibility that is anal-
ogous to the theory of polynomial-time reducibility.

We primarily consider the trade-off between time and nondeterminism. To replace
nondeterminism by time in Turing machine computations is easy: one binary nondeter-
ministic choice may be eliminated by doubling the time. Two fundamental questions are
whether nondeterminism can be eliminated at a lower cost in time, and whether compu-
tation time can be decreased by adding nondeterminism. We define subclasses of P by
limiting the time bound to fixed-degree polynomials and allowing nondeterminism over
a fixed polynomial-size search space. The inclusion relationships among the classes are
particular cases of the two fundamental questions. We show that sufficient separation
among these classes lying inside P implies that P # NP.

Let,,f and g be integer functions. We will write "f E Q(g)" and say "f is of quasi-
korder 7 if there "s a pos’tive constant k such that f E O(g log g). For any positive con-

stant l, we denote by P the class of languages that can be accepted by a multitape Turing
machine whose running time on inputs of length n is of quasi-order nt. For integers

_> 1 and m _> 0, we denote by NmPt the class of languages accepted by nondetermin-
istic machines in time of quasi-order n making at most m log binary nondctcrministic
choices. For any m and l, NmP is contained in P,+. We will also consider the classes
NP having no bound on the amount of nondeterminism. The classes P1 and NP1 have
been previously studied by Schnorr [16] under the names QL and NQL.

Received by the editors October 29, 1990; accepted for publication (in revised form) March 13, 1992.
tDepartment of Computer Science, University of Waterloo, Ontario, Canada N2L 3G1. The work of

this author was supported in part by a grant from the Natural Sciences and Engineering Research Council
(NSERC) of Canada.

*Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire
03755. Present address, Department of Computer Science, University of Manitoba, Canada R3T 2N2. The
work of this author was supported in part by National Science Foundation grant RII-900305.

1We will write "log n" to mean [log2 (n + 1)J throughout the paper.

560

NONDETERMINISM WITHIN P 561

The log n factors in the allowed time bounds have a number of important conse-
quences. First, the classes are independent of the number of tapes of a multitape Turing
machine. Second, quasilinear-time reducibility is transitive and preserves membership
in N’Pt, for any m and I. Third, quasilinear time is large enough to admit basic al-
gorithmic techniques such as sorting and multiplication. For computation of practical
importance, the input size is generally less than, say, 10xz; hence log n is bounded by 40,
and ignoring arbitrary logarithmic factors is no worse than ignoring arbitrary constant
factors.

The notion of classifying problems according to the amount of nondeterminism
required has appeared previously; see, e.g., Kintala and Fischer [13] and Wolf [17].
Alvarez, Dfaz, and Torfin, [4], [8] consider a hierarchy, similar to the present one, of
classes lying between P and NP. Their hierarchy differs from the present one in two
ways. First, any polynomial is allowed in the running times, and second, the bound on
the number of nondeterministic choices that defines each class is a power of log n rather
than a multiple of log n. Thus each class contains all of P, and the hierarchy does not
provide a classification among computations feasible in practice.

More similar in method to the present paper is the work of Geske [9], who considers
relations among classes TIME(n) and NTIME(nt), which are similar to and NP,
but more restrictive. Weaker variants of our Theorems 5.1 and 5.4 are obtained.

In a related work, Kaye [12] gives two logical characterizations of a family of classes
L(), a > 0, lying between linear time and P. Kaye’s class L is precisely quasilinear
time.

Gurevich and Shelah [10] consider quasilinear-time reductions among various mod-
els of random-access machines. They define nearly linear time, or NLT, and show that
the models they consider, including Kolmogorov machines, Sch6nhage machines, and
random-access Turing machines, all compute the same NLT functions in quasilinear
time. They also show that the languages accepted nondeterministically by any of these
machines in quasilinear time are precisely those languages accepted nondeterministically
in quasilinear time by a multitape Turing machine (denoted NQL in [16], herein NP).
They conjecture that the deterministic classes NLT and QL (herein P) are different.
We offer some candidate languages for this separation.

Quasilinear-time reductions have been studied in other contexts as well. Hunt and
Stearns [11] define the notion of Turing-SAT-hard (n polylog n, n) in order to make pre-
cise the notion that sets in NP have deterministic time and space complexity no less than
that of SAT. Their definition restricts the reductions considered to quasilinear time and
linear space complexity. Because the sets they consider are in NP P unless P NP,
their results do not provide much insight into the classes considered here.

Abrahamson et al. [1], [2] study the complexity of families of languages parameter-
ized by the size of an associated search space. The present paper concerns the complexity
of individual problems, which may or may not be part of a larger family. The relationship
between the two approaches is investigated in 4 below.

This paper is organized as follows. Section 2 gives some basic properties of the
classes N’Pt and Pt. Section 3 shows that the classes have complete sets, and some nat-
ural problems are considered as candidate complete sets. Section 4 contains a discussion
of the relationship of the present work to that of Abrahamson et al. Section 5 investi-
gates relationships among the various classes N’P,. Section 6 concludes with some open
problems and directions for future work.

2. Preliminaries. The classes NmP can be characterized in terms ofwitnesses, anal-
ogously to NP.

562 J. E BUSS AND J. GOLDSMITH

THEOREM 2.1. For all m and l, a set A is in N’P ifand only ifthere is an R in Pt such
thatfor all sngs x, x E A y [lyl <_ m log n(x, y)].

The proof is left to the reader.
Like most hierarchies of complexity classes, the limited-nondeterminism classes ex-

hibit downward separation (upward collapse).
THEOREM 2.2. For all m and l,
1. ifNP c_ Pt, then NIPk C_ Pk for all k >_ l, and
2. ifNm+IP c_ Nmpt, then Nkpt C_ Nmpt for all k >_ m.

Proof (sketch). Suppose that NPt c_ P, and fix k > and A N Pk. Let R be as

guaranteed in the previous result. Let A’ { xO[llk/lj-Il x A }. Then x0 A’ if
and onlyifj Ilxlk/l--Ixl / SY lyl <- log Ixl A R(x, y) if and onlyif2y lYl < log Ix0 I/x
R’(xO, y), where R’ { (xO, y) J llxlk/’J -Ixl/ y _< log Ixl/ R(x, y) }. Hence
A’ (NIp/C_ P/, and thus A P.

Now suppose that Nm+lPt C_ N’Pt, and fix k > m + 1 and B Nkpt. There exists
S such that x E B = 3y lyl <- k log Ixl/ (x, y> s. The latter condition is equivalent
to Sy lYl < (k m 1)log Ixl/X s’(x, y), where S’ { (x, y) Sz z < (m + 1) log Ixl/x
(x, yz) S } is in Nm+IP and hence in N’Pt by assumption. Thus B Nk-XPt, which
is contained in Nmpt by induction.

The hierarchy also exhibits a kind of upward separation.
THEOREM 2.3. Suppose thatfor all l, there is an m such that Nmp is not contained in

Pt. Then P NP.
The result follows immediately from Theorem 2.4.
THEOREM 2.4./fP NP, then there is an such that NPk C_ Pkt for all k.
Proof. Let L be a complete set for NP with respect to quasilinear-time reductions.

(Schnorr has shown that SAT, the set of satisfiable Boolean formulas, is such a set [16].)
Suppose P NP; i.e., L is in/ for some I. Let A NPk. Membership questions of
length n about A are reducible in time Q(nk) to membership questions of length Q(nk)
about L (using a padding argument and Schnorr’s result), which are answerable in time
Q(nkt) by assumption. Hence NPk C_ Pkg.

3. Complete sets. The sets N’Pt all have complete sets under quasilinear-time re-
ducibility. We consider first a problem concerning acceptance by Turing machines. Let
(.) be a coding function for Turing machines such that given (M), a single step ofM can
be simulated by a multitape Turing machine in time proportional to log I(M)I. A unary
code will have the required property.

Define G { (M)#x#lJ M accepts input x within jlxlt-1 steps using at most
m log Ixl nondeterministic choices }.

THEOREM 3.1. For all m and l, G’ is complete for Nmpt with respect to quasilinear-
time reductions.

Proof (sketch). The coding convention ensures that G N’P. For A N’Pt,
fix a machine M and constants r and s such that M halts in at most rn log8 n steps,
uses m log n nondeterministic choices on inputs of length n, and accepts A. Let f(x)
(M)#x#lrlxl log Ixl. Then x A if and only if f(x) G’, and f is computable in time
in Q(n). Hence f is the desired reduction from A to G.

In some cases, complete sets for Nmpt can be obtained from NP-complete problems
by bounding the size of allowable witnesses for membership. We first consider topologi-
cally ordered Boolean circuits.2 A circuit is satisfiable if some setting of the inputs results

2A circuit is topologically ordered if each gate is numbered, and the inputs to a gate all have lower numbers
than the gate itself.

NONDETERMINISM WITHIN P 563

in an output of 1. Let CSAT(k) be the set of satisfiable, topologically ordered circuits
that have fewer than k log n inputs, where n is the number of gates in the circuit. (Con-
stants 0 and 1 are not counted as inputs.)

THEOREM 3.2. Forall k, CSAT(k) is completefor NkP1 with respect to quasilinear-time
reductions.

Proof(sketch). The standard methods for proving the formula-satisfiability problem
to be NP-complete can easily be modified to produce a circuit rather than a formula.
Schnorr [16] and Cook [7] have shown that the circuit (or formula) corresponding to
a given input for a fixed Turing machine may be constructed in quasilinear time. In
particular, the circuit has quasilinear size. Also, it is topologically ordered.

Let A NPI, and let R P be such that x A v qy [Yl <- k log Ix[A (x, y) R,
for all strings x. Let M accept R in quasilinear time. The circuit Cu(x) corresponding
to M with input (x, y), for fixed x and undetermined y, has size quasilinear in Ix and
only k log Ix[inputs. Hence x A if and only if Cu(x) CSAT(k), and CSAT(k) is
hard for NkP1.

Evaluation of a circuit at given inputs can be accomplished in quasilinear time
on a Turing machine by using an algorithm of eippenger [14]. Hence CSAT(k) is in
Nkp. [:]

The satisfiability problem for formulas with a limited number ofvariables, SAT(k), is
perhaps easier than CSAT(k). The above proofofhardness ofCSAT(k) does not apply to
SAT(k), because too many auxiliary variables are required in a formula to simulate a Tur-
ing machine. In the absence of a hardness proof for the restricted formula-satisfiability
problem, hardness proofs for restrictions of other standard NP-complete problems are
problematic. In some cases, the natural restriction is essentially as hard as the general
case. For example, graph k-colorability remains NP-complete when k is fixed at .

The restricted vertex-cover problem exhibits different behaviour. Let VC(k) be the
language of undirected graphs that have a vertex cover of size k. It is easy to show that
VC(k) is in N-P: the first k- 1 vertices of a cover can be chosen nondeterministically,
and the last vertex found by a quasilinear-time search. In fact, the language VC(k) can
be accepted in linear time by the following algorithm due to S. Buss [5]. Given a graph
a (V, E),

1. Let U be the set of vertices of degree more than k. If IUI > k, then reject; there
is no cover of size k or less.

2. Let G’ be the subgraph of G induced by V U. Every k-cover of (7 consists of U
together with a (k IUl)-cover of G’. If G’ has more than k(k IUI) edges, then reject;
G’ has no (k -IUI)-cover.

3. If G’ has a cover of size k IU[, then accept; otherwise reject.
Steps 1 and 2 can easily be implemented in quasilinear time. If step 3 is reached, then
G’ has a bounded number of edges; hence step 3 requires Q(1) time. Therefore, VC(k)
is in P, and a completeness proof for VC(k) would have strong consequences.

THEOREM 3.3. IfVC(k) is hardfor NiP1 for some j > 1, then NmP1 C_ P1 for all m.
The result follows immediately from Theorem 2.2.
The k-clique problem, although often regarded as a trivial variation on the k-vertex

cover problem, cannot be substituted for VC(k) in the above proof, because the condi-
tion on the degrees does not hold. Thus k-clique remains as a candidate hard problem
for Nk-IpI.

3Diaz and Torfin [8] have shown that a variant of CSAT(k) is complete under logspace reductions for their
class Bk, for each k.

4We return to the formula-satisfiability problem in 4.

564 J. E BUSS AND J. GOLDSMITH

Next, we consider the following problem concerning context-free grammars. Given
a grammar G (N, E, P, S), does G generate any string comprising repetitions of a

r*single terminal; i.e., is (G) n I,Jer. Let UNARYGEN be the set of grammars
for which the answer is yes.

THEOREM 3.4. CSAT(1) <qt UNARYGEN.
Proof. Let C be a circuit with n gates gl,..., g,. Assume without loss of generality

that gates i with i < log n are the inputs and t, is the output. Each gate gs is represented
by two nonterminal symbols As and A). There are also n terminal symbols b0,.. , b,_
each corresponding to one setting of the values of the input variables. The start symbol
is A,.

The productions are determined as follows.
If 9i is an and-gate with predecessors #s and tk, use productions A AsAk and

a A A’.
If g is an or-gate with predecessors g and gk, use productions A A A

and A AA.
If gi is a not-gate with predecessor gs, use productions Ai A and A
For 1 < < log n, for all j such that bit i of the binary expansion of j is 1, use

Ai -- b.
For 1 < < log n, for all j such that bit i of the binary expansion of j is 0, use

The variable As derives a unary word if and only if gs evaluates to 1, and As derives a
unary word if and only if gj evaluates to 0.

LEMMA 3.5. For all 1 < i < n and 0 < j < n 1, Ai * bfor some k ifand only
ifgi evaluates to I when the input vector is the binary expansion ofj. Similarly, A b
for some k ifand only ifgi evaluates to 0 when the input vector is the binary expansion ofj.

Proof. Fix j. Define the level of a gate to be the length of the longest directed path
from the gate to any input. We use induction on the level of gate g.

The base case is that g is an input. Then g evaluates to 1 if and only if bit of j is 1
if and only if Ai bj if and only if Ai * bs. Also gi evaluates to 0 if and only if bit
i of j is 0 if and only if A bs if and only if A* bs.

Suppose that the lemma holds for all gates with level at most 1, and let g have
level 1. Ifg is an and-gate with predecessors gil and g., then g evaluates to 1 if and only

1 and Ai. * k. for some klif both gx and gi evaluate to I if and only if Aix * bs bs
and kg. if and only if Ai * b +k.. Likewise, gi evaluates to 0 if and only if either gix

or gi evaluates to 0 if and only if A:,I --** b or A. --* b for some k if and only if

A* b. The cases where g is a negation gate or an or-gate are similar.
The theorem follows immediately from the lemma.
The reduction given in the proof holds even if the circuit is not topologically or-

dered. If the circuit is ordered, then in the resulting grammar, every appearance of
each nonterminal in the left-hand side of a production occurs after every appearance of
the nonterminal on the right-hand side of a production. Call a grammar satisfying this
condition an ordered grammar. Let UNARYGENord be the set of ordered grammars in
UNARYGEN.

THEOREM 3.6. UNARYGENord is completefor N
Proof. Because the reduction ofthe previous theorem produces an ordered grammar

from an ordered circuit, UNARYGENord is hard for N1P1.
To show that UNARYGENord is in NP, we use the following lemma.
LEMMA 3.7. The emptinessproblem for ordered context-free grammars is in determin-

istic quasilinear time.

NONDETERMINISM WITHIN P 565

Proof. Call a nonterminal "true" if some terminal string can be derived from it and
"false" otherwise. The grammar is then a network in the sense of Pippenger [14] and
thus can be evaluated in time Q(n). [3

Let G (N, E, P, S) be an ordered grammar. Nondeterministically guess a termi-
nal tr E E, using log Irl <_ log IGI bits. Then eliminate all productions involving termi-
nals other than or. Accept if and only if the resulting grammar generates a nonempty
language.

The above algorithm places UNARYGENord in N1P1, and hence it is complete.]

4. Families ofeolastrained-seareh prollems. Many NP-complete problems involve
a parameter that defines a constraint on the associated search problem. Restriction of
this parameter produces a problem whose complexity falls into one of at least three
classes: (1) The restricted problem may be NP-complete; e.g., graph k-coloring, for
any k > 3. (2) Every fixed value of the parameter may give the same polynomial com-
plexity; e.g., vertex k-cover. (3) Every fixed value of the parameter may give polynomial-
time complexity, but the exponent of the polynomial may depend on k. No instances of
the third case are proven, but CSAT(k), k-clique and many other problems are candi-
dates. The distinction between the second and third case has been recently investigated
by Abrahamson et al. [1], [2], who considered families of associated search problems.
We show here that limited nondeterminism provides an alternative to their methods.

Consider the case of CSAT(k), for k > 1. These languages form an infinite collec-
tion of complete sets, one for each class NkPI. It is not an arbitrary collection, however,
since the complete set for NkPI can easily be determined given k. We describe this situ-
ation using the concept of languagefamily. A language family is a subset of E* N. The
kth slice of a family B, denoted Bk, is the language { z (z, k) E B }.

The class N*Pj (for all j > 1) consists of all families B with the following properties.
The kth slice of B is a language in NkPj.
There is a quasilinear-time-computable function f such that for all k, the value

of f(k) is the code of a Turing machine witnessing that the kth slice of/3 is in NP.
(An object z wimesses an existential property 3t p(y) if and only if p(z) is true. The
computability requirement on f may be relaxed without changing the essential character
of the definition.)
A language family (7 in N*Pj is <qt-completefor N*P if the following hold.

For all k, the slice C is complete for NPj.
There is a quasilinear-time-computable function f such that for all k, the value of

f(k) is the code of a Turing machine witnessing that C is complete for NP (i.e., the
Turing machine performs a quasilinear-time reduction from G to Ck).

For example, the family CSAT(.) { (z, k) z CSAT(k) } is complete for N*P.
We draw a second example from Abrahamson et al. [2]. Consider a Boolean for-

mula. A partial assignment of truth values to variables in the formula may induce values
on other variables if the formula is to be true. Consider a formula in conjunctive normal
form with three or fewer variables per clause (3CNF). If (a V a2 V a3) is a clause, and all
but one of the ai’s are false, then the remaining variable is induced to assume the value
true; if one variable ai is true, then the clause is true, and no additional assignment is in-
duced. If this procedure can be applied iteratively until all clauses evaluate to true, then
we say the original partial assignment caused the formula to unravel. Let SHORTSAT(k)
be the set of 3CNF formulas/3 such that some assignment to the first k log 1/31 variables
causes B to unravel.

5The definition in [2] allowed arbitrary CNF formulas instead of 3CNE The difference appears to be
necessary for Theorem 4.1. It does not affect the results of [1].

566 J. E BUSS AND J. GOLDSMITH

kA formula B =/ki=l C’i in conjunctive normal form unravels in order if each initial
subformula A=I C’ unravels. Let SHORTSATord (k) be the set of formulas B such that
some assignment to the first k log IBI variables causes/3 to unravel in order.

THEOREM 4.1. SHORTSATord(k /s <q-complete for NP, and SHORTSAT(k)
is <_q-hardfor NkP, for all k.

Proof (sketch). We first show that CSAT(k) <qt SHORTSATord(k). Let F be an
instance of CSAT(k). The corresponding formula qa has one variable for each gate of
the circuit, and two additional variables denoted z and z2. The first k log
represent the input. The connections of a gate g in F are represented in qa by a con-
junction B of clauses. The conjunction B always unravels in qo, and the only unravelling
induces the variable representing g to take on the value of g. The final clause of qo un-
ravels if and only if the circuit evaluates to 1.

The clauses are as follows.
For each input variable x of F, the corresponding clause is (x V -x).
If g is an and-gate with predecessors a and b, then the corresponding conjunction

is (-a V -b V g) A (a V-g) A (b V -g).
If t is an or-gate with predecessors a and b, then the corresponding conjunction is

(a V b V ,q) A (a V q) A (-b V ,q).
If/? is a not-gate with predecessor a, then the corresponding conjunction is

v v
If the output gate is tout, the final clause is (gout V 2:1 V 2:2).

The reader can easily check that the formula has the required properties.
To show that SHORTSATord(k <qt CSAT(k), let qo be a formula in 3CNF, with

clauses {qo}=1. Each clause o will be represented by a circuit C, whose inputs will
be outputs of the circuits representing earlier clauses. We assume without loss of gener-
ality that no variable appears twice in any one clause.

Consider qo v V vz V va. The corresponding circuit C will have six inputs and
six outputs. The circuit C will compute the status of each literal vq (either a variable
or a negated variable) and produce two corresponding output values. Output vq (1) is
given value I if and only if the unravelling procedure assigns a value to v at or before
clause qo. Ifv (1) 1, then output v (2) is given the value assigned to v.

The inputs to C are determined by the last occurrences of the variables of qa previ-
ous to qo{ itself. Denote by v the last literal containing the variable ofv appearing in
qo before qo. The first input corresponding to vi is v (1). The second input correspond-
ing to vq is v (2) ifv and v are both positive or both negative literals, and is -v(2)
otherwise. The construction of C’ is straightforward except for the identification of the
input literals v.

If each v is found individually, the construction of the entire circuit may take
quadratic time. Hence the successive occurrences of each variable must all be deter-
mined at once, as follows. For each v, form a triple (, i, j), where z is the index of
the variable occurring in v. Sort the triples, using the order (z, i, j) < (, k, I) if and
only if z < or z and < k. If (z, i, j) and (z, k, 1) are adjacent in the sorted list,
then vt v{; form a quadruple (i, j, k, 1). Sorting these quadruples gives the required
adjacency information in the order needed to construct the circuit in topological order.

The final circuit comprises all subcircuits C’ and an additional output subcircuit.

The output subcircuit computes A= V= v(1) A v(2) which has value 1 if and

only if the original formula q unravels in order.
The family SHORTSATord(, { (z, k) z ESHORTSATord(k } is thus complete

for N*P.

NONDETERMINISM WITHIN P 567

THEOREM 4.2. For all k, SHORTSAT(k) C NkPz.
Proof (sketch). To determine whether a formula is in SHORTSAT(k), it suf-

fices to nondeterministically guess the values of the initial k log Iql variables, and
then make at most I1 passes through , inducing variables and propagating their
values, l]

A language family (7 is <t-hardfor N*P if the following hold.
For all k, there is a k’ > k such that C, is <-hard for NP.
There is a quasilinear-time-computable function f such that for all k, the value of

f(k) is the code of a Turing machine witnessing that Ck, is <qt-hard for NP.
For example, SHORTSAT(*)= { (z, k) z SHORTSAT(k)} is <qt-hard for N*P.
The family G. { (G, k) k > 1 } is <qt-hard for N*P, for every I.

Finally, a language family C is weakly <qt-completefor N*P if it is both in N*P and
<qt-hard for N*P. One example of a weakly complete set for N*Pi is { (x, 2k) x
CSAT(k)}.

The definition of N*Pj is motivated by the work of Abrahamson t al. [1], [2] on
their class PGT. Their work focused on families of problems in P, usually generated
by parameterized problems in NP, such as SHORTSAT() and CSAT(). The class PGT
is roughly equivalent to the notion "in some N*Pj and hard for some N*Pk." The ma-
jor differences are that PGT includes nonuniform families and that reductions may be
nonuniform; in the terms of this paper, the functions f above are not required to be
computable. All of the complete families considered by Abrahamson t al., however,
are uniform and are examples of families in some N*Pj and hard for some N*P. Thus,
their work provided examples of sets in the classes NiPa, some of which were also hard
for classes NiP. Further work on limited nondeterminism is likely to yield additional
complete sets for PGT.

5. Relationships among the classes. The classes N’/ bear a strong analogy to NP;
however, the analogy should not be taken too far. For example, one might conclude
from Theorem 2.3 that NPz behaves as a limiting case of N’P as m goes to infinity.
This conclusion, however, can be false in the presence of an oracle. Denote by Cx the
class C relative to oracle X. The results of 2 hold relative to any oracle X.

THEOREM 5.1. There is an oracle A such that NmpA Pfor all m and k, and yet
NpA pA.

Proof. By Theorem 2.2, we need only show that NPA pA and pA NpA.
MFix an enumeration (i)i= of nondeterministic machines such that M runs in

quasilinear time and makes at most log n nondeterminisfic choices on inputs of length
n. Fix an enumeration (T} of deterministic machines such that Ti runs for at most
p(n) n / i steps on inputs of length n.

We construct A to have the following two properties for all i:

C: The coding condition: For all strings x and all positive integers s, the string
02#i#x is in A if and only if MA(x) accepts within s steps. (Note that MA(x) cannot
query whether 02#i#x is in A within s steps.)

D: The diagonalization condition: The language

LA {1’ y iyI n A I"y A }
is not accepted by T.
The construction proceeds in stages. During stage k, all strings of length k are fixed to
be in or out of A, in such a way that conditions C hold up to length k. In addition, some

568 J. E BUSS AND J. GOLDSMITH

strings of length longer than k may be fixed to satisfy some condition Di. Because each
string is fixed exactly once during the construction, the oracle A is well defined. In fact,
A is computable in space n0g’).

Initially, all strings are unfixed. Set k d 1; k is the stage number, d is the
current diagonalization condition, and is a lower bound on the input at which condition
Da can be satisfied.

Stage k: For all strings z of length k of the form z 028#i#z for some i, z, and s,
fix z in A ifM accepts z with oracle A in < s steps; otherwise fix z out of A. (Note that
this condition is determined by the preceding stages of the construction.) Fix all strings
of length k not of the above form out of A. If k < or 2k < pd(k)l+lgpa(k), then stage
k is complete---continue to stage k + 1.

If k > and 2k > pd(k)l+lgp(k), then a diagonalization condition can be satisfied.
Simulate Td on input 1. When Td queries a string z not yet fixed, there are two cases.

1. If z O2"#i#x for some i, x, and s, then simulate M on input z for s steps,
and fix z accordingly. Fix strings queried during the simulation by applying these cases
recursively.

2. Otherwise, fix z out of A.
If Td accepts Ik, then fix all remaining strings of the form ly with lY] k out of A.

If Td rejects 1k, then fix all remaining strings of the form ly with lY] k to be in A. In
either case, set pd(k), increase d by one, and continue to stage k + 1.

End ofstage k.
We first show that the construction can be carried out.
LEMMA 5.2. If the construction simulates Td on input 1k, then some string lky with

[y[k remains unfixed at the end ofthe simulation.
Proof. The parameter is an upper bound on the length of strings that have been

fixed due to any diagonalization attempt prior to stage k. Because k > at the start of
the simulation of Td, all of the 2k strings lky are unfixed at that time.

Let S(n) be the maximum number of strings fixed during the simulation of some
MiA(x) for s steps, where 1028#i#xl n. In s steps, MA(x) queries fewer than 82lg

n strings over all of its nondeterministic computations, and each queried string has
length less than n/2. Hence S(n) < n2S(n/2), and S(1) 1. Therefore, S(n) <_ T/,lgn.

Ta runs for at most pa(k) steps; therefore, the total number of strings queried during
the simulation is at most pa(k). S(pa(k)) < pd(k) l+lgpa(k) < 2k. Hence some string of
the form 1 with I] k remains unfixed.

LEMMA 5.3. The set A constructed as above satisfies conditions Ci and Di for all i.

Proof. Each string of the form 08#i#z is eventually fixed in or out of A. Such a
string is fixed only after the acceptance or rejection of Mia(z) within s steps is deter-
mined, and is fixed according to that acceptance or rejection. Hence condition C holds
for all i.

Because pd(n) l+lgpa(n) o(2’), each value of d is eventually considered at some
stage k. The previous lemma ensures that condition Da is established following the com-
pletion of stage k.

Conditions C together imply that N1PA P1A, and hence N’P pA for all k
and m by Theorem 2.2. Conditions D together imply that La

Informally, Theorem 5.1 shows that large amounts of nondeterminism can be useful
even if small amounts are not. The reverse is also possiblea large amount of nonde-
terminism may be no more advantageous than a small amount.

THEOREM 5.4. There is an oracle B such that Pm NIP,B and NP NPfor
all

NONDETERMINISM WITHIN P 569

Proof. The proof depends in a small way on the definition of an oracle machine.
There are two possibilities to be considered. If the query tape is erased following a query,
define 6 0. If the query tape is not erased following a query, define i 1. Although
the relativized classes depend on the model used (see [5]), the necessary properties for
the present proof are captured by the value of .

Let {Mt,i}t,=l be an enumeration of nondeterministic oracle machines, and let
{T,i}t,-=l be an enumeration of deterministic oracle machines, such that both Mt,i and

T, are clocked to run for p,i(n) n logan + i steps. We construct B to meet the
following conditions:

1. Coding conditions. For all and i, for all sufficiently large z, Mst,i(z) accepts if and

only if there is a string y of length (1 + 61) log Ixl such that OP,’(ll)#l#i#x#y is in B.
2. Diagonalization conditions. For all l, the language

L, { x Iy lYl (1 + 61)loglxl A llZlxy E B }
is not accepted by T for any i.l,i

Condition 1 implies that NP c_ NP for all l, because log Izl bits of y can be
guessed nondeterministically, and if 1, the remaining log Ixl bits found by exhaus-
tive search in time O(n). (If a string is erased upon being queried, each query of a cod-
ing string requires Q(n) steps, and the search cannot be carried out deterministically.)
Condition 2 implies that L NPts P.

Let (., .) be a pairing function from positive integers to positive integers; e.g., let
</, i) (l + i + 21i 31 i + 2)/2. To start the construction, set k d b 1;
k is the stage number, d the current diagonalization condition, and b the barrier so that
diagonalizations do not overlap. Throughout, and will be determined by d (1, i).
Once again, at stage k, all strings of length k will be fixed in or out of B.

Stage k: If possible, pick an integer k such that b < k < k/t, pt,i(k) < klh-(1/d), and
k + + (1 + 6l) log] > k. If k exists, then a diagonalization condition can be satisfied.
Otherwise, continue immediately to the coding part of the stage.

To satisfy the diagonalization condition, simulate Td on input 1 i:. If Td queries a
string not yet fixed, fix that string to be out of B. (This may fix a coding string. See
below.) At the end of the simulation, ifT(1i:) accepts, fix all strings of the form
with lYl (1 + 61) log k to be out of B. IfT(li:) rejects, fix all remaining strings 1
with lYl (1 + 61) logk to be in B. Set b pt,() + 1, and increase dby one.

After the diagonalization condition is considered, satisfy the possible coding con-
ditions up to length k, as follows. For all unfixed strings z of length k having the form
OP",(ll)#m#j#x#y for some m, j, x, and y with [Yl (1 + dim) log Ixl, fix z in B if
BM,, (x) accepts and fix z out of B if MB, (x) rejects.
End ofstage k.
For each fixed l, i, and d, the conditions on/ are satisfied for infinitely many values

of k. Therefore, each diagonalization condition will eventually be satisfied, and Lt
Npn pB for all 1.

Coding strings may be fixed during diagonalization stages. However, for each fixed
rn and j, there is a bound on the size of x such that a coding string for M,,j(x) may
be fixed during a diagonalization. A given coding string for M,,j may be fixed out
of B during the diagonalization against at most one 7),, at some stage k. Since all
strings of length less than k are fixed before stage k, the stage number satisfies k <
[OP",(ll)#m#j#x#y[Q(lxlm). Note that k < clxlm+1/3 for some c and all suffi-
ciently long strings x. At most pt,i(])/k- strings of length k are fixed during the diag-

570 J. E BUSS AND J. GOLDSMITH

onalization. The conditions on k imply that pt,i(e)/k1-6 is bounded by kt+(:/a)k-: <
k6+(1/aO, which is less than Izl x/6" when d > 3m and z is sufficiently long. Since d
is nondecreasing and unbounded, each M,,j will be correctly coded for all but finitely
many x, and condition 1 will be satisfied.

Therefore, the oracle B meets the required conditions.
We expect that neither oracle A nor/3 represents the unrelativized case. The fol-

lowing result seems more likely.
THEOREM 5.5. There is an oracle C such that NP # NkPtC for all distinct pairs

(i, j) and (k, 1). Also pC Npc.
Proof. Each class NiPj satisfies the following conditions.
1. Let X be any oracle, and let A NPc. For each string x, to test if x A

requires only finite knowledge of X.
2. For all oracles X and Y that differ on only finitely many strings, NiPfc NiP.
3. For all oracles X, and for all sets A and/3 that differ on only finitely many strings,

A NP]c if and only if B NPc.
4. Let X be any oracle, and let machine M accept A in NiPc. Then there are an

oracle X* and machine M* running in NiPj such that

N’Pf N’pfc*
* M* with oracle X* accepts the language A, and
for all oracles Y and Z that differ on only finitely many strings, the language

accepted by M* with oracle Y differs from the language accepted by M with oracle
Z on at most finitely many strings.

Conditions 1, 2, and 3 are immediate. The oracle X* of condition 4 is simply X x N.
Machine M* acts as M except that a query s is replaced by (s, n>, where n is the length
of the input.

These properties permit the use of a result of Poizat [15].
LEMMA 5.6 (Poizat). Let S and 7" be two classes that satisfy conditions 1-4 above, with

the same mapping X X*. Suppose that there is an oracle X such that Sx 7"x. Then
Sa Ta for all generic sets G.

Hence one may reverse the order of quantifiers in the statement of the theorem.
LEMMA 5.7. Forall distinctpairs i, j) and k, 1), there is an oracle Csuch that NiP

ukptC.
Proof (sketch). If j l, the desired oracle is the set A of Theorem 5.1, because

pA pA. (An alternative proof may be obtained via a diagonalization using queries of

length nmx{,} on inputs of length n.)
Suppose j and i < k. For an oracle C, define Lc { x

xy C }. A standard diagonalization constructs a C such that Lc q PiC+y. Because
Lc E NkptC, the desired result follows.

The previous lemmas imply that NP NkPc for all generic oracles C. [:]

Theorems 5.1 and 5.4 indicate that mere equality or inequality among the classes
Nmpt is insufficient to determine whether P NP. It is consistent either that small
amounts of nondeterminism (m log n bits) are useful, but large amounts (polynomially
many bits) are no more useful, or that small amounts of nondeterminism are useless,
but large amounts are quite powerful. However, additional information about the com-
plexity of these classes, such as in the hypothesis of Theorem 2.3, can suffice to decide
P =? NP.

6. Conclusions and open problems. We have shown several problems to be com-
plete for quasilinear time with restricted nondeterminism. Satisfiability of topologically

NONDETERMINISM WITHIN P 571

ordered circuits with k log n inputs and ordered unravelling of Boolean formulas are
each complete for NkP1, and a problem concerning context-free grammars is complete
for N1P1. All of these complete problems require that the input be ordered appropri-
ately. The corresponding unordered problems remain hard for NkPI but do not appear
to be in any class below NkP2. If random-access machines were used as the underlying
model of computation instead of Turing machines, then the unordered problems would
be in quasilinear time, but the hardness proofs would fail, due to our inability to simulate
random access.

One motivation for this work, as yet unrealized, was to provide general lower bounds
for problems of "nearly feasible" complexity. Existing lower bounds usually apply to re-
stricted models of computation, such as one-tape Turing machines or constant-depth
circuits, or prove only very large lower bounds, as in the proofs of hardness for exponen-
tial time. A proof that some problem fi’ is hard for a particular P or NPk (k > 1) is a
general lower bound on the time complexity of problem S. Although S may already be
known to be in P, and thus be considered "feasible," such a hardness proof would give
concrete information about the practical complexity of S. The only results of this kind
known to the authors are for certain pebble games [3].

This paper leaves many questions unanswered. Although the most dramatic ques-
tion is whether the hypothesis of Theorem 2.3 holds, there are other, more approach-
able questions. There are several problems that are easily shown to be in Gurevich and
Shelah’s class NLT but are not known to be in QL. These include topological sort-
ing, and the problem of generalized Boolean formulas (shown to be NLT-complete
in [10]). Providing QL algorithms for these problems, or showing that none exist (i.e.,
that NLT QL), would give us important information about the power of random
access.

The fundamental question remains whether there are problems in P that can be
computed more quickly with limited nondeterminism than without it. For instance, can
one show a Q(n) deterministic lower bound for (k + 1)-clique, or for CSAT(k)?

Acknowledgments. The authors thank A. Klapper, N. Immerman, M. Groszek, A.
Peterson, W. L. Ruzzo, and A. Selman for useful discussions of this material.

REFERENCES

[1] K.R. ABRAHAMSON, J. A. ELLIS, M. R. FELLOWS, AND M. E./VIATA, On the complexity ofjdparameter
problems, in Proceedings of 30th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Washington, DC, 1989, pp. 210-215.

[2] Completenessfor Families ofFixed Parameter Problems, University of Victoria, Victoria, British
Columbia, Canada, Report DCS-141-IR, 1990.

[3] A. ADACHI, S. IWATA, AND T. KASAI, Some combinatorial game problems require f(nk) time, J. Assoc.
Comput. Mach., 31 (1984), pp. 361-376.

[4] C./tLVAREZ, J. DIAZ, AND J. TORAN, Complexity classes with complete problems between P and NP-
complete, in Proceedings of Foundations of Computation Theory, Lecture Notes in Computer Sci-
ence 380, Springer-Verlag, New York, 1989, pp. 13-24.

[5] J. E Buss, Relativized alternation and space-bounded computation, J. Comput. System Sci., 36 (1988), pp.
351-378.

[6] S.R. Buss, personal communication.
[7] S.A. COOK, Shortpropositionalformulas represent nondeterministic computations, Inform. Process. Lett.,

26 (1987/88), pp. 269-270.
[8] J. DLz AND J. TO, Classes ofbounded nondeterminism, Math. Systems Theory, 23 (1990), pp. 21-32.
[9] J.G. GESKE, On the Structure oflntractable Sets, Ph.D. thesis, Iowa State University, Ames, IA, 1987.

572 J. E BUSS AND J. GOLDSMITH

[10] Y. GUREVICI-I AND S. SHELAH, Nearly linear time, in Logic at Botik ’89, Lecture Notes in Computer
Science 363, A. R. Meyer and M. A. Taitslin, eds., Springer-Verlag, 1989, Berlin, New York, pp.
108-118.

[11] H. B. HUNT, III AND R. E. STEARNS, The complexity of very simple Boolean formulas with applications,
SIAM J. Comput., 19 (1990), pp. 44-70.

[12] R. KAYE, Characterizing some low complexity classes using theories ofarithmetic, M. Sc. thesis, University
of Manchester, Manchester, U.K., 1985.

[13] C. M. R. KINTALA AND P. C. FISCHER, Refining nondeterminism in relativized polynomial-time bounded
computations, SIAM J. Comput., 9 (1980), pp. 46-53.

14] N. PIPPENGER, Fast simulation ofcombinational logic circuits by machines without random-access storage,
in Proceedings of the Fifteenth Allerton Conference on Communication, Control, and Computing,
1977, pp. 25-33.

[15] B. POIZAT, Q A/’Q?, J. Symbolic Logic, 51 (1986), pp. 22-32.
[16] C. E ScI-rNORR, Satisfiability is quasilinear complete in NQL, J. Assoc. Comput. Mach., 25 (1978), pp.

136-145.
17] M.J. WOLF, Limited Nondeterminism in ParallelModels ofComputation, Ph.D. thesis, University of Wis-

consin, Madison, WI, 1990.

SIAM J. COMPLrE.
Vol. 22, No. 3, pp. 573-586, June 1993

() 1993 Society for Industrial and Applied Mathematics
OO8

PARALLEL COMPLEXITY OF THE CONNECTED SUBGRAPH PROBLEM*
LEFTERIS M. KIPOUSIS t, MAPdA SEINA, AND PAUL SPIRAKIS q

Abstract. This paper shows that the problem of testing whether a graph G contains an induced subgraph
of vertex (edge) connectivity at least k is P-complete for any fixed k >_ 3. Moreover, if mx is the largest
vertex (edge) connectivity of any subgraph of G, it is shown that unless P NC there is no NC algorithm that
approximates kmax within any approximation factor 1/2 < c < 1 (such an algorithm is by definition one that
outputs a number in the interval [Ckrnx, kmax]). In contrast, it is known that the problem of finding the Tutte
(triconnected) components of G (i.e., the maximal subgraphs of G such that for any four vertices in any of
them, any two of these vertices can be connected by a path in G that avoids the other two) is in NC. On the
positive side, it is shown, by proving extremal graph results, that the maximum k for which there is a k-edge-
connected induced subgraph of G can be approximated in NC for any approximation factor strictly less than
and that the same is true for vertex connectivity for any approximation factor strictly less than 1/4.
Key words, graphs, connectivity, connected subgraphs, parallel algorithms, algorithms in NC, P-complete

problems

AMS(MOS) subject classifications. 68Q15, 68Q20, 68Q25, 68R10, 05C40, 05C35

1. Introduction. The vertex (respectively, edge) connectivity of a graph is defined to
be the least number ofvertices (respectively, edges) that must be removed from the graph
in order to obtain a disconnected or trivial (i.e., with one vertex) graph. A graph G is
said to be k-vertex-connected (respectively, k-edge-connected) if its vertex (respectively,
edge) connectivity is at least k. We are interested here in the parallel complexity of test-
ing whether a graph has an induced subgraph of vertex (or edge) connectivity at least
k. We show these problems to be P-complete under logspace reductions for any fixed
k >_ 3. Our results imply that to test whether a k-block (a maximal, under inclusion,
induced subgraph that is k-vertex-connected) exists in a graph is P-complete. Matula
[1978] characterizes the k-blocks of a graph and argues that they are an interesting al-
ternative to cliques for graph-theory-based cluster analysis. Harary [1972] uses the term
n-connected components for n-blocks.

Agraph-theoretic notion similar to that ofthe 3-blocks is the notion ofthe Tutte com-
ponents. The Tutte components of a graph G are usually defined to be the subgraphs of
G obtained by a process of repetitively splitting the graph by using separation pairs of
vertices. However, they can also be defined to be the maximal induced subgraphs of G
that cannot be split apart by a pair of vertices, i.e., for any four vertices of the subgraph,
any two of them must be connected by a path in G that avoids the other two. Notice
that since the connecting path need not lie entirely in the subgraph, a Tutte component
may not be a 3-vertex-connected graph on its own, and therefore it may not be a 3-block.
For details see, e.g., Tutte [1966] or Hopcroft and Tarjan [1973]. The Tutte components
are also called triconnected components, but we avoid this terminology to avert confusion

Received by the editors August 8, 1990; accepted for publication (in revised form) March 19, 1992. This
research was done during the visit of the second author to Patras University, and it was partially supported
by a Spanish Research Scholarship, by the Ministry of Industry, Energy and Technology of Greece, and by
the ESPRIT II Basic Research Actions Program of the European Community under contract 3075 (project
ALCOM). A preliminary version of this paper was presented at the 30th Annual Symposium on Foundations
of Computer Science, held October 30-November 1, 1989, in Research Triangle Park, North Carolina. The
symposium was sponsored by the IEEE Technical Committee on Mathematical Foundations of Computing.

Department of Computer Engineering and Informatics, University of Patras, 26500 Rion, Greece.
*Computer Technology Institute, P.O. Box 1122, 261 10 Patras, Greece.
Polytechnic University of Catalonia, 08028, Barcelona, Spain.

lCourant Institute of Mathematical Sciences, New York University, New York, New York 10012.

573

574 KIROUSIS, SERNA, AND SPIRAKIS

with the term "3-connected components" ofHarary. In a possibly unexpected contrast to
3-blocks, the global characterization of Tutte components permits the construction of al-
gorithms in NC for locating them or for testing whether at least one nontrivial such com-
ponent exists (see, e.g., Miller and Ramachandran [1987] and the earlier works by Miller
and Reif [1985] and JaJa and Simon [1982]). Although the definition of k-blocks (and
3-blocks especially) as maximal k-vertex-connected subgraphs is traditional, the Tutte
components helped in characterizing planar graphs (see Bruno, Steiglitz, and Weinberg
[1970]); thus they received more attention in the computer science literature.

Since the testing of whether a graph G contains a k-block (or a k-edge-connected
maximal induced subgraph) is P-complete for k > 3, we lowered our sights and asked
for efficient approximations (in NC) of the optimization versions of these problems. The
optimization version is to find the maximum k for which there is a k-vertex-connected
(or k-edge-connected) subgraph of G. Approximating this maximum k within a factor
of c(c (0, 1)) is defined to mean computing a k’ such that ck < k’ < k. We prove
that unless P NC no such approximations exist in NC within a factor c for any c > 1/2,

for edgewhereas we provide approximations in NC within a factor c for any c <
connectivity and for any c < 1/4 for vertex connectivity. Our results increase the set of
combinatorial P-complete problems whose approximations exhibit a threshold behavior.
The first such problem, that of the high-degree subgraph, was posed by Anderson and
Mayr [1984]. The high-degree subgraph problem consists of finding the largest d for
which there is an induced subgraph S of G such that all nodes in S have degree >_ d
(with respect to S). Anderson and Mayr showed that approximating this maximum d
within a factor c < 1/2 is in NC, whereas it is not in NC for any factor c > 1/2 unless
P NC. To obtain the analogous results for connectivity, we prove an extremal graph
result that states that any graph with m edges and n vertices has an induced subgraph
of vertex (respectively, edge) connectivity at least equal to [(m + n)/2n] (respectively,
Lm/(n-1)J).

2. Parallel complexity of the vertex.connected subgraph problem.

2.1. Preliminaries. Let (G) denote the vertex connectivity of a graph G (V, E).
A separating set S of G is a vertex set S c_ V such that G S is disconnected or trivial.
A minimum separating set of G is a subset S c_ V such that ISI n(G). It is easy to see
(see also, Matula [1978]) the following.

LEMMA 1. Let S C_ V be a minimum separating set ofa noncomplete graph G, and let
{A, B} be a partition ofthe vertices ofG S into two nonempty sets so that anypathfrom
a vertex in A to a vertex in B contains a vertex in S. Thenfor any k > ISI the vertices ofany
k-block ofG are contained in exactly one ofthe sets A S or B t_J S.

Proof. Notice that if a k-blockK intersects both A and B, then K-S is disconnected.
Now since K S K (K fq S), we have that the connectivity of K is at most equal to
the cardinality of S, a contradiction, because K is k-connected. U

The k-vertex-connected subgraph (k-VCS) problem is the following: given a graph
G (V, E) and an integer k, does G contain an induced subgraph of vertex connectivity
at least k?

2.2. P-completeness of the k-vertex-connected subgraph problem.
THEOREM 1. The k-VCSproblem has time complexity that is apolynomialfunction of

GI and k.
Proof. By Lemma 1 the procedure Test (G, k) given below answers the k-VCS

problem.

CONNECTED SUBGRAPH PROBLEM 575

Procedure Test(G, k)
begin
if G is k-connected return "true"
else if G has < k vertices return "false"
else do

begin
find a minimum separating set S of G
let {A, B} be a partition of the vertices of G S such that

any path from a vertex in A to a vertex in/3 contains a vertex in S
return ((Test(A U S, k)) V (Test(B t_J S, k)))
end

end

Now let T(n, k) be the complexity of the above procedure (n is the number of ver-
tices of G). It is known (see, e.g., Even [1979]) that finding a minimum separating set
of a graph G is polynomial in n. Therefore for some polynomial p(n, k), T(n, k)
p(n,k) / T(IAI + k,k) + T(IBI + k,k) ifn > k, whereas T(n,k) 0(1) if n _< k.
Since IAI + IBI + k n, it follows that T(n, k) is polynomial.

THEOREM 2. For each k > 3 the k-VCSproblem is P-complete under logspace reduc-
tions.

Proof. We first prove the theorem for k 3. The P-complete problem that we use
for the reduction is the problem of computing the value of a Boolean circuit C with the
following properties:

C is monotone, i.e., the only gates in C are either OR or AND gates with in-
degree 2.

The out-degree of all gates and the input nodes is at most 2 (fan-out-2).
There is a single output node of degree 1.
There is at least one input with value 1.

The P-completeness ofthe above problem, known also as the monotone circuit value
problem, was originally proved by Goldschlager [1977] (in the original proof it is not as-
sumed that the fan-out is at most 2). For a proof of the P-completeness of the monotone,
fan-out-2 circuit value problem see, e.g., Gibbons and Rytter [1988]. Assume now that
C is as described above. For the reduction we generate a graph Gc as follows:

Each input node of the circuit C as well as its output node are replaced by a K2,2
graph, such as the one depicted in Fig. 1. We call the upper nodes of this gadget in-nodes
and the lower ones out-nodes.

Each OR gate of C is replaced by a copy of the graph depicted in Fig. 2. The four
upper nodes of this gadget are called in-nodes, whereas, the lower ones are called out-
nodes. The in-nodes are grouped in two pairs, each pair corresponding to an incoming
edge of this gate.

Each AND gate of C is replaced by a copy of the graph depicted in Fig. 3. Again,
the upper nodes are the in-nodes, whereas the lower ones are the out-nodes, and the
in-nodes are grouped in two pairs, each pair corresponding to the two incoming edges
of the gate.

An edge of the circuit connecting a gate (or input node) a to another gate (or
output node) b is replaced by two parallel edges connecting the pair of out-nodes of
the gadget that replaced a to one of the pairs of in-nodes of the gadget that replaced b
(see Fig. 4). Different incoming edges to the same gate use different pairs of in-nodes,
whereas different outgoing edges from the same gate use the same pair of out-nodes.

576 KIROUSIS, SERNA, AND SPIRAKIS

n-nodes

out-nodes

FIG. 1

in-nodes of x

FIG. 2

out-nodes of

Besides the above modifications, a new node Vnew is added as part of Go, and this
node is connected to the out-nodes of the gadget that replaced the output node ofC and
to all in-nodes of the gadgets that replaced those inputs of C that had value 1.

Notice that by the above construction an in-node in Gc has only one incoming edge,
whereas an out-node, since the fan-out is at most 2, may have at most two outgoing
edges (see Fig. 5). See Fig. 6 for an example of such a construction. It is not difficult
to prove that the transformation of C described above can be carried out in logspace in
the number of nodes of the graph. Indeed, it suffices to note that the transformation is
a local one, i.e., at worst only the present node need be kept in the memory.

To prove now that the output of C is 1 if and only if Gc has a subgraph of vertex
connectivity 3, we define an elimination process: Given a graph G, erase all nodes of

CONNECTED SUBGRAPH PROBLEM 577

in-nodes of y
in-nodes of x

out-nodes of z

J
11)

FIG. 3

a

becomes

out-m)(l(,s of

in-nodes of

FIG. 4

degree <3 and their incident edges, and repeat this procedure for the new graph thus
obtained until the graph contains either only nodes of degree > 3 or no nodes at all.
Then the following claims are true.

CLAIM 1. Given a graph G, ifby application ofthe eliminationprocess the wholegraph
disappears, then G does not contain a 3-connected induced subgraph.

578 KIROUSIS, SERNA, AND SPIRAKIS

becornes

out-nodes of a

in-nodes of in-nodes of

Fo. 5

x y z

becomes

output

(x V y) A z, x false, y true,

Y

FIG. 6

CONNECTED SUBGRAPH PROBLEM 579

The claim immediately follows from the fact that no 3-connected subgraph contains
a node with degree <3.

CLAIM 2. Ifthe output ofthe monotonefan-out-2 circuit C is O, then the whole graph
Gc is eliminated by the elimination process; hence in this case Gc does not contain a 3-
vertex-connected subgraph.

Proofof Claim 2. Because vnew is connected only with the in-nodes of gadgets re-
placing input nodes with value 1, the in-nodes of gadgets replacing inputs of value 0 are
eliminated by the elimination process. As a consequence, and since the fan-out is at
most 2, the out-nodes of these gadgets are eliminated as well. Now, because of the way
the AND and OR gadgets were constructed and by an easy induction on the longest dis-
tance of a gate from an input node, it follows that also all nodes ofgadgets corresponding
to value-0 gates are eliminated. Hence the output gadget is eliminated. To show now
that nodes of gadgets corresponding to a value-1 gate a are eliminated, we use induction
on he longest path that starts from a and ends at an immediate predecessor either of a
value-0 gate or of the output and contains exclusively value-1 gates. Similarly, we show
that nodes corresponding to gadgets of inputs with value 1 are eliminated. Therefore,
Vne, and hence the whole graph is eliminated. This proves Claim 2.

CLAIM 3. Ifthe output ofC is 1, then Gc contains a 3-connected subgraph.
Proofof Claim 3. Let G’c be the subgraph of Gc induced by the set of nodes con-

taining
The node ’/]new;
All nodes in paths that start from an in-node of a gadget corresponding to an

input with value 1 and end at an out-node of the output gadget and pass through nodes
of gadgets of 1-result gates only.

The graph G is 3-connected. Indeed, if any two nodes different from Vnew are
subtracted from G’c, any two remaining nodes can be connected through Vne,. If, on
the other hand, Vnw together with one more node are subtracted from Gc, any two
remaining nodes can still be connected by establishing a path through the gadgets that
avoids the single subtracted node. This completes the proof of Claim 3 and the proof of
Theorem 2 for the case k 3.

For the case k > 3 the same proof works except that we have to modify the gadgets
so that all copies of K, (even those that appear as parts of the gadgets of AND and
OR gates) are replaced by copies of K_x,_ and all pairs of parallel edges (either
appearing inside the gadgets or replacing edges of the circuit C) are replaced by a set of
k- i parallel edges.

2.3. Approximations to the vertex-connected subgraph problem. The optimization
version of k-VCS asks, What is the maximum k such that there is an induced subgraph of
vertex connectivity k? Let max-VCS(G) denote this largest k. An approximate solution
to this problem is to find a k’ such that

max-VCS(C) >_ k’>_ c(max-VCS(C))

for some fixed c < 1. It will be shown that this approximation problem cannot be solved
in NC for c > 1/2 unless P NC. However, max-VCS(G) can be approximated in NC
for c < 1/4. To show this we first prove an extremal graph result (Theorem 3 below). Of
course, since by Theorem 1 the k-VCS(G) problem can be answered in time polynomial
with respect to IGI and k, computing max-VCS(G) is polynomial in

THEOREM 3. Ifa graph has n vertices and m edges (m 0), then it has an induced
subgraph that is [(m + n)/2n]-vertex-connected.

580 KIROUSIS, SERNA, AND SPIRAKIS

It suffices to apply the following lemma for p Lm/nJ and to observe that

f(Lm/nJ + r((mln) + 1)/21.

LEMMA 2. Let G be a graph with n vertices and m edges, where n > 2. For any integer
p, if

p(n-(p+l)/2)<_m and O<p<n,

then G has an induced subgraph that is (p + 1)/2J-vertex connected.
Proof. The proof is by induction on the number of vertices. The induction basis

(n 2) is trivial to check. As the inductive hypothesis now, suppose that the lemma
is true for graphs with < n vertices, where n > 2. We will now prove the result for a
graph G with n vertices. Observe first that if p n 1, then by the first inequality in
the hypothesis the graph is complete; therefore, the required follows immediately. So
we may assume that p < n 1. Suppose first that G has minimum degree at most p. In
this case let G’ be the graph obtained from G by deleting a vertex with minimum degree.
Becausep < n- 1, the second inequality in the statement of the lemma is satisfied for G’.
To show that the first inequality is also satisfied, observe that for G’ the right-hand side
of the inequality is equal to m decreased by the degree of the deleted vertex, whereas its
left-hand side is reduced by p. The required follows because we have assumed that the
minimum degree of G is at most p.

Suppose now that the minimum degree of G is >p. Let S be a minimum separating
set of G, and let {A, A} be a partition of the vertices of G S in two sets so that no
vertex in Ax is connected to a vertex in A by a path that avoids the vertices in S. Let n
(respectively, mi) be the number of vertices (respectively, edges) of the graph induced
by the vertices in Ai t2 S. Also, let ns (respectively, ms) be the number of vertices
(respectively, edges) of the graph induced by S. Since G has minimum degree > p, it
follows that p < n for i 1, 2. Therefore, by the induction hypothesis and by the first
inequality in the statement of the lemma it follows that for i 1, 2 either A U S has a
r(p + 1)/2J-vertex-connected subgraph or p(ni (p + 1)/2) > mi. Since a [(p + 1)/2J-
vertex-connected subgraph ofA t_J S is also a [(p + 1)/2J-vertex-connected subgraph of
G, we may assume that

(1) p(ni (p +1)12) > m fori=l,2.

Now taking into account that

and that

nl +n2=n+ns

ml Jr- m2 m + ms,

and summing up the inequalities (1), we obtain

p(n + ns (p + 1)) > m + ms.

Subtracting from this last inequality the inequality p(n (p + 1)/2) < m given by the
hypothesis, we obtain

ns >_ ms p + 1
p 2

CONNECTED SUBGRAPH PROBLEM 581

from which it follows that the minimum separating set of G has cardinality >(p + 1)/2
and hence that G itself is at least (p + 1)/2J-vertex-connected. [3

THEOREM 4. For any c < 1/4 an approximation ofmax-VCS(G) can be found in NC
with approximation factor

Proof. We first define a routine Test(k) that returns an answer that is either "the
graph has no subgraph ofvertex connectivity >k" or "the graph has a subgraph ofvertex
connectivity [ck] ." The routine Test(k) discards all vertices of degree <k from the graph
until either the graph is empty of fewer than (1 4c)n’ vertices have degree <k, where n’
is the number of vertices currently in the graph. It is easy to check that this routine can
be implemented on an Exclusive Read Exclusive Write (EREW) parallel random-access
machine (PRAM) with n processors in O(log2 n) time (n is the number of nodes origi-
nally in the graph). Indeed, since a constant fraction of the existing vertices is deleted
at each phase, there are O(log n) deletion phases. Each such phase requires O(log n)
time to compute the fraction of the vertices with degree <k. Observe, however, that the
O(log2 n) complexity function depends on c.

Now if the routine stops with an empty graph, then G cannot have a subgraph of
vertex connectivity at least k. If, on the other hand, Test(k) stops with n’ vertices, where
n’ # 0, then at least 4cn’ of these vertices have degree >k, and therefore the remaining
graph will have at least 2ckn’ edges. Therefore, by Theorem 3, G will have a subgraph
of vertex connectivity at least [ck + 1/2] > [ck].

By now applying Test(k) in parallel for all k 1,..., n, a k0 will be found such that
G has no subgraph of connectivity >k0 but has a subgraph of connectivity at least [cko].
Therefore,

k0 > max-VCS(G) and [ck0] < max-VCS(G).

It suffices now to choose as an approximation to max-VCS(G) the number [cko]. The
approximation factor then is c, and the complexity of the algorithm depends on it. [3

THEOREM 5. If P : NC, then max-VCS(G) cannot be approximated in NC by any
factor c > .

Proof. Suppose, towards a contradiction, that such an approximation exists for a

c>.1 Given any k _> 2, we will provide a logspace transformation that transforms a
monotone Boolean circuit C satisfying the restrictions described in the proof of Theo-
rem 2 to a graph Gc such that max-VCS(Gc) 2k if the output of C’ is 1 and max-

VCS(Gc) k + 1 if the output of C’ is 0. Then it is easy to see that if we choose k so
that k + 1 < 2ck, we could decide in NC the output of C, a contradiction. To make the
figures simpler, we give the transformation only for the case k 3. To generalize the
result to arbitrary k > 2, we substitute into Figs. 7-10 each group of three vertices with
a group of k vertices and, moreover, we add the necessary edges so as to have the same
type of connection between two groups ofvertices. Also, in Fig. 9 not only do we change
the cardinality of each group of vertices but we also make the number of groups equal
to k.

The graph Gc is generated according to the following rules:
Each input node of (7 and the output node of (7 are replaced by 3 (k in the general

case) nodes totally disconnected from one another (Fig. 7).

FIG. 7

582 KIROUSIS, SERNA, AND SPIRAKIS

FG. 8

FIG. 9

Each OR gate of (7 is replaced by a copy of the graph depicted in Fig. 8. The
upper nodes of this gadget are called in-nodes and are divided into two groups, each
corresponding to an incoming edge. The lower nodes are called out-nodes.

Each AND gate is replaced by a copy of the graph depicted in Fig. 9. Adding
more (or fewer) layers to this graph, we can generalize to an arbitrary k.

The fanning out of the value of a gate (or an input node) to (at most 2) other gates
(or the output node) is accomplished by using the fan-out gadget depicted in Fig. 10. The
nodes al, a2, a3 of this gadget are the out-nodes of the gadget corresponding to gate a,
whose value must be fanned out to gates b and c, respectively. On the other hand, nodes
bl, b2, ba and c, c2, ca are the in-nodes of the gadgets of b and c, respectively. Notice
that by using more (or fewer) layers in this fan-out gadget, we could have implemented
fan-out greater than 2 (less than 2, respectively). See also Anderson and Mayr [1984].

CONNECTED SUBGRAPH PROBLEM 583

al

a2 C2

3

b b b3

FIG. 10

Finally, the nodes of the gadget corresponding to the output node of C are con-
nected to the nodes of all value-1 input nodes of C by means of a multilayered fan-out
gadget as described above.

Notice that thus every vertex in a group of out-nodes is connected by 4 (k + 1 in the
general case) edges to the nodes of the gadget leading to the corresponding in-nodes.
Also, every vertex in a group of in-nodes is connected to the gadget leading to corre-
sponding out-nodes with 3 or 4 (k or k + 1 in the general case) edges.

Now it is not difficult to see that if all nodes of degree <6 (<2k in the general case)
are removed by an elimination process as described in the proof of Theorem 2, then
all nodes of gadgets corresponding to nodes of C with value 0 will be removed. This is
so because by construction the out-nodes of an OR gate are removed if and only if the
vertices of both its groups of in-nodes are removed. Similarly, the vertices of a group of
out-nodes of an AND gate are removed if and only if the vertices of at least one group
of in-nodes are removed. Finally, the nodes of an input are removed if and only if either
the input has value 0 or it has the value 1 and the output nodes are removed (this is so
because only value-1 input nodes are connected to the output nodes).

Also, from the above we conclude that in case the output of C is 1, the nodes corre-
sponding to gadgets ofvalue 1 will remain. Actually, in this case the remaining graph will
have vertex connectivity 6. Moreover, if all nodes of degree <6 are removed, everything
is removed. This shows that if the output of C is 1, then max-VCS(Gc) 6.

In case the output of C is 0, the removal of all gates of degree <4 (<(k + 1) in the
general case) leaves nothing on the graph, whereas, since we have assumed that there is
at least one input with value 1, there is a subgraph of Gc with vertex connectivity 4. This
shows that if the output of C is 0, then max-VCS(Gc) 4. [q

3. Parallel complexity of the edge-connected subgraph problem.

3.1. Preliminaries. Let A(G) denote the edge connectivity of a graph G (V, E).
An edge separating set F of G is an edge-set F c_ E such that G F is disconnected or
trivial. An l-edge-block of G is a maximal, under inclusion, subgraph of G that is/-edge-
connected. Aminimum edge separating set of G is an edge separating subset F c_ E such
that IFI A(G). By a proof completely analogous to that of Lemma 1 we can show the
following.

584 KIROUSIS, SERNA, AND SPIRAKIS

LEMMA 3. Let F C_ E be an edge separating set of a graph G, and let {A, B} be a
partition ofthe vertices ofG into two sets so that anypath from a vertex in A to a vertex in
B contains an edge in F. Then for any > IF[the vertices of any 1-edge-block of G are
contained in exactly one ofthe sets A or B.

The/-edge-connected subgraph (1-ECS) problem is the following: given a graph
G (V, E) and an integer 1, does G contain an induced subgraph of edge connectivity
at least 17

3.2. P-completeness of/-edge-connected subgraph problem.
THEOREM 6. The 1-ECSproblem has time complexity that is a polynomialfunction of

[G[and 1.
Proof. By Lemma 3 the procedure Test(G, l) given below answers the/-ECS prob-

lem.

Procedure Test(G, l)
begin
if G is/-edge-connected return "true"
else if G has <l edges return "false"
else do

begin
find a minimum edge separating set F of G
let {A, B} be a partition of the vertices of G such that

any path from a vertex in A to a vertex in B contains an edge in F,
and let GA(G) be the graphs induced by A (respectively, B)

return ((Test(GA, 1)) V (Test(GB, l)))
end

end

Now let T(n, l) be the complexity ofthe above procedure (n in the number ofvertices
of G). It is known (see, e.g., Even [1979]) that finding a minimum edge separating set of
a graph G is polynomial in n. Therefore, for some polynomial p(n, l)

T(n, l) p(n, l) + T(IAI, Z) + T(IB[, 1).

Since [A[/]B[n, it follows that T(n, l) is polynomial.
THEOREM 7. For each > 3 the/-ECS problem is P-complete under logspace reduc-

tions.

Proof. A proof completely analogous to the proof of Theorem 2 is sufficient for the
following two reasons: (i) A graph containing a node with degree <l cannot be/-edge-
connected, and (ii) any/-vertex-connected subgraph is also/-edge-connected.

3.3. Approximations to the edge-connected subgraph problem. The optimization
version of/-ECS asks, What is the maximum such that there is an induced subgraph
of edge connectivity l? Let max-ECS(G) denote this largest I. As in the case of vertex
connectivity, an approximate solution to this problem is to find an l’ such that

max-ECS(C) >_ l’>_ c(max-ECS(C))

for some fixed c < 1. It will be shown that this approximation problem cannot be solved
in NC for c > 1/2 unless P NC. However, max-ECS(G) can be approximated in NC

To show this we first prove an extremal graph result (Theorem 8 below). Offorc< 5.
course, since by Theorem 6 the/-ECS(G) problem can be answered in time polynomial
with respect to [GI and l, computing max-ECS(G) is polynomial in

CONNECTED SUBGRAPH PROBLEM 585

THEOREM 8. Ira graph has n vertices and m edges (n > 1), then it has an induced
subgraph that is [m/(n 1)J-edge-connected.

The above theorem follows from the following lemma.
LEMMA 4. Let G be a graph with n vertices and m edges (n > 2). For any integer p if

pn < m + p, then G has an induced p-edge-connected subgraph.
Proof. The proof is by induction on the number of edges. Assume without loss of

generality that A(G) < p, and let F be a minimum edge separating set (IFI A(G)). Also
let {A,A} be a partition of the set ofvertices ofG in two sets so that no vertex in A1 is
connected to a vertex in A by a path that avoids the edges in F, and let n (respectively,
mi) be the number ofvertices (respectively, edges) ofthe subgraphs induced by A. Then
nl + n2 n and ml + m2 + A(G) > m. Now ifpnl< ml + A(G), then pnl < ml + p
and the result follows from the induction hypothesis. So assume that/m > m + $(G).
Then m2 > m (m + ,(G)) > m pn; therefore, m2 > m p(n n2), and so

P2 < m2 +pn-m < m2 +p.

From the last inequality the required follows by the induction hypothesis.
THEOREM 9. For any c < 1/2 an approximation of max-ECS(G) can be found in NC

with approximation factor
Proof. As in the case ofvertex connectivity, we define a routine Test(l) that returns an

answer that is either "the graph has no subgraph of edge connectivity >l" or "the graph
has a subgraph of edge connectivity [clJ." The routine Test(l) discards all vertices of
degree <l from the graph until either the graph is empty of fewer than (1 2c)n’ vertices
have degree <l, where n’ is the number ofvertices currently in the graph. Analogously to
the case of vertex connectivity, it is easy to check that this routine can be implemented
on an EREW PRAM with n processors in O(log2 n) time (n is the number of nodes
originally in the graph). If the routine stops with an empty graph, then G cannot have
a subgraph of edge connectivity at least 1. If, on the other hand, Test(l) stops with n’
vertices, where n’ 0, then at least 2cn’ of these vertices have degree >l and therefore
the remaining graph will have at least cln’ edges. Therefore, by Theorem 8, G will have
a subgraph of edge connectivity at least [cln’/(n’ 1)J > c/J.

Now by applying Test(l) in parallel for all 1,..., m, an l0 will be found such that
G has no subgraph of edge connectivity </0 but has a subgraph of edge connectivity at
least [c/0J. Therefore,

lo >_ max-ECS(G) and / z0J max-ECS(G).

It suffices now to choose as an approximation to max-ECS(G) the number [c/0]. The
approximation factor is then c, and the complexity of the algorithm depends on it.

THEOREM 10. If P g: NC, then max-ECS(G) cannot be approximated in NC by any
factor c > -.

Proof. For reasons that were outlined in the proof of Theorem 7, it turns out that a
proof completely analogous to the proof of Theorem 5 works for this case as well. U

4. Discussion. We showed that the problem of approximating the largest for which
there is an/-edge-connected subgraph of a given graph is a problem that exhibits a
threshold: for approximation factors strictly less than 1/2 the problem is in NC, whereas

it is P-complete. The case where thefor approximation factors strictly greater than 7
approximation factor is equal to 1/2 is an open problem.

The situation is as follows for the corresponding problem for vertex connectivity:
we have shown that the problem is P-complete for approximation factors strictly greater

586 KIROUSIS, SERNA, AND SPIRAKIS

than 1/2, whereas we have given an NC algorithm only for factors strictly less than 1/4. We
conjecture that for factors as great as (but not including) 1/2, the approximation is in NC.
This is so because we believe that Lemma 2 could be improved to cover these factors as
well.

However, we believe it is improbable that the same techniques would yield an NC
algorithm for the case in which the approximation factor is equal to 1/2. This is so because
then by continuity arguments we could find an NC algorithm for factors infinitesimally
greater than 1/2, thus contradicting the P-completeness result.

Acknowledgments. We wish to thank H. Jung, C. Papadimitriou, V. Ramachandran,
J. Reif, and M. Yannakakis for their prompt feedback on preliminary work on the paral-
lel complexity of the vertex-connected subgraph problem. Also, we thank the referees,
whose remarks helped considerably in improving the paper.

REFERENCES

[1] R. ANDERSON AND E. W. MAYR [1984],A P-complete problem and approximations to it, Tech. Rep., De-
partment of Computer Science, Stanford University, Stanford, CA.

[2] J. BRUNO, K. STEIGLITZ, AND L. WEINBERG [1970], A new planarity test based on 3-connectivity, IEEE
Trans. Circuit Theory, 17, pp. 197-206.

[3] S. EVEN [1979], Graph Algorithms, Computer Science Press, New York.
[4] A. GIaBONS AND W. RYTIR [1988], Efficient Parallel Algorithms, Cambridge University Press, Cam-

bridge, England.
[5] L. GOLDSCHLAGER [1977], The monotone andplanar circuit valueproblems are log space completefor P,

SIGACT News, 9 (2), pp. 25-29.
[6] E HARARY [1972], Graph Theory, Addison-Wesley, Reading, MA.
[7] J.E. HO’CROFrAND R. E. TARJAN [1973], Dividing a graph into triconnected components, SIAM J. Com-

put., 2, pp. 135-158.
[8] J. JAJA AND J. SIMON [1982], Parallel algorithms in graph theory: Planarity testing, SIAM J. Comput., 11,

pp. 314--328.
[9] D.W. MATULA [1978], k-blocks and ultrablocks in graphs, J. Combin. Theory Ser. B, 24, pp. 1-13.
10] G.L. MILLERAND V. RAMACHADRAN 1987],A newgraph triconnectivity algorithm and itsparallelization,

Proc. 19th AnnualACM Symposium on Theory of Computing, ACM Press, New York, pp. 335-349.
[11] G.L. MILLERAND J. REeF [1985], Parallel tree contraction and its applications, in Proc. 26th IEEE Annual

Symposium on Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos,
CA, pp. 478-489.

[12] W.T. TtyrrE [1966], Connectivity in Graphs, University of Toronto Press, Toronto, Canada.

SIAIVI J. COMPUT.
Vol. 22, No. 3, pp. 587-616, June 1993

() 1993 Society for Industrial and Applied Mathematics
OO9

FINDING TRICONNECTED COMPONENTS BY LOCAL REPLACEMENT*
DONALD FUSSELLt, VIJAYA I:tAMACHANDRAN,

AND RAMAKRISHNA THURIMELLA

Abstract. A parallel algorithm for finding triconnected components on a CRCW PRAM is presented.
The time complexity of the algorithm is O(log n), and the processor-time product is O((m + n) log log n),
where n is the number of vertices and m is the number of edges of the input graph. The algorithm, like other
parallel algorithms for this problem, is based on open ear decomposition, but it uses a new technique, local
replacement, to improve the complexity. Only the need to use the subroutines for connected components
and integer sorting, for which no optimal parallel algorithm that runs in O(log n) time is known, prevents the
algorithm from achieving optimality.

Key words, parallel algorithm, triconnectivity, PRAM, graph, vertex connectivity

AMS(MOS) subject classifications. 05C40, 68Q22, 90B12

1. Introduction. A connected graph G (V, E) is k-vertex connected if it has at
least (k + 1) vertices and removal of any (k- 1) vertices leaves the graph connected. De-
signing efficient algorithms for determining the connectivity of graphs has been a subject
of great interest in the last two decades. Applications of graph connectivity to problems
in computer science are numerous. Network reliability is one application: algorithms for
edge and vertex connectivity can be used to check the robustness of a network against
link and node failures, respectively. In spite of all the attention this subject has received,
O(m + n)-time sequential algorithms for testing k-edge and k-vertex connectivity of an
n-node, m-vertex graph are known only for k < 3 [5], [11]. Recently, Gabow has devised
a very nice algorithm for edge connectivity. His algorithm, unlike previous algorithms
for connectivity, does not appeal to Menger’s theorem. It runs in O(km log(n2/m)) time
[9]. The algorithms for vertex connectivity for 3 < k _< x/ currently require O(k2nz)
time [2], [13], [19].

The subject of this paper is the parallel complexity of 3-vertex connectivity. The im-
portance of 3-vertex connectivity stems from the face that if a planar graph is 3-vertex
connected (triconnected), then it has a unique embedding on a sphere. Hence an effi-
cient algorithm that divides a graph into triconnected components is sometimes useful
as a subroutine in problems such as planarity testing and planar graph isomorphism.

We present in this paper an algorithm, based on open ear decomposition, for divid-
ing a biconnected graph into triconnected components. The model of computation used
in this paper is a concurrent-read-concurrent-write (CRCW) parallel random-access ma-
chine (PRAM) in which write conflicts are resolved arbitrarily (the arbitrary-CRCW
PRAM model). See [14] for a discussion on the PRAM model. Our algorithm runs

Received by the editors March 15, 1990; accepted for publication (in revised form) March 6, 1992. A
preliminaryversion ofthis paperwas presented at the 16th International Colloquium on Automata, Languages,
and Programming, Stresa, Italy, July 1989; cf. [8].

tDepartment of Computer Sciences, University of Texas, Austin, Texas 78712. The work of this author
was supported by the Office of Naval Research under contracts N00014-86-K-0763 and N00014-86-K-0597.

$Department of Computer Sciences, University of Texas, Austin, Texas 78712. The work of this authorwas
supported in part by the Joint Services Electronics Program under contract N00014-85-C-0149 at the Coordi-
nated Science Laboratory, University of Illinois, Urbana, Illinois 61801, and by National Science Foundation
contract CCR 89-10707.

Department of Mathematics and Computer Science, University of Denver, Denver, Colorado 80208.
The work of this author was supported in part by Office of Naval Research contracts N00014-86-K-0763 and
N00014-86-K-0597. This work was done while the author was with the University of Texas at Austin.

587

588 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

in O(log n) time performing at most O((m + n) log log n) work, where m and n are the
number of edges and the number of vertices of the input graph, respectively.

The first optimal sequential triconnected component algorithm (based on depth-first
search (DFS)) was given by Hopcroft and Tarjan in 1973 [11]. Several parallel algorithms
(e.g., [12], [16]) have been developed since then for addressing the triconnected compo-
nent problem by using techniques other than DFS since the question of finding a DFS
spanning tree efficiently in parallel remains one of the major open problems in the area
of parallel algorithm design. The algorithms in [12] and [16] use parallel matrix multipli-
cation as a subroutine; hence their processor complexity is far from optimal. Significant
progress has been made in recent years: first, Miller and Ramachandran [18] derived
an O(log2 n) parallel algorithm; later, Ramachandran and Vishkin [21] derived an algo-
rithm with O(log n) parallel time for the more restricted problem of finding separating
pairs. A drawback with both of these algorithms is that the work performed by them in
the worst case is a O(log2 n) factor off the optimal. Independent of [18] and [21], Fussell
and Thurimella [7] came up with a parallel algorithm for finding separating pairs whose
time complexity is O(log n) while the work performed is only a O(log n) factor off the op-
timal; detecting separating pairs forms the central part of any triconnected component
algorithm.

The chief method used by [18] and [21] can be broadly classified as divide-and-
conquer. Additional complexity improvements are unlikely with this approach because
of the end-node sharing problem: the difficulty arising from two or more ears sharing
an end vertex. A novel technique known as local replacement was introduced in [7] as a
method for obtaining efficient parallel reductions.

Using the local replacement technique and building on the algorithm in [7], we ob-
tain an algorithm for triconnected components. A new linear-time sequential algorithm,
an alternative to the algorithm of Hopcroft and Tarjan, for finding triconnected compo-
nents can be easily extracted from our paper. We remark that a different presentation
of the results of this paper is available in [20].

2. Preliminaries. Let V(G) and E(G) stand, respectively, for the vertex set and the
edge set of a graph G. Assume that IV(G)I n and IE(G)I m. We denote an edge
between z and y as (z, y) or simply zy. A connected graph G is k-vertex connected if
IV(G)I > k and at least k vertices must be removed to disconnect the graph. A bicon-
nected graph (or a block) is a 2-vertex connected graph. A pair of vertices {z, y} of a
biconnected graph is a separatingpair if the number of components of the subgraph in-
duced by V(G) {z, y} is more than one. An ear decomposition starting with a vertex
P0 of an undirected graph G is a partition of E(G) into an ordered collection of edge
disjoint simple paths P0, P1,..., Pk such that Px is a simple cycle starting and ending at
P0, and for Pi, 1 < i < k, each end vertex is contained in some Pj for some j < i and
no internal vertex of Pi is contained in any P, j < i. Each of these paths P is an ear. Po
is called the root of the decomposition and is referred to as r. If the two end vertices of
a path Pi do.not coincide, then Pi is an open ear. In an open ear decomposition every ear
Pi, 1 < i < k, is open.

THEOREM 2.1 (Whitney [26]). A graph has an open ear decomposition ifand only if
it is biconnected.

From the above theorem we can conclude that the subgraph induced by the vertices
of the ears of Po, P,..., Pi for all i, 1 < i < k, is biconnected.

An ear is a nontvial ear if it consists of more than one edge; otherwise, it is a trivial
ear. For an ear P and two vertices x and y of P, P[x, y] (respectively, P(x, y)) denotes
the segment of P that is between x and y, inclusive (respectively, exclusive) of x and y.

PARALLEL TRICONNECqIVITY 589

The segments P(z, y] and P[x, y) ofP are defined similarly. Avertex is internal to an ear
if it is not one of the end vertices of that ear. For two vertices v and w on P, P Ply, w]
refers to the segment(s) of P formed by V(P) V(P[v, w]).

Because an ear decomposition is a partition on the edge set of a graph, each edge
(v, w) belongs to a unique ear (denoted by ear(vw)). Notice that, except for the root,
each v is internal to exactly one ear; call it ear(v). Refer to Fig. 1 for an example of a
biconnected graph and an open ear decomposition for it. The following definition labels
each vertex v depending on theposition of v on ear(v).

b e

k ? P2 c pddk k

(i) (ii)

FIG. 1. (i) A biconnected graph G with 14 vertices and 21 edges. (ii) Its open ear decomposition, where
Po (r), Px (r,a,b,c,d,e,r), P2 (a,f,i,g,c), P3 (f,l,m,g), P4 (g,h,j,k,e), P5 (h,k),
P6 (d, k), P7 (l, g), and P8 (g, j).

Starting with an arbitrary end vertex p of P, define the position ofp on P, pos(p, P),
to be zero. For every vertex v of P, v r, the position of v on P, pos(v, P) is equal
to the number of edges between p and v on P. When a vertex v is an internal vertex
of P, we omit the second argument and simply write pos(v). The value of pos(z, P) for
x q V(P) is undefined. Some example pos values for the graph of Fig. 1 are pos(9)
pos(a, 2) :3, pos(d, 6) 0, pos(r, 1) 0, pos(4, e) 4, and pos(1,j) is undefined. For
a pair ofvertices u, v of P, u is to the left (respectively, right) of v ifpos(u, P) < pos(v, P)
(respectively, pos(u, P) > pos(v, P)). The vertex ofP that has no vertices ofP to its left
(respectively, right) is called the left end vertex ofP (respectively, right end vertex of P).

For the sake of completeness we include the definition of bridges. Let G (V, E)
be a biconnected graph, and let Q be a subgraph of G. We define the bridges ofQ in G as
follows (see, e.g., [5, p. 148]): Let V’ be the vertices in G Q, and consider the partition
of V’ into classes such that two vertices are in the same class if and only if there is a path
connecting them that does not use any vertex of Q. Each such class K defines a nontrivial
bridge B (VB, PB) of Q, where B is the subgraph of G with VB K U {vertices of Q
that are connected by an edge to a vertex in K} and PB contains the edges of G incident
on a vertex in K. The vertices of Q that are connected by an edge to a vertex in K are
called the attachments of B, and these edges are called the attachment edges of B. An
edge (u, v) in G Q with both u and v in Q is a trivial bridge of Q with attachments u and
v. The trivial and nontrivial bridges together constitute the bridges of Q.

Remark. Throughout the paper we will address only how to detect pairs where r, the
root of an ear decomposition, does not belong to {x, y}. The pairs in which one of the
vertices is r can be detected as a special case by finding the articulation vertices of the
graph induced by V(G) {r} within the claimed resource bounds.

590 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

LEMMA 2.2. /of {x, y} is a separating pair of a graph G, then there exists a nontrivial
ear P in any open ear decomposition of G such that {z, y} is a pair of nonadjacent
vertices on P.

Proof. Let C be a connected component induced by V(G) {x, y} such that r
V(C). Then P is the minimum{ear(v)lv V(C)} since {x,y} separates r from v
P P(x, y).

DEFINITION 1. An ear P is separated by {x, y} if x and y are nonadjacent vertices of
P and P(x, y) is separated from the lower-numbered ears in G {x, y}.

Notice that the number of ears separated by a pair of vertices {x, y} is one fewer
than the number of connected components of G {x, y}. The location of separating
pairs on an ear P can be stated precisely in terms of the attachments of the bridges of P.

THEOREM 2.. {x, y} is a separating pair that separates ear P if and only if (i) there
exists a nonial ear P containing x and y as nonadjacent ertices, (ii) the bridge B ofP
in G that contains r has no attachments on P(x, y), and (iii)]’or all other bidges B ofP in
G, ifB has an attachment on P(x, y), then all attachments ofB are on P[x, y].

Proof. (==) Let P be an ear separated by {x, y}. Assume, for contradiction, that the
forward implication is not true. From Definition I we know that x and y are not adjacent
on P. For P either B has an attachment P(x, y) or there is a B with one attachment on
P(x, y) and one on P P[x, y]. In either case there is a path from one of the vertices
of P(x, y) to r in G {x, y}, which contradicts the assumption that P is separated by

(==) There must be at least one vertex v of P between x and y since they are not
adjacent on P. For all such v there cannot be a path in G {x, y} from v to r since that
would imply a bridge of P in G with at least two attachments--one on P(x, y) and the
other on P P[x, y]. Therefore, the segment P(x, y) is disconnected from the compo-
nents containing lower-numbered ears when x and y are deleted from G.

Theorem 2.3 ensures that each ear P together with the bridges of P are sufficient
for extracting separating pairs and that each ear with its bridges can be considered in
isolation. But if we were to consider bridges of all ears in their entirety, the number of
edges involved could be far more than O(m). However, notice that for an ear P the
information about its bridges that is of relevance in finding separating pairs is contained
only in those edges of the bridges that are incident on P. We can succinctly encode the
information about separating pairs by building a collection of simple graphs as shown in
the following.

DEFINITION 2. The collection 7-/consists of simple graphs, one for each nontrivial
ear of G. The graph Hp 7-I for the ear P is as follows. Suppose that x and y are the
end vertices ofP and that pos(x) < pos(y). Each Hp is such that V(Hp) V(P)t2(rp}
and E(Hp) is as follows. (i) For each vertex v V(P), an edge (v, rp) is added if the
bridge of P that contains the root r has an attachment at v. Otherwise, (ii) at most two
edges are added to E(Hp) by considering the bridges (possibly trivial) of P that have an
attachment at v. Let a be the leftmost attachment of one such bridge where a is further
to the left than the leftmost attachment for any other bridge that has an attachment at v.
The edge (v, a) is added if a belongs to P[x, v). Similarly, an edge (v, b) is added where
b is the rightmost vertex that can be reached from v through a bridge of P.

An example of an ear P with its bridges and its corresponding Hp is illustrated in
Fig. 2. Suppose that v and w are on P with pos(v) < pos(w). From the definition of Hp
it follows that there is a bridge of P in G with one attachment on P(v, w) and another
on P- P[v, w] if and only if there is a bridge ofP in Hp with one attachment on P(v, w)
and another on P P[v, w]. Hence by Theorem 2.3 we have the following corollary.

PARALLEL TRICONNECTIVITY 591

rp

Y x v y

(i) (ii)

FIG. 2. (i)An ear P and the bridges ofP in G. (ii) The graph Hp.

COROLLARY 2.4. {v, W} is a separatingpair that separates P ifand only if {v, w} is a
separatingpair in Hp.

3. Algorithm for separating pairs. Lemma 2.2 tells us that in our search for sepa-
rating pairs we do not have to consider those vertex pairs for which there is no single ear
containing them. Ifwe further assured somehow that every separating pair belongs to the
internal vertices ofsome ear, then we can efficiently reduce the problem of finding sepa-
rating pairs to that of finding biconnected components. The idea is to build a multigraph
by collapsing the internal vertices of every nontrivial ear to a single vertex. We elaborate
more on this reduction in 3.2. But before we proceed to this reduction, we need to
address a more serious difficulty: for a separating pair {x, y} there need not be any ear
in an open ear decomposition, for which x and y are internal. Section 3.1 shows how to
circumvent this problem. In 3.2 we show how to find a collection of graphs similar to
7-/that succinctly encode separating pairs. Finally, in 3.3 we address the extraction and
the output representation of separating pairs.

3.1. Making separating pairs internal to an ear. In this subsection we show how to
build a graph G’, the local replacementgraph. This graph is such that for every separating
pair {z, y} that separates P in G there is a corresponding separating pair {zp, yp} and
an ear P’ in G’ such that zp and yp are internal vertices of P’. Furthermore, for every
separating pair (zp, yc} of G’, {z, g} is a separating pair in G. Roughly, the strategy is
to divide the graph G into a set ofpaths by splitting the end vertices of the nontrivial ears
of an open ear decomposition. This would result in making several copies of a vertex,
i.e., one copy for each nontrivial ear that contains it. Next we add new edges to connect
up the different copies of a vertex. The main difficulty is in figuring out an efficient way
of connecting the split vertices without jeopardizing the primary goal of preserving the
overall structure of separating pairs.

DEFINITION 3. (i) Define G to be a directed acyclic version of G that is obtained by
the following construction. Suppose (a, b) is one of the end edges ofP and that (b, c) is
next to (a, b) on P1. Then give a direction to (a, b). Orient the rest of P in the opposite
direction. Now G is obtained by giving directions to the remaining ears of G so that the
resulting digraph is acyclic.

592 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

(ii) Define T to be the directed spanning tree rooted at a obtained by removing the

last edge in each directed ear Pi, i > 1, in G and deleting (b, c) in the case of P1.
(iii) Define T to be the directed spanning tree rooted at b obtained as shown below.

Let G be the graph resulting from reversing the directions of the edges of G. Then T is

obtained by deleting the last edge of each ear Pi, i > 1, in G and deleting the end edge
of P1 other than (a, b), in the case of Px.

Figure 3 illustrates the above definitions. One efficientway ofobtaining G for a given
G, is by st-numbering the vertices of G. (Recall that for a biconnected graph G(V, E)
and an edge (s, t) of G, a 1-1 function V {1, 2,..., IVI} is called anst-numbedng if
(i) (s) 1, (ii) g(t) IvI, and (iii) for every v V {s, t} there are adjacent vertices

u and w such that g(u) < g(v) < g(w).) For example, G can be obtained by assuming
that (s, t) is an edge of P1 with s r and directing each edge of an ear from the lower-
numbered vertex to the higher-numbered one. Since each end vertex of every nontrivial
ear belongs to a lower-numbered ear, we have the following proposition.

h h
(i) (ii) (iii) (iv)

FIG. 3. (i) A biconnected graph (7 with P1 (a, b, c, d, a), P2 (b, e, d), Pa (b, y, d), P4 (b, h, d),
P5 (d, f, g), P6 (e, f), and Pz(a, c). (ii) G. (iii)An out-tree T with a as the root. (iv)An out-tree T with
b as the root.

PROPOSITION 3.1. The ear numbers of the edges of the tree path from any vertex v to

the root r in T decrease monotonically.
DEFINITION 4. Pxy refers to an ear P with {z, y} as the end vertices. If P is directed

from z to in G, then we denote it as P-..

The following useful lemma relates the attachments of a bridge and G.
LEMMA 3.2. Let B be a bridge of P-. that contains no edge with an ear number less

than P. Then ifB has an attachment edge (z, g) (respectively, (c, z)) at g (respectively,),
then zy (respectively, zz) is directedfrom z to y (respectively, to z) in G, i.e., zz E(T).

Proof. We will prove only the case for which B has an attachment at y. A similar
proof can be derived if B has an attachment at z. Figure 4 illustrates the statement of
the lemma. Let ear(z) Q, where the edges of Q belong to E(B). Suppose that the
lemma does not hold, i.e., that Q is directed such that the edge zy is directed from y to z.

Trace a path G as shown in the following. Start from y, and traverse until the last vertex
of Q, say, w is encountered. Suppose ear(w) S for some S that belongs to B. Since
an end vertex of each ear belongs to a lower-numbered ear in an ear decomposition, we
have S < Q. Now trace the edges of the ear S along the direction given to S until the

PARALLEL TRICONNECVITY 593

last vertex of S is reached. This process, when continued in this fashion, uses edges of
B with monotonically decreasing ear labels. Therefore, we must eventually encounter a
vertex of P. From that vertex of P we can reach y by going along the direction given to
P. In other words, if the lemma does not hold, we can trace a cycle starting and ending
at y in G, which contradicts the fact that G is acyclic, lq

outgoing

with no ear less than P

incoming

FIG. 4. Illustration ofLemma 3.2.

Using these directed graphs, we show how to build the local replacement graph in
the following’

ALGORITHM. Build G’.
Input: A graph G, an open ear decomposition of G, and the directed graph G and its

associated spanning trees T, T.
Output: A graph G’ (local replacement graph) in which each separating pair of G is
internal to some ear of G.

1. Construction of V(G’)
V(G’) {vp[v E V(P) for some nontrivial ear P}. Refer to vp as a copy of v.

2. Construction ofE(G’)
(a) Initialize E(G’) to {(up, vp)l(u, v) E(P)}.
(b) For every nontrivial ear P- add an edge as follows. If the least common

ancestor of v and w (henceforth denoted as lca(v, w)) in T is v, then let Q
be the ear number of the first tree edge in the path from v to w in T. Then

add (vp, vc) to E(G’). If lca(u, w) v in T, then add (vp, vc) to E(G’),
where Q is such that v is internal to Q.

(c) Repeat Step 2(b) with T and G replaced by T and G, respectively.
(d) For all trivial ears uv, if u and v are internal to ears P and Q, respectively,

then add (Up, VQ) to E(G’).
Figure 5 shows various stages of Step 2 on an example graph. The above algorithm

does not quite suffice for our purposes, i.e., it need not be the case that there is a sep-
arating pair {z, y} in G that separates an ear P if and only if {zp, p} is a separating
pair in G’. This happens if the input graph G contains two or more ears with the same
end vertices. Consider an example. Refer to the graph G of Fig. 3(i), and consider the

594 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

subgraph G {h} obtained by deleting h and edges incident on h. In G {h} the sep-
arating pair {b, d} separates the ear 2 but does not separate 1. In the local replacement
graph corresponding to G {h}, i.e., in G’ {ha, b4, d4 } of Fig. 5, the pair {b2, d2 } is
not a separating pair. Before we give the final step of Build G’, we need the following
definitions.

r--a1

edge caused

type by

Step 2(a)
Step 2(5)
Step 2(c)
.Step 2(d)

h4

FIG. 5. Stages in the execution ofStep 2 ofBuild G’ when the input graph is G ofFig. 3.

DEFINITION 5. (i) An ear is aparallel ear if there is another ear with the same end
vertices.

(ii) Consider the following partition on a set of parallel ears with {x, y} as the end
vertices. Denote the connected component ofG-{x, y} that contains the root by C. For
each connected component C ofG-{x, y}, C Cr, denote the minimum of {ear(v)lv E
V(C) } by P. Each such P is in a different partition. (Notice that every P has end vertices
at {x, y}.) Additionally, for each P the partition that contains P contains exactly (no
more than or no fewer than) those ears parallel to P whose internal vertices belong to
C. Finally, the ears with {x, y} as the end vertices that belong to Cr can be put in any
(or additional) partition arbitrarily. Each partition is called a bundle of parallel ears.

(iii) The ear with the smallest label of a bundle is called the representative for that
bundle.

In the example graph of Fig. 3, ears 2 and 3 are in one bundle and ear 4 is in a bundle
by itself. Now we describe a method to handle parallel ears.

Algorithmically, partitioning a collection of ears into sets of parallel ears is easy
because it isjust grouping ears according to the end vertices. However, further classifying
them into bundles is nontrivial. In the following we give an alternative definition for a
bundle of parallel ears that is equivalent to Definition 5(ii).

DEFINITION 6. Define, recursively, when an ear Q depends on an ear P as follows.
(a) P depends on P. (b) An ear Q depends on P if Q is not parallel to P and if for each
of the end vertices v of Q there exists an ear R that depends on P such that v V(R).

DEFINITION 7. Define, recursively, a bundle of parallel ears as follows. "Io parallel
ears P and Q are in the same bundle if one of the following holds. (a) There is a path
from an internal vertex of P to an internal vertex of Q such that for every edge uv of
that path, if ear(uv) Rb, then there exist ears that depend on either P or Q and that
contain ear(a) and ear(b). (b) There is another parallel ear R such that P, R and R, Q
are in the same bundle.

Suppose that {x, y} separates a parallel ear P and that the component C of G
{x,y} containing P(x, y) also contains the internal vertices of Qu. Then notice that for
all v V(C), ear(v) depends on either P or an ear parallel to P (such as Q) whose

PARALLEL TRICONNECTIVITY 595

internal vertices belong to (7. Therefore, it follows that the bundles resulting from this
definition conform to the rules stated in Definition 5(ii).

In the following the first step shows how to partition parallel ears into bundles ef-
ficiently. Informally, it is as follows. First, we build an auxiliary graph (]p based on the
parallel ears of G. G, is such that P and Q belong to the same bundle if and only if the
corresponding pair of vertices p and q are in the same connected component in (p. The
graph Gp is built by making use of the local replacement graph that is available after
Step 2(b). Observe that after Step 2(b) each ear is hooked at only one of its ends.

Therefore, the partial G’ after Step 2(b) is a tree. Denote it by T. Nowwe describe
the method.

ALGORITHM. Build G’ (continued)
3. Adjust E(G’) forparallel ears

(a) Identify bundles.
Let (p be an auxiliary graph whose vertices p correspond to the parallel
ears P of G. The edges of Gp are added by making use of the tree Tt.
Consider two parallel ears P and Qv" An edge (p, q) E E(Gp) if and

only if there exists an ear R-. in G (possibly, a trivial ear) that satisfies
ab

the following two properties. (i) {a, b} N {z, V} 0. (ii) Let a and b are

internal to the ears U and W in G, respectively. Then the tree paths in T,
from the lca(au, bw) to av and bw start with the edges added by Step 2(b)
for P and Q.

(b) Adjust E(G’) forparallel ears.
For each connected component (7 of (]p do the following. Find a spanning
tree T and root it at the vertex with the smallest label (say, p). Let P be
the ear in G that corresponds to p. For each earQ in G, Q # P, such
that q belongs to T; (i) delete the end edges of Q added to E(G’) in Steps
2(b) and 2(c), and (ii) add (vs, vQ) and (ws, wQ) to E(G’), where s is the
parent of q in T.

At the end of Step 3 of Build G’ we still have a partition of the edge set into disjoint
paths. However, because of the rearrangement of edges in Step 3(b), the end vertices
of an ear may not lie on a lower-numbered ear if we continue to use the old ear labels
for G’. But this deficiency is inconsequential to the rest of our algorithm, and hence we
continue to use old ear labels. Notationally, if P is an ear of G, the path in G’ consisting
of P together with two new end edges created by local modifications will be referred
to as P’. The following two propositions can be proved by induction and Definitions 6
and 7.

PROPOSITION_.., 3.3. Ifan ear Q depends on P, then both end vertices of Q’ belong to

the subtree of Tt rooted at zp.

PROPOSITION 3.4. Ifan ear Q depends on P, then there is a pathfrom any (internal or
end) vertex ofQ to an internal vertex ofP such that ifuv belongs to this path, then ear(uv)
depends on P.

THEOREM 3.5. Twoparallel ears P- and Q are in the same bundle ifand only ifp and
q are in the same connected component in

Proof. In what follows we use the notation of Step 3. Since P and Q are parallel, Q
is directed from z to V in G. Furthermore, from the construction in Step 2 it follows that

they have the same parent in Tt; call it zs. Denote the subtrees of Tt rooted at zp and

596 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

at zQ by Tp and Tq, respectively. Recall that a is an end vertex of R that is internal to U.
Assume without loss of generality that av is in T,.

(=) Assume (p, q) E E(G,). If an ear R satisfies the condition (ii) of Step 3(a),
then by Proposition 3.3 R depends neither on P nor on Q. Conversely, if R is the ear
with smallest label that depends on neither P nor Q, then by Definition 6 R cannot have
both its end vertices in one of Tp, Tq. This follows from the fact that if an ear has both
its endpoints in Tp (respectively, Tq), then it depends on P (respectively, Q). Hence
R satisfies the conditions of Step 3(a). Assume without loss of generality that R is the
ear with the smallest label that satisfies the conditions of Step 3(a). Because U and W
contain the end vertices of R, U < R and V < R. Since R is the ear with smallest label
that satisfies the conditions of Step 3(a), U depends on P and W depends on Q. Then
by condition (i) of Step 3(a) and Proposition 3.4 there is a path from an internal vertex
of P to an internal vertex of Q that satisfies the condition (a) of Definition 7.

(=) Assume that there are no ears parallel to P except Q in the bundle containing
P. Because the condition (b) of Definition 7 is transitive, it suffices to prove just this case.
Suppose that P < Q. We are required to show that there exists an ear R that satisfies the
conditions of Step 3. Consider the subgraph D of G formed by P, Q, and all those ears
of G that depend on either P or Q. In this subgraph P and Q are clearly two different
bridges of {z, }. Now an inductive proof in which the induction step consists of adding
an ear that depends on either P or Q shows that in the new subgraph D, P and Q are in
different bridges of {z, /}. That is, there is no path from an internal vertex ofP to that of
Q in D. Denote the bridge of {z, /} in D containing P and Q by Dp and Dq, respectively.
If P and Q are in the same bundle, then by Definition 6 and the fact that there are no
other parallel ears in D there must exist an ear R that connects a nonattachment vertex
of Dp, say, a, to a nonattachment vertex ofD, say, b. Because t and b are nonattachment
vertices of Dp and Oq, neither of them is from {z, y}. Therefore, R satisfies condition (i)
of Step 3(a). Since a and b are internal to ears that depend on P and Q, respectively, the
end vertices of R’ belong to Tp and Tq by Proposition 3.3. That is, R satisfies condition
(ii) of Step 3(a). [3

The reverse direction of the above theorem can be stated equivalently as follows.
COROLLARY 3.6. If (p, q) Gp, then there is a path from an internal vertex of P

to an internal vertex of Q such that this path does not use any vertices of P or of ears
parallel to P.

Next we prove the correctness of Build G’. The following simple facts are useful in
the proofs. Observe that the number of copies of a vertex v in G’ is one more than the
number of nontrivial ears for which v is an end vertex, i.e., it is 1 + (degree(v) 2). The
algorithm Build G’ adds an edge only between two copies of the same vertex, and it adds
one edge for every end vertex of every nontrivial ear (see Fig. 6). Therefore, we have
the following proposition.

PROPOSITION 3.7. (i) The edges that connect different copies ofa single vertex v form
a tree in G’. Therefore, there is a path between any two copies ofv in G that uses only other
copies v. As a consequence, for a vertex v V(P) all copies of v belong to a single bridge
of P’ in G’. (ii) The graph G can be obtainedfrom G’ by collapsing, for each v, all copies
ofv into one.

DEFINITION 8. For an ear P we say a bridge of P is a relevant bridge if for each ear
Q that belongs to it (a) Q > P and (b) if Q is parallel to P, then Q is in the same bundle
as P. If a bridge is not relevant, then it is said to be irrelevant.

Observe that for a set of parallel ears with z and as the end vertices, if one of the

ears in G is directed from z to /, then all of them are directed from z and . After Step 2

PARALLEL TRICONNECrIVITY 597

h4

FIG. 6. Final G’ after Step 3.

new edges

:". copies of
vertex

(but before Step 3), if P and Q are parallel in G, then P’ and Q’ are parallel in G’ by the
construction of Step 2. Because Step 3 does not change the end edges created in Step 2
for the representatives, we have the following proposition.

PROPOSITION 3.8. IfP and Q are parallel ears such that each is a representative of its
bundle, then P’ and Q’ have the same end vertices in G’.

For a subgraph D of G let $(D) {ear(uv)luv E(D)}. The following can be
derived from Definition 8 and the definition of open ear decomposition.

PROPOSITION 3.9. Suppose that B is a relevant bridge of P. If B contains an edge of
an ear Q, then B contains all edges ofQ, i.e., ifQ (B), then all edges ofQ belong to B.

Another useful fact can be derived from the definition of open ear decomposition
by using the minimum of $(B).

PROPOSITION 3.10. If B is a bridge ofan ear P that contains an edge whose ear label
is less than P, then B has attachments at the end vertices of P.

LEMMA 3.11. Consider a relevant bridge B ofPu (respectively, P) in G. Suppose it

contains an ear Q with one end vertex at x (respectively, y) and the other at v V(P). Then

the lca(x, v) (respectively, lca(y, v)) in T (respectively, T) is x (respectively, y).
Proof. We will prove the lemma when Q has an attachment at x. A similar proof

works when Q has an attachment at y. We will show that x is an ancestor of v in T.
Observe that all paths from v to r in G must go through a vertex of P because v belongs
to a bridge of P and this bridge does not contain r. Specifically, the tree path from v to r
must have a vertex, say, w, of P. This vertex w of P cannot be y because, by Lemma 3.2,
y is not reachable in T from v. Hence the tree path from v to r must encounter a vertex
w from P[x, y). Now the last vertex of P on this tree path is x because of the direction

given to P. Therefore, the tree path from v to r in T contains x. In other words, x is an

ancestor of v in T. [:]

LEMMA 3.12. Consider a relevant bridge B ofP-. in G. Suppose it contains an ear Q
xy

with one end vertexat u E V(P) and the otherat v V(P). Iflca(u, v) u, then the edges
on the treepathfrom v to u in T belong either to P or to those ears ofB whose label is less
than Q.

Proof. Assume ear(v) is U for some U E (B). Bythe definition ofa relevant bridge,
U > P. We traverse the tree path from v to u. As argued in the proof for Lemma 3.11,
we must encounter a vertex z of P from P[x, y) in this traversal. Now u is an ancestor
of v because lca(u, v) u. Therefore, z is a descendant of u. Finish the traversal of the

598 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

tree path from z to u by taking the edges of P from z to u. In this traversal U initially
belongs to a relevant bridge, namely, B. Also, whenever the ear labels change from,
say, P to Pz for P1, Pz P, the switch occurs at the end vertex of P. This end vertex
is a nonattachment vertex of B because otherwise we would have moved from P to P
instead of to P. Hence P and P are in the same bridge of P. Since U belongs to P,
P and hence P belong to B. In summary, we showed that the traversal of the tree path
from v to u uses the edges of the ears of B and possibly some of P.

THEOREM 3.13. Let Bq be the bridge ofP in G containing the ear Q. Let BLq be
the bdge of P’ in G’ containing the ear Q’. Then (i) for every ear S if S ,(Bq), then
q’ ,(BLq). Additionally, (ii) if Bq is relevant bridge, then for every S’ if S’ ,(BLq),
then S g Bq).

Proof. If two ears Q and S are in the same bridge B of P in G, then there must
be a path between a vertex of Q and a vertex of S consisting of only the nonattachment
vertices of B. Then by Proposition 3.7 it follows that there is a single bridge of P’ in G’
containing Q’ and S’. That proves part (i).

Next we will prove by induction that if two ears belong to two different bridges B
and B in G, then they belong to two different bridges of P’ in G’ provided that at least
one of BI, B is a relevant bridge. For the base of the induction we start with the sub-
graph D1 of G’ formed by P’ plus {Q’[where Q < P, or Q is the minimum labeled ear
of a bridge of P, or Q is parallel to P and Q is the representative of its bundle}. The
ith induction step consists of building Di from D_ by adding the smallest ear from
(G) (Di-). This ear is added in a manner that conforms with the construction
rules of Steps 2 and 3, and thus we maintain the invariant that D is a subgraph of G’ at
all times.

To show that D satisfies the base case, we claim that each ear of a relevant bridge
of P in G is in a bridge (of P’) by itself in D. First, observe these ears have their end
vertices on P in G. In Build G’ the end edges for the minimum labeled ears of a relevant
bridge of P are decided in Step 2, and these are not changed later in Step 3. To prove
the claim, it suffices to show that each of these ears is attached in Step 2 to some vertices
of P’. All parallel ears are attached to the end vertices of P’ by Proposition 3.8. For any
other ear Q, v, w V(P), if w y, then v z because we assumed that Q is not

parallel to P. In that case lca(v, w) v in T (because the end edge of P incident on

is not present in T) and vo is attached to vp. The other end vertex w is attached to wp

because lca(w, v) w in T and the tree path from w to v starts with an edge of P.
The cases arising from the other positions for v and w on P can be analyzed similarly,
and we conclude that vo and wo are attached to vp and wp, respectively.

Nowwe prove the induction step. Assume, inductively, that the theorem holds when
the smallest (i 1) ears from g(G) g(D) are added. Consider the ith smallest ear
Q.

Suppose there is an ear (possibly P) parallel to Q. Then from the construction of
Step 3(b) we notice that Q is attached to the copies of u and v, say, us and vs, where s
is (in the notation of Step 3(b)) the parent of q in T. The case in which S P results in
creating a new bridge when Q’ is added to D_, and the induction step is trivially true.
But if s p and (s, q) E(Gp), then by Corollary 3.6 there is a path between an internal
vertex of Q to an internal vertex of S that does not use any vertices of ears parallel to
Q. Specifically, this path does not use any vertices of P. Hence S and Q are in the same
bridge of P in G.

PARALLEL TRICONNECTIVITY 599

Next, assume that Q-. has no parallel ears. Let ear(u) and ear(v) be S and U,
respectwely. We will analyze the cases resulting from assuming different positions for u
and v.

Assume that neither u nor v belongs to P. Then by Proposition 3.7 Q’ is connected
to a nonattachment vertex of the bridge of P’ (in Di-1) containing S’ (call it BLs) to a
nonattachment vertex of the bridge containing U’ (call it BL,). Clearly, S and U (and
hence the ears of G corresponding to the ears of BL8 and BL,) are in one bridge of P
in G because of the path (namely, Q) between them that uses no vertices of P.

Now consider the case in which both u and v belong to P, i.e., P S U. Then
it cannot be that u x and v y since that would make Q have an ear (namely, P)
parallel to it. Hence one of the end vertices of Q must be internal to P. In this case, by
a proof similar to the one used for the base case, Q’ is attached to two of the vertices of
P’. In other words, if both u and v belong to V(P), then a new bridge is created and the
induction step holds.

Next, assume that one of u, v belongs to P and the other does not. Assume without
loss of generality that u belongs to P. Clearly, U and Q are in a single bridge of P in G
because they are connected at v. Therefore, if Q’ attaches itself to the bridge of P’ in
Di-1 that contains U’ (denote this bridge by BL), then the induction step holds because
U (and all the ears corresponding to the ears of BL,) and Q are in a single bridge of
P in G. We will show that this is indeed the case, i.e., that Q’ attaches itself to BL.
Notice that by Proposition 3.7 since v V(P), there exists a bridge of P’ in Di_l that
contains all copies of v. Therefore, vQ is connected to a copy of v that belongs to BL.
It remains to be shown that vQ is not connected to a nonattachment vertex of a bridge
other than BL. Consider the lca(u, v) in T. If lca(u, v) u, then uQ is connected to up

by Step 2. Otherwise, by Lemma 3.12 the tree path in T from v to u consists of edges of
either P or the ears from (BLu). Therefore, uQ is connected to up or uw, where W E
(BLu).

3.2. Reduction to biconnected components. We briefly alluded to reducing tricon-
nectivity to biconnectivity at the beginning of 3. We elaborate more on this reduction
here. In this subsection we show how to find a collection similar to 7 that encodes sep-
arating pairs. There are two reasons for finding a collection that is only similar to 7 and
that is not 7-/itself as defined before. The first reason is that the new collection suffices
for our purposes, and the second reason is that it can be computed by an easy reduction
to any biconnected component algorithm.

Recall the definition of from Definition 2; it consists of a graph Hp for each non-
trivial ear P. We slightly change the definition of Hp because it is difficult to efficiently
check for v E V(P) if the bridge of P containing the root r is adjacent to v.

DEFINITION 9. The graph Hp is defined as in Definition 2 with the following modifi-
cation to part (i) of that definition. We say that (v, rp) is added to E(Hp) if v is adjacent
to w and w belongs to an irrelevant bridge of P.

Even though the resulting collection is slightly different, we will continue to denote
it by . Let us see whether this new definition of graph Hp also encodes the set of
separating pairs of G. If the bridge containing w also contains the root r, then the new
rule results in the same Hp. Otherwise, the bridge containing w must necessarily have
attachments at z and y by Proposition 3.10. Therefore, we would have added (v, z) and
(v, y) to E(Hp) instead of (v, rp). A pair of vertices of P that is not a separating pair
before would not be a separating pair now. The converse also holds except for the pair
{x, y}. In this case notice that we would detect {x, y} as a separating pair on HQ, where

600 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

{x, y} separates Q. This is true because by Definition 1 all vertices of Q(x, y) are adjacent
to vertices of bridges of Q relevant to Q. Therefore, the edges added to E(HQ) for the
vertices of Q(x, y) are identical irrespective of whether the old or new rule is-used.

Next we show how to build 7-/by a reduction to biconnected components. The bi-
connected component algorithm is run on a multigraph G (the subscript e to indicate
that G is built from the ears of G’) constructed from G’ and its ears.

DEFINITION 10. Let P’ be a nontrivial ear (vo, vl,..., vk) of length greater than two,
i.e., k > 3. The graph G is obtained from G’ by contracting all such ears P’ by merging
the internal vertices v, v,..., vk-1 into a single vertex p.

Figure 7 shows the multigraphG for the local replacement graph and its ear decom-
position shown in Fig. 6. Recall that the representative (say, P) of a bundle of parallel
ears is the ear of that bundle with the smallest label. Observe that the end vertices P
belong to a lower-numbered ear that is not parallel to P. This observation together with
the definition of open ear decomposition imply the following simple fact.

r-al

4 b3, g3, d3{b4, h4, d4}

2 5
{b,e,d:} {d,f,g}

F-]G. 7. The multigraph Ge based on G’ ofFig. 6.

PROPOSITION 3.14. IfD is a biconnected component ofG, then the vertex ofD with
the minimum label is either r or an articulation vertex of

There is a correspondence between the relevant bridges of Pu in G, the bridges of
P’[xp, yp] in G’, and the connected components resulting from deleting p from G. The
relation between the latter two is simple: from the definition of G it follows that the
ears Q and R are in the same bridge of P’ [xp, yp] in G’ if and only if q and r are in the
same component in G {p}. The relation between the attachments of the bridges of
P in G and those of the bridges of P’[xp, yp] in G’ is stated below.

THEOREM 3.15. Let Bq denote the bridge ofP-. in G that contains Q. Similarly, denote
xy

the bridge ofP’ in G’ that contains Q’ by BLq.
(i) Bq is relevant to P ifand only if BLq has no attachments at the end vertices of P’

in G’.
(ii)Assume that Bq is relevant to P. Then Bq has an attachment at v ifand only ifBL

has an attachment at vp.
Proof. (i) Assume that Bq is a relevant bridge for P. Then by an inductive proof

similar to the one used to show part (ii) of Theorem 3.13 the attachments of BL are
from P’[xp, yp]. The invariant that should be maintained at all times is that if Q belongs
to a relevant bridge, then the bridge of P’ containing Q’ in D has all its attachments on
P’[xp, yp].

PARALLEL TRICONNECTIVITY 601

Assume that Bq is not a relevant bridge. We will show that BLq has attachments at
the end vertices of P’ in G’. There are two kinds of irrelevant bridges: the ones that have
an ear whose number is less than P and the ones that have an ear parallel to P from a
different bundle in G.

Case 1. Assume that Bq has an ear whose number is less than P. Then BL contains
an ear whose number is less than P’ by Theorem 3.13(i).

Case la. Assume, in addition, that BLq contains an ear parallel to P from the same
bundle as P. Then from the construction ofStep 3(b) it follows that BLq has attachments
at the end vertices of P’.

Case lb. Assume that ears of BLq parallel to P are not from the same bundle as P.
Consider the subgraph of G’ consisting of P’, the ears of BLq that have no other ears
parallel to them, plus the representative from each bundle of parallel ears that belongs to
BLq. Clearly, this subgraph is biconnected and the labels on the ears define an open ear
decomposition. Therefore, by Proposition 3.10 BLq has attachments at the end vertices
of P’.

Case 2. Assume that B is an irrelevant bridge because it contains an ear S parallel
to P such that P and fi’ are in different bundles. Assume without loss of generality that
S is the representative of its bundle. By Proposition 3.8 the end vertices of S’ and the
end vertices of the representative of the bundle of P’ are the same. Therefore, BLq has
attachments at the end vertices of P’.

(ii) Assume that BLq has an attachment at 2)p and that this attachment belongs to
an ear S’ of BLq. Since Bq is a relevant bridge, by part (ii) of Theorem 3.13, S .(Bq).
By Proposition 3.7, v V(,_q). Therefore, Bq has an attachment at v.

Consider the "only if" direction of the theorem. Let S- denote the ear from the

bridge Bq with the least label that has an attachment at v. Then if lca(v, w) v in T,
then by Lemma 3.11 v is an internal vertex of P. Therefore, by Step 2(c), vs is attached
to)p. Otherwise, i.e., if lca(v, w) v, then by Lemma 3.12 the tree path from u to v
consists of the edges from either P or the ears of Bq with a label less than S. Because
there are no ears of Bq less than S incident on v, the tree path must end with the edges
of P. Hence, by Step 2 vs is attached to the vertex ’up.

Part (ii) of Theorem 3.15 implies the following.
COROLLARY 3.16. {, V} is a separating pair that separates P in G if and only if

{zP, lP} separates P’ in G’.
Proof. Consider the bridges BLq of P[zp, VP] in G’. If {zp, !1P} separates P’ in G’,

then the corresponding bridges Bq in G are relevant to P by the reverse direction of (i).
Therefore, the reverse direction of the corollary follows from part (ii) of Theorem 3.15
and from Theorem 2.3. The argument for the forward direction is similar, l-1

We exploit this correspondence in building 7-/. The nontrivial part in building Hp is
in identifying which edges, if any, to add for a vertex v of P[z, V]. This involves knowing
the extreme attachments of the relevant bridges of P adjacent to v. If there are any
bridges of P that are relevant, then p would be an articulation vertex in G,; each block
D of G, attached to p that does not contain r’ corresponds to a relevant bridge of P.
Therefore, we give a common label, called cz label, to all vertices (except p) of each such
block D ofG. This c label is a 3-tuple (P, a, b): a and b are thepos labels of the extreme
attachments of the bridge of P that correspond to D, and the first tuple reflects the fact
that these attachments are on P. We will denote the first, second, and the third tuples
of c(q) by a(q).l, ce(q).2, and a(q).3, respectively.

602 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

It turns out that the a labeling can be computed efficiently by a slight modification
of any biconnected component algorithm as shown below. Given a labeling, the edges
that need to be added to build Hp can be figured out quite easily.

ALGORITHM. Build 7-l.
Input: A graph G, an open ear decomposition of G, pos labeling for each ear, and the
local replacement graph G’ for that decomposition.
Output: A collection of graphs 7-/(built on the top of each nontrivial ear of G) that
encode separating pairs succinctly.

1. Build a multigraph Ge from G’ by merging the internal vertices of each nontriv-
ial ear P’ into a single vertex p. Discard the self loops from Ge.

2. Find the biconnected components D1, D2,..., Dk of G.
3. Label the vertices ofG with 3-tuples:

For each Di do the following. Let p be the vertex of Di with the smallest label.
For each q E V(Di) {p} set the first component of a(q) to P. Of all edges ps
of D incident on p, consider those that have an image, say, cd, in G. Assume
c V(P) (see Fig. 8). Let a and b the minimum and the maximum, respectively,
of the pos labels of all such c. Then a and b are the second and third components
of a(q).

pos labels
..a 10 b 14,.

FIG. 8. Illustration ofStep 3 ofBuild

4. Build Hp for each nontrivial ear P by using the a labels:
(a) Assign V(Hp) V(P) t_J {rp}.
(b) Initialize E(Hp) E(P). For every vertex v V(P) add the following

edges. For an edge vw E(G), w V(P), denote ear(w) by Q.
(i) If a(q).l is less than P, then add (v, rp) to E(Hp). Otherwise, add

two edges as shown in the next step.
(ii) Let a be such that pos(a) min{{a(q).2lear(w) q and vw E(G),

w V(P)} t2 {pos(w)[vw E(G) and v, w E V(P)}}. Add (v, a) to
E(Hp). Also, add (v, b), where b is obtained similarly by using max
and a(q).3.

LEMMA 3.17. Consider an ear P and an edge vw E(G), w V(P), where v is an
internal vertex of P. Let ear(w) be Q. Then ifthe bridge Bq ofP containing Q contains no
ear number less than P, then a q 1 P.

PARALLEL TRICONNECTIVITY 603

Proof. If Bq contained ears parallel to P, then they would have to be in the same
bundle with P because of the edge vw. Therefore, Bq is a relevant bridge of P. Now
it follows from part (i) of Theorem 3.15 that the bridge containing Q’ would have all its
attachments on the internal vertices of P’. Then p would be an articulation vertex that
is on every path between q and the root vertex r in Ge. Therefore, c(q).l > P. But p
and q are in the same block because the edge vw of G causes an edge between p and q
in Ge. Hence, c(q).l P.

THEOREM 3.18. Algothm Build 7-[computes 7-[as defined in Definition 9.
Proof. Consider an ear P- and an internal vertex v of P. We need to argue that

the construction carried out in Step 4 is correct. Suppose there is an edge vw E(G),
w q V(P). Denote ear(w) by Q. Denote the bridge of P containing Q by Bq and the
min{8(Bq)} by N. Note that regardless of whether vw is a trivial ear or one of the end
edges of Q, it causes an edge to be added between p and q in G. Therefore, there is a
block that contains both p and q.

According to Definition 9 the edge (v, re) is added to E(He) if and only if N is
less than P. Consider the construction in Step 4. We claim that N < P if and only
if c(q).l is less than P. To prove the forward direction of the claim, we need to prove
that the block D of G containing p and q contains an articulation vertex m such that
M < P. By Proposition 3.14 it is sufficient to show that p is not the articulation vertex
in D with the smallest label. Because N < P, the bridge Bq is irrelevant to P. Now
if p is an articulation vertex that appears on every path from q to the root r, then BL
of P’ containing Q’ in G’ has all its attachments on P[xp, yp]. This contradicts part (i)
of Theorem 3.15. Hence p cannot be the articulation vertex with the smallest label in
D. Consider the reverse direction. Assume for contradiction that a(q).l less than P but
that N _> P. Clearly, N P because N belongs to a bridge of P. But if N > P, then,
from Lemma 3.17, a(q).l is exactly P and is not less than P.

Next consider the case in which there is an edge vw E E(G), w q V(P), but for all
such edges c(q).l is not less than P. By the claim of the previous paragraph if c(q).l
is not less than P, then N > P. Therefore, by Lemma 3.17, c(q).l P. That is, ev-
ery bridge of P’ with an attachment at v has all its attachments on P’[zp, tP]. Because
of the edge vw, each such bridge Bq is a relevant bridge of P. Therefore, by part (ii)
of Theorem 3.15 the attachments of BLq on P’ are identical to the attachments of Bq
on P. From the definition of G the attachments of Bq become the edges of G inci-
dent on p where these edges belong to the block containing q. The attachments of Bq
that are closest to z and t are reflected in the second and third tuples of c(q), as com-
puted in Step 3. Therefore, Step 4(b)(ii) computes the E(Hp) as defined in part (ii) of
Definition 2.

3.3. Extraction and output representation of separating pairs. Observe that in
O(m/ n) time we cannot possibly list all separating pairs of a graph because there could
be O(n2) of them. For example, in a simple cycle every pair of nonadjacent vertices is a
separating pair. That is, a cycle of n vertices has n(n- 3)/2 separating pairs. Our output
representation is a set of paths referred to as candidate lists such that a pair of vertices
{u, v} separates P if and only if u and v are nonadjacent on P and there is a candidate
list generated from Hp that contains u and v. Such a representation of separating pairs
is sufficient to divide a graph into triconnected components.

Let us reexamine the graph Hp of from 3.2. Assume that Hp happens to be
planar and that it is drawn in the plane as shown in Fig. 9, i.e., P appears as a horizontal
line and all its bridges in Hp are drawn on the top. (This embedding will henceforth be
referred to as a canonical embedding.) Then an important, but easy to see, observation

604 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

that follows from Theorem 2.3 is that a pair of vertices z and y separates P if and only if
a bounded region in the canonical embedding of Hp contains z and y. This fact can be
used quite effectively in producing candidate lists as demonstrated below.

ALGORITHM. Find Candidate Lists.
Input: A collection of planar graphs encoding separating pairs.
Output: A set of paths, called candidate lists, encoding separating pairs. The output
representation is a linked list.

1. For every bridge B of P in Hp that does not contain rp let u and v, respectively,
be the attachments of/3 with the minimum and maximum pos value and do the
following:

(i) Output the edge (u, v).
(ii) If v is not adjacent to rp in Hp and if the furthest vertex to the left that is

reachable from v through a bridge is u, then perform this step. Let w be
the furthest vertex to the right that is reachable through a bridge adjacent
to v. Add a pointer from the output location of (u, v) to that of (v, z),
where z w if w v; otherwise, z is the successor of v on P (see Fig. 9).

2. For every edge (a, b) of P, pos(a) < pos(b), that is not part of a triangular region
do the following:

(i) Output the edge (a, b).
(ii) If the furthest vertex to the left that is reachable from b through a bridge

is b, then perform this step. Let c be the furthest vertex to the right that is
reachable through a bridge adjacent to b. Add a pointer from the output
location of (a, b) to that of (b, d), where d c if c - b; otherwise, d is the
successor of b on P (see Fig. 9).

rp

u a b c v w ear P

FIG. 9. Generating candidate setsfrom a planar Ip.

In the rest of this subsection we show how to take a nonplanar Hp and produce a
planar graph Ip on the same set of vertices such that the set of separating pairs of Hp
and that of 1p are identical. We will denote the resulting planar collection by 2. The
process of planarizing Hp involves coalescing interlacing bridges. Call a pair of bridges
B and B of P interlacing bridges if two of the attachments of B1 and B are at z, y
and u, v, respectively, such that pos(z) < pos(u) < pos(y) < pos(v). The operation of
coalescing is to discard the bridges B and Bz and to put in a new, single bridge whose
attachments are a union of the attachments of B1 and B2. A nice property of the opera-

PARALLEL TRICONNECTIVITY 605

tion of coalescing that follows from Theorem 2.3 is that it preserves the set of separating
pairs. Now if bridges of Hp are coalesced until no more bridges are interlacing, then
the resulting graph is planar; this fact can easily be proved by constructing a canonical
embedding of the resulting graph. Denote the resulting planar graph by Ip.

In the following we give a fast parallel algorithm for finding 2. At a high level the al-
gorithm reduces the problem ofplanarizing Hp to that of finding connected components
of a graph Gb. The vertices of Gb correspond to bridges of P. Two vertices b and b of
Gb are in the same connected components if and only if the bridges corresponding to the
two vertices B and B are interlacing. In constructing Gb if we add edges between bl
and all vertices whose corresponding bridges in Hp interlace with B, then there could
be far too many edges in Gb (as many as O(n)). The trick is to add at most two edges per
vertex. Add (bx, b) (respectively, (b, ba)) whereB (respectively, Ba) interlaces B and
furthermore, is the bridge with an attachment that is furthest to the left (respectively,
right) with respect to the leftmost (respectively, rightmost) attachment of B. The fol-
lowing argument shows that this trick does not alter the connected components of Gb.
Consider a proof by contradiction. Let B1 (s, t) be the rightmost bridge (i.e., highest
pos(t) value) with an interlacing bridge B (u, v), pos(u) < pos(s) < pos(v) < pos(t),
such that (b, b) q E(Gb). Then by our construction there must exist (b, rl) and (bl, l)
in Gb where the bridges R (a, b) and L (c, d) interlace with Bg. and B, respectively.
Furthermore, R and L are such that pos(d) < pos(u) and pos(b) > pos(t). Now since
R interlaces with B2, a P(u, v). If a P(s, v), then R and B interlace. Because we
assumed that B is the rightmost bridge that belongs to a "bad" interlacement pair, we
can conclude that (r, b) E(Gb). On the other hand, if a P(u, s), R and L interlace
and (r, l) E(Gb). In either case b and b belong to the same connected component in
Gb, a contradiction.

We summarize the ideas below.

ALGORITHM. Planarize 7-[.
Input: The collection H of graphs encoding separating pairs of G.
Output: A collection 2 of planar graphs encoding separating pairs of G succinctly.

1. For each Hp build a graph Gb based on the bridges of Pu in Hp that do not
contain rp. These bridges are all single edges (u, v).

(i) For each such (u, v) create a vertex in Gb denoted by the 2-tuple (u, v).
(ii) Find the bridge (a, b) (respectively, (c, d)) with one attachment on P(u, v)

and the other furthest to the left (respectively, right) from u (respectively,
v) on P[z, u) (respectively, P(v, y]).

(iii) Add an edge between (u, v) and (a, b), and between (u, v) and (c, d) in Gb.
2. Find the connected components C, C,..., C of Gb.
3. Build Ip by using the connected components of Gb.

(i) V(Ip) V(Hp) (cilCi is a component of Gb}.
(ii) E(Ip) E(P). Add the edges incident on rp to E(Ip). In addition,

include the following edges. Add (ci, u) if there a vertex in Ci with u as
one of the 2-tuples in its label.

3.4. Complexity on a CRCW PRAM. The results of the previous subsections show
that the following algorithm generates all separating pairs (as candidate lists) of a given
biconnected graph G.

ALGORITHM. Separating Pairs.
1. Find an open ear decomposition of G.
2. Construct the local replacement graph G’ by executing Build G’.

606 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

3. Succinctly encode separating pairs by using Build 7-[.
4. Use Planarize and obtain the collection 2.
5. Generate separating pairs as candidate lists by invoking Find Candidate Lists

with 2" as its input.

The most expensive step of the above algorithm from the deterministic complexity
point of view is providing the required input representations to some of the subroutines
we use and building the adjacency lists of the auxiliary graphs. First, we show how to con-
struct the needed representation of graphs by assuming that the input is a list of edges.
This construction runs in O(log n) time with ((m + n) log log n) work. The needed rep-
resentation is a special kind of adjacency list. In this representation every edge (u, v)
appears as two directed edges (u, v) and (v, u), i.e., the vertices u and v appear in each
other’s adjacency lists. Given a list of edges, we can accomplish this by (1) sorting the
edges to make sure that no edge appears twice initially, (2) creating (v, u/for every (u, v),
(3) evaluating the degree of each vertex v by using the difference in the addresses in the
sorted array of the first occurrence and last occurrence of v, (4) allocating in memory
one array of size degree(v) for each v, and (5) making the processor allocated to (u, v)
responsible for creating the entry in the list of u. We use the parallel bucket-sort algo-
rithm of Hagerup [10], which runs in O(log n) time with (n log log n) operations to sort
n numbers to achieve the desired complexity.

In the remainder of this subsection we argue that the complexity of the rest of the
algorithm is identical to that ofthe best-known parallel connected component algorithm.

Let G have n vertices and m edges. We say an algorithm has an "almost-optimal"
processor-time bound if it runs in O(log n) parallel time with O((m + n)c(m, n)/log n)
processors on a CRCW PRAM, where a is the inverse Ackermann function. We first
note the following results on optimal and almost-optimal parallel algorithms.

(A) List ranking on n elements can be performed optimally in O(log n) time on an
Exclusive Read Exclusive Write (EREW) PRAM [3].

(B) Connected components and the spanning tree of an n-node, m-edge graph can
be found in O(log n) time with O((m + n)c(m, n)/log n) processors on an arbitrary-
CRCW PRAM [3] provided that the input is presented as an adjacency list.

(C) Least common ancestors of k pairs of vertices in an n-node tree can be found in
O(1) time with k processors after O(log n) time preprocessing with O(n/log n) proces-
sors on an EREW PRAM by using the algorithm in [23].

(D) The Euler-tour technique on trees of [24] can be implemented optimally in
O(log n) time with O(n/log n) processors on an EREW PRAM by using (A).

(E) Using the above-mentioned results as subroutines, we obtain an almost-optimal
parallel algorithm for finding an open ear decomposition from the algorithm in [15],
[17], for finding biconnected components from the algorithm of [24], and for finding an
st-numbering in a biconnected graph from the algorithm of [15].

We will refer to the above five results while describing the processor-time complexity
of the Separating Pairs algorithm.

Step 1 can be performed by using (E).
Consider Step 2. The digraphs G, T, G, and T can be constructed in O(log n) time

with an almost-optimal processor-time bound by using the st-numbering algorithm of
(E). Splitting and renaming can be achieved by making the vertex labels a 2-tuple: the
first component representing the vertex label and the second representing the ear label
of the edge that is incident on that vertex. We can implement this in constant time per
split node. The processors assigned to the end edges of each ear can be made responsible
for adding the edge to attach that ear. The lca values of nontree edges can be computed

PARALLEL TRICONNECTIVITY 607

optimally by (C). Step 3(a) of Build G’ identifies the bundles of parallel ears. Let us
analyze its complexity. For building Gp the processor assigned to the last edge (a, b)
of each ear examines the ear labels of the two edges incident on the lca(a, b) in the

fundamental cycle created by including (a, b) in Tt. Let the ear labels be P and Q. Next,
it checks to see if P and Q have identical pair of end vertices. If so, an edge is added
in Gp between p and q. Now using the connected component algorithm of (B) we can
implement Step 3(b) of Build G’. This leads to an algorithm for implementing Build G’
that runs in O(log n) time and .has an almost-optimal processor-time bound.

Let us examine the complexity of Build . The pos labeling can be computed opti-
mally in O(log n) time with the Euler-tour technique by using (D). The auxiliary multi-
graph Ge can be constructed as follows. The vertex set is easy to create. The processor
assigned to the first edge of an ear R does the following. (i) It finds the end vertices u
and v of that ear. (ii) It also finds the ears P and Q, where p ear(u) and Q ear(v),
and the values pos(u, P) and pos(v, Q). Assume that the vertices corresponding to P,
Q, and R in G are p, q, and r, respectively. Finally, (iii) it creates edges (p, r) and (r, q)
and labels these edge with a 2-tuple (pos(u, P), pos(v, Q)).

The c labeling of the vertices of G consists of the following steps. Find the blocks
of G by using (E). Treat each block D separately, and construct a spanning tree Tb in
each block by using (B). The articulation vertex q with the smallest label in a block D can
be found optimally by using the Euler-tour technique. That gives us the first component
of c, i.e., Q. The values a and b can be found by examining the 2-tuple labels of the edges
of D incident on q. These values are broadcast to all the vertices in the block D by again
using the Euler-tour technique. Finally, building Hp involves computing the minimum
and maximum of the labels of edges incident on a vertex. This can be done optimally in
O(log n) time by using (A).

In Planaze 7-I the only nontrivial step is the construction of the Gb. It involves the
identification of the arcs (a, b) and (c, d) for each arc (z, g). An optimal algorithm for
this problem is given in [1] (this problem is also known as the range-minima problem).
Ip can be built by an easy reduction to the connected components.

Finally, Find Candidate Lists requires computing the minimum and the maximum of
the labels of edges incident on a vertex. This can be done optimally in O(log n) time by
using (A).

4. Algorithm for finding triconnected components. We start with some definitions.
Let G (V, E) be a biconnected graph, and let Q be a subgraph of G. We define

the bridge graph of Q, S (Vs, Ps) as follows (this is a little modified from the usual
definition in [5], [18], and [21]). Let the bridges of Q in G be Bi, i 1,..., k. Then
Vs V(Q) u {B1,... ,Bk} and Ps E(Q) t {edge (v, Bi) for each edge (v, w) E Bi
with w V(Q), 1 _< _< k}. Note that S is a multigraph, i.e., a graph in which there
can be several edges between the same pair of vertices. Each B Vs together with the
edges incident on Bi is a bridge of Q in S.

A star is a connected graph with a vertex v such that every edge in the graph is
incident on v. Astargraph G(P) is a graph G consisting of a simple path P, each ofwhose
bridges is a star. Thus if Q is a simple path in G, then S, the bridge graph of Q, is a star
graph. Let B be a star in a star graph G(P), where for convenience let P (0,..., k- 1).
Let the attachments of B on P be Vo,..., v, with vo < vl < < v. Then the vertices
vo and v are the end attachments of B, and the remaining attachments are its internal
attachments. We will also refer to vo as the left attachment of B and to v as its right
attachment. The closed intental [vo, vii is the span of B, and it contains all of the vertices
on P between Vo and v (both vertices inclusive).

608 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

We now review some material from [11], [18], and [25] relating to triconnected com-
ponents. This material deals with multigraphs. An edge e in a multigraph is denoted by
(a, b, i) to indicate that it is an edge between a and b; here i is the label that distinguishes
e from the other edges between a and b. The third entry in the triplet may be omitted
for one of the edges between a and b.

A pair of vertices a, b in a multigraph G (V, E) is a separating pair if and only if
there are either two nontrivial bridges or at least three bridges, one ofwhich is nontrivial,
of {a, b} in G. If G has no separating pair, then G is triconnected. The pair a, b is a
non,vial separating pair if there are two nontrivial bridges of {a, b} in G.

Let {a, b} be a separating pair for a biconnected multigraph G (V, E). For any
bridge X of {a, b} let . be the induced subgraph on (V V(X)) u {a, b}. Let B be a
bridge of G such that IE(B)I >_ , IE(B)I >_ , and either B or B is biconnected. We
can apply a Tutte split [11], [25] s(a, b, i) to G by forming G and Gz from G, where G is
Bt_J { (a, b, i) } and G2 is/t_J { (a, b, i) }. Here i is an index that distinguishes this split from
other splits that may be performed at the separating pair {a, b}. Note that we consider
G1 and G2 to be two separate graphs. Thus it should cause no confusion that there are
two edges (a, b, i) since one of these edges is in G1 and the other is in G. The graphs
Gx and G are called the split graphs ofG with respect to {a, b}. The Tutte components of
G are obtained by successively applying a Tutte split to split graphs until no Tutte split is
possible. Every Tutte component is one of three types: (i) a triconnected simple graph,
(ii) a simple cycle (apolygon), or (iii) a pair of vertices with at least three edges between
them (a bond); the Tutte components of a biconnected multigraph G are the unique
aiconnected components of G. In this section we give an O(log n)-time parallel algorithm
whose processor-time bound is almost optimal to find the triconnected components ofG
corresponding to triconnected simple graphs and polygons. The bonds can be inferred,
if necessary, by counting the number of triconnected components with respect to each
separating pair.

Let G (V, E) be a biconnected graph with an open ear decomposition D
[P0,..., P-]. When referring to vertices on a specified ear P or on a path P, we as-
sume for convenience that they are numbered in sequence from one end vertex of the
path (its left-end vertex) to the other (its right-end vertex). Let {a, b) be a pair separating
P. Let Bx,..., Bk be the bridges of P with no attachments outside the interval [a, b] on
P and let T(a, b) k(t.J=xBj)t_JPi(a, b), where P(a, b) is the segment of Pi between and
including vertices a and b. Then the ear split e(a, b, i) consists of forming the upper split
graph G Ti (a, b) t_J { (a, b, i)} and the lower split graph G2 Ti (a, b) t3 { (a, b, i)}. An
ear split e(a, b, i) is a Tutte split if either G1 { (a, b, i) } orG {(a, b, i) } is biconnected.

Let S be a nontrivial candidate list for ear P. TWo vertices z, v in S are an adjacent
separatingpairfor Pi if u and v are not adjacent to each other on Pi and S contains no
vertex in the interval (z, v) on P. TWO vertices a, b in S are an extremal separating pair
for P if IS[> 3 and S contains no vertex in the interval outside [a, b]. An ear split on an
adjacent or extremal separating pair is a Tutte split, and the Tutte components of G are
obtained by performing an ear split on each adjacent and extremal separating pair [18].

With each ear split e(a, b, i) corresponding to an adjacent or extremal pair separat-
ing Pi, we can associate a unique Tutte component of G as follows. Let e(a, b, i) be such
a split. Then by definition T(a, b) t3 {(a, b, i)} is the upper split graph associated with
the ear split e(a, b, i). The tdconnected component of the ear split e(a, b, i), denoted by
TC(a, b, i), is Ti (a, b) t { (a, b, i) } with the following modifications: call a pair {c, d} sepa-
rating an earP in Ti(a, b) amaximalpairforTi(a, b) if there is no e, f in Ti(a, b) such that
{e, f} separates some earP in T/(a, b) and c and d are in T(e, f). In Ti (a, b) t_J ((a, b, i) }

PARALLEL TRICONNECTIVITY 609

replace T (c, d) together with all two-attachment bridges with attachments at c and d, for
each maximal pair {c, d} of T/(a, b), by the edge (c, d, j) to obtain TC(a, b, i). We denote
by TC(O, 0, 0) the unique triconnected component that contains a specified edge on P0.

We note that TC(a, b, i) as defined above is a triconnected component of G since
each split of T(a, b) in the above definition is a valid Tutte split, and the final resulting
graph contains no unprocessed separating pair. Furthermore, we also note that every
triconnected component of G appears as TC(a, b, i) for some adjacent or extremal sep-
arating pair. This is seen as follows. Let T be a triconnected component of G. By the
results in [18] we know that T can be obtained by a sequence of ear splits at adjacent
and extremal pairs separating ears in the open ear decomposition D of G. Since the
order of processing these ear splits is arbitrary, let us consider a sequence in which these
splits are performed in nonincreasing order of ear number. In this case every upper split
graph formed at the end of processing ear P must be a triconnected component since
it will contain no unprocessed separating pairs. Let P be the lowest-numbered ear that
contains a separating pair whose copies are present in T, and let e(a, b, i) be the last ear
split performed in the generation of T. Then clearly T TC(a, b, i).

In our parallel algorithm we will make the collection of splits S corresponding to
adjacent separating pairs simultaneously, followed by the collection of splits S for ex-
tremal separating pairs. We will call each component present after completion of splits
in S an adjacent triconnected component and will denote it by TCA(a, b, i). Since the vir-
tual edges corresponding to the splits will be inserted by concurrent writes, we will have
only one copy of each such edge between a given pair of vertices. Hence we will not
generate the triconnected components corresponding to bonds. These can be inferred,
if necessary, by counting the number of triconnected components of the other two types
that are present at each separating pair.

The rest of this section is devoted to describing an algorithm for performing these
operations. We first review some further material from [18] and [21].

Let G be a biconnected graph with an open ear decomposition D [P0,..., P-].
Let B,..., B be the bridges of P that contain a nonattachment vertex on an ear num-
bered lower than i; we call these the anchor bridges of P. The ear graph of P, denoted
by Gi (Pi), is the graph obtained from the bridge graph of Pi by the following operations:

(a) Replace all of the anchor bridges by a new star whose attachment edges are the
union of the internal attachment edges of all anchor bridges, delete the attachments of
anchor bridges to the end vertices of Pi, and replace them by one new edge to each end
vertex. We will call this new star the anchoring star of G(P).

(b) Remove any multiple two-attachment bridges with the same two attachments,
and also remove any two-attachment bridge with the end vertices of P as attachments.

Note that Gi(Pi) is a multigraph. (This definition of ear graph is slightly modified
from that in [18] and [21] to reflect the change made in the definition of a bridge graph.)
Gi(Pi) is also a star graph.

TWO stars S and Sk in a star graph G(P) interlace (see also [5, p. 149]) if one of the
following holds:

1. There exist four distinct vertices a, b, c, d in increasing order in P such that a and
c belong to S(S) and b and d belong to Sk (S).

2. There are three distinct vertices on P that belong to both Sj and Sk.
The operation of coalescing two stars S and S is the process of forming a single

new star St from S and S by combining the attachments of S and Sk and deleting
Sj and S’. Given a star graph G(P), the coalesced graph G(P) of G(P) is the graph
obtained from G by coalescing all pairs of stars that interlace. Note that G(P) is a star

610 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

graph with respect to P and that Go(P) has a planar embedding with P on the outer face
since no pair of stars interlace on P.

Let G(P) be a star graph in which no pair of stars interlace. If G(P) contains no star
that has attachments to the end vertices z and /of P, then add a virtual star X to G(P)
with attachments to z and /. The starembedding G* (P) of G(P) is the planar embedding
of (the possibly augmented) G(P) with P on the outer face. A star B is the parent-star
of star/3’ and/3’ a child-star of B if there is a face in the star embedding G* (P) that
contains the left and right attachments z and//of/3’ as well as an attachment edge of B
in each of the intervals [1, z] and [/, r], where and r are the left and right end vertices
of P.

The following lemma is shown in [18].
LEMMA 4.1. A pair {a, b} separates P in the coalesced graph (P) if and only if

{a, b} separates Pi in G.
We will use the following corollary to Lemma 4.1.
COROLLARY 4.2. An edge (x, y) incident on Pi is in TC(a, b, i) ifand only if (x, y) is

in the triconnected component associated with pair {a, b} separating Pi in G (P).
Proof..Let C(P) be the bridge graph of P, and let Cc (P) be its coalesced graph.

A straightforward extension of the proof of Lemma 4.1 given in [18] shows that an edge
incident on Pi is in TC(a, b, i) if and only if it is in the triconnected component associated
with the pair {a, b} separating Pi in Ci (Pi). We then observe that the edges of Ci(Pi)
that are deleted in the ear graph Gi(Pi) cannot appear in TC(x, y, i) for any pair x, y
separating P.

For convenience of notation we denote Gi (Pi) by Gc(Pi). Reference [21] includes
an algorithm for forming the coalesced graph of a star graph G(P) that runs in loga-
rithmic time on a CRCW PRAM with an almost-optimal processor-time bound. This
algorithm has the same processor-time complexity as that of finding connected compo-
nents.

LEMMA 4.3. In the coalesced graph Gc Pi), for each adjacentpair {a, b} separating
there is at most one bridge of Pi with attachments on a, b and a vertex in (a, b), the portion
of Pi between a and b.

Proof. Suppose not, and let B and B2 be two bridges of Pi in G(Pi) that have
attachments on a, b and a vertex in (a, b). Then B and B2 must interlace, which contra-
dicts the fact that G(P) is the coalesced graph of the ear graph Gi(Pi).

LEMMA 4.4. Let/3 be a two-attachment bridge ofPi in G(Pi) with attachments a and
b. Then

(a) Ifthe span [a, b] is degenerate (i.e., (a, b) is an edge in Pi) orifthere is a bridge B’ of
P with attachments on a and b and at least one other vertex, then G(P) {B} defines the
same set ofpolygons andsimple triconnected components TC(z, 1, i), for iftred, as G(P).

(b) Ifpart (a) does not hold, then {a, b} is an extremalpair separating Pi as well as an
adjacentpair separating Pi.

Proof. Let P be the lowest-numbered ear in/3. Then j > i, and a and b are the end
vertices of P. Hence the ear split e(a, b, j) separates B from Pi, and thus B is not part
of TC(z, !1, i) for any pair {z, t} separating P. So a 2-attachment bridge on Pi is never
a part of a triconnected component associated with a pair separating P, although it may
define some adjacent and extremal separating pairs as in case (b) of the lemma.

We now prove parts (a) and (b) of the lemma.
(a) Suppose span [a, b] is degenerate. Then the triconnected component associated

with split e(a, b, i) is the single edge (a, b), which is a bond. Otherwise, if there is a bridge
B’ with attachments on a, b and at least one other vertex v, then the triconnected corn-

PARALLEL TRICONNECTIVITY 611

ponent associated with split e(a, b, i) contains a portion of P between a and b together
with B’ if v is in the interval (a, b) and is a polygon if v is not in [a, b]. Both of these
situations can be inferred without the presence of/3. Note that it is not possible for B’
to have an attachment v in the interval (a, b) and another attachment w that is not in
[a, b] since the bridge/3 would interlace with B’ in such a case.

(b) Let the span [a, b] be nondegenerate, and let the portion of Pi between a and
b be (a al, a2,..., ak b). Since there is no k-attachment bridge, k > 2, with span
[a, b], there must exist an a, 1 < i < k, such that a, a, and b are in the same candidate
list (7 and no vertex outside [a, b] is in (7. Hence {a, b} is an extremal separating pair.
Also, since there is no bridge with attachments on a, b and some other vertex c outside
[a, b], there must be some vertex c on P such that either c < a < b or a < b < c and a, b,
and c are in the same candidate list C’. Furthermore, no vertex in the interval (a, b) can
belong to C". Hence {a, b} is an adjacent pair in the candidate list C". E]

Let {a, b} be an adjacent separating pair for ear Pi. The pair a, b is a nonvacuous
adjacent separatingpairfor P if there is a bridge of Pi in Gc(Pi) with attachments on a, b
and one other vertex in the interval (a, b) on P; otherwise, the pair {a, b} is a vacuous
adjacent separatingpair. We leave it as an exercise to verify that if {a, b} if a nonvacuous
adjacent separating pair, then TC(a, b, i) is a simple triconnected graph and if {a, b} is
a vacuous adjacent separating pair, then TC(a, b, i) is a bond; if {a, b} is an extremal
separating pair, then TC(a, b, i) is a polygon.

Lemmas 4.3 and 4.4, in conjunction with Corollary 4.2, tell us that we can compute
the triconnected components ofG by the following method. Make the splits correspond-
ing to the adjacent separating pairs by performing, for each star B in G(Pi), an ear split
e(a, b, i), where [a, b] is the span of/3. Then break off chains of degree-2 vertices on the
paths in the resulting star graphs to perform the splits corresponding to the extremal
separating pairs.

There are two problems with using the above approach in an efficient logarithmic-
time algorithm for forming the triconnected components of a graph. One is that we
are working with the ear graphs of the ears and the total size of these graphs need not
be linear in the size of G. The second is that this approach will not work if a vertex
a appears in an ear split for two different ears. In particular, two-attachment bridges
corresponding to adjacent separating pairs would be separated on two different ears,
and this would cause processor conflicts.

We now turn to G’, the local replacement graph of (7 that we defined in 3.1, in order
to develop an efficient method of identifying the associated triconnected components.

Let (;’ be the local replacement graph of G, and let D’ [P,..., P’_I] be the
corresponding open ear decomposition. By Corollary 3.16 a pair {a, b} separates Pi in
G if and only if the pair {ap, bp,} separates P’ in G’. Furthermore, neither ap, nor bp,
is an end vertex of P’. The following lemma shows that in G’ we can efficiently identify
any bridge/3 of an ear P’ that has no attachment to an end vertex of P’.

LEMMA 4.5. Let Ge be the graph obtainedfrom G’ by collapsing all internal vertices of
each ear into a single vertex. Let vertex vi represent ear P in Ge. Then the edges incident
on vi in each block ofG whose lowest-numbered vertex is v correspond to the attachment
edges ofa bridge ofP in G’, and, conversely, each bridge ofP in G’ that has no attachments
to the end vertices ofP corresponds to a block of G,.

Proof. Let e and e2 be any pair of edges incident on v that lie in the same block
/3 of (;, whose lowest-numbered vertex is vi. Then there is a path between e and e2 in
/3 that avoids v, and hence in G’ there is a path between e and e2 that avoids internal
vertices of P’. But since the lowest-numbered vertex in/3 is v, the path between ex and

612 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

ez in B does not contain any vertex on an ear numbered lower than i, and hence el and
e must lie in a connected component in G’ {P’}.

Conversely, let B be a bridge of P’ in G’ that has no attachments to the end vertices
of P. Then when the internal vertices of P’ are collapsed into v, all of the attachments
ofB on P’ become incident on v. Thus B becomes a block inG with articulation vertex
v. Furthermore, since B has no attachments to the end vertices of P.’i, B is not an anchor
bridge of P/’ and hence v is the minimum-numbered vertex in B in G.

Recall that (Proposition 3.7) the copies of a vertex v in G’ are connected in the form
of a tree. For the following lemma assume this local tree that replaces v is rooted at vs,
where ear(v) S.

LEMMA 4.6. Let {z, !1} be a separatingpair that separates P in G. Let C be a connected
component in G {z, 1} that contains P(z, 1). If Q is an ear label ofone ofthe edges of
C and ifz is one ofthe end vertices of Q, then zp is an ancestor ofzc in the local tree that
replaces z.

Proof. If Q if parallel to P, then as {z, /} separates P it has the smallest ear label
among the labels of edges of C. Hence P would have to be the representative of the
bundle containing Q, and the lemma is clearly true. Otherwise, notice that V(C) V(P)
consists of nonattachment vertices of a relevant bridge of P. If the lca of the end vertices
of Q is not z, then z is a child of zp by Step 2 ofBuild G’. Otherwise, by Lemma 3.12,
zQ is a descendant of Zp. [’1

LEMMA 4.7. Any bridge ofP in G’ with an attachment to an end vertex ofP must be
eitherpart ofthe anchoring star ofG(P) or a bridge ofP with attachments only to the end
vertices ofP.

Proof. Let B be a bridge of P; in G’ with an attachment to one of its end
vertices zp.

We first show that the internal vertices on P are part of the anchoring star of P’. If

P is not parallel to Pi, then j < and the result follows directly. If P is parallel to Pi,
then let (7 be the connected component constructed in Step 3 of Build G’ that contains
P and P and let Pt be the root of the spanning tree ofC constructed in that step. Hence
< j and zp is an ancestor of zp in LT, where LT is the local tree that replaces the

vertex in G’. Furthermore, by the construction in Step 3 of Build G’ there is a path in
G’ between an internal vertex of Pj and an internal vertex of P[that avoids all vertices
on P’. Hence the vertices on Pj belong to an anchor bridge of P’.

Let e (!1, zp be an attachment edge of bridge B of P’. We will show that/3 is an
anchor bridge of P’. Let e belong to ear P.

If// zp, then e is an edge on P. Hence e, and thus B, are parts of the anchoring
star of P’. If//= zp,, then consider the fundamental cycle completed by the nontree

edge (u, v) in P in the tree T in which (zp, zp) is a tree edge. If P is not parallel to
Pi, then the presence of edge (zp, zp in G’ implies either that this fundamental cycle
contains an edge on Pj and no vertex on P.’, or that there is a path from v to the root s
of G’ that avoids all vertices in P’. In either case, e is part of a bridge of P’ that contains
a nonattachment vertex on an ear numbered lower than i.

IfP and P are parallel to each other, then ifP is not parallel to Pi, each of Pi and
P correspond to the root of the spanning tree of a connected component constructed in
Step 3 ofBuild G’. Hence by Lemma 4.6 B is a bridge of P’ with no internal attachment
on P’. Finally, if Pi, P, and P are all parallel to each other, then since zp is the parent
ofzp in LT,, there is a path in G’ between an internal vertex ofP and an internal vertex
of Pj that avoids all vertices in P’. Hence e is part of the bridge of P’ that contains the
internal vertices of P. This bridge was shown to be an anchor bridge of P’.

PARALLEL TRICONNECTIVITY 613

Lemmas 4.5 and 4.7 tell us that the following algorithm generates the ear graph of
each ear in G’.

ALGORITHM. Ear Graphs of G’.
Input: A local replacement graph G’ with its associated open ear decomposition D’
[P,..., P;_].

1. Form G,.
2. For each block B in G’ do

(a) Let the minimum-numbered vertex in B be v. make the image e in G’ of
each edge e’ in B incident on v an attachment edge of nonanchor bridge
B in the ear graph of P’.

(b) For each vertex vj # vi in B make the image e in G’ of each edge e’ of B
incident on vj an attachment edge of the anchoring star of the ear graph if
P;.

3. For each ear P’ add attachment edges to the end vertices of P’ for the anchoring
star created in Step 2(b).

Step 1 is the same as Step 1 of Build applied to G’ (3.2). Steps 2 and 3 can be
implemented in constant time per edge by using the a-values of each vertex computed in
Step 3 ofBuild . The total size of all of the ear graphs is O(m), where m is the number
of edges in G’, since each edge in G’ appears in at most two ear graphs (corresponding
to the ears containing the two end vertices of the edge).

Having obtained the ear graph G(P) of each ear in G’, we can obtain the coalesced
graph G’(P) of each of the ear graphs by using the algorithm of [21]. By Corollary
3.16 and Lemma 4.1 a pair {Xpi, yp } is an adjacent (extremal) pair separating P[in
G’(P) if and only if {x, y} is an adjacent (extremal) pair separating P in G(P). It turns
out that the relation between G and G extends beyond separating pairs to triconnected
components. The following two lemmas allow us to related the bridges of ears in G
with the bridges of ears in G and hence develop an efficient algorithm for finding the
triconnected components of G.

LEMMA 4.8. Let x be a vertex in Pi in G (possibly its end vertex), and let el (Ul, x) E

P and e2 (u2, z) Pk be two edges incident on z that belong to different bidges (B1
and Bz respectively) ofP, each ofwhich has an internal attachment on Pi. Then the least
common ancestor (lca) ofzp and zp in LTx is zpp, where zpp is an ancestor ofzp in
LTo

Proof. Suppose not, and let zp be lca(zp, zp), where zp is a proper descendant
of Xpi.

Case 1. There are no parallel ears incident on x in G. Let the vertices on the path
from xp to xp in LTx be xp xp, xp.,..., xp,. P. Then by construction the
fundamental cycle of Pj contains an edge in Pjh+, h 1,..., r 1 and contains no
edge in Pi in G. A similar situation holds for xp,,. But then all of these ears would lie in
the same bridge of Pi.

Case 2. There are some parallel ears incident on x in G. Again by construction
a pair of parallel ears have an ancestor-descendant relationship in LT, only if they are
connected to each other by a path that avoids P and their two end vertices. Hence again
by a combination of this observation and the argument in Case 1 we deduce that Pj and
Pk must be in the same bridge of P. V1

LEMMA 4.9. Let {a, b} be an adjacent or extremal pair separating Pi in G, and let
B {B1,..., B} be the bridges of Pi with an internal attachment in (a, b). Similarly, let
B’ {B,..., B, } be the bridges of P in G’ with an internal attachment in (ap, bp).

614 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

Then r r’, and there is a one-to-one correspondence between the bridges in B and the
bridges in B’ (without loss ofgenerality we assume that the correspondence is between
and Bfor 1,..., r) such that an edge e is in B ifand only ifthe corresponding edge e’

in
Proof. We need only to verify the connectivity at LT in G’ {P’}, for v 6 Pi,

since the connectedness in the rest of the graph remains unaltered when a vertex u in
G is replaced by the tree LT,, in G’. But we note from Lemma 4.8 that if two edges
e (u, v) P and e (u, v) Pk, v Pi, are in different bridges of Pi, then el
and e are separated from each other in G’ {vpi }. The lemma follows.

From Lemma 4.9 we see that given an adjacent pair {a, b} separating P, the bridges
of P’ with no attachments outside the interval laP,, bp,] on P, together with the path
from ap, to bp, on P’, will correspond to the upper split graph of the ear split e(a, b, i) in
G. Now we can further apply Corollary 4.2 to G’ and can work with G’(P[) to directly
identify the triconnected components of G. This is done in the following algorithm.

ALGORITHM. Triconnected Components.
Input: A biconnected graph G with an open ear decomposition D [P0,..., P-x]

and its local replacement graph G’ together with its associated open ear decomposition
D’ [P,..., Prt_l] and the coalesced graph G(P[) of the ear graph of each ear in D’.

1. For each ear P/’ do
For each vertex v on P/’ make a copy vn of v for each star B in G(P[) that
has an attachment on v. If there is no star with an internal attachment on
v, then make an additional copy ’Up of ?3 to represent the lower split graph
formed when all adjacent pairs containing v have been processed.

2. Assign vertices to edges on P[.
(a) Forj 0,1,... ,k 1do

If there is no bridge with its leftmost attachment on j, then replace
edge (j, j + 1) on P’ by an edge incident on jc, where C is B is there
is a bridge B with an internal attachment on j and is P otherwise.

(b) Forj 1,...,k do
If there is no bridge with its rightmost attachment on j, then replace
edge (j 1, j) on P’ by an edge incident on j19, where D is B’ if there
is a bridge B’ with an internal attachment on j and is P otherwise.

3. Make the splits corresponding to adjacent separating pairs:
For each star B in G(P) do

Let the end attachments of B on P’ be v and w, v < w.

(a) Replace all edges in B incident on v by edges incident on vn. Sim-
ilarly, replace all edges in B incident on w by edges incident on
ZOB.

(b) If B has no child-star with an attachment at v, then replace edge
(v, v + 1) on P by an edge incident on vn. Similarly, if B has no
child-star with an attachment at w, then replace edge (w 1, w)
by an edge incident on wn.

(c) Add avirtual edge (vn, wn, i) and another virtual edge (vc, wz, i),
where C’ (respectively, D) is the parent-star of B is the parent-star
of B has an attachment at v (respectively, w) and is P otherwise.

(d) Replace each internal attachment edge of B on a vertex u in P’ by
an edge incident on up.

4. Process extremal pairs:
For each star B in P’ do

PARALLEL TRICONNECTIVITY 615

Let the attachments of B on P’ be v0 < Vl < < Vl.
For j 0,..., I do

If (vo., vo+. is not an edge in the current component containing
/3, then
For convenience of notation let x denote v0 and let y denote V0+l.
(a) Make a copy xB of x and a copy yB of y.
(b) Replace the edge on P/’ connecting xn to the next larger vertex

in the current graph by an edge incident on x.
(c) Replace the edges on P’ connecting y to the next smaller

vertex in the current graph by an edge incident on Yet.
(d) Add virtual edges (XB, y, i) and (xB, YB,, i).

5. Convert the vertices in G’ into vertices in G.
In each of the components formed collapse all vertices that correspond to
a given vertex v in G into a single copy of v to construct the triconnected
components of G.

THEOREM 4.10. Algorithm Triconnected Components correctlyfinds the simple tricon-
nected components and thepolygons of G.

Proof. Consider a bridge B’ in G(P) with span [zp, yp]. By Corollary 3.16 and
Lemma 4.9 we can map each edge e’ in B’ (that is not in any LT,) to an edge e in a bridge
B of G(Pi) with span [z, y]. A similar argument holds for the bridges of P/’ in G(P)
corresponding to the maximal pairs in Ti (z, y). Finally, any two-attachment bridge B"
with attachments cp and dp, on P/’ is split off in Pj at cp and dp, where Pj is the
minimum-numbered ear in B". Hence when we make the split corresponding to B’ in
Step 3 of Triconnected Components, the edges in the component formed must correspond
to the edges in the adjacent triconnected component TCA(z, y, i). Finally, the polygons
generates in Step 4 are clearly the polygons of the triconnected components of G since
all vertices on a polygon are local to a given ear.

Thus whenwe implement Step 5 ofthe algorithm in a component to get back original
vertices of G, we get back a triconnected component of G.

For the processor-time complexity of Triconnected Components we note that steps 1,
2, and 4 can be performed optimally in logarithmic time, as can all of the steps in Step 3
except Step 3(c), which requires identifying the parent-star of a star in a star embedding.
This step can be performed by using the bucket-sort algorithm of Hagerup [10]. It can
also be performed optimally in logarithmic time by using list ranking and making use
of the fact that Gc(P) is planar. The details of this implementation are given in [8].
They are omitted here since the overall complexity of the algorithm is dominated by the
need to perform bucket sort in order to obtain the adjacency lists of the various graphs.
Step 5 can be performed with the same bounds as those used in finding the connected
components of a graph.

Hence Triconnected Components runs in O(log rt) time deterministically on a CRCW
PRAM while performing O((m + rt) log log rt) work.

5. Conclusion. We have presented an efficient parallel algorithm for dividing a graph
into triconnected components. We conclude the paper with the following remarks.

1. Our algorithm can be adapted to test 3-edge connectivity within the same bounds.
For this we use an ear decomposition instead of an open ear decomposition, and we look
for separating pairs of edges. It turns out that in this case it is not necessary to construct
the local replacement graph since each edge of the graph is contained in exactly one

616 D. FUSSELL, V. RAMACHANDRAN, AND R. THURIMELLA

ear. Hence the resulting algorithm is simpler than the one we have presented for testing
(vertex) triconnectivity.

2. Our parallel algorithm is slightly suboptimal in the work it performs because
of the suboptimality of the currently known parallel algorithms for finding connected
components and performing bucket sort. It will be interesting to find improvements in
these parallel algorithms, which in turn will lead to improvements in the bounds for our
algorithm.

REFERENCES

N. ALONAND B. SCHIEBER, Optimalpreprocessingforanswering on-line queries, Tech. Rep. 71/87, Tel Aviv
University, Tel Aviv, Israel, 1987.

[2] J. CHERIYAN AND R. THURIMELLA, Algorithms forparallel k-vertex connectivity and sparse certificates, in
Proc. 23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 391-401.

[3] R. COLEAND U. VISrlrdN,Approximateparallel scheduling, II: Applications to optimalparallelgraph algo-
rithms in logarithmic time, Inform. Comput., 91 (1991), pp. 1-47.

[4] S. EVEtq, Graph Algorithms, Computer Science Press, Rockville, MD, 1979.
[5] D. FUSSELLAND R. THURIMELLA, Separationpair detection, in VLSI Algorithms and Architectures, Lec-

ture Notes in Computer Science 319, Springer-Verlag, Berlin, New York, 1988, pp. 149-159.
[6] D. FUSSELL, V. RAMACHANDRAN,AND R. THURIMELLA, Finding triconnected components by local replace-

ments, in Proc. ICALP ’89, Lecture Notes in Computer Science 372, Springer-Verlag, Berlin, New
York, 1989, pp. 379-393.

[7] H.N. GABOW,A matroid approach to finding edge connectivity andpacking arborescences, in Proc. 23rd
Annual ACM Symposium on Theory of Computing, 1991, pp. 112-122.

[8] T. HAGERUP, Towards optimalparallel bucket sorting, Inform. and Comput., 75 (1975), pp. 39-51.
[9] J. E. HOPCROFTAND R. E. TARJAN, Dividing a graph into triconnected components, SIAM J. Comput., 2

(1973), pp. 135-158.
[10] J. JAJAAND J. SIMON, Parallel algorithms in graph theory: Planarity testing, SIAM J. Comput., 11 (1982),

pp. 314-328.
11] A. KANEVSKV AND V. RAMACHANDRAN, Improved algorithms forgraph four-connectivity, J. Comput. Sys-

tem Sci., 42 (1991), pp. 288-306.
[12] R. M. KARP AND V. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in Handbook of

Theoretical Computer Science, North-Holland, Amsterdam, 1990, pp. 869-941.
[13] Y. MAON, B. SCHIEBER, AND U. VISHKIN, Parallel ear decomposition search (EDS) and ST-numbering in

graphs, Theoret. Comput. Sci., 47 (1986), pp. 277-298.
[14] G. L. MILLER AND J. REIF, Parallel tree contraction, part 2: Further applications, SIAM J. Comput., 20

(1991), pp. 1128-1147.
[15] G.L. MILLERAND V. RAMACHANDRAN, Efficientparallel eardecomposition with applications, Manuscript,

MSRI, Berkeley, CA, January 1986.
[16] .,A new triconnectivity algorithm and its applications, Combinatorica, 12 (1992), pp. 53-76.
[17] H. NAGAMOCHIAND T. IBARAKI, Lineartime algorithmsforfinding a sparse k-connected spanning subgraph

ofa k-connected graph, Algorithmica, 7 (1992), pp. 583-596.
18] V. RAMACHANDRAN, Parallel open ear decomposition and its application to graph biconnectivity and tricon-

nectivity, in Synthesis of Parallel Algorithms, J. H. Reif, ed., Morgan-Kaufmann, to appear.
[19] V. RAMACHANDRAN AND U. VISHKIN, Efficient parallel triconnectivity in logarithmic time, in VLSI Algo-

rithms and Architectures, Lecture Notes in Computer Science 319, Springer-Verlag, Berlin, New
York, 1988. pp. 33-42.

[20] B. SCHIEBER AND U. VISHKIN, On finding lowest common ancestors: Simplification and parallelization,
SIAM J. Comput., 17 (1988), pp. 1253-1262.

[21] R.E. TARJANAND U. VISHKIN,An eflficientparallel biconnectivity algorithm, SIAM J. Comput., 14 (1984),
pp. 862-874.

[22] W.T.,Connectivity in Graphs, University of Toronto Press, Toronto, Canada, 1966.
[23] H. WHITNEY, Non-separable andplanargraphs, Trans. Amer. Math. Soc., 34 (1932), pp. 339-362.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 617-626, June 1993

() 1993 Society for Industrial and Applied Mathematics
010

IMPROVED PARALLEL POLYNOMIAL DIVISION*

DARIO BINIt AND VICTOR PANS

Abstract. The authors compute the first N coefficients of the reciprocal r(x), r(x)p(x) 1 mod xN

(given a natural N and a polynomialp(x)), (p(0) # 0), by using O(h log N) arithmetic steps and O((N/h)(1+
2-h log(h) N) processors, for any h, h 1, 2,..., log* N, under the PRAM arithmetic models, provided
that O(log m) steps and m processors suffice to perform discrete Fourier transforms on m points and that
log() N N, log(h) N log2 log(h-l) N, h 1,... ,log* N, log* N max{h log(h) N > 0}. The
same estimates apply to some other computations, such as the division with a remainder of two polynomials of
degrees O(N) and the inversion of an N x N triangular Toeplitz matrix. This improves the known estimates of
Reif-Tate and Georgiev. The presented techniques are extended to parallel implementation of other recursive
processes, such as the evaluation modulo xN of the ruth root p(x) 1/m of p(x) (for any fixed natural m), for
which we need O(log N log log N) timesteps and O(N/log log N) processors. The paper demonstrates some
new techniques of supereffective slowdown of parallel algebraic computations combined with the technique
of stream contraction.

Key words, polynomial division, parallel algorithms, computational complexity, triangular Toeplitz matri-
ces, Newton’s iteration for algebraic computing

AMS(MOS) subject classifications. 68C20, 68C25, 68C05

1. Introduction. In this paper we will improve the known upper estimates for the
parallel arithmetic complexity of computing the reciprocal of a polynomial and, conse-
quently, of the equivalent computations, such as polynomial and power series division
and triangular Toeplitz matrix inversion (compare [BP], [BPa] and the appendix). This
improvement relies on the techniques of stream contraction and supereffective slowdown
ofparallel computations. The first technique contracts the stream of successive steps of
some recursive parallel algorithms in a pipelined fashion, by modifying these algorithms
so as to start each new recursive step without completing the original preceding step. In
[PR] such an approach improved parallel computation of paths in graphs; in our paper,
it works (in a different form) for parallel polynomial division. The second technique
applies to parallel recursive algebraic computations, such as Newton’s iteration for al-
gebraic problems, where each recursive step increases by the factor c (for a fixed c > 1)
the number of computed output values. This technique recursively stops and restarts the
computations, which enables us to decrease by the factor q the processor bound for (a
large class of) parallel algebraic computations in the result of their slowdown by s o(q)
times. We call such a slowdown supereffective since a variant of Brent’s scheduling prin-
ciple only implies an effective, by O(s) times, decrease of the processor bound, in this
case (see [KR], [PP]).

We focus on the application of our approach to polynomial division, but our tech-
niques can be immediately extended to some other polynomial computations based on

Received by the editors June 8, 1990; accepted for publication (in revised form) January 29, 1992. The
results of this paperwere presented at the 33rd Annual IEEE Symposium on Foundations ofComputer Science
(FOCS ’92), Pittsburgh, Pennsylvania, 1992.

Department of Mathematics, University of Pisa, 56100 Pisa, Italy. The work of this author was supported
by National Science Foundation grants CCR 8805782 and CCR 9020690, and by Ministero dell’Universit e
della Ricerca Scientifica e Tecnologica (40% funds).

Mathematics and Computer Science Department, Lehman College, City University ofNew York, Bronx,
New York 10468. The work of this author was supported by National Science Foundation grants CCR 8805782
and CCR 9020690 and by Professional Staff Congress of the City University of New York Awards #661340,
#668541, #669210, and #662478.

617

618 DARIO BINI AND VICTOR PAN

recursive processes, such as Newton’s iteration. In particular, in the appendix we show
an extension to computing (modulo zN) the ()th power (or the ruth root), p(z)/’, of
a polynomial p(z), summarize the techniques used, and state a more general theorem
on the resulting bounds on the complexity of parallel computations.

We will state our estimates in the form Oa(t, P), which means that our computations
can be performed by using O(st) arithmetic steps and O(P/s) processors (for any fixed
s, 1 < s < P), under the PRAM arithmetic models of computing (see [KR]). We will
assume the bounds Oa (log m, m) on the cost of performing (forward and inverse) dis-
crete Fourier transforms on the ruth roots of 1 [hereafter referred to as DFT(m)]. This
bound holds, in particular, over the complex field of constants. Over any commutative
ring (with unity), the bound Oa (log m, m log log m) holds [CK], so that all our estimates
apply if their processor bounds are increased by the factor of log logN provided that
the ring supports Bluestein’s generalized fast Fourier transform (FFT) ([Kn]). In 6 we
will comment on the latter assumption. Hereafter, log stands for log2 (all logarithms are
binary).

Given a natural N and the coefficients of a polynomial p(z), p(O) # O, we will com-
pute the first N coefficients of the reciprocal power series,

(1.1) r(x) rix’, r(x) p(x) 1, ro
,=o p(o)

yielding the complexity estimates

N
2_h(1.2) CN OA h log N, -(1 + log(h) N for all h,

Here,

log() N N, log(h) N log2 log
(h-l) N,

h 1,2,... ,log* N.

h 1,..., log* N,

log* N max{h log(h) N > 0}.

In particular, for h log* N, (1.2) turns into

(1.3) CN OA(log* N log N, N/log* N).

This improves the previous record bounds of [G],

CN Oa (log N, N log2 N),

and of [RT],

CN OA (log N log log N, N/log log N).

We refer the reader to [BP] and [BPa] on other previous works on parallel algorithms
for polynomial reciprocals, in particular, on Reif’s results of [R], including the bound
CN Oa (log N, N2), and Bini’s results of [B], where CN Oa(log N, N) is proven for
any precision approximation to the reciprocal of a polynomial modulo zN.

2. Newton’s iteration and its contraction. It is well known that, given a polynomial
p(z), p(O) # O, the first m coefficients of the reciprocal power series r(z) of (1.1) can be
computed by performing [log m] steps of Newton’s iteration,

IMPROVED PARALLEL POLYNOMIAL DIVISION 619

(2.1) Zo(X) l/p(0), Zi+l (X) Zi(X) (2 p(X)Zi(X)), i 1,..., [log

In fact, since

(2.2) r(x)- Zi+l(X) (r(x)- zi(x))2p(x),
the number of coefficients shared by r(x) and zi(x) is doubled in each iteration step i,
so that, for all i,

(2.3) z(x) r(x) mod z:’

The algorithm of Sieveking-Kung is based on this scheme, where, however, both
polynomials p(z) and zi(x) of (2.1) are reduced modulo x2’. It follows that step of
Newton’s process outputs a polynomial of degree at most 3(2- 1), whose coefficients can
be computed by means of forward and inverse DFTs on re(i) points at the cost Oa (i, 2),
where re(i) > 3(2 1). This implies the bound Oa(log2 n, n/log n) on the overall cost
of computing the coefficients of r(z) mod z’, which turns into the bound

(2.4)
n n

.,a-- OA (logn log (..), it,/log (..))
if we initially know the k coefficients of r(x) mod xa.

In [G] it is pointed out that the relation (2.3) still holds even ifp(x) in (2.1) is replaced
by p(x) mod x’+1 Then the degrees of the polynomials zi(x) are bounded by i2i, i
0, 1,..., and thus, the coefficients of za(x), for d [log hi, can be computed by means of
a single inverse DFT on N O(n log n) points (that is, on the Nth roots of 1) once the
values of Zd(X) on these points have been computed. To compute the values of za(x) on
a set of points, we may compute on this set, at first, the values ofpi(x) p(x) mod x’+1

for all i < d, and then, recursively, the values of Zi+l (x), by applying the equation (2.1)
for 0, 1,..., d 1. This enables us to contract the stream of Newton’s recursive
steps so as to avoid the application of DFT until we compute the values of za(x). In
such a way, the first n coefficients of r(x) mod x’ can be computed at the cost
Oa(log n, n log9 n) [G].

3. A basis algorithm for new improvements and its recursive application. In this
and in the next two sections, we will combine the two ways of applying Newton’s itera-
tion (2.1), that is, the coefficientwise way (Sieveking-Kung) and the pointwise way [G],
applied with recursive restarting. This policy enables us to decrease the overall parallel
computational cost. Specifically, we will consider Newton’s iteration that starts with

(3.1) yo(x) r(x) mod za

for any fixed natural k (not necessarily for k 1) and that continues as follows:

(3.2) pi(x) p(x) mod xke’+

(3.3) Yi+I (X) yi(x) (2 pi(x)yi(x)),
i 0, 1, Then (2.2) immediately implies that

(3.4) yi(x) r(x) mod xa2’

620 DARIO BINI AND VICTOR PAN

and we verify by induction on that

(3.5) deg Vi(z) < (i + 1)k 2i- 2i+x + 1.

Equations (3.4) and (3.5) immediately imply the correctness ofour basis algorithm shown
below.

With no loss of generality, we assume that n is large enough, say, n > 16. Further-
more, let s denote an integer, 4 < s < n; let log log s and log n be integers.

Basis algorithm.
Input: Integers n and s and the coefficients of p(x) and r(x) mod x"18.
Output: The coefficients of r(x) mod x/og 8.
Initialize: Set k n/s, j log s 2 log log s, q n/log s, yo(x) r(x) mod xk.
Computation:. / times apply DFT on q points, to evaluate the polynomials y0() of (.I) and

(x) of (3.2), for 0,..., , on the qth roots of I.
2. Use (3.3), for i 0, 1,..., j 1, in order to evaluate y+l (z), for 0, 1,..., j 1,
on the qth roots of 1.
3. Apply the inverse DFT on q points in order to evaluate the coefficients of yj(x).
[deg y(x) < (j + 1)k 2J 2+1 + 1; y(x) r(x) mod xk, due to (3.4), and k2
u/log2 s.]
4. Update the initialized parameters by first setting yo(x) yj(x)mod xk2, q
n(1 + log log s)/log s, and then k n/log2 s, j log log s; then redefine p(x) and
yi+(x), for 0, 1,... ,j 1, by using the equations (3.2) and (3.3); then again ap-
ply steps 1-3 to compute and to output the coefficients of the polynomial yj(x) (which
equals r(x) mod xk2, where k2J n/log s for the updated k and j).

The cost of the computation by the basis algorithm is clearly bounded by
OA(log n, n), and we will recursively apply this algorithm for a fixed n and for s suc-
cessively taking the values

(3.6) So n, s log n, s2 log log n, ..., Sh-2 log(h-) n,

for 2 _< h < log* n (for simplicity, let log(g) n be integers for g 1,..., h). This way, we
will compute the first m(h, n) n/log(h-) n coefficients of r(x) at the cost OA((h
1) log n, n). Such a policy of recursive restarting enables us to perform the computation
fast, even by using fewer processors, which cannot be achieved with a single application
of the algorithm of [G].

4. Final refinement of the algorithm. Let N n2h. In particular, this choice of
N ensures that the above cost bound OA((h 1)logn, n) is not greater than the de-
sired bound (1.2). We still need, however, to compute the N re(h, n) coefficients of
r(x) mod xN that remain unknown after the recursive application of the basis algorithm.
We start with computing r(x) mod x’ [note that re(h, n) < n for h < log* n]. We set

(4.1) yo(x) r(x) mod Xm(h’n), k m(h, n), j log(h-2) n,

(4.2) q (j + 1)k2 2+ + 1,

[so that k2 n, q < (1 + log(h-) n)n], and apply steps 1-3 of the computation
of the basis algorithm. The complexity of these steps is bounded from above by

IMPROVED PARALLEL POLYNOMIAL DIVISION 621

OA(lOgn, n(log(h-) n)z), which we may replace by the weaker bound OA(hlogn,
(n/h)(log(h-) n)z). The overall cost of computing the coefficients of r(z) mod z’ is
thus bounded by

Oa hlogn, n 1+
h

For N n2h and for h log* n O(1), in particular, for h > log*n 2, we have
log(h-I) n O(1), and the latter cost estimate implies the bound

(4.3) ON,h O h log N, N 2-h 1 + h

not exceeding the desired bound (1.2).
If h _< log* n 2, then we will proceed similarly, but will extend the computation of

r(x) mod x1 for so, s,.., of (3.6) to Sh-1 log(h-I) n and Sh log(h) n. Thiswaywe
will compute all the coefficients ofr(x) mod x’ at the cost bounded by OA(h log n, n(1+
(log(h+x) n)2)/h). We replace this bound by the weaker bound

OA(hlgnn(l+lg(h)n))’ h

on the overall cost of computing all the coefficients of r(x) mod x’. We now substitute
N n2h and arrive at (4.3) also for h < log* n 2..

Finally, we make the transition from r(x) mod x’ to r(x) mod xN. We apply h
steps ofthe Sieveking-Kung algorithm to compute the N-n coefficients ofr(x) mod xN

that have not yet been computed; the cost of this stage, OA(h log N, N/h) [see (2.4)], is
smaller than the bound (1.2), at which we now arrive for h < log* n. Surely, log* N <
1 + log* n, and log* N cx as N o, so that we extend (1.2) to all h < log* N and
then also deduce (1.3).

To relax the assumption about the integrality oflog log s and log() n for g 1,..., h,
it suffices: to replace the values of k in the basis algorithm (chosen at the initialization
step and at step 4) and in (4.1), as well as the values of n/s [for i 1,..., h and for
s, se,..., Sh of (3.6)] and re(h, n), by their ceilings,], that is, bythe minimum integers
not exceeded by these values; to define q by (4.2), and to let j denote the minimum
integer such that k2 is not less than the number of the coefficients or r(x) that should
be computed at the current stage, that is, In/log n] in step 3 of the basis algorithm,
In/log s] in its step 4, and n in the final refinement stage. It is easy to verify that such a
replacement preserves (4.3).

5. A modification of the main algorithm. Let us show a simple extension of our
computation that leads to a simple extension of (4.3) [and, therefore, to (1.2) and (1.3)].
Denote

log(2,) n n, log(2,a) n=log((log(2,a-1)n) 2) 21og(1og(2’a-1) n),

a 1, 2,..., log(2’*) n,

log(2’*) n max{a log(2’) n > 0}.

622 DARIO BINI AND VICTOR PAN

Fix G, 2 < G < log(2’*) n, and recursively apply steps 1-3 of the basis algorithm, for

0, 1,..., G* (where either G* G if G < (log(2’*) n) 2 or G* G 2 otherwise),
replace, at the #th call for these steps, the input values s, k, q, and j by s(#), k(#), q(#),
and j(#), respectively, where we set

s(9) log(’a) n, k(9) n/s(9), q(g) (j(g) + 1) k(g) 2j(a) 2j(a)+ + 1,

j(#) log(s(g)/s(# + 1)). (Assume for simplicity that these values, as well as s, k, q,
and # below are integers.) Then again apply steps 1-3 of the basis algorithm for

s log(2’G-l) n, k n/s, q (j + 1)k 2j 2/+1 q- 1, j log s,

set N n 2, and finally, conclude the evaluation of r(x) rood xN by following the
line of 4 and, in particular, performing G steps of the Sieveking-Kung algorithm. We
immediately extend all the results of 3 and 4 and the estimates of (1.2), (1.3), replacing
log(h) by log(2’h) (for all h) and log* by log(2’*).

Ii. Application over abstract rings. Our algorithms can be applied over any ring R
ofconstants that contains unity and an element g such thatg- Rand 1, g, g2,..., gN-1
are distinct in R. In this case we may replace FFT by its Bluestein extension (where g
replaces the principal root of 1) [Kn]. Such an extended FFT is performed at the cost
OA(log N, N log log N) over any ring R [CK].

Furthermore, there exists a desired element g in R if the number IRI of distinct
elements that belong to R togetherwith their reciprocals exceeds N- 1. Otherwise, there
must exist such an element g in the extension E formed by all polynomials over R modulo
any irreducible polynomial of degree d if d _> log N/log IRI. In the latter case, each
univariate polynomial of degree at most K in E turns into a bivariate polynomial in R of
degrees at most K and d- 1 in its two variables, respectively. Multiplication of two such
polynomials has computational cost OA(log(Kd), Kdloglog(Kd)) [CK]. This implies
that the transition from application of our algorithms in E (where they are supported by
Bluestein’s extension of the FFT) to their application in the original ring R will require
increasing the resulting processor bound by the factor of d, and we may assume that
d O(log N/log IRI).

As an alternative, we may compute p- (x) mod X [N/d] by using our algorithms and
then make the transition to p- (x) rood xN by means of the Sieveking-Kung algorithm
at the overall cost OA(log N log log N, N/log log N) over any ring of constants.

The same comments apply to our algorithm for the evaluation modulo xg ofp/2 (x),
to be presented next.

Appendix. Extensions. We will demonstrate two ways of extending the results of
this paper.

1. First we will combine the techniques of the previous sections to improve the
parallel computations of a polynomial v(x) mod xN by means of a recursive process of
the form

(A.1) vi+ (x) h(vi(x), x) mod xN,

where h(v, x) is a polynomial in v and x; degvh is small, and vi(x) v(x) mod xd’ for
di that rapidly grows as grows. We will repeat the patterns of 2-4, according to the
following procedure:

(a) Contract the stream of the recursive steps of the original (slower but processor-
efficient) algorithm to arrive at a faster, although processor-inefficient, algorithm;

IMPROVED PARALLEL POLYNOMIAL DIVISION 623

(b) Recursively apply this resulting algorithm (with stopping and restarting to
achieve processor efficiency); and

(c) Apply the original (slower but processor efficient) algorithm at the final refine-
ment stage.

For demonstration purposes, we will choose the problem of computing modulo zN

the square root, v(z) p(z) 1/2 mod zN, of a polynomial p(x), where p(0) 1. Since

f(v, x) v-2 (x) p(x) 1 O,

we apply Newton’s iteration with v0 (x) 1 and recursively compute

(A.2)
Vi.+.I(X) Vi(X) f(vi,x) / ftv(Vi,X

20.5 v,(x)(3 p-l(x)v, ()), i =0,1,

We observe that

Vi..bl(X pl/2(X) 0.5Vi(X) (3 p-X(x)v(x)) pl/2(X)
2Vi(X) pl/2(x) + 0.5Vi(X)p-l(x)(p(x) V (X))

(Vi(X) pl/2(X)) (1 0.5vi(x)p-l(x)(pl/2(x) + vi(x))
(,(1 p/(x)) [(1 (x)p-1/(x))
-0.Sv (x) p- (x) (v,() p/(x))]
-(,(x) pl/(x)) (p-1/() + 0.5(1 p-())

=O((vi(x)--pl/2(X))2),
so that

vj(x) pl/2(x) 0 mod xg J 2j j 0 1,

As in the Sieveking-Kung algorithm, substitute vj(x) rood xJ, J 25, for vj(x), j

i, + 1, in (A.2), substitute p-a (x) rood x2. for p-a (x) in (A.2), and arrive at the com-
plexity bound OA (log2 N, N/log N) for this computational problem.

Aswas the case in the algorithm of [G], replacep-
in (A.2). Observe that in this case the degrees of the polynomials vi(x) are bounded from

3i+2,above by 2)--]a=1(2/3)g3i < and deduce the bound OA(log k, kd log k), d log 3

1.5849..., lid 0.6309..., on the complexity of the evaluation of p/2(x) rood xk.
We apply the latter results for k n’63, where we will specify n _< N later on [see

(A.7)]. Then kd log k o(n’999), and we obtain the k first coefficients of p/2(x) at the
cost of OA (log n, n’999).

Next, extend the basis algorithm of 3, by using the equations

p(x) p-(x) mod xk2’+,
yo(x) v(x) modx, yi+(x) 0.5yi(x)(3 p-(x) y2i (x)), i 0,1,...,j,

instead of (3.1)-(3.3). Observe that the degrees of the polynomials yi(x) are bounded

from above by 3 k + 2 y]g=o(2/3)g -]9=0 39 < 3i(k+ 3) +0.5, so that the transition

from yo(x) p/e(x) mod xk to yi(x) p/(x) mod xk:’ costs

(A.3) OA(lOgn, k2id(i + logk)) OA(logn, k(m/k)dlogm),

for d log 3, m re(i, k) k2 < n.

624 DARIO BINI AND VICTOR PAN

Let us now choose an integer 9 and an increasing sequence of integers k0 1,

kl rn631, k2,..., k9, kj rnl-.37J], j o, 1,... ,9, and recursively apply the
above transition from y0(z) to yi(z), for k k, m k2 k+, j 0, 1,..., 9 1.
Due to (A.3), the cost of this transition for any j is bounded by

(A.4) OA(logn, n log n),

since logm < log n and since k(m/k)a kj(kj+l/kj)d n1-’37j(1-’63a) < n. Denote
bj log kj / log n > 1 0.37j, so that 1 b9 < 1/ log n for

(A.5) 9 [log log n/log(1/0.37)].

In 9 recursive transitions we will arrive at pl/2(z) mod zkg, where

kg Z n1-1/lgn n/2.

Due to (A.4) and (A.5), the overall cost of this computation is bounded by

(A.6)

Now, let

(A.7)

OA(log n log log n, n log n).

apply 1 + [log(log n log log n)] Newton’s steps of the Sieveking-Kung type and arrive at
pl/2(z) mod XN at the additional cost

(A.8) OA(1Og N log log N, N/log log N),

where we may assume that p/2(x) mod xkg is known for k9 > n/2. Equation (A.8) also
bounds the overall cost of computing p/2(x) mod xN since (A.6) turns into (A.8) for n
of (A.7).

On the other hand, for any fixed e > 0 and for N In1-’37], we may choose j
such that

n log n < N+’.

Recall (A.4), and obtain p(x) 1/2 mod zu at the cost of

(A.9) OA(log N, N+’).

The complexity estimates (A.8) and (A.9) for computing the square root of a poly-
nomial modulo zu can be immediately extended to computing its mth root modulo N
for any fixed positive integer m. Moreover, the techniques applied above enable us to
extend (A.8) and (A.9) as follows.

THEOREM A.1. Let P denote a givenproblem ofcomputing a string s(N) ofN scalars.
Suppose that for > 1 and for a pair of integers k and m, 1 < k < m, two alter-
nate "black box" parallel algorithms, A.1 and A.2, are available; on the given substring
of the k first scalars of s(N) they compute its next m k scalars, at the cost bounded by
Oa(logm log(m/k), m/ log(m/k)) and Oa(log m, k(m/k)C), respectively. Then the re-
cursive application ofAlgorithm A.2, for some appropriate recursive choice of the pairs
k ki, m mi, i O, 1,..., such that ki+ mi, followed by the application ofAl-
gorithm A.1, supports the solution oftheproblem P ofsize N, at the cost bounded by (A.8)
and (A.9).

n [N/(log Nlog log N)],

IMPROVED PARALLEL POLYNOMIAL DIVISION 625

For a more narrow class of computational problems, exemplified by polynomial di-
vision, we may improve (A.8) and (A.9) to (1.2).

Somewhat similar techniques yield supereffective slowdown of some fundamental
computations in linear algebra and in path algebras, where we recursively apply and
restart fast but processor-inefficient algorithms to subproblems of a smaller size in order
to decrease the size of the original problem (see [PP]).

RemarkA.1. It is essential for the approach ofthis paper to have a polynomial h(v, z)
(rather than a rational function) in (A.1); for instance, we cannot combine this approach
with Newton’s iteration

wo(x) 1, w+(x) 0.5(wi(x) 1/(wi(x)p(x))), 0, 1,...

for the equation w (z) p(z) 1 O.
2. The complexity estimates (1.2), (1.3), (A.8), and (A.9) can be extended to the

computational problems readily reducible to computing the reciprocal of a polynomial
p(z) and its ruth root, respectively. For demonstration, let us recall the well-known re-
duction of polynomial division with a remainder to computing the reciprocal of a poly-
nomial (and to polynomial multiplication).

Indeed, given the coefficients of two polynomials s(x) ,=o szi and t(z)
,n=o hx, t, O, we seek the quotient q(x) ,=-o qx and the remainder r(x)

n--1=0 rix* such that

(A.9) +

Having computed q(x) we immediately obtain r(x) from (A.9). To compute q(x), we
define

m

S(z)
i=0
n

T(z) zt(1/z) E tn-Z’
i=0

rn-n

Q(z) zm-n q(1/z) E qm-n-iZ’
i=0

observe that

S(z) T(z) Q(z) mod z"-’+,

and apply the algorithms of this paper to compute the reciprocal,

K-1

V(z) E v,z’ T-(z) mod zK,
i=0

K=m-n+l.

It immediately follows from (A.10) that Q(z) V(z)S(z) mod ZK, SO that the
coefficients of q(x) are the trailing coefficients of the polynomial product
V(z) E,%

Acknowledgments. The authors thank the referees for several helpful comments
and suggestions and also C. Engle for her excellent assistance with typing this paper.

626 DARIO BINI AND VICTOR PAN

[B]
[BP]

[BPa]

[CK]

[G]

[KR]

[Kn]

[PP]

[PR]

[R]

[RT]

REFERENCES

D. BINI, Parallel solution ofcertain Toeplitz linear systems, SIAM J. Comput., 13 (1984), pp. 268-276.
D. BINI AD V. PAN, Polynomial division and its computational complexity, J.Complexity, 2 (1986), pp.

179-203.
Numerical and Algebraic Computations with Maces and Polynomials, Vols. 1 and 2,

Birkhiuser, Boston, 1993.
G. CANTOR AND E. KALTOFEN, On fast multiplication ofpolynomials over arbitrary algebras, Acta In-

form., 28 (1991), pp. 693-701.
R. E. GEORGIEV, Inversion of triangular Toeplitz matrices by using the fast Fourier transform, J. New

Generation Comput. Systems, 2 (1989), pp. 247-256.
R. M. KARP AND V. RAMACHADRA,A survey ofparallel algorithms for shared memory machines, in

Handbook of Theoretical Computer Science, North-Holland, Amsterdam, 1990, pp. 869-941.
D. E. KNtrrH, TheArt ofComputerProgramming: SeminumericalAlgorithms, Vol. 2, Addison-Wesley,

Reading, MA, 1981.
V.Y. PAN AND E P. PREPARATA, Supereffective slow-down ofparallel computations, Proceedings of the

4th Annual ACM Symposium on Parallel Algorithms and Architectures, 1992, pp. 402--409.
V. Y. PAN AND J. H. REIF, The parallel computation of the minimum cost paths in graphs by stream

contraction, Inform. Process. Lett., 40 (1991), pp. 79-83.
J. H. REIF, Logarithmic depth circuitsfor the algebraicproblems, SIAM J. Comput., 15 (1986), pp. 231-

242.
J. H. REIF AND S. R. TATE, Optimal size division circuits, in Proceedings of the 21st Annual ACM

Symposium on Theory of Computing, 1989, pp. 264-270; SIAM J. Comput., 19 (1990), pp. 264-
270.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 627-649, June 1993

() 1993 Society for Industrial and Applied Mathematics
011

THE COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS*
DANIEL J. POSENKI:tANTZtt AND HAR,P B. HUNT III t

Abstract. Hierarchical object descriptions consisting of a set of module descriptions are considered, where
each module is either a primitive module or has a body that is an interconnection of submodules. The descrip-
tion represents a flattened object, whose size can be exponential in the size of the description. The complexity
of processing and/or analyzing such hierarchically specified objects is considered. The simulation of hierarchi-
cally specified circuits is emphasized, but the results are applicable to other kinds of hierarchically specified
objects.

It is shown that hierarchically specified acyclic circuits can be simulated deterministically in space linear
in the size of the description, even when the description is not explicitly acyclic. O(ng)-size-bounded reduc-
tions are given from the languages in DSPACE(n) to the problem of simulating hierarchically specified acyclic
monotone circuits. This implies that this simulation problem is PSPACE-complete and that any algorithm for
it that operates faster than 2(v/-) deterministic time could be used to recognize all DSPACE(n) languages
in less than 2(n) deterministic time. It is then shown that the simulation problem for hierarchically specified
acyclic circuits (not necessarily monotone) can indeed be solved in 2(/-) deterministic time. Moreover,
every hierarchically specified acyclic circuit is shown to have an equivalent flat circuit of size 2(v/). For
binary circuits the size of the equivalent flat circuit is O (n3/221"53v/ff). It is also shown that the problem of
simulating hierarchically specified circuits is EXPSPACE-complete for cyclic circuits.

Key words, hierarchical specification, CAD systems, acyclic circuits, combinational circuits, cyclic circuits,
sequential circuits, simulation, computational complexity

AMS(MOS) subject classifications. 68Q25, 94C10, 68M15

1. Introduction. Hierarchical object design permits the overall design of an object
to be partitioned into the design of a collection of modules, each of whose design is a
more manageable task than producing a complete design in one step. It also facilitates
the development of computer-aided design (CAD) systems since low-level objects can
be incorporated into libraries and thus can be made available as submodules to design-
ers of larger-scale objects. In particular, hardware description languages usually permit
circuits to be hierarchically specified (see, e.g., [Cr], [LMS], [MC], [Ni]). Hierarchical
description languages are also useful for describing the configuration of distributed soft-
ware systems [MKS].

An important feature of hierarchical specifications is that they permit more con-
cise descriptions of circuits than do flat nonhierarchical descriptions. A consequence
of this is that the complexity of analyzing or otherwise processing a given hierarchically
presented object can be different from that when the object is presented as a flat com-
bination of primitives. For example, in VLSI mask specifications, analyzing a flat list
of rectangles for overlap can be done in polynomial time, whereas this problem is NP-
complete for hierarchically specified sets of rectangles [BO]. On the other hand, when
restrictions are imposed on the hierarchical mask specifications, they can be processed
more efficiently [BO], [Oea], [SS], [Wa]. Certain graph-analysis problems for hierar-
chically specified undirected graphs can be solved efficiently in polynomial time [Len2],
[Len3], [LWan]. The effect of hierarchical specifications on VLSI design problems is
investigated in [Lenl], and their effect on more general combinatorial problems is in-
vestigated in [LWag]. In [Lenl] and [LWag] it is shown that the problem of simulating

Received by the editors November 13,1989; accepted for publication (in revised form) February 18, 1992.
tDepartment of Computer Science, State University of New York at Albany, Albany, New York 12222.
This research was supported by National Science Foundation grants DCR 86-03184 and CCR 88-03278.
This research was supported by National Science Foundation grants DCR 86-03184 and CCR 89-03319.

627

628 DANIEL J. ROSENKRANTZAND HARRY B. HUNT III

a hierarchically specified Boolean circuit, where the specification is explicitly acyclic at
every level of the hierarchy, is a PSPACE-complete problem, where [Lenl] covers the
upper bound and [LWag] covers the lower bound. In [Lenl] it is also shown that an ex-
plicitly acyclic Boolean circuit can be simulated within space that is linear in the size of
the hierarchical description and a nonexplicitly acyclic circuit in quadratic space. The
question of whether a nonexplicitly acyclic circuit can be simulated in linear space is
left open, and it is conjectured that such an efficient deterministic space simulation is
unlikely.

Here we study the complexity of processing and/or analyzing hierarchically specified
objects, emphasizing the simulation of hierarchically specified circuits. A hierarchically
specified object is presented as a set of modules, each of which is classified as either a
primitive module or a composite module. Each composite module has a body, whose de-
scription consists of an interconnection of instances of lower-level modules. Each mod-
ule has a corresponding flattened body, which is an interconnection ofprimitive modules
that can be obtained by repeatedly replacing each instance ofa composite module with its
body. We are concerned with analyzing a hierarchically specified object for some given
property, where the property is a property of the flattened object. An issue is, for which
properties can the analysis be performed in a more efficient way than constructing the
flattened object and then analyzing it? We focus on the problem of circuit simulation,
which reflects the semantics of what circuits actually do.

In 2 we present definitions and terminology for hierarchically specified objects.
In 3 we show that hierarchically specified acyclic circuits can be simulated in de-

terministic space linear in the size of the description, even when the description is not
explicitly acyclic at every level. This answers the open problem from [Lenl] that was
mentioned above.

In 4 we generalize and strengthen the PSPACE-hard lower bound in [LWag] for
explicitly acyclic 10gic-circuit simulation to explicitly acyclic monotone logic-circuit sim-
ulation. We accomplish this in a very general algebraic setting by means of O(nU)-size
bounded reductions from the languages in DSPACE(n). As a consequence, if there
are languages in DSPACE(n) whose recognitions requires 2n(’) deterministic time, then
this simulation problem requires 2TMvc) deterministic time. In contrast, the reduction in
[LWag] is a O(n4)-size bounded reduction from the languages in DSPACE(n); so even if
there is such a language requiring 2n(’) time, the reduction only implies that the acyclic
circuit simulation problem requires 2n(’*/’) deterministic time.

In 5 we show that hierarchically specified acyclic circuits can indeed by simulated
in deterministic 2(4-) time. This contrasts with the traditional approach of first flat-
tening the hierarchically specified circuit and then simulating this flattened circuit [LM],
[BS]. In the worst case the size of the flattened circuit is 2n() and thus the overall time
required is 2n(’). However, we show that every hierarchically specified acyclic circuit
has an equivalent fiat circuit of size 2(v/-). Furthermore, this equivalent circuit can be
constructed and thus simulated in time 2(v). Results on the size of acyclic circuit
descriptions also appear in [KS], where the focus is on the effect of requiring that a de-
scription be explicitly acyclic at every level of the hierarchy. In [KS] it is shown that there
are acyclic circuits that have a hierarchical description of size n such that any description
that is explicitly acyclic at every level of the hierarchy must be of size 2n(’), and it is also
shown that for every acyclic circuit that has a hierarchical description of size n there is an
equivalent circuit that has a O(n3)-size hierarchical description that is explicitly acyclic
at every level of the hierarchy.

Sections 4 and 5 present lower and upper complexity bounds that match, given the

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 629

current state of knowledge about computational complexity. A O(n’)-size-bounded re-
duction from the languages in DSPACE(n) to the simulation problem for acyclic circuits
and an 2(’) algorithm for this simulation problem can be combined, implying that all
languages in DSPACE(n) are recognizable in time 2(’q). Thus an improvement either
to the size bound of O(n2) in the reduction from 4 or to the time bound of 2(v/-) for
the simulation algorithm from 5 would imply that all languages in DSPACE(n) are rec-
ognizable in less than 2(’) deterministic time. This would be a surprising breakthrough
in complexity theory.

In 6 we consider cyclic hierarchically specified logic circuits. Under fairly loose
assumptions, the simulation problem for such logic circuits is shown to be EXPSPACE-
complete by means of O(n)-size-bounded reductions from the languages accepted by
2’-space-bounded Turing machines. This suggests that to solve this type of problem,
one might as well construct and then simulate the flattened circuit.

We assume that the reader is familiar with complexity classes and reductions; oth-
erwise, see, e.g., [AHU], [GJ].

2. Definitions and terminology of hierarchical specifications. We define the class
of hierarchically specified objects as follows. An object is described as a set of modules,
where each module is either a pmitive module or a composite module. Each module
(whether primitive or composite) has an interface, and each composite module has a
body. A module interface specifies the module name and a set of module ports. Each
module port has aport name and is specified to be either an inputport or an outputport.
For a given module, the module port names are unique. A module body consists of
an interconnection of module instances. A given module instance can be an instance of
either a primitive module or a composite module. A given module body may contain
more than one instance of the same module.

As an example, Fig. l(a) shows an interface for a module named P with input ports
{U, V, W} and output ports {X, Y}. In the graphical representation used in our dia-
grams, input ports are denoted by incoming arrows and output ports are denoted by
exiting arrows. Figure l(b) shows a body for module P. The module body contains two
instances of module B, an instance of module A, and an instance of module C. Each
module instance in a body as an instance name. In Fig. l(b) the instance names are B1,
B2, A, and CZAP. For a given module body the instance names are unique.

A module body contains two kinds of ports: instance ports and body ports. An in-
stance port is a port of an instance within the body. Examples of instance ports in Fig.
l(b) are port J of instance CZAP and port Z of instance B2. A bodyport is a port of the
module whose composition is described by the body. In Fig. l(b), P has five body ports:
U, V, W, X, and Y.
The interconnections within a module body are specified by signals. Each signal is

given a signal name and is connected to a set of ports within the body. For example, in
Fig. l(b) signal B2Z is connected to instance ports Z of B2, F of B1, and K of CZAP.
Signal U is connected to body port U of P and instance ports ! of A and D of B1. Note
that Fig. l(b) uses the convention of giving a signal connected to exactly one body port
the same name as that body port. For a given module body the signal names are unique.

We assume that a set of modules satisfies certain restrictions. First, define the
DIRECTLY-WITHIN relation on modules as follows: module c is DIRECTLY-WITHIN
module/ if the body of/ contains an instance of c. We assume that the set of mod-
ules satisfies the nesting restriction that the DIRECTLY-WITHIN relation is acyclic. The
nesting restriction ensures that the description of a set of modules is a meaningful hier-
archical description of a finite object.

630 DANIEL J. ROSENKRANTZAND HARRY B. HUNT III

A (B)
(A)

AY

(b)

FIG. 1. (a) Interface for module P; (b) bodyfor module P.

In a module body define a driverport to be either a body input port or an instance
output port. Define a drivable port to be either a body output port or an instance input
port. We assume that each module body satisfies the wiring restriction that no signal in
the body is connected to two driver ports.

The wiring restriction prevents direct connections between drivers. However, real
circuit technologies often permit drivers to be connected together, with a technology-
dependent rule resolving the situation when connected drivers supply conflicting values.
To model a circuit design that uses this capability, we would require the placement of
a module instance having inputs connected to these drivers and having a single output.
The semantics of this additional modulewould represent the conflict resolution function.
For example, Fig. 2(a) shows a module body containing two violations of the wiring re-
striction. Figure 2(b) shows a corresponding body that satisfies the wiring restriction,
with instances of module RES inserted to resolve conflicts.

For a given module in a hierarchically specified object, the flattened body for that
module is the interconnection of instances of primitive modules, obtained by repeatedly
replacing instances of composite modules in the body by their bodies.

A module description consists of a module interface, together with either an indica-
tion that the module is primitive or a body for the module. A hierarchical object descrip-
tion consists of a set of module descriptions, one ofwhich is designated as the root rood-

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 631

S

(P1)

Q

(Q1)

P RES
(R2)

RES
(R1) Q

(Q1)

(b)

FIG. 2. (a) Body with violations ofwiring restriction; (b) body with extra instances to satisfy wiring restriction.

ule, such that the set includes every module that occurs as a module instance within any
of the module bodies. The root module is said to be hierarchically specified. The hierar-
chically specified object corresponding to a hierarchical object description is the flattened
body of the root module. Aflat object description is a hierarchical object description in-
volving a single composite module. Thus the body of this module is an interconnection
of instances of primitive modules.

The size of a module interface is 1 plus the number of module ports. The size of a
module body is the sum of the size of the interface of the module, the number of signals
in the body, and the sizes of the interface for each module instance within the body. Note
that this is the same as the sum of 1, the number of signals within the body, the number
of module instances within the body, and the number of ports (both instance ports and
body ports) within the body. The size of a module description is the sum of the sizes of
its interface and body. The size of a hierarchical object description is the sum of the sizes
of the module descriptions occurring in the overall object description. This definition of
size measures the number of symbols occurring in a typical representation of the object
description. The number of bits in the representation would be larger since each symbol
might be represented by a number ofbits equal to the logarithm of the number of distinct
symbols. We regard the number of symbol occurrences in the description to be the more
practical measure of its size.

We now consider acyclic hierarchically described objects. An instance dataflowgraph
for a given composite module is a directed graph describing the dataflow within the body

632 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

of the module. The graph has a vertex for each module instance within the body and a
vertex for each body port. There are edges corresponding to connections from driver
ports to drivable ports within the body. Specifically, there is a directed edge for each of
the following four cases:

(a) Edge from instance A to instance B if an output port of A is connected to an
input port of/3.

(b) Edge from body input port X to instance/3 if X to connected an input port
of B.

(c) Edge from instance A to body output port Y if an output port of A is connected
to Y.

(d) Edge from body input port X to body output port Y if X is connected to Y.
As an example, Fig. 3 shows the instance dataflow graph for module P described in

Fig. 1.

FIG. 3. Instance dataflow graph.

A composite module is said to be locally acyclic if its instance dataflow graph is
acyclic. A composite module is said to be weakly acyclic if the instance dataflow graph for
its flattened body is locally acyclic. A composite module M is said to be strongly acyclic
if module M is locally acyclic and every composite module Q such that Q DIRECTLY-
WITHIN M is strongly acyclic [Lenl].

Strong acyclicity is a special case ofweak acyclicity. Let the relation SOMEWHERE-
WITHIN be the transitive closure ofDIRECTLY-WITHIN. Then an equivalent definition
of M being strongly acyclic is that M is locally acyclic and every composite module Q
such that Q SOMEWHERE-WITHIN M is locally acyclic. Strong acyclicity requires not
only that the flattened circuit be acyclic but also that at every level of the hierarchy each
module body be described as an acyclic combination of the instances occurring directly
within it. Given a hierarchical description, it is clear that strong acyclicity can be deter-
mined in polynomial time. In addition, weak acyclicity can be determined in polynomial
time, using a bottom-up dataflow analysis [LWan].

3. Linear space simulation of weakly acyclic circuits. In this section we show that
weakly acyclic hierarchically specified logic circuits can be simulated deterministically
using only linear space. First, we define the simulation problem as follows: the simulation
problem for a weakly acyclic module consists of computing the values of the output ports
of the module, given a value for each input port of the module and a hierarchical circuit
description for which it is the root module.

We make several assumptions to ensure that the simulation problem and the com-
plexity analysis of simulation algorithms are well defined. First, we assume that the do-
main of signal values is finite. (Equivalently, the amount of space required to represent

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 633

a signal value is fixed.) Second, we assume that each primitive module is a memoryless
combinatorial elementwhose input values determine its output values. Third, we assume
that the input-output behavior ofeach primitive module is polynomial-time computable,
i.e., given input values, the output values can be computed in polynomial time. Finally,
we assume that if the flattened body of the module being simulated contains a primitive
module instance port that is unconnected to a driver, the,re is a rule for what value to use
for that input port.

Reference [Lenl] contains a sketch of how a strongly acyclic hierarchically specified
circuit whose primitive modules are logic gates can be simulated deterministically in
space that is linear in the size of the hierarchical circuit description. It is also pointed
out that a weakly acyclic circuit can be simulated nondeterministically in linear space
and deterministically in quadratic space. The problem of finding a deterministic linear
space algorithm for this case is left as an open question, and Lengauer says that it is
questionable whether such a method exists. The next result shows that weakly acyclic
circuits can indeed be simulated deterministically in linear space.

THEOREM 3.1. A weakly acyclic hierarchically specified object can be simulated in
space linear in the size ofthe hierarchical circuit description.

Proof. First, consider the case when the hierarchically specified object is strongly
acyclic, as described in [Lenl]. In this case, since each module is locally acyclic, its
instance dataflow graph is acyclic. Each instance dataflow graph can be topologically
sorted, and the instances within it can be simulated in this order. Consider a given mod-
ule to be simulated, with given values for its input ports. If the given module is primitive,
its simulation consists of computing the values of the output ports using the values of
the input ports. If the given module is composite, then each of the instances in the body
is simulated, in topological sort order. In any stage of simulating a given module body,
the algorithm maintains a record of the input-port values of the body and of the output-
port values of instances simulated thus far. Consequently, when a given instance in the
body is to be simulated, all drivers of the input ports of the given instance have known
values. When the last instance in the body of the given composite module has been sim-
ulated, the value of the drivers of the output ports of the given module are known and
the simulation of the given module is complete.

Figure 4 shows an example in which A, B, and C are composite modules; left-to-
right order in the figure corresponds to a topological sort of the instances within each
body. Figure 4 shows a snapshot of the simulation of module A, where recorded values
are indicated by darkening the appropriate driving ports. In the snapshot the simulation
of instances B1 and D1 within A have been completed and the simulation of instance B2
within A is in progress. In this subsimulation, the simulation of D1 within module B has
been completed and the simulation of C1 within B is in progress. In this subsimulation,
the simulations of D1 and E1 have been completed and the simulation of E2 is about to
begin.

Now consider a weakly acyclic hierarchically specified circuit. Consider the subsim-
ulation problem of simulating a given composite module in the hierarchy, where a subset
(not necessarily proper) of the input ports of the module have specified values. The sub-
simulation computes the values of all those output ports whose values are determined by
the specified input-port values. More precisely, a given output-port value is computed if
a value has been specified for every input port for which the instance dataflow graph for
the flattened body of the module has a path to the given output port.

In the subsimulation of a given body we use two lists of module instances occurring
in the body. We call these two lists FULL and PARTIAL. List FULL contains module
instances for which all the instance input-port values are known and the module instance

634 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

FIG. 4. Snapshot ofsimulation ofa strongly acyclic circuit.

can be simulated to obtain all its instance output-port values. List PARTIAL contains
module instances for which some (possibly none), but not all, of the instance input-port
values are known and for which the module can be simulated to obtain those instance
output-port values that do not depend on unknown input-port values.

Initially in the subsimulation some of the body input-port values are known. Each
of these known driver values specifies the values of all drivable ports to which it is con-
nected. Also, each unconnected instance input port is assigned a special driver value,
say, UNCONNECTED, during the simulation. List FULL is initialized with those mod-
ule instances for which all instance input-port values are known, based on the above
information. List PARTIAL is initialized with all remaining module instances.

The subsimulation proceeds until lists FULL and PARTIAL are both empty. If both
lists are nonempty, a module instance is deleted from FULL and is simulated. IfFULL
is empty and PARTIAL is nonempty, a module instance is deleted from PARTIAL and
is simulated. When both lists are empty, the subsimulation returns all the output-port
values for which the driving values have been computed during the subsimulation. As
the subsimulation proceeds a record of known driver values is maintained, i.e., a record
of the given body input-port values and the instance output-port values that have been
obtained thus far.

Now considerwhat happens in a simulation upon completion ofthe subsimulation of
a given module instance within the body being simulated. For each instance output-port

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 635

value computed by the subsimulation such that this output-port value was not known
prior to the subsimulation, this value is recorded. Furthermore, each module instance
having an input port driven by this driver is checked. If the module instance does not
yet have all its output values computed, then it is a candidate for subsimulation. If all
its input-port values are now known, it is placed on list FULL (and removed from list
PARTIAL if it is currently on that list); otherwise, it is placed on list PARTIAL if it is not
already on that list.

An example is shown in Fig. 5, in which A, B, and C are composite modules. In
this example, for both/3 and C the lower output port is determined solely by the lower
input port and the upper output port is determined by both input ports. Figure 5 shows
a snapshot of the simulation in which recorded values are indicated by darkening the
appropriate driving ports. Within module A instance B1 was simulated with only its
lower input port known, producing the value of its lower output port. The instance B2
was simulated with its lower input port known, producing the value of its lower output
port. Then instance C1 was simulated with its lower input port known, producing the
value of its lower output port. Then instance B1 was simulated again, this time with
both input ports known, and the value of its upper output port was obtained. Then
instance D was simulated. The simulation of instance/32 with both input ports known
is in progress. In this subsimulation of B, C1 has already been simulated with its lower
input port known, producing the value of its lower output port. The simulation of (72
with its lower input port known is in progress. In this subsimulation of (7 the simulation
of instance E1 has been completed and the simulation of E2 is about to begin.

The data recorded at any point in the overall algorithm is a set of values for drivers
within the bodies of modules occurring in a directed path of the DIRECTLY-WITHIN
relation. Since the DIRECTLY-WITHIN relation is acyclic, each module occurs at most
once in such a directed path. Thus the number of values to be remembered at any time
does not exceed the size of the hierarchical description. [3

Although the algorithm of Theorem 3.1 requires only linear space, it may entail
fruitless subsimulations. The subsimulation of a module instance from list PARTIAL is
fruitful only if it produces an instance output-port value that was not previously known.
Fruitless subsimulations can be avoided by using auxiliary information. For each module
an interface dataflow graph can be computed in a bottom-up manner [LWan], where this
graph indicates which input ports determine which output ports. Then a module is placed
on list PARTIAL only if its known input-port values determine a not yet known output
port. Since the size of an interface dataflow graph can be the product of the number of
input ports and number of output ports, the use of this technique may require quadratic
space.

4. Acyclic circuits: Lower bounds. In this section we investigate the inherent com-
putational complexity of several analysis problems for hierarchically described acyclic
circuits and focus on the simulation problem.

Reference [LWag] presents a sketch of a proof that the simulation problem is
PSPACE-hard for strongly acyclic hierarchically specified logic circuits. The reduction
used is from the quantified Boolean formula logical validity problem [SM] and is itself
O(n2)-size-bounded. The reduction in [SM] used to prove that the quantified Boolean
formula logical validity problem is PSPACE-hard is a O(n2)-size-bounded reduction
from the membership problem for linear-bounded automata. Thus the reduction in
[LWag] provides a O(n4)-size-bounded reduction from the membership problem for
linear-bounded automata. If it is assumed that there are languages in DSPACE(n) whose
recognition requires 2(’) time, the reduction in [LWag] only provides evidence that

636 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

A

(D1)

B

FIG. 5. Snapshot ofsimulation ofa weakly acyclic circuit.

the simulation problem for strongly acyclic hierarchically specified logic circuits requires
time 2fl(’/’). Also, it can readily be seen that the logical validity problem for quantified
monotone Boolean formulas is decidable deterministically in polynomial time and thus
cannot be used to prove the PSPACE-hardness of the simulation problem for hierarchi-
cally specified monotone logic circuits. (This contradicts an apparent claim in [LWag].)

Here we present a polynomial-time O(nZ)-size-bounded reduction from the mem-
bership problem for deterministic linear-bounded automata to the simulation problem
for explicitly acyclic hierarchically specified monotone circuits. If it is assumed that there
are languages in DSPACE(n) whose recognition requires 2fl(’) time, our reduction pro-
vides evidence that the simulation problem for strongly acyclic hierarchically specified
logic circuits requires 2TMv) time. In 5 belowwe present a matching upper bound. Our
reduction and lower bound apply not only to the simulation of monotone circuits but
also to the simulation or evaluation of all classes of strongly acyclic hierarchically speci-
fied functions, for which the allowed primitive function modules can emulate monotone
Boolean logic. Thus our reduction and lower bound apply to strongly acyclic hierarchical
specified functions on many different algebraic structures with a 0 and 1. These include
all of the following algebraic structures (provided that they have at least two elements):
lattices, rings with a multiplicative identity, idempotent semirings with a multiplicative
identity, finite semirings with a multiplicative identity that are not rings, etc. For exam-

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 637

pies of these structures see [BHR], [Ha], [MacLB], and [Zim]. In particular, our reduc-
tion and lower bound apply to the various lattice-theoretical structures used to simulate
faults, errors, transients, unknown states, variable strength signals, etc., in digital logic
both at the gate and transistor levels [Ha].

Before presenting our reduction, we need the following definition.
DEFINITION 4.1. We say that a set of primitive modules has monotone logic express-

ibility if there exist two values b and r, in the domain of values operated on by the prim-
itive modules, and two modules OR andAND, either available as primitive modules or
constructible as composite modules by an interconnection ofprimitive modules, with the
following properties. Modules OR andAND each have two inputs and one output. If
both outputs of OR equal q, the output value is b; if one input value is q5 and the other
is r, the output is r; and if both inputs are r, the output is 7-. If both inputs ofAND are
q, the output is q; if one input is q and the other is r, the output is q; and if both inputs
are r, the output is r.

THEOREM 4.2. Let II be a set ofprimitive modules with monotone logic expressibility.
Then each language in DSPACE n is polynomial time and O n2)-size-bounded reducible
to the following problem F: Given a strongly acyclic hierarchical object description whose
primitive modules are in the set ofprimitive modules II, an assignment ofvalues to the input
ports ofthe root module, and a specified valuefor one ofthe outputports ofthe root module,
determine whetherthe specified object, given the specified input values, produces the specified
output value.

Proof. Consider a deterministic linear-bounded automaton M. The description of
M can be modified, if necessary, so that once it accepts an input string, it cycles in an
accepting state. Also, M can be modified, if necessary, so that its head never moves off
the end of its tape. There is a constant c > 0 such that for any input sequence z to M,
where z includes endmarkers and n Izl, if M accepts z, it does so within 2c’ moves.
Thus M accepts z if and only if after 2c’ moves M is in an accepting state.

As shown below, M and z can be encoded into a strongly acyclic hierarchical mono-
tone object description and an input value assignment such that the hierarchically spec-
ified object produces output r for the given input assignment if and only if M accepts
z. With M fixed, this encoding represents a polynomial-time algorithm whose input is
z and whose output, consisting of a hierarchical object description together with an in-
put value assignment, is of size o(Izl). Thus the algorithm is the required reduction
from L(M) to the simulation problem for strongly acyclic hierarchical monotone object
descriptions.

For each m, where 0 < m < cn, there is a composite module E,. The ports of
these modules are summarized in Fig. 6. For each tape cell i of M, where 1 < i < n,
and each tape symbol a of M, each module E, has an input port t, and an output port
ui,a. In addition, for each tape cell i, 1 < i < n, each module E, has an input port ri
and an output port v. Finally, for each state t? of M each module E,, has an input port
so and an output port wg. The purpose of the input ports is to encode a configuration
of M. The value of input port t,,, indicates whether, in the configuration, cell i has tape
symbol a written on it. A value of r indicates that this is so, and a value of b indicates
that it is not so. Input port r indicates whether the tape head is scanning cell i. Input
port s indicates whether the state is state t?. The output ports encode a configuration
in a similar manner. Note that since M is fixed, the number of ports is proportional to
n, the length of z.

For each M, where 0 < m < cn, module E, will be designed so that if the inputs
encodes a length n configuration of M, then the outputs of E, will encode the configu-
ration that results after 2" moves by M.

638 DANIEL J. ROSENKRANTZAND HARRY B. HUNT III

cell has
symbol a

{,,} ",
/

head on cell

’0} \
/

state g

cell has
symbol a

head on cell

state g

FIG. 6. Ports ofmodule

Consider E0, whose purpose is to simulate one move of automaton M. The body of
E0 is constructed by using instances ofmodules OR andAND. For simplicity, we describe
E0 as though OR andAND can have multiple inputs, with the understanding that the
circuit is actually constructed by using two-input module instances.

Suppose that automatonM has transition function 6, where 6(9, a) (h, b, p) means
that when M is in state 9 and scanning tape symbol a, it makes a transition to state h,
writes symbol b on the scanned tape cell, and moves its tape head p cells to the right,
where the value of p is constrained to be -1, 0, or +1.

For each tape cell i the body of module E0 contains a signal qi, which is the OR of
all body input ports rj, where j # i. Thus qi encodes whether the tape head ofM is not
on cell i. In addition, for each cell i, tape symbol a, and state 9, the body of module E0
contains a signal Yi,a,g, which is theAND of ti,a, ri and 8g.

For each state h, the output port wh is the result of the OR of each Y,,9 such that
6(g, a) (h, b, p) for some tape symbol b and some p.

For each tape cell i and each tape symbol b, output port U,b is the result of the OR
of

(i)AND of qi and ti,b, and
(ii) Y,,,,9 for each tape symbol a and state g such that 6(g, a) (h, b,p) for some

state h and some p.
For each tape cell i, output port v is the result of the OR of
(i) yi,,g for each tape symbol a and state g such that 6(g, a) (h, b, 0) for some

state h and tape symbol b,
(ii) y_,,g for each tape symbol a and state g such that 6(g, a) (h, b, +1) for some

state h and tape symbol b, provided cell is not the leftmost tape cell, and
(iii) yi+l,,g for each tape symbol a and state g such that 6(g, a) (h, b,-1) for

some state h and tape symbol b, provided cell i is not the rightmost tape cell.

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 639

E0 has been designed so that if its inputs encode a configuration of M, then its
outputs encode the configuration that results from one move of M. Note that the size of
E0, measured in terms of the number of instances of two inputAND and OR modules,
is quadratic in n.

Next, consider the body of each E,, where 1 < m < cn. The body of each such
E,,, is constructed by using two instances of module E,,_, connected as shown in Fig. 7.
The body input ports of E, drive the input ports of the first instances of E,_x, whose
output ports drive the input ports of the second instance of E,_1, whose output ports
drive the body output ports of E,,. Since the outputs of each instance of E,_ encode
the configuration of M produced after 2’- moves from the configuration encoded by
its inputs, the outputs of Em encode the configuration produced after 2’ moves from
the configuration encoded by the inputs of E,.

Elq

Em.1 Em.

F-

FIG. 7. Body ofEm for m > O.

Note that the size of the description of the body of each such E, is linear in n and
that the number of such descriptions is cn.

Let FIN be a module with one output port and a number of input ports equal to the
number of output ports of E0. The body ofFIN consists of instances ofOR modules that
compute the result of the OR of those input-port variables that represent an accepting
state of M. Thus when the input ports ofFIN encode a configuration of M, the output
ofFIN encodes whether the configuration is an accepting configuration.

Let E be a module with one output port and a number of input ports equal to the
number of input ports of E0. The body of E is shown in Fig. 8. The body input ports of
E drive an instance of Ecn, whose output ports drive an instance of FIN.

Consider the assignment of values to the input ports of E such that this assignment
encodes the initial configuration of M given z. (Each value in this assignment is either- or .)

When module E is supplied with this input assignment, the value of the output port
of E equals - if and only if automaton M accepts

The module E is strongly acyclic, and the total size of the constructed modules is
O(n2). Thus the construction represents a polynomial-time O(n2)-size-bounded reduc-
tion from L(M) to the simulation problem for E.

1Although it is possible to design Eo so that its size is linear in n, this entails providing extra ports to hold
complementary values and would not strength the result.

640 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

FIN

FIG. 8. Body ofroot module

An immediate consequence of Theorem 4.2 is that problem F is PSPACE-hard.
Moreover, if some language in DSPACE(n) requires time 2fl(’), then problem F re-
quires time 2fl(x/).

5. 2(v/-) time simulation of aeyclie circuits. In this section we show that weakly
acyclic hierarchically specified logic circuits can be simulated deterministically using only
2(x/-) time. The linear space simulation of 3 suggests that perhaps simulation of an
acyclic hierarchical circuit of size n might require time 2(’). Also, the size of the flat-
tened circuit for a size n acyclic hierarchical circuit is 2(), so that the traditional ap-
proach of first flattening the hierarchically described circuit and then simulating it would
take time 2(’). However, in Theorem 5.11 below we show that it is possible to do the
simulation much faster when the domain of values involved in the simulation is finite,
namely, in time 2(v). Moreover, we carefully analyze the constant in the exponent
and show that it is of reasonable size. To do this we need the following notation and
technical lemmas.

DEFINITION 5.1. The submodule size of a module M equals 1 if M is primitive and
equals the number of occurrences of submodules appearing directly in the body of M
otherwise. The submodule size of a hierarchical description D is the sum of the submod-
ule sizes of the modules appearing in D.

DEFINITION 5.2. The module expansion tree M-Tree(D) of a hierarchically specified
module D is defined as follows: M-Tree(D) is a labeled unordered tree such that

(i) each node of M-Tree(D) is labeled by the name of a module Z such that Z
SOMEWHERE-WITHIND,

(ii) the root of M-Tree(D) is labeled by the name of the root module D,
(iii) each node ofM-Tree(D) labeled by the name of a primitive module has no chil-

dren,
(iv) each node ofM-Tree(D) labeledby the name ofa composite module, say, module

Z, has a child for each module instance in the body of Z. Each child is labeled with the
module name of the instance.

As an example, Fig. 9 shows M-Tree(A) for the module A that appears in Fig. 5.
(Note that module D is primitive.)

LEMMA 5.3. Let n > 1 be an integer. The maximum number ofleaves in the expansion
tree ofa hierarchically specifiedmodule whose hierarchicaldescdption is constrained to have

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 641

FIG. 9. Module expansion tree M-Tree(A).

submodule size at most n occurs when only one kind ofsubmodule occurs at each level in
the expansion tree ofthe hierarchically specified module.

Proof. The following algorithm, given a hierarchically specified module M, produces
a hierarchically specified module N whose hierarchical description has submodule size
no greater than that of M, such that

(i) the number of leaves in M-Tree(M) is less than or equal to the number of leaves
in M-Tree(N), and

(ii) only one kind of submodule occurs at each level in the expansion tree of hierar-
chically specified module N.

The algorithm processes the body of the composite modules that occur as labels in
M-Tree(M) as follows. For each body let Q be a module such that there is an instance of
Q within the body and M-Tree(Q) has a maximal number of leaves among the kinds of
modules having instances in the body. The body is modified by replacing each instance
of a module other than Q with an instance of Q.

After all the bodies have been modified, modules that no longer label nodes in M-
Tree(M) are deleted.

The .correctness of the lemma follows since the submodule size of each module is
unchanged and the number of leaves in the expansion tree of each module is either
unchanged or increased. [3

LEMMA 5.4. Let m, k, ix,..., and ik be integers > 1 such that -’=x ij rm Then the
k ij is less than or equal to 3r if m 3. r, 3r-x. 22 ifm 3. r + 1, and 3 2product Hi=

ifm 3. r + 2. Moreover, the indicated upper bound is obtainable.
Proof. It is easily seen that the indicated upper bound is obtainable. To verify that

the claimed upper bound is an upper bound, we need only verify the following: Let
m, k, il,..., and ik be integers _> 1. Let m be fixed.

(1) The product il i, subject to the constraint ix +... + i m, is maximized
when ix,..., ik {2, 3}.

642 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

(2) Given that i,..., i {2, 3}, the product i ik, subject to the constraint
i1 + A- ik m, is maximized when at most two of the integers i,..., i equal 2.

To see the correctness of (1), we observe the following:
(la) Suppose some i _> g. Then the product i -.... i < II=,i 2. (i 2)

k(since i < 2. (i 2)) and =l,e i + 2 + (i 2) m.
(lb) Suppose some i 4. This occurrence of 4 can be replaced by two occurrences

of 2; the sum and product of the integers will be unchanged.
To see the correctness of (2), we observe that6 2 +2 +2 a+3but

23 <32. !-1
DEFINITION 5.5. A set of primitive modules II is complete over a domain D ofvalues

if D is the domain over which the primitives operate and if every function of the form
D --+ D for finite k can be computed by a finite interconnection of modules in II.

LEMMA 5.6. For any set II ofprimitive modules that is complete over a finite domain
with d values, there is a constant c such that any acyclic circuit with zports has an equivalent
circuit ofsize at most czd.

Proof. Of the z ports, let x be the number of input ports and let g be the number of
output ports. The circuit computes a function from d to d. Let each of the d input
value assignments be called a minterm.

Since II is complete, a circuit ofa fixed size can perform each ofthe binary operations
in Za. Thus for each minterm a circuit that computes a signal whose value is 1 if the
input assignment corresponds to that minterm, and whose value is 0 otherwise, can be
constructed. The size of the circuit for each minterm is at most cx, where constant c
depends on II. Each of the outputs can be computed by a circuit that combines the
values of the d minterms, and the size of this circuit is at most 2dz, where constant c2
depends on II. If c is ma,x(cl, c2), the size of the overall circuit is at most czd.

DEFINITION 5.7. Consider a hierarchical circuit description D of size n. Let M be
a hierarchically described module occurring in D such that the number of ports of M
is at least x/-. The module semiexpansion tree of M, denoted by S-Tree(M), is a labeled
unordered tree such that

(i) each node of S-Tree(M) is labeled by the name of a module that occurs in the
description D and that has at least ports,

(ii) the root of S-Tree(M) is labeled by the name of module M,
(iii) each node of S-Tree(M) labeled by the name of a primitive module has no

children,
(iv) each node ofS-Tree(M) labeled by the name of a composite module, say, module

Z, has a child for each instance in the body of Z of a module with at least ports. Each
child is labeled with the module name of the instance.

Note that S-Tree(M) corresponds to the expansion tree ofM that would be produced
if D were modified by deletion of all occurrences of modules and module instances hav-
ing less than ports.

LEMMA 5.8. Considera hierarchical description D ofsize n, and a module Moccurring
in D such that M has at least x/ports. Then

(1) S-Tree(M) has depth at most and
(2) S-Tree(M) contains at most 3 v/-/3] leaves.
Proof. (1) Since each node along a path from the root to a leaf of S-Tree(M) corre-

sponds to a distinct module whose description is of size at least x/, the number of such
modules cannot exceed x/.

(2) Note that the proof of Lemma 5.3 applies to S-Trees. Thus for a given value of
n the number of leaves is maximized when each module body contains instances of only

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 643

one module type. Thus assume that at each level of S-Tree(M) all the nodes at that level
are labeled by the same module. Let M0, M1,..., Mk be the module labeling the root,
children of the root, etc. For 1 _< i _< k let ij be the number of instances of module
Mj within the body of module M_I. Since the total size of the description is n and
each module instance has size at least x/-, there can be at most x/ module instances

contributing to S-Tree(M). Thus it must be the case that Y’= i <_ v/. Therefore, from
kLemma 5.4,

_
i does not exceed 3v/al But this product is the number of leaves

S-Tree(M)
THEOREM 5.9. Forany set II ofptimitive modules that is complete over a finite domain

with d values there is a constant c such that any acyclic circuit specified by a hierarchical
description of a size n has an equivalent circuit whose flat description is of size at most
CTt3/22((1/3) log2 3h-log d) v/-.

Proof. Suppose a module M has a most ports. Then from Lemma 5.6 it has an
equivalent circuit of size at most Clx/ dye, where c depends on II.

Suppose M has more than ports. From Lemma 5.8 S-Tree(M) contains at most
3v//aq leaves. Each of these leaves has a module body containing at most rt mod-
ule instances, and each of these module instances has at most ports. Therefore,
ifM were expanded by continually replacing module instances with more than ports
by their bodies and not expanding any module instance with at most ports, the re-
suiting circuit would contain at most n3N/-/aq instances of modules, each with at most

ports. From Lemma 5.6 each of these module instances can be replaced by a flat
circuit containing at most c dv instances of primitive modules. If we let c 3cl,
the overall circuit contains at most cna/22((1/a)lgg.a+lgd)x/- instances of primitive
modules. [3

Note that since log 3 is less than 1.59, the bound from the preceding theorem is
cn3/22(0"53+1g d)v/-d. When the domain of the circuit is binary, so that d 2, the bound
is cn3/22’53v/-.

THEOREM 5.10. For any set II ofprimitive modules that is complete over a finite do-
main with d values, there is a constant c such that for any acyclic circuit specified by a
hierarchical description ofsize n an equivalent flat description can be constructed in time
cn5/22((1/3) log 3+2 log d) v/.

Proof. Let c be the constant in the statement of Theorem 5.9. Let M be the module
whose description is to be constructed. Then working from the bottom up in accordance
with the DIRECTLY-WITHIN relation, an "official" flat circuit is constructed for each of
the modules that are involved in the hierarchical description of M and have fewer than
x/ ports. Finally, the flat circuit for M is constructed. For each module N considered
with fewer than ports, the official flat circuit is constructed as described in Lemma
5.6. To use this construction we need a table that gives the output values for each as-
signment of input values. This table is constructed by first producing a "working body"
for N and then simulating the working body for each input assignment. The working
body is constructed as described by Theorem 5.9, continually substituting the body for
each instance of a module, but when an instance of a module with less than x/ ports is
encountered, its already constructed official body is directly substituted for the instance.
The result is that the working body for N is of size at most ClTt3/22((1/3) log 3+log d)x/-.
The table for N requires d/- rows, and each row can be filled in by simulating the work-
ing body for N, given the input assignment corresponding to that row. Thus the time to
fill in the table is proportional to n3/22((1/3)log2 3+2 log d)x/.

After at most n official bodies are constructed, the fiat circuit for M can be con-
structed as described in Theorem 5.9. l

644 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

THEOREM 5.11. Forany set II ofprimitive modules that is complete overafinite domain
with d values, there is a constant c such that any acyclic circuit specified by a hierarchical
description ofsize n can be simulated in time at most cn5/2c((1/a) log2 a+2 log2 a)v/-.

Proof. A flat circuit equivalent to the module to be simulated can be constructed as
described in Theorem 5.10 and then can be directly simulated. U

In performing a simulation it is not really necessary to construct the circuits for mod-
ules with fewer than ports. Rather, each such module can be represented by a table
that provides the output values for each input assignment. Each such table can be ini-
tially empty. Each time the module is simulated with an input assignment that has not
been submitted thus far, the output values in the appropriate row can be filled in. When
the module is to be simulated with an input assignment that has already been simulated,
the output values in the appropriate row can be used (without having to repeat this sim-
ulation). Thus a given overall simulation might take less time than the construction that
is the basis of Theorem 5.11 would take.

Note that given a hierarchically described circuit, the size of the flattened circuit
can be computed in linear time by using a bottom-up method. A choice can than be
made between using the algorithm of Theorem 5.11 and simulating the flattened circuit,
depending on a comparison of the size of the flattened circuit and the bound ofTheorem
5.11. This hybrid algorithm never uses more time or more space than the traditional
method of constructing the flattened circuit and then simulating it. Since the flattened
circuit can be of size 2n(’), the hybrid algorithm often uses less time and much less space.
If space is of the utmost importance, the algorithm of Theorem 3.1 can be used.

6. Analysis problems for circuits with cycles. In this section we consider hierarchi-
cal module descriptions in which dataflow cycles are permitted. Simulation for circuits
with dataflow cycles involves computing the values of the output ports of a module, given
its hierarchical description, a specification of the sequence ofvalues for each input port, a
specification of the initial state of the module, and a specification ofwhich values should
be reported.

As for acyclic modules, we assume that the domain of signal values is finite. We also
assume that for each input port of a primitive module there is a rule for what value to
use should the port be unconnected to a driver.

Because of the presence of cycles, timing issues arise. We assume that for any given
set of primitive modules, all delays are multiples of some basic unit of time. We also
assume that each primitive module can have a state (where combinational modules are
a special case that have only a single state). For each primitive module we assume that
there is a rule computable in polynomial time and linear space that when given a state
and input-port values, determines a next state and output-port values, perhaps with a
specified delay.

Consider a set of primitive modules that satisfy the conditions described above. The
input information for a simulation.problem consists of a hierarchical module description,
the specification of a sequence of values for each input port of the root module, the
specification of initial values for states of some of the primitive modules and some sig-
nals in the flattened body of the module, the specification of a condition ofwhen to stop
the simulation, and the specification of conditions for when the output values should be
reported. We make the following assumptions about the language in which these speci-
fications are expressed. We assume that time can be written in binary. We assume that
the language for expressing the sequence of values for an input port can enumerate val-
ues at given times or during given time intervals, can specify repetition of a sequence of
values, and can specify default values for times not explicitly described. We assume that

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 645

the language for expressing initial values for states or signals in the flattened body can
specify a value for certain explicitly listed signals and primitive module instances in the
flattened body and can specify default values for those not explicitly listed. We assume
that for explicitly listing a signal or module its hierarchical name is given, where the hi-
erarchical name begins with the name of the root module and consists of an identifying
sequence of names separated by periods. The size of a hierarchical name is the number
of names in the sequence. For instance, hierarchical name A.B.C.D refers to D within
instance (7 within instance B of module A. The size of this hierarchical name is 4. We
assume that the stop condition can be either a specified time or a specified value for one
of the output ports. We assume that the report condition can be a list of times or time
intervals or can be a Boolean combination of output-port values.

The output information for a simulation problem is the values of the output ports of
the root module at those times satisfying the specified report conditions, up to the time
the stop condition is satisfied.

PROPOSITION 6.1. For a given set ofprimitive modules, the simulation problem forflat
circuit descriptions can be solved in linear space.

Proof. The simulation can keep track of the value of each signal in the flat body plus,
if appropriate, states of the primitive modules. [3

THEOREM 6.2. A hierarchically specified circuit can be simulated in exponential space.
Proof. The size of the flattened body of the module is at most exponential in the size

of the hierarchical description. Thus the flattened body can be constructed in exponen-
tial space and then simulated. D

We now show that the simulation problem requires exponential space.
We say that a set of primitive modules has flip-flop expressibility if there exist two

values b and 7- in the domain ofvalues operated on by the primitive modules and if there
exist four modules {AND, OR, NOT, FLIP-FLOP} either available as primitive modules
or constructible as composite modules by an interconnection of primitive modules such
that these modules behave like the standard logic modules with these names. The FLIP-
FLOP module can behave like any of the standard flip-flop types. (The FLIP-FLOP
module can be a composite module constructed out of the gate-type modules.)

For a set of primitive modules with flip-flop expressibility, a linear-bounded automa-
ton with a given input string can be described as a flat module whose size is proportional
to the length of the input string. Consequently, the simulation problem for fiat modules
constructed from primitive modules that have flip-flop expressibility is PSPACE-hard.
Because of Proposition 6.1, the problems is PSPACE-complete. Hierarchical descrip-
tions permit an exponential increase in conciseness but involve a corresponding expo-
nential increase in the space required for the simulation problem, as described in the
following result.

THEOREM 6.3. For a set II ofprimitive modules with flip-flop expressibility, there exists
a constant d > 0 such that the simulation problem for hierarchical module descriptions
requires space at least 2a’ on any Turing machine.

Proof. Let M be an arbitrary 2c’-space-bounded Turing machine for some constant
c > 0. Assume that M serves as a language recognizer. Also assume that M has an ex-
plicit accept state and an explicit reject state. Without loss ofgenerality it can be assumed
that for every input string, M eventually enters either its explicit accept or explicit reject
state without having touched more than its 2c’ leftmost tape cells, and it then moves to
the right indefinitely in its accept or reject state.

Consider an input string z of length n, where z is assumed to include endmarkers.
In processing z machine M uses at most 2’ tape cells and then keeps moving to the
right in either the accept or reject state.

646 DANIEL J. ROSENKRANTZ AND HARRY B. HUNT III

The overall circuit to be specified hierarchically will contain an implementation of
Turing machine M and enough tape cells to determine whether M accepts z. In this
implementation each tape cell will be implemented explicitly by an instance of a sub-
module, called module Do, that can both record the contents of a tape cell and simulate
the operation of M’s finite state control when the tape head of M is on that cell. A
transition ofM will be implemented by changes of signal values involved in instances of
Do corresponding to the tape cells affected by the transition, with other instances of Do
remaining unchanged.

Given z, a hierarchical circuit description can be constructed as follows. The circuit
description depends only on n, the length of z. For each m, where 0 < m < on, there
is a composite module D,. In the overall circuit that is specified hierarchically, each
instance of D, represents a segment of 2’ contiguous cells of M’s tape. The flip-flops
in this instance of D,, record the contents of the tape cells in this segment, whether or
not the tape head is residing on this segment and, if so, the state ofM and on which cell
in the segment the head is residing. The ports of D,, are summarized in Fig. 10. For each
state g of M input port zlg encodes whether the tape head, in state g, is moving onto
the represented tape segment from the left. Similarly, input port Zrg encodes whether
the tape head, in state g, is moving onto the tape segment from the right. Output port
fllg encodes whether the tape head, in state , is moving off the tape segment to the left.
Similarly, output port fifo encodes whether the tape head, in state g is moving off the
tape segment to the right.

head moving to /

right in state g

}
head moving to
left in state g

Drn

head moving to
right in state g

\./ {Xrg}
head moving to
left in state g

FIG. 10. Ports ofrnodule Din.

Consider Do, whose purpose is to simulate one cell of M. The body of Do can be
constructed by using instances of modules FLIP-FLOP, OR, AND, and NOT. The flip-
flops are used to remember the contents of the tape cell, whether or not the tape head is
on the cell, and, if so, the state. A straightforward implementation can have a flip-flop for
each tape symbol and a flip-flop for each state. At each step ofthe computation by M, the
head ofM resides at some given tape cell, say, cell c. On the basis of the contents of cell
c and the current state, M makes a transition that involves a next state, new contents
of cell c, and the determination of whether the head of M remains stationary, moves
one cell to the left, or moves one cell to the right. Corresponding to this step of M, the
instance of Do representing cell c uses its recorded value of the state and cell contents to
simulate the transition. The new contents of cell c are recorded in this instance of Do.
If the transition involves no head movement, then the next state and the fact that the

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 647

head is residing on this cell is recorded in this instance of Do. If the transition involves
movement of the tape head, then the appropriate output port of this instance of Do is
given a value indicating the movement of the tape head onto an adjacent cell and the
new state of M. This value on the output port causes the instance of Do representing
the adjacent tape cell to record the fact that the tape head is now residing on it. (Note
that for all instances of Do other than the one that represents cell c, the values on the
output ports remain unchanged.) The details of the construction of the body of Do are
routine and are left to the reader.

Now consider the body of each D,, where 1 < m < cn. The body of each D, is
constructed by using two instances of module D,,_ interconnected as shown in Fig. 11.

D

Dm-

FIG. 11. Body ofDm for m > O.

Note that the size of the description of each D,, is independent of n and that the
number of such descriptions is cn.

Let INIT be a module whose body consists of a sequence of n instances of Do con-
nected together. The purpose of INIT is to represent the first n tape cells of M, which
are initially to contain string z. (All other cells of M are initially to contain the blank
tape symbol.) Module INIT has the same set of ports as described in Fig. 10. Note that
the size of the description of INIT is proportional to n.

Let FIN be a module with two output ports {A,R} and a number of input ports
equal to the number of right output ports of Den. The body ofFIN computes whether
its input ports indicate that the tape head is moving to the right in the explicit accept
or reject state. Output port A is given a special value when FIN detects the tape head
moving to the right in the accept state, and output port R is given a special value when
FIN detects the tape head moving to the right in the reject state.

Let D be a module with two output ports and no input ports. The body of D is
shown in Fig. 12. In Fig. 12 the left input ports ofINIT and the right input ports of Dc,
are shown as unconnected. This assumes that the unconnected input ports of Do are
interpreted as representing the absence of tape head movement. If this is not the case
for the primitive modules used in the body of Do, the body ofD could be given additional
module instances to generate the appropriate input-port values.

Consider the following instance of the simulation problem. The hierarchical module
description consists of the description of D, INIT, FIN, Do,..., D,, with D designated
as the root module. The specification of the initial values of flip-flops in the flattened

648 DANIEL J. ROSENKRANTZAND HARRY B. HUNT III

IN IT Dcn

FIG. 12. Body ofroot module D.

circuit is that the n instances of Do within INIT are initialized with the n symbols of z
and that all the instances of Do within Dc, are initialized with the blank symbol. Also,
the leftmost instance of Do within INIT is specified to be initialized with the tape head
present and the starting state of M. All other occurrences of Do are initialized with
the tape head absent. The condition for both reporting the output and stopping the
simulation is that either output of D has the special value that indicates acceptance or
rejection by M.

For this simulation problem the simulation always halts, only one set of output-port
values is reported, and the reported values indicate whether M accepts or rejects z.

Note that the size of the hierarchical object description is proportional to n. The
size of the initialization specification is proportional to n since the size of the hierar-
chical name of each instance of Do within INIT is constant. (If the language for speci-
fying initialization conditions were more restricted, the construction could be modified
so that all flip-flops would be specified to be in the same neutral state and D would be
given an input that could be used to load specified values into the first n cells and then
initiate the operation of M.) Thus the construction represents a linear size (and poly-
nomial time) reduction from the acceptance problem for M to the simulation problem
for D. Since the size of the input information for the simulation problem is propor-
tional to n, there is a constant d > 0 such that the simulation problem requires space at
least 2dn. [:]

Combining Theorems 6.2 and 6.3 gives the following result.
COROLLARY 6.4. The simulation problem is EXPSPACE-complete for hierarchically

specified objects when the set ofprimitive modules has flip-flop expressibility.

Acknowledgment. We wish to acknowledge one of the referees for pointing out a
flaw in our original proof of Theorem 3.1.

[AHU]

[BS]

[BO]

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design andAnalysis ofComputerAlgorithms,
Addison-Wesley, Reading, MA, 1974.

J. BENKOSKI AND A. J. STROJWAS,A new approach to hierarchical and statistical timing simulations,
IEEE Trans. Computer-Aided Design, CAD-6 (1987), pp. 1039-1052.

J. L. BENTLEY AND T. OTrMAN, The complexity ofmanipulating hierarchically defined sets of rect-

angles, in Proc. Mathematical Foundations of Computer Science, J. Gruska and M. Chytil,
eds., Lecture Notes in Computer Science 118, Springer-Verlag, Berlin, New York, 1981,
pp. 1-15.

COMPLEXITY OF PROCESSING HIERARCHICAL SPECIFICATIONS 649

[BHR]

[Cr]

[GJ]
[Ha]

[KS]

[Lenl]

[Len2]

[Len3]

[LWag]

[LWan]

[LM]

[LMS]

[MacLB]
[MKS]

[MC]
[Ni]

[Oea]

[SS]

[SM]

[WA]
[Zim]

P. A. BLONIARZ, H. B. HUNT III, AND D. J. ROSENKRANTZ,Algebraic structures with hard equivalence
and minimization problems, J. Assoc. Comput. Mach., 31 (1984), pp. 879-904.

J. D. CRAWFORD, EDIF: A mechanism .for the exchange ofdesign information, IEEE Design and
Test, 2 (1985), pp. 63-69.

M. R. GAREY AND D. S. JOHNSOq, Computers and Intractability, Freeman, San Francisco, 1979.
J. P. HAYES, Digital simulation with multiple logic values, IEEE Trans. Computer-Aided Design,

CAD-5 (1986), pp. 274-283.
R. KOLLAAND B. SERF, The virtualfeedbackproblem in hierarchical representations ofcombinatorial

circuits, Acta Informatica, 28 (1991), pp. 463-476.
Z. LENGAUER, Exploiting hierarchy in VLSI design, in Proc. Aegean Workshop on Computing, E

Makedon et al., eds., Lecture Notes in Computer Science 227, Springer-Vedag, Berlin, New
York, 1986, pp. 180-193.

Hierarchical planarity testing algorithms, in Proc. 13th International Colloquium on Au-
tomata, Languages and Programming, L. Kott, ed., Lecture Notes in Computer Science 226,
Springer-Verlag, Berlin, New York, 1986, pp. 215-225.

Efficient algorithmsforfinding minimum spanningforests ofhierarchically definedgraphs, J.
Algorithms, 8 (1987), pp. 260-284.

T. LENGAUER AND K. W. WAGNER, The correlation between the complexities of the nonhierarchical
and hierarchical versions ofgraph problems, in Proc. 4th Annual Symposium on Theoretical
Aspects of Computer Science, E J. Brandenburg et al., eds., Lecture Notes in Computer
Science 247, Springer-Verlag, Berlin, New York, 1987, pp. 100-113.

T. LENGAUER AND E. WANKE, Efficient solution of connectivity problems in hierarchically defined
graphs, SIAM J. Comput., 17 (1988), pp. 1063-1089.

Y. LEVENDELAND P. R. MENON, Fault simulation, in Fault-Tolerant Computing: Theory and Tech-
niques, Vol. I, D. K. Pradhan, ed., Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 184-264.

R. LIPSETr, E. MARSCHNER, AND M. SHAHDAD, VHDL--the language, IEEE Design and Test, 3
(1986), pp. 28-41.

S. MACLAt AND G. BIRKHOFF,AIgebra, MacMillan, New York, 1967.
J. 1VIAGEE, J. KRAMER, AND M. SLOMAN, Constructing distributed systems in conic, IEEE Trans.

Software Engrg., 15 (1989), pp. 663-675.
C. MEAD AND L. COt,WCAY, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
C. NIESSEN, Hierarchical design methodologies and tools for VLSI chips, Proc. IEEE, 41 (1983),

pp. 65-75.
J. K. OUSTERHOUT, G. T. HAMACHI, R. N. MAYO, W. S. SCOTt, AND G. S. TAYLOR, The magic VLSI

layout system, IEEE Design and Test, 2 (1985), pp. 19-30.
L. K. SCHEFFER AND R. SOETARMAN, Hierarchical analysis ofIC artwork with user defined abstrac-

tion rules, in Proc. ACM/IEEE 22nd Design Automation Conference, June 1985, pp. 293-
298.

L. J. STOCKMEYERAND A. R. MEYER, Wordproblems requiringexponential time, in Proc. 5th Annual
ACM Symposium on Theory of Computing, 1973, pp. 1-9.

T. J. WAGNER, Hierarchical layout verification, IEEE Design and Test, 2 (1985), pp. 31-37.
U. ZIMMERMAN, Linear and Combinatorial Optimization in Ordered Algebraic Structures, North-

Holland, Amsterdam, 1981.

SIAM J. COMPUT.
Vol. 22, No. 3, pp. 650-659, June 1993

1993 Society for Industrial and Applied Mathematics
012

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM*
E. G. COFFMAN, JR.t, LEOPOLD FLATTO?, AND PAUL E. WRIGHT?

Abstract. This paper provides an examination of an abstract moving-server system that models several
computer applications, including software debugging and accessing compressed data. In this model, the server
moves on the unit interval [0, 1], serving requests where they are encountered. The locations of successive
requests are not known in advance, but they are known to be independent samples from a given distribution F
on [0, 1]. Before serving a request, the server must be moved to a reset point to the left of the request. There
is a choice of two reset points, one fixed at 0 and one, called the checkpoint, that can be moved in the course of
serving requests. The cost of serving a request is proportional to the distance moved to the request from the
chosen reset point. This paper formulates a stochastic optimization problem whose solution, for a wide class
of distributions F, yields a policy for deciding the successive locations of the checkpoint so as to minimize the
expected total cost of serving a sequence of requests. Results for both finite and infinite-horizon variations of
the problem are presented, along with the properties required of the distribution F.

Key words, checkpoints, stochastic optimization, moving-servers, online algorithms

AMS(MOS) subject classifications. 60H30, 60K10, 68M07, 68M20

1. Introduction. The following moving-server system is formulated as a model of
certain problems in software debugging and in accessing compressed data. The server
moves along a finite interval satisfying requests for service that appear at random loca-
tions. As a convenient normalization the interval is taken to be [0, 1]. At the origin and
at some point x to be determined, reset points are located; the server must always visit
a reset point before serving a request. The reset point at 0 remains fixed, but the other
can be moved in the course of serving requests. The movable reset point will be called
the checkpoint to distinguish it from the reset point at 0.

To serve a request aty, the server moves in two stages. In the first stage it moves to a
reset point to the left of y. This can be the reset point at 0 or the checkpoint at x if x _< V,
but it must be the reset point at 0 of x > y. Let z denote the location of the reset point
chosen in the first stage. Then in the second stage the server moves right from z to point
y and performs the requested service. During this stage, the server either repositions
the checkpoint at some location x’, z _< x’ _< y, along its path; or, after the service at y,
it may continue rightward and place the checkpoint at x’ > y.

The class C of policies for serving a sequence of requests contains just those policies
following the above ground rules. Such a policy is defined by the rules deciding the se-
quence of points at which the server is reset in the first stage of motion and the sequence
of locations where the checkpoint is placed in the second stage of motion. In serving a
sequence of requests at Vl,..., gn, the cost c of serving the request at y is defined to
be the distance moved during the second stage of motion times a given rate parameter
r > 0; the reset motion in the first stage incurs no cost. Assuming that the y are inde-
pendently and identically distributed samples from a given distribution F on [0, 1], the
problem is to find a policy T’ E C that, for a given n _> 1 and an initial position x0 of
the checkpoint, minimizes the expected total cost n__ E(ci) of serving a sequence of
n requests.

Received by the editors December 9, 1991; accepted for publication (in revised form) April 9, 1992.
tAT& T Bell Laboratories, Murray Hill, New Jersey 07974.
Charging a fixed cost c to modify the checkpoint (updating a fixed sized dictionary in the data decom-

pression case, for example) does not lead to greater generality; the linear cost cn may be added at the end.

650

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM 651

(a)
0 xi si Yi+l

0 xi+l Yi+ si+x

0 Yi+3 xi+2 si+2

0 xi+3 8i+3

first stage of motion

second stage of motion

FIG. I. An example ofdecisions underpolicies in C.

Let x, s denote the respective locations of the checkpoint and the server after serv-
ing the ith request at yi, 1 < i < n; x0, so denote the initial checkpoint and server
positions. Figure 1 illustrates the various decisions of policies in . The first and sec-
ond stages of the motion undergone by the server at s, in order to satisfy the next re-
quest at yi+x, are indicated by single and double lines, respectively. In Fig. l(b) the
server at s+l moves during the first stage to x+l, which is the nearest reset point to the
left of y+e. During the second stage, the server moves the checkpoint to x+z, where
x+x < x+ < yi+e, and then moves on to yi+e, which becomes si+. Such a decision
is called conservative because it incurs a (locally) minimum cost in serving a request. In
Fig. l(a) the first stage of the server motion is nonconservative, since the server resets
at 0, even though x is the nearest reset point to the left of y+. In Fig. l(c) the second
stage of the server motion is nonconservative, since the checkpoint is relocated to the
right of y+a. The two arrowheads in Fig. l(c) indicate that the server first satisfies the
request at y+z and then places the checkpoint at x+a, which becomes s+a.

The rate r has no effect on our optimization problem, so hereafter we assume r 1
and identify cost with distance. Because the y are independently and identically dis-
tributed and the reset motion is cost free, the only state variable of interest is the position
x of the checkpoint. Hereafter, this position is called the state. To simplify terminology
we will often say "serve y" to mean "serve the request located at y."

652 E.G. COFFMAN, JR., L. FLAT/O, AND P. E. WRIGHT

A little reflection leads one to expect that, among the optimal policies in tT, there is
one that is conservative, i.e., one that makes only conservative decisions. This is proved
in 2. The proof requires some effort but the arguments are quite elementary. Section
3 begins by formulating a recurrence that defines the expected total cost E, (a:) incurred
by an optimal conservative policy in serving n requests starting in state z. For a broad
class of distributions F, the properties of E, (z) are given in detail. Section 4 uses these
properties to define an optimal policy having a simple structure. Under this policy, the
sequence of states zl,. z, forms a simple Markov chain with initial state z0; the tran-
sient and stationary regimes of this chain are also described in 4. Section 5 studies the
class of distributions F to which the optimal policy applies. The remainder of this section
briefly discusses background and applications.

This paper was motivated by recent work of Bern et al. [1], who describe several
applications of the moving-server checkpointing model. Here, we give only the flavor of
these applications; detailed discussions can be found in [1]. Briefly, in the data base ap-
plication the interval [0, 1] is taken as a normalized, continuous approximation to a large
string of text, say, an encyclopedia, in compressed form. To access an item at a known
location, say, y, in this compressed text, the compression statistics at the time the item
was stored must be known to the request server [6]. Without checkpoints this requires
the statistics to be recomputed from scratch, from 0 to the point V. Checkpoints storing
the statistics generated at various points in the compressed text allow for faster access;
the recomputation of statistics needs to be started only at the most recent checkpoint
created before the item at V was stored.

In software testing and development, the interval approximates a long sequence of
statements or lines of code. Checkpoints are placed at various points in the code in
order to save the state of the software system during trial runs. After trial runs, the
programmer may wish to track certain state variables beyond some point V in the code.
To do so efficiently, the programmer steps through the code starting in the state saved
by the last checkpoint encountered before reaching point V.

In general, the model applies to any irreversible process or computationwhose states
at various times need to be recaptured in order to modify the behavior or structure of the
process. Physical simulations are another application of this type brought out by Bern et
al. [1]. Note that the models here and in [1] apply to those situations where requests at
points earlier than (to the left of) a checkpoint cause the checkpoint to be moved. This
applies in those cases where a checkpoint to the right of a request becomes invalid. For
example, the program is being modified in the program debugging application, or the
compressed text is being modified in the data base application.

Bern et al. consider a more general model in which there are k > 1 checkpoints.
Their primary goal is a combinatorial analysis of competitiveness, i.e., the best relative
performance of on-line algorithms, such as those studied here, versus off-line algorithms
that can see all requests in advance. The objective here is a more realistic stochastic
analysis of optimal on-line algorithms. As a concession to the greater difficulty of a
stochastic model, we limit ourselves to an important special case treated by Bern et al.,
viz., the case k 1 of only one checkpoint.

A great deal ofwork has also been published on the use of checkpoints in the design
of fault-tolerant systems. The references in [2], [5] provide an excellent gateway to this
literature. Most of this research focuses on queueing models defined by given interar-
rival and running time distributions. System failures occur according to a given prob-
ability law. Recovery from failures includes rolling the system back to the most recent
checkpoint (error-free state). There are also several papers on checkpointing within the

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM 653

setting of the results presented here, i.e., optimal stochastic scheduling of checkpoints
for fault-tolerant computations [2]-[4], [7]. However, all of these models concern the
placement of checkpoints at fixed locations; the moving checkpoint of the model stud-
ied here leads to fundamental changes in the analysis.

2. A reduction. The following result then simplifies the policies that need to be
considered.

THEOREM 2.1. There is a conservativepolicy among the optimalpolicies in .
Proof. We prove that, for any initial state z0 and sample g,..., g,, there is a se-

quence of conservative decisions whose total cost is minimum over all possible decision
sequences of policies in iT. It follows that any policy 79 may be replaced by a conservative
policy 79, whose expected total cost is less than or equal to that of P. In 3, we conclude
from the Bellman equation that there exists an optimal policy among the conservative
ones. By the previous remark this policy is then optimal among all policies.

There are two types of nonconservative decisions that must be considered, one in
the first stage of motion and one in the second (see Fig. 1).

Type 1. In serving yi, 1 < i < n, the server is reset to 0 even though the checkpoint
is at z_ with 0 < zi-1 <

Type 2. After serving yi, the server motion is continued to the right so as to shift the
checkpoint to a position at z > g.

Suppose policy 79 makes a type 2 decision in serving g, so that z > g. Let 79, be
a policy that makes the same decisions as Y up through the first stage of the ith service
but then proceeds as follows. In the second stage of the ith service 79, makes the shorter
move to g, where a new checkpoint is established. P’ thus gains an advantage of (zi -yi)
over 79 upon completion of the ith service. If, on the (i + 1)st request, 79 resets to 0, then
so does T"; 79’ mimics 79 thereafter and retains the advantage (z y). On the other
hand, if 79 resets to z on the (i + 1)st request, then P’ resets to yi. 79, then begins
the second stage of the (i + 1)st service by moving to z, thus giving up the advantage
(z g); 79, mimics 79 thereafter. In either case the cost incurred by Y" is at most that
incurred by P, and 79’ has made one fewer type 2 decision than P. Repetitions of the
above argument show that for given z0, gl,..., y, and policy 79, there exists a policy
that makes no type 2 decision and incurs a cost a most that incurred under 79.

Next, let 79 be a policy that makes no decision of type 2 but makes a type 1 decision
on serving y, i.e., the server resets at 0 even though 0 < zi-1 < y. We may assume that
in the second stage of serving g, 79 establishes a new checkpoint at z < z_1; otherwise,
the cost under P can obviously be reduced by an amount z_ by resetting at z_ instead
of at 0. Let 79, be a policy that is identical to 79 up through the (i 1)st service but then
proceeds as follows. 79’ resets to z-i during the ith service, keeping the checkpoint
location at z_1. The costs of serving g under 7 and T" are given respectively by y and
(g z_), so 79’ gains an advantage of z_ over 79 upon completion of ith service.
If, on the (i + 1)st request, P resets to 0, then so does T", mimicking 79 thereafter and
retaining the advantage zi-1. Otherwise, 79 resets to z, in which case z < g+l. As
79 makes no type 2 decision, we also have z < zi+l < y+x. We now distinguish three
possibilities.

(i) z < yi+l < zi_l. In the (i + 1)st service, 79’ must reset to 0, thus reducing the
advantage to z-i z. 79, then establishes a checkpoint at z+l, mimics 79 thereafter,
and retains the advantage zi_ z.

(ii) z-i < y+l and z+ > zi_. In the (i + 1)st service, 79, resets to z-l, es-
tablishes a checkpoint at z+, and mimics 79 thereafter. At the end of the (i + 1)st
service, the advantage is increased to z_ + (Zi_l zi) 2zi_l zi, which is retained
thereafter.

654 E.G. COFFMAN, JR., L. FLATrO, AND P. E. WRIGHT

(iii) xi < Yi+l and xi <_ Xi+l (Xi--1. In the (i + 1)st service, 7)’ resets to Xi--1 and
keeps the checkpoint there, the advantage under 79 being increased to 2xi_ xi at the
end of the (i + 1)st service. The above procedure is then repeated, replacing i by i + 1.

The resulting policy P’ makes no type 2 decision and one fewer type I decision than
:P. Repetitions of the above argument show that for given x0, yt,..., y, and policy 7,
there exists a conservative policy 7’ that incurs a cost at most that incurred by

3. The Bellman equation. For convenience we assume initially that F(0) 0, F(1)
1 and that F(x) is continuous and strictly increasing on [0, 1]. This section solves a

Bellman equation defining the expected total cost E,(x) incurred by an optimal conser-
vative policy serving n requests and starting in state x. By Theorem 2.1 the expression
for E, (x) will apply to any optimal policy in C.

LEMMA 3.1. For n > 0 and 0 < x < 1

(3.1) En+(x) y + inf En(z dF(y) + y x + inf En(x) dF(y),
0<z<y x<z<_y

where Eo (x) O, 0 <_ x <_ 1.

Proof. If the first of the n + 1 requests is at y y < x, then the conservative server
resets to 0 before moving to y. If the checkpoint is repositioned at z, 0 < z < y, then the
optimal total expected cost of serving the n + 1 requests can be expressed as y +E(z).
On the other hand, if y _> x, then the conservative server resets to x, so the optimal total
expected cost can be expressed as y x + E, (z), where z, x <_ z <_ y, is again the point
at which the checkpoint has been repositioned. Minimizing over z and averaging over y
yields (3.1).

Let # f ud F(u) denote the mean of F and define G(u) u[1 F(u)]. Then by
integrating the first terms of the integrands in (3.1), we can write

(3.2) En+(x) # G(x) + inf En(z) dF(y) + inf En(z)dF(y).
O<_z<y z<_z<_y

To obtain a simple optimal policy, the form of (3.2) suggests that it might be useful
to ensure that E,(x) is unimodal with a unique minimum. To this end, consider the
following two conditions on F:

C. G(x) is unimodal on [0, 1] with a unique maximum at T, 0 < r < 1.
C2. g(x) [G(T) G(x)]/F(x) is increasing in IT, 1].
C does not imply C, as shown in 5.
THEOREM 3.1. C and C2 holdjointly ifand only if, for n >_ 1, E(x) is unimodal on

[0, 1] with a unique minimum at T. E(x) is given by

(3.3) En(x) # G(x) + (n 1)c, 0 < x < T,

(3.4) En(x) En(T) + F(x) {1 -[1 F(x)]n}, T <_ X <_ 1,

where

(3.5) a [# G(y)] dF(y) + [# G(-)][1 F(7-)].

Proof. Suppose that for n > 1, E,(x) is unimodal in [0, 1] with a unique minimum at
7-, 0 < T < 1. We refer to this as the unimodality condition. We first prove, by induction

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM 655

on n > 1, that this condition implies that the E,’s are given by formulas (3.3), (3.4)
and then complete the proof by showing that the unimodality condition is equivalent to
C1, C2.

Because Eo(x) 0, we obtain from (3.2) that E1 (x) # G(x), which coincides
with (3.3), (3.4) for n 1. Suppose we are given that E,(x) satisfies (3.3), (3.4) in
addition to the unimodality condition. We show that E,+I (x) is given by (3.3), (3.4),
with n replaced by n + 1.

Let 0 < x < r. Then inf0_<z_<y E,(z) E,(y), 0 < y < x, and for x < y < 1.

t’

inf E,(z)
E,(y), x <_ y <_ T,

z<z<Y L En(’r), T < y < 1.

We conclude from (3.2) that

(3.6) E,+(x) # G(x) + E,(y)dF(y) + E,(T)[1 F(T)], 0 _< x _< T.

Substituting (3.3) into (3.6) both for E, (y) and E,(r) and taking into account (3.5), we
obtain (3.3) with n replaced by n + 1.

Let r < X < 1. We have for 0 < y < x

/,

inf En(z)
En(y), O <_ y <_ T,

x<z<y t En(T), T < y < X,

and for x < y < 1, inf<<u E,(z) E,(x). We conclude from (3.2)that

(3.7) E,+(x) #-G(x)+ En(y)dF(y)+E,(T)[F(x)-F(T)]+En(x)[1-F(x)],

for T < X < 1. In (3.7) let x T. Subtract the resulting equation from (3.7) to obtain

(3.8) En+I(X)-En+I(T) G(T)-G(x)+[1-F(x)I[E,(x)-E,(’r)], 7-<x<1.

Substituting for E, (x) E, (T) in (3.8) from (3.4), we obtain (3.4) with n replaced by
n+l.

Next, we show that C1, C2 imply the unimodality condition. We proceed by induc-
tion. For n 1, El(x) # G(x), so C1 implies that E (x) satisfies the unimodality
condition. Suppose that E(x),..., E,_x (x) satisfy the unimodality condition. Our ear-
lier argument shows that E,(x) satisfies (3.3), (3.4). From (3.3) and C, we obtain that
E, (x) is decreasing on [0, T] with a unique minimum at T. The function 1 [1 F(x)]’
is strictly increasing on [0, 1]. Hence from (3.4) and C2, E(x) is increasing on [T, 1] with
a unique minimum at T. Thus E,(x) satisfies the unimodality condition.

Finally, we show that the unimodality condition implies C, C2. Since E1 (x)
G(x), we obtain C. Suppose C fails, i.e., H(Xl) > H(x) for some T _< X <
X2 _< 1. The unimodality condition implies that E,(x), n _> 1, satisfies (3.4). Because
lim,__.o{1 [1 F(x)]’} 0 uniformly on IT, 1], we obtain from (3.4) that, for n
sufficiently large, E,(x) > En(x2), a contradiction. Hence C2 also holds. [q

4. The optimal policy. Let 790 denote the optimal conservative policy, and let x0,

x,.., denote the sequence of checkpoint locations under 7o with the initial state x0
given. Assume that F(x) satisfies conditions C1 and C2. By (3.2) 790 is defined by the

656 E.G. COFFMAN, JR., L. FLATI’O, AND P. E. WRIGHT

case analysis determining z so as to minimize inf0<z<u E,(z) and inf,<z<u E, (z) in the
proof of Theorem 3.1. Since E,(z) is unimodal with a unique minimum at 7-, 790 always
moves the checkpoint as close as possible to 7-, the uniquely best state from which to start
serving a request. Formally, the corollary below follows immediately from Theorem 3.1.

COROLLARY 4.1. For each i >1, the next-state decisions under 7o are: If O < zi-x <7-,
move the checkpoint to

(4.1) x I y’ ify < T,

r, ify

and ifr <
_

< 1, move the checkpoint to

Yi, if Yi < T,

(4.2) Xi T, if T <_ Yi <_ Xi--1,

xi- if Xi- <__ Yi <__ 1.

Under 790 the checkpoint locations form a Markov chain. For the translations from
z-i z to z z’ the transition probabilities follow from Corollary 4.1:

O <_ X <_ T P(x, dx’) dF(x’), O <_ x’ < x

P(x, T) 1 F(T)

T < X < I P(x, dx’) =dF(x’), O < X’ < T

P(x, T) F(x) F(T)

P(x,x) 1 F(x).

If the initial state satisfies 0 _< xo _< T, then by (4.1) all subsequent states also satisfy
0 <_ xi <_ T, i >_ 1. Otherwise, if T < X0 <_ 1, subsequent states remain at xo until the
first request yj, j _> 1, such that 0 _< yj < xo. From that point onward, 0 <_ x _< 7-,

i>_j.
Thus, the transient states of {xi} are those in (T, 1] and the recurrent states are those

in [0, T]. The equilibrium measure of {xi } is on [0, T] and defined by

dP(y) dF(y), 0 <_ y < 7,
(4.3)

P(T) 1-- F(T).

It can be seen that C1 and C2 were introduced to control the transient behavior of
790 when started in an initial state z0 E (r, 1]. The result below shows that if initial
states are suitably restricted, then an optimal policy can be defined for a broader class
of distributions F. First, consider the following relaxation of C1.

Co. For some T, 0 < r < 1, G(z) has a unique maximum at r on [0, 1], and G(x) is
increasing on [0, r].

COROLLARY 4.2. Of Co holds, then for n > 1, (3.3) holds and En(z) has a unique
minimum at 7- on [7-, 1].

Proof. The proof parallels that of Theorem 3.1, proceeding by induction on n > 1.
As El (z) # G(z), the result holds for n 1. Suppose it holds for n > 1. Formula
(3.3) remains valid for 0 < z < 7-. For 7- < z < 1, we obtain from (3.2)

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM 657

(4.4)

En+(x) #-G(x)+ En(y) dF(y)+En(T)[F(x)-F(T)]+ inf En(z)dF(y),
z<_z<_y

which readily implies E=+x (x) > E=+x (T), 7" < X <_ 1. Then (3.6) and (4.4) imply the
corollary for n + 1. lq

If x0 [0, T], with T defined by Co, then by Corollary 4.2 790 is completely defined
by (4.1). Hence, if Co holds and the initial state x0 is a sample from the equilibrium
measure (4.3), then 790 makes the decisions in (4.1), and E,,(xo) ncz, n > 1, with cz
given by (3.5)

5. Examples. First, we verify that there is no redundancy in the conditions C and
C2 of Theorem 3.1.

THEOREM 5.1. There exist distributions for which C holds and Cz fails. Also, there
exist distributions for which Co holds but C and C2 fail

Proof. We only prove the first assertion; the second assertion can be proved by a
similar approach.

The following definitions simplify the search for examples. Let p(x) be a continuous

nonnegative function on [0, 1) with f p(x)dx . Define (x) exp(- f p(t)dt),
0 < x < 1, so that F(x) 1 (x) is a probability distribution on [0, 1]. On [0, 1] we
have G(x) x(x) and on [0, 1) G’(x) (x)(1 xp(x)), so C holds if

(5.1)
xp(x) < 1, 0 < x < T,

xp(x) > 1, T < X < 1.

Now differentiating the function H(x) defined by C2 gives

F2 (x)H’(x) -(x) x’(x) + 2(x) / T(T)’(X),

SO C2 holds only if h(x) -1 + xp(x) + (x) T(T)p(x) >_ O, T < X < 1.
Thus, let us choose a p(x) as defined above so that, for given 0 < T < /9 < 1, p(x)

satisfies (5.1), Op(O) < 1 + T(T)/4, and f: p(t)dt > --ln(T(T)/4). Then C1 holds but
C2 fails, since

h(0) [0/9(0)- 1] + (0)- T(T)p(O) < .(.)+ < 0.
4 4

Figure 2 sketches a general example, where the condition f: p(x)dx > ln(T(T)/4) is
guaranteed by defining p(x) so that it has a sufficiently large hump in (T, 0).

Although C and Cz were needed to establish the unimodality of E(x), they are
otherwise somewhat recondite properties of distribution functions. On the other hand,
they embrace a wide class of interesting distributions, as the examples below illustrate.
Recall our assumptions that F(0) 0, F(1) 1, and F(x) is continuous and strictly
increasing in [0, 1].

(i) Consider the convex distributions.
THEOREM 5.2. Suppose F has a nonnegative second derivative, F"(x) > O, 0 < x < 1.

Then C1 and C2 hold.
Proof. From C(z) z[1 F(z)] we have G(0) G(1) 0 and

(5.2) G’ (x) 1 F(x) xF’(x), G"(x) -2F’(x) xF"(x).

658 E.G. COFFMAN, JR., L. FLATI’O, AND P. E. WRIGHT

0
r O

FIG. 2. An example where C1 holds but C2 fails.for F(x) 1 exp (- : p(t)dt) 0 <_ x <_ 1.

The assumptions on F(x) readily imply that F’(x) > 0 on (0, 1]. We conclude from (5.2)
that G"(x) < 0 for 0 < x < 1, so G(x) is strictly concave in [0, 1]. It follows that G(x) is
unimodal in [0, 1] with a unique maximum at the solution of

(5.3) C’(T) 1 F(T) TF’(’) O.

To show that H(x) is increasing in T < X < 1, differentiate and get

(5.4) FU(x)H’(x) K(x),

where

(5.5) K(x) [x 7" + TF(’r)]F’(7") F(x)[1 F(x)].

Differentiating K(x) gives

(5.6) K’(x) [x T + TF(’)]F"(x) + 2F(x)F’ (x).

From (5.3) and (5.5) we get K(T) 0, and from (5.6) and F"(x) > Owe get K’(x) >
0 for T < X < 1. Then K(x) and H’(x) are strictly positive in T < X < 1. We conclude
that H(x) is increasing in r < x < 1. [q

(ii) The convex property in Theorem 5.2 is not necessary for Cx and Cz. Indeed, C
and C2 also hold for the following useful concave distributions.

THEOREM 5.3. Let F(x) x, 0 < x < 1, where 0 < a < 1. Then C1 and C2 hold.
Proof. We have F"(x) a(a 1)xa-2 < 0, 0 < x _< 1, so G"(x) -(a +

a2)x-1 < 0, 0 < x < 1. Then G(x) is unimodal with a unique maximum in [0, 1], as in
Theorem 5.2.

With K(x) as defined in (5.5), we get

K’(x) axa-2L(x),

where
L(x) (a- 1)(x- T + Ta+l) --[- 2xa+l.

A STOCHASTIC CHECKPOINT OPTIMIZATION PROBLEM 659

From (5.3), we get (a + 1)7- 1, so that

if(x)=c-l+2(c+l)xa >C--I+2(C+I)Tc’=c+l, X>T.

Because L(7-) 7- > 0, we obtain that L(x) and K’(x) are strictly positive for x > 7-. As
in the proof of Theorem 5.2, we conclude that H(x) is increasing for 7- < z < 1. U

(iii) Symmetry of F does not in general imply C1 and C2. However, C1 and C2
are implied by the symmetric triangular distribution on [0, 1]. This distribution has the
density

F’(x)
4x, 0 <_ x < -,

<x<l4 4x,

Routine calculations reveal that

1_ 6x2,
G’(x)

2(x- 1)(3x- 1),

0<_x_< ,- <x< 1,

so that G(x) is unimodal with a unique maximum at T 1/V/-. Hence C1 holds. From
Kt(5.5), (5.6) we obtain K(T) 0, K(1) > -, K(x) > 0 on (-,] and (z) < 0 on (1/2 1].

Then K > 0 and, hence, H K/F > 0 on (7-, 1). It follows that C’u also holds.
(iv) Further examples are furnished by the two-parameter family of concave, piece-

wise linear distribution functions

/,

F(x)
tx, O <_ x < 3,
1-ap (a--1) 3 < x < 1,1--/ -{- 1--3

where c > 1, 0 < 3 < 1/c. It is easy to see that condition C1 is violated if 1/(2a) < 3 <- and is satisfied otherwise. If 3 < 1/(2c0, then T 1/2, and if 3 > 1/2 then T 1/(2c)
An analysis of K(x) in (5.5) shows that if either 3 < 1/(2c) or 3 > 1/2, then K(x) > O,
T < X < 1. Hence, H(x) is increasing on [T, 1] and C2 holds.

REFERENCES

[1] M. BERN, D. H. GREENE, A. RAGHUNATHAN, AND M. SUDAN, On-line algorithms for locating checkpoints,
in Proc. 22nd Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1990, pp.
359-368.

[2] L.B. BOGUSLAVSKY, E. G. COFFMAN, JR., E. N. GILBERT, AND A. Y. KREININ, Scheduling checks and saves,
ORSA J. Comput., to appear.

[3] E. G. COFFMAN, L. FLATrO, AND A. Y. KREININ, Scheduling saves in fault-tolerant computations, AT&T
Bell Laboratories, Murray Hill, NJ, to appear.

[4] E.G. COFFMAN, JR. AND E. N. GILBERT, Optimal strategiesforscheduling saves andpreventive maintenance,
IEEE Trans. Reliab., 39 (1990), pp. 9-18.

[5] V. G. KULKARNI, V. E NICOLA, AND K. S. TRIVEDI, Effects ofcheckpointing and queueing on program per-
formance, Stochastic Models, 6 (1990), pp. 615-648.

[6] J. STORER, Data Compression, Computer Science Press, Rockville, MD, 1988.
[7] S. TOUEG AND O. BABAOGLU, On the optimum checkpoint selectionproblem, SIAM J. Comput., 13 (1984),

pp. 630-649.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 661-683, August 1993

() 1993 Society for Industrial and Applied Mathematics
O0

REGULAR RESOLUTION VERSUS UNRESTRICTED RESOLUTION*

ANDREAS GOERDT

Abstract. A resolution proof of an unsatisfiable propositional formula is called regular if and only if no variable
is eliminated (with the resolution rule) twice on any branch of the proof tree representing the resolution proof.
An infinite family of unsatisfiable propositional formulas is constructed and the following shown: These formulas
have polynomial size unrestricted resolution proofs, whereas all regular resolution proofs of these formulas are of

superpolynomial length.

Key words, resolution theorem proving, regular resolution, propositional logic

AMS subject classifications. 68T15, 03B35

Introduction. The resolution proof rule is a basic principle of many implementations
of inference mechanisms (e.g., in logic programming). But mostly not resolution itself is
implemented, but a restriction (or refinement) of resolution. There are a variety of restrictions
of resolution that are used in theorem proving algorithms. See 13] for many articles in this
direction. A more concise account of resolution restrictions is 12, p. 103ff]. The idea of these
restrictions is to reduce the search space necessary for a deterministic implementation of the
nondeterministic resolution rule. Little theoretical work on the advantages and disadvantages
of these restrictions has been done. More typical in this area are experimental results as they
can be found, for example, in 14]. The purpose of this paper is to contribute to a theoretical
analysis of these restrictions.

We analyze the regular resolution restriction in the context of propositional logic and show
that the price to be paid for the reduction of the search space induced by this restriction is that
proofs get substantially (i.e., superpolynomially) longer. The question of whether resolution
restrictions make proofs longer is mentioned as virtually unexplored in [12, p. 106]. This
question for regular resolution in particular is mentioned several times in the literature [2, p.
292], [15, p. 470], [6, p. 451, [11, p. 236]. A first (rather weak) result of the type we are
interested in here is proved in [6, Prop. 3.2.1]. In [7], [8] we obtained such results for two
other resolution restrictions: N-resolution and Davis-Putnam resolution. In N-resolution one
clause to which the resolution rule is applied only consists of negative literals. Davis-Putnam
resolution (as we defined it following [6]) is a further restriction of regular resolution. Hence,
here we improve the result from [8]. The Davis-Putnam procedure (in the sense of [9, p.
53]) to test the satisfiability of a propositional formula employs a strategy similar to regular
resolution. In [19] a single propositional tautology is presented whose minimal resolution
proof is not regular. In 18] it is shown that the regularity restriction makes proofs in cut-free
Gentzen Systems superpolynomially longer. The formulas used there cannot be used to show
the same for resolution.

Though there are not many papers concerned with a complexity analysis of resolution
restrictions in particular, there is a wide range of literature dealing with the complexity of
propositional proof system in general. In [5] several propositional proof systems (resolution,
systems with modus ponens (so-called Frege systems), and so on) are compared with respect
to lengths of shortest proof. In that paper the basic notion of comparing proof systems is
introduced: System A p-simulates system B if and only if any proof in B can be transformed
into an at most polynomially longer proof in A. In this terminology we show that regular
resolution does not p-simulate unrestricted resolution. A challenging question in this area is:

*Received by the editors March 7, 1990; accepted for publication (in revised form) April 24, 1991.
Universitit-GH-Paderborn, Fachbereich 17, Mathematik-Informatik, Warburges Stral3e 100, DW 4790 Pader-

born, Germany.

661

662 ANDREAS GOERDT

Given a propositional proof system, find an infinite family of propositional formulas provable
in this system, whose proofs are not polynomially bounded. Such proof systems are called not

polynomially bounded. As reasonable proof systems are just nondeterministic algorithms for
the coNP-complete language of propositional tautologies, the NP - coNP assumption implies
that any proof system is not polynomially bounded. The point is to show this property for a
given propositional proof system without assuming NP :/: coNE Resolution was shown not

polynomially bounded only in 1985 by Haken [10]. Before Haken’s paper there were several
attempts at this question. In [6], [15] it is shown that regular resolution is not polynomially
bounded. In 16] Urquhart showed that the formulas used by Tseitin/Galil in 15], [6] have only
superpolyomial unrestricted resolution proofs, too. (Hence, our result does not follow from
Galil’s and Tseitin’s result.) To obtain his result Haken introduced a new technique, which
was subsequently applied in [16], [17], [18], [4], [3]. Ajtai [1] introduces new techniques to
show that bounded depth Frege systems are not polynomially bounded. Bounded depth Frege
systems are better systems with respect to proof length rather than resolution. It is not known
whether Frege proof systems are polynomially bounded.

In this paper we extend the technique of Haken in such a way that we can prove a
superpolynomial lower bound on the length of regular resolution proofs of formulas whose
unrestricted resolution proofs are polynomially bounded. To do this, we have to isolate a
property peculiar to regular resolution, which allows us to make use of a suitably modified
version of Haken’s technique. The formulas we use in this paper are extensions of the formulas
in [7].

Section contains basic definitions and lemmas and an explanation of the idea underlying
our formulas. In 2 we define the family of formulas and present their polynomial size
unrestricted resolution proof. In 3 we prepare the proof from 4. In 4 we prove the
superpolynomial lower bound on the length of the regular resolution proofs of our formulas.

1. Preliminaries. By log n we always mean log2 (n), exp(n) 2n, hence exp (log n)-
n. Card M is the cardinality of the set M.

Let f be a partial mapping from M to N; we write f M- --+ N. Dom f is the domain
of f, that is, Dom f {x e_ MIf(x) is defined}.

For L

_
M we let f(L) f (L ADom f) and flL L- -+ N, the restriction of f to

L. For x e_ M, y e. N, f [y/x] M- -+ N is given by

/ Y ifz-- x,f [y/x] (z)
f(z) otherwise.

A partial mapping g" M- -+ N is an extension of f if Dora g

Dora f and g(x) f(x)

for all x E Dora f. In writing f" M -- N we mean that f" M- -- N and Dom f M. In
this case f is called total.

A subset R

_
M N is a relation. For x E M, y N we write R (x, y) instead of (x, y)

R. We define R-1

N x Mby R-l(y,x) if and only if R(x, y)and R(x) {ylR(x, y)}.

Let Var be a set of propositional variables. The set of literals over Var consists of positive
and negative literals, x and - with x 6 Var. A clause over Var is a finite set of literals over
Var, a formula over Var a finite set of clauses over Var. Sometimes instead of L l, Ln we
write L L for a clause. The length of a formula is the number of clauses in it. A partial
truth value assignment zr of a set of variables Var is a partial mapping 7r Var --+ {0, (0
for false, for true). A truth value assignment of Var is a total mapping 7r Var --+ {0, }.

A truth value assignment zr of Var can be extended to the set of literals over Var by setting

ifa’(x) 0,
zr ()

0 if zr (x) 1.

REGULAR RESOLUTION 663

Let C be a clause over Var, 7r an assignment of Var, then 7r C, C is valid under 7r or
7r satisfies C if and only if there is a literal L 6 C with rr (L) 1. Let F be a formula over
Var. We write re l= F; rr satisfies F or F is valid under 7r if and only if 7r C for all clauses
C in F. Our formulas are interpreted as being in conjunctive normal form. A clause C is a
tautology if and only if both x 6 C and 2- 6 C for a variable x.

The resolution rule reads

C,x D, 2-

C,D

where C, x stands for CrUx, D, 2- for D2-, and C, D for C 0 D. (Wis the disjoint union, i.e.,
x ’ C, 2- ’ D.) C, D is called a resolvent of C, x and D, 2-. We say that x is eliminated in
going from C, x and D, 2- to C, D.

A resolution proofofthe clause C from the formula F is a sequence ofclauses D1D2 Dn
with Dn C, and for all either Di F or there are j, k < such that Di is obtained by
applying the resolution rule to Dj and Dk, i.e., Di is a resolvent of Dj and Dk. A resolution
proof of F is a resolution proof of], the empty clause from F. The length of a resolution
proof is the number of clauses in it. We assume that the clauses in a resolution proof are
pairwise distinct. Resolution is sound and complete, i.e., F is unsatisfiable if and only if there
exists a resolution proof of F. We could also measure the length of formulas and proofs by
counting the number of characters needed to write them down. With this measure the results
of this paper hold, too: We consider only formulas where the number of clauses is an upper
bound on the number of variables. Assume we are given such a formula with rn clauses.
Each clause of this formula and of a resolution proof with this formula needs at most C 2m2

characters. Hence the length of the formula (resolution proof) in characters is polynomially
related to the number of clauses in the formula (resolution proof).

We visualize resolution proofs as trees: An elimination of x by the resolution rule is
denoted by Fig. 1. Sometimes we omit the labels on the edges. The number of nodes of the
tree can be exponentially larger than the length of the resolution proof in linear form. The
proof tree need not be unique. We always choose one of the possible proof trees. Clauses
above a clause C in the tree precede C in the linear representation of the proof. An initial
piece of a path in a proof is a sequence of clauses C1 Cm such that Ci- is a son of Ci and

C 6 F. A path in a proof of a clause C from a formula F is a path in the proof, whose first
clause is a leaf and whose last clause is C, the root of the proof tree.

D,x

CD

FIG. 1.

A regular resolution proof of a formula F is a resolution proof of F that can be represented
by a tree with the following property: For each path of the proof, the sequence of variables
occurring as labels on the edges connecting the clauses of this path in the proof tree does not
contain the same variable twice. That is, no variable is eliminated more than once on any
path of the proof tree. See [15, p. 472] for a remark concerning the idea underlying regular

664 ANDREAS GOERDT

resolution. The depth of a regular proof tree is bounded by the number of variables of the
formula to be proved.

The following theorem is well known.
THEOREM 1.1. Regular resolution is complete.
Proof. The proof proceeds by induction on the number of variables occurring in an

unsatisfiable formula F. The induction base (F has no variables) is trivial. If F contains
n > 0 variables we choose one variable x of F and construct a new formula G that con-
sists of all clauses (except of tautologies) of F not containing x or - plus all resolvents of
clauses (except of tautologies) of F that are obtained by eliminating x. Then, G is satisfiable
implies F is satisfiable and x does not occur any more in G. By induction hypothesis the
claim follows. [3

The following lemma (cf. [10]) relates truth value assignments and resolution proofs. As
the number of assignments is exponential in the number of variables it gives us a handle to
obtain superpolynomial lower bounds on the length of resolution proofs.

LEMMA 1.2. Given a resolution proof, of the clause C from the formula F, let Jr be a
truth value assignment ofthe variablesfrom F with Jr g= C. There is a unique path D1 Dm
in the proof tree visualizing , such that Om C, D F and Jr Dj for all Dj on the
path.

Proof. Let x be a variable from F and Jr an assignment of the variables from F. For two
clauses C, D with Jr g= C t2 D we have either Jr g= C{x} or Jr [: D {2} depending on
whether Jr (x) 0 or Jr (x) 1. This gives us the required path. [3

It is difficult to construct infinite families formulas whose resolution proofs have certain
properties. In order to get our formulas we start from the formulas considered in [7].

Convention 1.3. In the following let N 6 N be such that M log N 6 N.
DEFINITION 1.4. The set of M. N variables VarN is given by

VarN= {ijli {1 M}, j {1 N}}.

Varx is and M x N-matrix of variables, as shown in Fig. 2.

11 12 I(N- 1) 1N

21 22 2(N- 1) 2N

M1 M2 M(N-1) MN

FIG. 2.

We have M rows, and write Row {il iN}. We have N columns and write
Column {1 j Mj}.

The Row and Column j are pairwise disjoint, forx 6 Var, Row x, Col x (or Column x)
is the unique row, column containing x.

For X, Y

_
Var we say" X is covered by Y if and only if X Uyey Col y. We usually

use this expression when X

_
Row i, Y

_
Row j. We say Xmeets Y if XCq Y - 0. Usually

we use this expression when X

__
Col and Y

__
Row j or vice versa.

Each row is partitioned into sections. For i, j with < < M, < j < N/2 we define

Sec ij {i (2;. (j 1) + 1) (2i. j)},
Nand fori, jwithl <i <M, <j<2.r,

Halfsec ij {i (2/-1. (j 1) + 1) (2i-. j)}.

REGULAR RESOLUTION 665

The Sec ij are called sections, the Halfsec ij halfsections. Note that Sec ij is the jth
section of Row i, not the section containing the variable ij. For x e Var, Sec x is the unique
section containing x; it is similar for Halfsec. (To avoid ambiguities, we do not use the notation
Sec ij with a concrete variable ij.)

Sec ij Halfsec (2. j 1)Halfsec (2. j).

Halfsec (2. j l) is the left half section of Sec j, Halfsec (2. j) the right half section.
XFori, jwith2<i <M, <j<4.rwewrite

Quartersec ij {i (2i-2. (j 1) q- 1) (2i-2. j)}.

For each half section H of Row there is a unique section of Row covering H and
vice versa.

An easy induction on M shows that Varx has N sections. From the definition it
follows that Row has N/2 sections, N/2i-I half sections, and N/2i-2 quarter sections.
Partial truth value assignments of VarN are denoted by an M x N-matrix with values 0, 1,
undefined. A column C of VarN is a 0-column of a partial truth value assignment re if and
only if re(C) 0 or re(C) is totally undefined.

Example 1.5. Var4 can be visualized as Fig. 3.

_21 22 23 24

FIG. 3.

The additional line separates the sections. Row has two sections, Row 2 only one.
Var6 can be visualized as Fig. 4.

ii 12113 14115 16 i’ "18119’ i’i01111 1121 113 1141115 116

21 22 23 24 25 26 27 28 29 210 211 212 213 214 215 216

31 32 33 34 35 36 37 38 39 310 311 312 313 314 315 316

41 42 43 44 45 46 47 48 49 410 411 412 413 414 415 416

FIG. 4.

DEFINITION 1.6. The formula MPHPN (for the modified pigeonhole principle, the formu-
las are obtained by modifying the formulas used by Haken 10], which encode the pigeonhole
principle) consists of positive and negative clauses.

The positive clauses are the columns of VarN.
The negative clauses are all clauses {2, y} with x e Halfsec i(2j 1), the left half

of a section, y 6 Halfsec i(2j) the corresponding right half, for an 6 {1 M}, j 6

{1 N

MPHPN has O (N3) many clauses.
COROLLARY 1.7. MPHPN has a resolution proofwhose length is of 0 (N4).
Proof. The short (i.e., polynomial) resolution proof of MPHPN is obtained according to

the pattern in Fig. 5, shown for MPHP4. (Some clauses are missing; for details see [8].)

666 ANDREAS GOERDT

ii 12

21 22

Using 11 12 /
21 22

13 14

23 24

23 24

Using 13 14

Using 21 23, 21 24, 22 23, 22 24

FIG. 5.

This proof proceeds in stages 0 M. The clauses of stage 0 are the positive clauses of
MPHPN. To generate a clause of stage > 1, we take two clauses of stage 1, eliminate the
variables of Row from these clauses, putting the rest together. To eliminate the variables of
Row from two clauses and putting the rest together we need at most (N/2)2 + (N/2) < N2

clauses. Let Li be the number of clauses necessary to generate a clause of stage i. We
2 2have L0 and Li < N2 q- 2. Li-1. Then we get Li < (Y=0 N2) q- Hence

La4 < N. N. N2 -}- N, and the length of this proof is O (N4). [3

For the rest of this section we develop the ideas leading to the definition of our formulas
in 2.

First we observe that a short proof of MPHPx must essentially eliminate the variables of
the positive clauses from top to bottom, i.e., Row first, Row 2 second, and so on. A proof
working the other way around (Row M first) is of superpolynomial length anyway. (This can
be proved as in [7].) Hence we only care about this top to bottom proofand modify MPHP such
that this top to bottom proof becomes long (i.e., superpolynomial) if the regularity restriction
is obeyed, but stays short if irregularities are allowed. Note that the short proof of MPHP as
above is regular.

In our proof of MPHP4 above, to get from 21 22, 23 24 to], we either have to make
21 22 to 23 and to 24 or 23 24 to 21 and to 22. Assume our proof uses the first alternative. We
want to modify MPHP such that a proof obeying the regularity restriction has to decide very
early if the 21 22 to be generated will finally become 23 or 24. We force this decision to be
made early by extending the negative clause 11 12 with 23 and 24 to get two negative clauses
11 12 23 and 11 12 24; it is similar for 13 14. We get 13 14 21 and 13 14 22. The formula
that we get by modifying MPHP by taking these extended negative clauses for Row instead
of the original negative clauses or Row is satisfiable.

The assignment in Fig. 6

0 0 0

FI6.6.

satisfies all clauses of this formula. To get an unsatisfiable formula we add some more negative
clauses, clauses that allow us to get rid of the literals extending the negative clauses--and in
addition introduce an irregularity into the short proofs of this formula. The new clauses are

REGULAR RESOLUTION 667

11 12
and

13 14

21 22 23 24 21 22 23 24

With these new clauses we get rid of the extending literals and can derive

11 12 13 14and
21 22 23 24.

Then we can proceed as in MPHP4. The nice fact about the formula is that the described proof
has an irregularity" In generating

11 12
21 22

we have eliminated 23 and 24 and in generating

13 14
23 24

we have eliminated 21 and 22. We have seen above that after generating 21 22 we eliminate
23 and 24 or the other way around.

The bad fact about this formula is that the proof can be transformed into a regular proof,
which, after generalizing the above construction to arbitrary N, still is short: First we observe
that either

11 12 13 14
or

21 22 23 24 21 22 23 24

is not necessary to obtain an unsatisfiable formula because the only assignment that satisfies
all clauses except the two above is that from Fig. 6, which does not satisfy both clauses above.
Assume we omit

13 14

21 22 23 24.

Even with this omission we get a regular proof, which for arbitrary N turns out to be short.
First we get rid of the extension of 11 12 23 and 11 12 24 and get

11 12

21 22.

From this we get 21 22 as usual. With this clause 21 22 we generate 13 14, eliminating the
extending literals 21 and 22. Now, instead of first generating 23 24 and then using 21
22, which in any case would be irregular, we first eliminate 23 from

13
23

668 ANDREAS GOERDT

(by transforming 23 to 21 and 22) and then 24 from

14
24.

Then we derive the empty clause from 13 and 14 and -13 14.
We indicate how to define formulas as above for arbitrary N. Let N 16. The positive

clauses of the formula are the columns of Varl6; the negative clauses for the lower half (Row
3 and Row 4) of Var6 are those from MPHP16. The negative clauses for the upper half are
extended negative clauses from MPHP6. The extensions can be visualized by the picture of
Var16 in Fig. 7. The arrows indicate the literals extending the negative clauses of MPHP6 (the
additional lines separate the sections as usual).

216

31 39 3164 49

FIG. 7.

First of all, we want the extensions to jump over an unbounded number of rows. Otherwise
no significant growth of proof length can be expected. That is, in general we want to extend
the negative clauses of MPHPx of the upper half with negative literals from the lower half. In
the example, instead of 11 12, we have 11 12 35, 11 12 36, 11 12 37, 11 12 38, and to get rid
of the extensions introducing irregularity (and to ensure unsatisfiability),

ll 12

31 32 33 34 35 36 37 38.

Instead of 13 14 we have 13 14 Y with x 6 {35, 36, 37, 38}. To eliminate these extensions we
have

13 14

31 32 33 34 35 36 37 38.

Then we have 15 16 Y and 17 18 Y with x 6 {31, 32, 33, 34}. As demonstrated above for
N 4, we do not need extra clauses to eliminate these extensions.

For Row 2 we get 21 23 with x 6 {49 416}, and so on. To eliminate the extensions
we have a clause {-, -J} U Row 4. It is similar for the other negative clauses of MPHP for
Row 2. Clauses to get rid of the extending literals are only needed for the negative clauses
concerning Col through Col 8. In general these clauses are only needed for negative clauses
of MPHP, which are in an area where the arrow starts to the right.

A short irregular proof of this formula is obtained as follows.
(1) Get rid of the extending literals of the negative clauses that belong to an area, where

the arrow starts going to the right (only for these negative clauses is this possible right at the
beginning).

REGULAR RESOLUTION 669

(2) Generate

31 32 33 34
41 42 43 44 45 46 47 48

using the negative clauses without negative extending literals (the remaining positive literals
now extending these negative clauses are such that they do no harm).

(3) Using the above clause we can eliminate the extensions added to 15 16 and 17 18 and
generates

35 36 37 38
41 42 43 44 45 46 47 48.

From this we get Halfsec 41. Here irregularities occur.
(4) With Halfsec 41 we can eliminate the literals extending the negative clauses for Row

2 of the right half. This allows us as in (1), (2), and (3) to generate Halfsec 42. Together with
Halfsec 41 the empty clause can be derived, again with irregularities.

We construct a regular proof of our formula that strictly sticks to the principle that the
variables from the positive clauses are eliminated top to bottom. This proofbecomes essentially
longer than the above proof.

(1) and (2) are the same as above.
(3) We do not eliminate the literals extending 15 16 and 17 18 because this would lead to

irregularities. Instead we derive, by leaving the extending literal 31 as it is,

31 35 36 37 38
45 46 47 48,

and then
31

45 46 47 48.

Doing this for the extending literals 32, 33, and 34, too, we can derive Halfsec 41 by using

31 32 33 34
41 42 43 44 45 46 47 48,

generated in (2).
(4) We generate (similarly to (1)-(3))

41 49 410 416

analogously for 42 through 48, which together with Halfsec 41 gives us the empty clause.
The characteristic "multiplicative effect," yielding superpolynomial growth in general shows
up here in the necessity to derive

39 313 314 315 316
41 413 414 415 416

similarly for all combinations of negative literals from 41 through 48 and 39 through 312.

670 ANDREAS GOERDT

In general a proof according to the above pattern needs something like

N N N
2 4 2lgN

clauses, which is superpolynomial in N.
Unfortunately, by violating the strict top to bottom strategy we get a short regular proof

of our formula.
(1) and (2) are the same as before.
(3) Using the clause generated in (2), we eliminate the negative literals extending 15 16

and 17 18. Moreover, we eliminate 35, 36, 37, 38 from the positive clauses Col 5, Col 6, Col
7, Col 8 to get

15 t3 Halfsec41
25]

From these, by eliminating

26 28

15 18through
25 28

top to bottom we get Halfsec 41 without irregularity.
(4) Using the clause generated above we eliminate the extending literals of the negative

clauses for Row 2 of the right half and the variables from Row 4 of Col 9 Col 16. An
inductive argument allows us to derive the empty clause by a short regular proof.

So, by not respecting a strict top to bottom strategy in eliminating the positive literals
of the columns, we can avoid the multiplicative effect, making strict top to bottom regular
proofs long. In the next section we extend not only the negative clauses for the first rows with
negative literals below, but also the negative clauses at the bottom with literals above. This
ensures that in a regular proof, according to the last pattern above, the multiplicative effect
occurs, too.

2. The formulas. In this section we introduce our formulas and present their short un-
restricted resolution proofs.

Convention 2.1. Let, for the rest of this paper, N 6 N be such, that M log N is divisible
by 3. Let K 7" M, hence K log /.

Our formulas are defined over the variables VarN from Definition 1.4. We need some
more structure on VarN to define which literal extends which clause.

DEFINITION 2.2. All our notations defined in the following refer to an underlying VarN,
which in applying these notations is clear from the context.

(a) Third is the set of variables from the first K rows, Third 2 the second K rows, and
Third 3 the last K rows. We write

Lowerthirds Third 2 t3 Third 3.

For X

_
VarN we define Third (X) Third N X. It is similar for the other notations.

(b) The correspondence relation between Third and Third 3, Corl3

_
Third x Third

3 is given by (for visualization see the example below)

Cor13 (x, y)
if and only if
x Rowi, yRow2K+i
and
x is covered by Sec y, x is not covered by Halfsec y.

REGULAR RESOLUTION 671

For w, x from one section of Row we have Cor w Cor x as any section of Row
is covered by a half section of Row / 1. We define Cor31

Third 3 x Third given by

Cor31 Cor13-1.
The correspondence mapping between Third 3 and Third 2,

is given by

It is bijective.

Cormap32 Third 3 Third 2,

(2K + i)j --+ (K + i)j.

The correspondence relation between Third 3 and Third 2,

Cor32

_
Third 3 Third 2,

is given by Cor32(x, y) if and only if x e Row (2K + i), y e Row (K + i) and Sec y
covers x, Halfsec y does not cover x.

Let x 6 Third 3 and let y be a variable with

Sec(Cormap x) Halfsec(Cormap x)WHalfsec y;

then Cor32(x) --Halfsec y because if x 6 Row (2K + i), the only section of Row K +
covering x is Sec(Cormap x).

Example 2.3. For N 64, M 6, K 2 we get the following structure for VarN. The
correspondences are indicated by arrows (the arrows start and end in the middle of the areas
corresponding to each other).

Figure 8 illustrates correspondence relation Corl3.

Correspondence

161

233 ...__-,249
--333 ._.._ 349 [357

-441 449 ,457 46,
541-""" --’-"557

FIG. 8.

Figure 9 illustrates correspondence relation Cor32.
DEFINITION 2.4. For N 6 ll having the properties as specified in Convention 2.1, the

formula REGN consists of positive and negative clauses.
The positive clauses of REGN are the columns of VarN. The negative clauses of REGu

can be classified into the negative clauses for Third 1, Third 2, Third 3.
The negative clauses for Third are the union over all with _< < K of all negative

clauses for Row i. They are formed as the negative clauses with extending literal introduced
in 1. They are the clauses as specified in (1) and (2).

(1) The set of clauses {2-, ,2} with z Corl3(x) and x e Halfsec i(2j- 1), y
Halfsec i(2j) for a j with <_ j < N/2i, that is, x belongs to the left half, y to the right half

672 ANDREAS GOERDT

Correspondence Cor32:

61 69 617 625 632

233 241 249

533 541 549

633 641 649

157 1581159 160 161 1621163 164

264257

457 464

s57 ,-> "-, 564

FIo. 9.

of the same section. (As x, y e Sec ij we have Corl3(x) Corl3(y), hence the definition is
well formed.) Here the negative clause {2, } of MPHP is extended by 2. We call 2 extending
literal.

(2) The set of clauses {2, y} t_J Sec z, and z e Corl3(x), x e Halfsec i(2j 1), y e
Halfsec (2j), and x, y are covered by the left half of the section Sec z. This clause allows us
to get rid of the extensions of the negative clauses in the short unrestricted resolution proof of
REGN

The negative clauses for Third 2 are just the clauses {, } with x e Halfsec (2j 1),
y e Halfsec (2j) for an with K + < < 2K, that is, just as in MPHP.

The negative clauses for Third 3 are the union over all of the negative clauses for Row
with 2K + < < 3K. They are specified in (1) and (2).

(1) The set of all clauses {x, y, z, w with x e Halfsec (2j 1), y e Halfsec (2j),
z e Cor32(x), w e Cor32(y). The clause {2, y} would be just a negative clause of MPHP. It
is extended by 2 and E, and 2 and E are called extending literals. Note that 2 and belong
to different sections.

(2) The set of clauses {2-, , 2} t3 Cor32(y) with x, y as in (1), z e Cor32(x). The set
of clauses {, , } tO Cor32(x), x, y as above, w e Cor32(y). The set of clauses {, } U
Cor32(x) U Cor32(y), x, y as above.

These clauses allow us to get rid of the extensions of the negative clauses of (1) in the
short unrestricted resolution proof. The number of clauses of REGN is certainly bounded
above by C .Card {{x, y,z, w}lx, y,z, w VarN }, which is O (N8).

Example 2.5. For N 64 the formula REGN consists of clauses as follows: the positive
clauses are the columns of Var64; the negative clauses for Third are specified in (1) or (2).

For Row we get all clauses of the form I1 (2j 1), l(2j), 5l], which satisfy the(1)
following" If < j < 8, then 17 < _< 32 (cf. the arrows indicating Corl3 in Example 2.3),
if 9 < j < 16, then < < 16, analogously for 17 < j < 32. For Row 2 we get all clauses

of the form 2(4.j-s),2(4.j-r),6l with0 < r < 1,2 < s <_ 3, which satisfy the

following: If < j < 8 thenl > 33; if9 < j < 16, then < 32.

For Row we get all clauses of the form (2j 1), l(2j) / U {51 532} with(2)

_< j < 8. And [l(2j-1), l(2j)] U{533 564} ifl7 _< j _< 24. Note that we do not

need these type of clauses for j with 9 _< j _< 16 or 25 _< j < 32.
The negative clauses for Third 2 should be clear; they are just as in MPHR
The negative clauses of Third 3 are specified in (1) or (2).

REGULAR RESOLUTION 673

(1) ForRow 5 we get all clauses ofthe form 15ll, 512, 3jl, 3j2 !’ which satisfy _< l, _< 16

and 17 _< 12 _< 32 or 33 < ll _< 48 and 49 _< 12 < 64, and, if _< ll _< 4, then 5 < jl _< 8; if
5 < _< 8, then < jl _< 4; if 9 < l < 12, then 13 < jl < 16, and so on.

Analogously for 12 and j2" If 17 < 12 < 20, then 21 < j2 < 24; if 21 _< 12 < 24, then
17 _< j2 _< 20, and so on.

For Row 6 we get all clauses of the form 16/1,6l, 4j, 4j2 I’ which satisfy < l, < 32

and 33_<12 <64, and, ifl_<ll <8, then9<j < 16;if9_<l _< 16, thenl_<l _<8, and
so on.

Analogously for 12 and j2: If 33 < 12 _< 40, then 41 < j2 < 48 and so on.
(2) ForRow 5 we get the following: The set of clauses {5/1,512, 3o/1 U {3j2 3(j2 + 3)

with ll,/2, jl as before (for Row 5), and if 17 _< 12 < 20, then j2 21; if 21 _< 12 _< 24, then
j2 .17, and so on.

The set of clauses 15/1,512, 3j21 U {3j 3(jl 4- 3)} with ll, 12, j2 as before, and, if

l_<l <4, thenj =5;if5_<l <8, thenjl 1, andsoon.

I11, 2[I,_J {3jl 3 (jl + 3)} U {3j2 3 (j2 + 3)} with l,, 12 asThe set of clauses

before, and, if < l < 4, then jl 5; if 17 < 12 < 20, then j2 21, and so on.

For Row 6 we get the set of clauses 16ll, 612, 4j U {4j2 4 (j2 + 7)} with ll, 12, jl

as above (for Row 6), and, if 33 < 12 _< 40, then j2 41; if 41 < 12 < 48, then j2 33, and
so on. We omit the remaining clauses.

THEOREM 2.6. The formulas REGN have resolution proofs whose length is of 0 (MS).
In particular, they are unsatisfiable.

Proof. Let N be fixed. The following is a resolution proof of REGN.
(1) Get rid of the negative literals extending the negative clauses from Third 3: Let

Cor x Cor32(x). From {2-, } t_l Cor x U Cor y and {2-, , 2} U Cor y for z Cor x we
generate {2-, } U Cor y using N additional clauses. By symmetry, we get {2-, } t_J Cor x
using N clauses. With Ix, y, z, w} for z Cor x, w Cor y we get {2-, y, N} for w Cor y
in N2 clauses; using {2-, } U Cor y we get {2-, } with another N clauses. As there are at most
N clauses {2-, y}, this process for all negative clauses of Third 3 needs at most N6 clauses.

(2) We eliminate the extending literals of negative clauses of Third as far as it is possible
at this point of the proof, that is, for all clauses {2-, y, 2} with x, y Third being covered
by the left half of Sec z. In this case we have the clause {2-, } U Sec z available. We get
{2-, } t_J (Sec z\Halfsec z). Doing this for all clauses for which it is possible requires N4

additional clauses.
(3) Let, for k with 1 < k < K, the clause Ck be defined by

Ck Halfsec(2K + i)1.
{k K}

Our proof now proceeds as the irregular proof described on page 668. Using only negative
clauses whose extending negative literals are already eliminated, we can generate the clause
C1 by constructing a binary tree proof as for MPHE With C1 we eliminate the extending
literals from the negative clauses {2-, , 2}, where z 6 Halfsec(2K 4- 1)1, i.e., x, y 6 Row 1
are covered by Halfsec(2K 4-1)2. From this we get, using the positive clauses that are covered
by Halfsec(2K 4- 1)2, the clause

C2 [,-J Halfsec(2k + 1)2,

which, together with C1, allows us to derive C2.

674 ANDREAS GOERDT

With C2 we can eliminate the extending literals from the negative clauses {2, y, 2} with
x, y E Row 2, being covered by Halfsec(2K + 2)2, hence z E Halfsec(2K + 2)1 to get
{, Y} C3.
From this we get

From this we get

C3 t2 Halfsec(2K + 1)3 t2 Quartersec(2K + 2)3

C3 U Halfsec(2K + 1)4 U Quartersec(2K + 2)4.

C3 U Halfsec(2K + 2)2,

and

which, together with C2, allows us to derive C3. Finally we get C/(and Halfsec M2, which
give the empty clause.

Thus, this proof follows essentially the pattern of our proof of MPHP, except that we have
to generate new positive clauses (by this we mean the union of the Ck, with certain fractions of
sections) in a prescribed order so that we can get rid in time (that is, before starting the binary
tree proof) of the remaining negative literals extending negative clauses. The elimination of
these extending literals requires at most N steps, and the length of this part of the proof stays
in O (N4); see Corollary 1.7.

The irregularity of this proof shows up in situations where we have generated clauses
like C1 and D C2 U Halfsec(2K + 1)2. In generating C1, Halfsec(2K + 1)2 has al-
ready been eliminated by resolution, when eliminating the extending literals. In generating
D, Halfsec(2K + 1)1 (from C1) has been eliminated by resolution to eliminate the extending
literals.

Note that a short proof, following the proof pattern as sketched on page 670, would not
be regular in this case: We would derive first C1, then we would use C1 to eliminate the
extending literals of the negative clauses as above, and we would use C to eliminate the
variables (2K + 1)j 6 Halfsec(2K + 1)2 from the positive clauses Col j. For this we need

the negative clauses {(2K + 1)i, (2K / 1)j]. In generating these clauses, the variables from

Sec(K + 1)i\Halfsec(K + 1)i and Sec(K + 1)j\Halfsec(K + 1)j have been eliminated
by resolution. In resolving away the Col j by a short proof, i.e., from top to bottom, these
variables have to be eliminated again.

3. Critical assignments and their proof paths. In this section notions essential for our
lower bound proof are introduced and some of their properties are proved.

DEFINITION 3.1. A partial assignment of 7r of VarN is s-critical for s < M if and only if
zr is obtained by Steps 1-Step s of the following choosing algorithm.

Variable declaration: zr is a variable to take as values partial truth value assignments of
VarN, 7r VarN- --+ {0, }.

Initialization: r is the totally undefined assignment.
Step 1. For each section Sec of Row choose exactly one half section {x} of Sec and set

7r (x) 1. For all y 6 Row 1, which have not been chosen, set re (y) 0.

Step for _< K. For each section Sec of Row choose exactly one half section
Hsec

_
Sec, and set 7r (x) for all x 6 Hsec. For all y 6 Row not chosen, set zr (y) 0.

Step K / 1. For each section Sec of Row K / choose exactly one variable x Sec
such that Col x is a 0-column of 7r and set zr (x) 1. Set 7r (y) 0 for all y 6 Row K /

that have not been chosen.

Step for K / 1 < < M. Analogous to step K / with/substituted for K / 1.

REGULAR RESOLUTION 675

An assignment of VarN is critical if and only if it is M-critical. Let p be s-critical, Jr is a
critical extension of p if and only if Jr is an extension of p and a critical assignment.

Example 3.2. A critical assignment is shown in Fig. 10 (omitting the O’s). Col 2 is the
only 0-column of this assignment.

33

0’1 0 O1 0 0 0

0 0 0 0 0

o000000

o ilo o [o oI o

iOOi iooi O0

64

Ii001100

Fo. 10.

LEMMA 3.3.
(a) Let Jr be s-critical. For each section Sec ofRow s there is exactly one O-column Col

of Jr, such that Col meets Sec. If Jr is critical, then Jr has exactly one O-column.
(b) Let Jr be s-critical, Col a O-column of Jr, Sec a section ofDom Jr that meets Col. If

x 6 Sec and Jr (x) 1, then Halfsec x does not meet Col. Moreover, there is an x Sec with
Jr (x) 1. If Sec _c Lowerthirds, this x is unique.

(c) We have
Card{Jr]Jr is s-critical}

exp (Card{SeclSec is section of Dom Jr})

t.
(d) Let Col Colm be columns ofVarN such that each section ofRow s meets at most

one Colt. Then holds
Card {JrlJrs-critical and all Colt are O-columns of Jr}

=exp((i=-)-s’m)"
(e) Let Xl x. Third such that the sections Sec xr are pairwise distinct. Then

holds
Card {JrlJrs-critical with Jr (xr) Ofor all r}

=exp ((i=)-n).

676 ANDREAS GOERDT

Proof. (a) Induction on s. The induction base (s 1) holds because each section of Row
has two variables, one of which is assigned by a 1-critical assignment. Let s > 1, and let
be s-critical. We have

p 7r IRow u...u Row(s- 1) is (s 1)-critical.

By induction hypothesis for each section Sec ofRow (s 1) there is exactly one 0-column
of p meeting Sec. The claim follows from the definition of our choosing algorithm because
each section of Row s is made up from two halfsections, and each halfsection of Row s

corresponds to a section of Row s 1.
(b) Let 7r, s, Col, Sec be as in the hypothesis. Let Sec 6 Row for < s, and

p 7r Row 1u...u Row(i 1)

If 1, the claim holds. Otherwise, the claim follows by applying (a) to p, noting that for
each section Row there is a half section of Row meeting the same columns and vice
versa.

(c) This follows by induction on s using (a). For each section of Dom 7r the choosing
algorithm chooses one of two possibilities.

(d) Let Col Colm be as in the hypothesis. Let s _< M. By induction on with _< s
we show

Card {rr Irr t-critical with rr(Colr) 0 for all r}

The induction base (t 1) holds because to get a 1-critical zr satisfying the requirements of
the theorem we can only choose the half section {x} with 7r(x) for the N/2 m sections,
not meeting any of the Colr. Note that each Colt meets a different section of Row 1. For
the induction step let be such that s > > 1. A t-critical zr with 7r (Col) 0 for all r is
constructed from a (t 1)-critical p with this property by choosing one of two possibilities
(cf. the proof of 3.3(a)) for the sections of Row not meeting any of the Col and having no
choice for the sections meeting a Col. Note that each Col is covered by a different section
of Row t. These are m sections. Hence we have by induction hypothesis

Card {rln t-critical with rr (Colt) 0 for all r}

)) t=exp i -(t-1).m .exp w-m

(e) The claim follows as our choosing algorithm cannot choose to which half section
to assign l’s for exactly whose m sections containing an x. (Note that the x are from
Third 1.)

LEMMA 3.4. Let rc be a critical assignment of VarN; let Col be the O-column of
(a) The only clause C ofREGN with rc = C is the clause C Col.

REGULAR RESOLUTION 677

(b) Let u Lowerthirds(Col); let v Sec u be uniquely determined by Jr(v) 1, and
let p Jr[1/u, O/v]. (p is obtainedfrom zr by toggling the values of u and v.) Then p is a
critical assignment. The O-column ofp is Col v.

(c) Let u Third 3(Col), and let v Sec u be uniquely determined by Jr(v) 1. Let
x 6 Cor32(u) with Jr(x) 1, y Cor32(v) with Jr(y) 1. The only clause C ofREG with
Jr[1/u] = C is the clause C {-if, , 2, }.

(d) Let u Third 2(Col), and let v Sec u with Jr(v) 1. The only clause C ofREG
with Jr[1/u] C is the clause C {-if,-6}.

(e) Let u Third l(Col), and let E Sec u\ Halfsec u (then Jr(E) as Jr is critical).
If C is a clause ofREG with Jr[1/u] = C, then C has the form C {-if,-,-} for an e E,
y 6 Corl3(u).

Proof. Let Jr be a critical assignment of VatN with 0-column Col.
(a) If C is a negative clause of REG, then C has the form {2, } t2 E for a certain E, with

x, y belonging to different halfs of the same section. From our choosing algorithm we see
that no section contains x, y as above with Jr(x) Jr (y) 1. Hence for all negative clauses
C of REG we have Jr C. As Jr has exactly one 0-column, the claim follows.

(b) The claim follows because Jr[1/u, O/v] can be obtained by our choosing algorithm
by making all choices that have been made to generate Jr with the single exception: u instead
of v is chosen to be assigned a 1.

(c) Let u, v, x, y be as in the hypothesis, x, y exist: Let Cor32(u), Cor32(v) _c Row s.
Then p Jr IRowlt3...tORows is s-critical, and Col u, Col v are 0-columns of p. Hence Cor32(u),
Cor32(v) are halfsections not meeting a 0-column, hence there exist unique variables x 6

Cor32(u), y 6 Cor32(v) with p(x) p(y) by Lemma 3.3(b). Let Jr[l/u]. For no
positive clause of REG we have [= C because has no 0-columns. As x 6 Cor32(u) and
y 6 Cor32(v) with 6(x) 3(y) and u, v are the only variables in different halfs of the
same section with 6(u) 3(v) 1, we get that {u, v, x, y} is the only clause of REG which
is not satisfied by .

(d) The claim follows as Jr 1/u] has no 0-column and u, v are the only variables lying in
different halfs of the same section with Jr(u) re(v) 1.

(e) Corl3(u) is a halfsection not meeting Col of a section meeting Col. By 3.3(b) there
is a y 6 Corl3(u) with re(y) 1, this y is unique. Let re[l/u]. has no 0-columns. As
u and e 6 E are the only variables with 6(u) 6(e) lying in different halfs of the same
section, the clauses C with g= C are of the form C {3, , }. [3

DEFINITION 3.5. Let be a resolution proof of REGN, Jr a critical assignment of VarN,
and let 9t3 C... Cn be the path belonging to Jr in 9t, that is C1 REGN, Cn and
Jr g= Ct for all t. By Lemma 1.2 this path exists and is unique. (C1 must be the 0-column of
Jr by Lemma 3.4(a).)

Let x 6 Lowerthirds (C1), and let Ct be the last clause on q3 that contains x. We define x
runs ahead on q3 if and only if there is a successor Cr of Ct (i.e., r > t) such that there exists
a z Sec x with 2 Cr.

Note that the above z is unique, as Jr(z) and z 6 Sec x c_ Lowerthirds. C1 runs
ahead on q3 if and only if each x 6 Lowerthirds (C) runs ahead on q3. Jr runs ahead in 9 if
and only if C runs ahead on q3.

The last definition is well formed because for each Jr we have exactly one path belonging
to Jr in .

The following theorem ensures the existence of the running ahead phenomenon.
THEOREM 3.6. Let be a resolution proof of REGN. For each K-critical assignment

S (in the tradition of Haken we denote K-critical assignments by S) there exists a critical
extension Jr of S, which runs ahead in ,.

678 ANDREAS GOERDT

Proof. Let 9 be a resolution proof ofREGN, and let S be a K-critical assignment of VarN.
We assume that the claim of the theorem does not hold for S, that is, no critical extension

of S runs ahead in t.
We show the following: For all clauses Cs of 9 that belong to the path q3 C1 Cn

of a critical extension 7r of S in N holds" There exist clauses D1 Du, u >_ 0 such that
L D1 DuCs Cn is the path of a critical extension p of S, and there exist r >_ s, x 6

Lowerthirds such that x 6 Cr and x does not run ahead on the path . This is a contradiction
because belongs to any path in 9.

The proof proceeds by induction on the number of proof steps to derive the clause Cs.
Induction base. IfC is ofREGN satisfying the hypothesis ofour claim, C is the 0-column

of 7r, and the claim follows from our assumption.
Induction step. Assume C is a derived clause satisfying the hypothesis; let q3 C1... Cn

and 7r be as in the hypothesis. The clause C is derived from Cs_ and another clause; we call
itD.

C_l satisfies the induction hypothesis and we have clauses D1 Dm, such that L
D1... DmCs-l’" Cn is the path in N of another critical extension p of S. Moreover, we
have an x 6 Lowerthirds which occurs in a Cr for r > s and x does not run ahead on. If x 6 Cr for an r > s, the claim holds. The interesting case is: In deriving C the x is
eliminated, and C-l is the last clause on containing x. We must show that Cr contains
another variable satisfying our claim (for an r > s).

Let y 6 Sec x be such that p (y) 1. y is unique. Col y a is a 0-column of S because
y ’ Dom S and p is a critical extension of S with p(y) 1. We define an assignment of 6
by 6 p[1/x, O/y]. Then 6 is another critical extension of S (cf. Lemma 3.4(b)). We have
6 Dand6 Cforallr>sbecausex,, y,Cforr >sandp Cforallr>s
and x, y, y g D. (x, y Cr by assumption; -, y Cr because p Cr for all r >_ s.) By
Lemma 1.2 we have an initial piece of a path G GtD in N with 6 Gi, : D in 92.
Then 53 G G DC C, is the path of 6 in . Hence D satisfies the hypothesis of our
claim, and by induction hypothesis there is a v 6 D or v 6 Cr for an r > s, satisfying our
claim. If v D, then v Cs, hence C satisfies or claim. [3

4. The lower bound. The following main theorem of this paper is proved in 4.2-4.5.
THEOREM 4.1. Each regular resolution proofofREGN contains at least N1/82g N many

different clauses.
Convention 4.2. Let N be in the following a fixed natural number such that H, K, L, M

with

M, L -1 K -1M logN, K 5 5K, H- g gL

are natural numbers. Let N be a fixed regular resolution proof of REGN.
DEFINITION 4.3. (a) Let 7r be a critical assignment of VarN; let q3 C1 C be the path

of re in N. If 7r runs ahead in N, C is the first clause of q3 with

Card (Lowerthirds (C1) A C.) K.

C. is the first clause of q3, in which half of the variables of Lowerthirds(C) are eliminated.
(b) For each K-critical S let 7rs be a fixed critical extension of S, such that 7rs runs ahead

in . For each S such a 7rs exists by Theorem 3.6. Let Cs C,s.
The clauses C. have a certain complexity, that is, a certain number of literals.
THEOREM 4.4. Let re be a critical assignment such that Cr is defined. Then statement (1)

or statement (2) (or both) hold.

REGULAR RESOLUTION 679

(1) There are H variables x xH2 6 Lowerthirds, such that for all r 2r C.
Moreover, each section ofRow K meets at most one of the columns Col xr.

(2) There are H.H variablesx xH2 Third 1, such thatfor all r xr Cr. Moreover,
the xr are situated such that the sections Sec x are pairwise distinct.

Proof. Let re be a critical assignment that runs ahead in 91. Let q3 C1 Cn be the path
of re in 9t. We define

D Lowerthirds (C1),
Z D\Cr,
Z2 Z (3 Third 2,
Z3 Z (3 Third 3,
K2 Card Z2,
K3 Card Z3.

Z consists of those K variables from Lowerthirds(C) that have been eliminated on q3 between
C and C=. We have K K2-4- K3.

2K.2 K in the second K3 < 5We distinguish two cases. In the first case we assume K3 >_ 5
2Case 1. K3 > 5 K.

Let Ul uL 6 Z3 be L K different variables, such that for all r Cormap32 (Ur)
C.. (Note, ur, Cormap32 (Ur) C1, Ur q C.) As K2 < L and Cormap32 [Cl is bijective,
there are at most L variables v 6 Z3 with Cormap32(v) 6 Cr. Hence the Ur exist. Let
Xl xL 6 Third 2 be L variables with

xr 6 Cor32 (Ur) and re (Xr) 1.

The x exist by Lemma 3.3(b). x is the unique variable x 6 Sec (Cormap32 (Ur)) with
re(x) 1.

Let wl w Third 3 be given by

w6Secur and re(wr)=l.

Let y YL Third 2 be given by

Yr 6 Cor32 (wr) and re (yr) 1.

The y exist by Lemma 3.3(b).
In the sequel we show the following: The Xr (or H of them) satisfy statement (1) of the

claim of the theorem.
First, the claim concerning the position of the xr holds: As re (x) and xr 6 Third 2

we get Col x is a 0-column of re]Thirdl AS re]Thirdl is K-critical, Lemma 3.3(a) implies the
claim.

Let r be fixed. We show that 6 Cr. We define the assignment p by p re [1/u].
Note, u 6 C, the 0-column of re. As Ur C we have p C.. By Lemma 3.4(c) the only
clause C of REG with p : C is the clause

c-

By Lemma 1.2 there is an initial piece L Lm of a path in 91 with L C and Lm C.
Hence in 91 we have the situation in Fig. 1.

As C runs ahead on the path q3 C Cn, the variable Cormap32 (ur) 6 Third 2 (C1)
runs ahead on q3. As Cormap32 (Ur) C, xr Sec (Cormap32 (ur)), and re (xr) 1, Yr
occurs in a successor of C on q3. As 6 L 1, the regularity of 91 implies Yr 6 C.

2Case 2. K3 <_ 5 K.

680 ANDREAS GOERDT

1

c=[l
n

L =C
1

/

FIG. 11.

Let Ul uL e Z2 be L different variables. The bl exist as K2 > L 5 K. Let
vL e Third 2 be uniquely determined by

Vr eSecur and rr(vr)-l.

2Let Wl wc 6 Third 3 (C1) A Cr be L different variables. The Wr exist as K3 _< 5 K.
Let yl YL Third 3 be uniquely given by

YreSecwr and 7r(yr)=l.

Let, for r, s with _< r _< L and _< s < L, zr,, e Third be given by

Zrs Col V f-) Cor31 (Yr

If they exist, the zr, are unique and pairwise distinct because the rows Row yr and the columns
Col vs are pairwise different. Their existence is shown as follows: Let Yr e Row(2K + i). By
Definition 2.2 we have x e Cor31 (yr) if and only if x e Row i, x is covered by Sec yr, and x
is not covered by Halfsec Yr. As Halfsec Yr does not meet C1 (Lemma 3.3(b)) and wr e C,
we get

Sec yr Halfsec yrHalfsec Wr.

Hence, x 6 Cor31 (Yr) if and only if x e Row and x is covered by Halfsec wr. Hence
Cor31 (yr) covers Halfsec Wr.

As each section Sec

_
Third 2, which meets C1, is covered by Halfsec Wr (as wr 6

Third 3 (C1)), we get that Cor31 (Yr) covers Sec. As each vs belongs to such a Sec c_ Third 2
that meets C1, Col Vs meets Cor31 (yr) and zr, exists.

We show the following: For all s, r with < s < L and _< r < L,

gsC and YrC imply zr, eC.

This implies the theorem by the following case distinction. If

Card{vlgseC}>H or Card{yrlyr 6C} > H,

claim (1) of the theorem follows as in Case because Vs, yr Lowerthirds.
Otherwise, let

Card {Vs I-6s C > H and Card lYr >/4,

REGULAR RESOLUTION 681

and let

We have

X=[zrsls’C} and {r’C].

{Z slZ c.l _x
by the above statement and Card X > H2 by the assumption.

Moreover, for x, y E Xwith x :fi y we have the following: If x, y belong to the same row
of VarN, there exist v, v’ E v vc v - v’ with x 6 Col v, y Col v’ and Col v, Col v’
are 0-columns of zr [Third 1. Lemma 3.3(a) implies that Sec x - Secy. Thus claim (2) of the
theorem holds.

We still have to show the above statement: Let r, s with s 6 Cr and z C be fixed.
We show y C.

Let the assignment p be given by p [O/v, lug]. By Lemma 3.4 (b), p is a critical
assignment whose 0-column is Col v. As Vs, s, Us, Ks C, we get p C (, u C
by assumption, s, Vs C as g C). Let the assignment 3 be given by 3 p[1/z].
As (v) we get Col v is a 0-column of [Third (cf. Lemma 3.3(a)); as z 6 Col v
wehave(zs) 0. Weget6 C asz C by assumption andp C. Let
E Sec ZsHalfsec z. Then p(E) (E) 6(E) {1}, as (Zs) O, z Third 1,
and is critical. By Lemma 3.4(e) the clauses C of REG with C 6 have the fo

c

for an e E. Note that y is the variable y of Corl3(Zs) with (y) 1. By Lemma 1.2 there
is an initial piece of a path in , L Lm with Lm C, and L a clause having the fo of
C above, such that we have a situation as in Fig. 11 in .

As C ns ahead on the path C... Cn, w runs ahead on this path. As w 6 C,
y occurs after C on . As y L, we get that Yr C.

The following corollary finishes the proof of Theorem 4.1.
COROLLARY 4.5. There are at least N(/8’gN different clauses C in , such that there

exists a K-critical assignment S with C Cs.
Proof. Let

h(N) Card {SS K-critical assignment} exp
i=1

by Lemma 3.3(c). Each K-critical S gives us a clause Cs C in the proof N. That is, we
have a total mapping S Cs. This mapping need not be injective (otherwise we had h(N)
many clauses Cs and the proof was finished).

Let

g(N) Max Card {S’ Cs, Cs}l S K-critical assignment};

g(N) is the maximal number of S’ that are mapped to one Cs by the above mapping.
We have

hence

h(N) < g(N) Card {Cs IS K-critical },

h(N)
< Card {Cs IS K-critical} < length of g.

g(N)

682 ANDREAS GOERDT

Let for 1, 2,

gt(N) Max{Card{S’ ICs Cs,}l S K-critical and Cs satisfies

statement (t) of Theorem 4.4}.

As each Cs satisfies (1) or (2) of the last theorem we get

g(N) Max {gl(N), gz(N)}

and

h(N)=Min{ h(N) }g(N) gt N)

We determine a lower bound for h(N)/gl (N). Let S be K-critical, and let Cs be such that
it satisfies statement (1) of the last theorem. Let X XH Lowerthirds H variables with
-Y,. Cs, and each section of Row K meets at most one Col xr.

If S’ is a K-critical assignment with Cs Cs,, there must exist a critical extension p of
S’ with ,o g= Cs. We count the maximal number of S’ for which this condition can hold: As
-Y,. Cs, S’ must be such that it allows for a critical extension p with p (x) for all r. As
for all x holds x 6 Lowerthirds, the columns Col x must be 0-columns of S’. By Lemma
3.3(d) we have at most

such S’. That is,

gl(N) <exp i -H.K
i=1

Hence,

exp
h(N)

> i=l

)
exp (H. K) > exp H. H N(1/182)’lgN.

We determine a lower bound for h(N)/gz(N)" Let S be K-critical, and let Cs be such
that it satisfies statement (2) of the last theorem. Let Xl xw 6 Third be H2 variables
with xr Cs and belonging to pairwise different sections. If S is a K-critical assignment
with Cs Cs,, there must be a critical extension p of S’ with ,o g= Cs. Hence p (xr) 0 for
all r with _< r < H2", hence S’ (x) 0.

The Xr satisfy the hypothesis of Lemma 3.3(e), and we have

REGULAR RESOLUTION 683

such S’. Hence

and

h(N) ;= -
exp (/--/) (2H)

g
N]- .log N

Acknowledgment. I should like to thank Professor Kleine Brining and my colleagues
for encouragement and advice.

REFERENCES

M. AJTAI, The complexity ofthe propositional pigeonhole principle, in Proceedings of the 29th Symposium on

Foundations of Computer Science, IEEE Computer Society Press, Washington, D.C., 1988, pp. 346-355.
[2] W. BIBEL, A comparative study ofseveral proofprocedures, Artif. Intell., 18(1982) pp. 269-293.
[3] S. R. Buss AND G. TtJRC.N, Resolution proofs of generalized pigeonhole principles, Theoret. Comput. Sci.,

62(1988), pp. 311-317.
[4] V. CHVATAL AND E. SZEMEREDI, Many hard examplesfor resolution, J. Assoc. Comput. Mach., 35(1988), pp.

759-768.
[5] S. A. Cook AND R. A. RECKI4OW, The relative efficiency ofpropositional proof systems, J. Symbolic Logic,

44(1979), pp. 36-50.
[6] Z. GALIL, On the complexity of regular resolution and the Davis-Putnam procedure, Theoret. Comput. Sci.,

4(1977), pp. 23-46,

[7] A. GOERDr, Unrestricted resolution versus N-resolution, Theoret. Comput. Sci., 93 (1992), pp. 159-167.
[8] Davis-Putnam resolution versus unrestricted resolution, Ann. Math. and Artif. Intell., 6 (1992), pp.

169-184.
[9] D.W. LOVELAND, Automated theorem proving: A logical basis, North Holland, Amsterdam, 1978.

[10] A. HAKEN, The intractability ofresolution, Theoret. Comput. Sci., 39(1985), pp. 297-308.
11 R. A. RECKHOW, On the lengths of proofs in the propositional calculus, Ph.D. thesis, Dept. of Computer

Science, University of Toronto, Toronto, Ontario, Canada, 1975.
[12] U. SCHt)NINa, Logik fiir lnformatiker, BI-Taschenbauch, Reihe Informatik 56, Bibliographisches Institut,

Mannheim, Germany, 1987.
[13] J. SIEKMANN AND G. WRIHrSoN, EDS., Automation of reasoning- classical papers on computational logic,

Vols. and 2, Springer, New York, 1983.
14] M.E. SrICKEL, A PROLOG technology theorem prover: Implementation by an extended PROLOG compiler,

J. Automat. Reason., 4(1988), pp. 353-380.
[15] G. S. TSErN, On the complexity of derivation in the propositional calculus, in Structures in Constructive

Mathematical Logic, Part II, O.A. Slisenko, ed., Steklov Mathematical Institute, Leningrad, Russia,
1968, pp. 115-125.

[16] A. URQUHARr, Hard examplesfor resolution, J. Assoc. Comput. Mach., 34(1987), pp. 209-21.9.
[17] The complexity of Gentzen Systems for propositional logic, Theoret. Comput. Sci., 66(1989), pp.

87-97.
18] The relative complexity of resolution and cut-free Gentzen systems, Ann. Math. and Artif. Intell., 6

(1992).
19] W. HUANC; AND Y. XANDON, A DNF without shortest regular consensus path, SIAM J. Comput., 16(1987), pp.

836-840.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 684-694, August 1993

() 1993 Society for Industrial and Applied Mathematics
002

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM NUMBER AND RANDOM
FUNCTION GENERATORS*

H. NIEDERREITERt ,ND C.P. SCHNORRt

Abstract. A distribution on n-bit strings is called (e, e)-locally random, if for every choice of e < n positions
the induced distribution on e-bit strings is in the L-norm at most e away from the uniform distribution on e-bit
strings. Local randomness in polynomial random number generators (RNG) that are candidate one-way functions
is established. Let N be a squarefree integer and let fl j be polynomials with coefficients in ZN =Z/NZ.
The RNG that stretches a random x 6ZN into the sequence of least significant bits of J] (x) j (x) is studied.
It is shown that this RNG provides local randomness if for every prime divisor p of N the polynomials fl J
are linearly independent modulo the subspace of polynomials of degree < in Zp[x]. Also established is local
randomness in polynomial random function generators. This yields candidates for cryptographic hash functions. The
concept of local randomness in families of functions extends the concept of universal families of hash functions by
Carter and Wegman [J. Comput. System Sci., 18 (1979) pp. 143-154]. The proofs of the results rely on upper bounds
for exponential sums.

Key words, random number generator, random function generator, polynomial random number generator, local
randomness, families of hash functions, one-way functions

AMS subject classifications. 68Q99, 11K06, 11K45, 11Lxx

1. Introduction and summary. A major open problem in cryptography is to establish
one-way functions. While we cannot prove one-wayness it makes sense to analyse candidate
one-way functions and to prove properties of these functions that are useful in cryptographic
applications. We call a distribution on n-bit strings (e, e)-locally random if for every choice of
e < n positions the induced distribution on e-bit strings is in the L l-norm at most e away from
the uniform distribution on e-bit strings. We prove (e, e) local randomness for large classes
of candidate one-way functions and candidate cryptographic hash functions.

We show that e-tuples of polynomials (y] jq) E ZN[X] with fixed coefficients in 7"/N
and for arbitrary odd squarefree N provide local randomness if for every prime divisor p of N
the polynomials j] J are linearly independent modulo the subspace of polynomials of
degree <_ in Zp[X]. To give an example let N be prime N > 2", and let y] J E ZN[X]
be any polynomials that are linearly independent modulo the subspace of polynomials of
degree < in Zu[X]. We prove in Corollary 2 that for random x 6 ZN the bit string

(J (x)[1 j (x)[1)

consisting of the parity bits f.(x)[1 of the residues fi(x) mod N in [0, N 1] is (e, e)
locally random provided that e, n, g, and e satisfy the inequality

(1) 2-"/2(2n log 2)e+2g _< e,

where log denotes the natural logarithm, e.g., we can choose n >_ 64, g [2"/7], e
2-"/7, e In/(7 log n)J. Our main result comprises the case that N is an arbitrary odd
squarefree integer, that the output contains several bits from each of the residues f (x) mod N,

g, and that x is chosen to be random in a subinterval [0, M of [0, N 1].
Note that the above function

(2) [0, N 3 x - (y] (x)[1 J(x)[1)

*Received by the editors March 4, 1991" accepted for publication April 28, 1992.
Osterreichische Akademie der Wissenschaften, Institut fr Informationsverarbeitung, Sonnenfelsgasse 19, A

1010 Wien, Austria (nied@qiinfo.oeaw.ac.at).
Fachbereich Mathematik Informatik, Universitit Frankfurt, Postfach 111932, Robert Mayer Str. 6-10, 6000

Frankfurt/M., Germany (schnorr@ informatik.uni-frankfurt.de).

684

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM GENERATORS 685

is a candidate one-way function. No inversion algorithm is known that is polynomial time in
min(g, log2 N). So far the one-wayness of function (2) has only been proved for random RSA
moduli N and RSA polynomials f xe; (see the following) provided that the RSA scheme
is secure. It is, however, possible that this one-way function is more secure than the RSA
scheme. We are not aware of any inversion algorithm that, for RSA-moduli N, runs in time
min(2e, N)(). On the other hand the RSA scheme can be broken by factoring N using only
exP(v/log N log log N) many steps. Is there any inversion algorithm that uses knowledge of
the factorization of RSA numbers N? Is there any inversion algorithm that uses the structure
of particular odd moduli N and of particular nonconstant polynomials f ? Of course function
(2) can easily be inverted for N 2 since f(x)[1 depends only on x[1 x mod 2.
Also, the problem of inverting is trivial for constant functions as f (x) x u-I (modN)
with N prime. Are there more exceptions? The inversion problem for the polynomial map
x > (j (x) j(x)) has been studied by Lagarias and Reeds [9]. Almost nothing is
known about the problem to invert (2). However, if we cannot even find inverting algorithms
for particular cases given the factorization of the modulus, then this may be a sign that the
function (2) is a truly one-way function.

It is important that the source of randomness in

(y] (x)[1 y(x)[1)

is the random argument x, while the coefficients of fl j are all fixed. Such functions
are cryptographically interesting. A well-known example is the random number generator
(RNG) related to the RSA scheme by Alexi et al. [1 and Micali and Schnorr [17], e.g., let N
be the product of two large random primes and let the integer e > 3 be relatively prime to

p(N). Then the mapping

[1, N]x - (Xe[1,xe-[1 X [1),

where xe’ is taken modulo N, is a perfect (in the sense of Yao [19]) RNG provided that the
RSA scheme is secure.

The functions x -+ (J(x)[1 J(x)[1) extend the class of polynomial random
number generators (RNG) proposed by Micali and Schnorr [17] and which stretch a ran-
dom seed x 6 [1, N2-k] into a polynomial residue P(x)(mod N). Micali and Schnorr
prove that the m least significant bits of P(x)(mod N) are statistically random within
O(N-/22k+m(logN)2degu(P)) if N is primeand degN(P)> 2, where degN(P) is
the degree of P when P is considered modulo N.

So far local randomness has mainly been studied in functions that are easy to invert;
see Alon, Babai, and Itai [2], Luby [11], Schnorr [17], Maurer and Massey [12], Naor and
Naor [14], Nisan [16] and Alon et al. [3]. Most of these constructions of local randomness
are methodically simple and are not directed towards cryptographic applications. They aim
at minimizing the number of random bits that are used in randomised algorithms. Only the
quadratic character construction by Alon et al. [3] is similar to our generatormit relies on
Weil’s theorem. Our proof of local randomness relies on upper bounds for exponential sums
and an inequality on quantitative Fourier inversion. We use upper bounds for the discrepancy
of polynomial residues from Niederreiter 15] and we extend these bounds from prime moduli
to arbitrary squarefree moduli.

We also establish random function generators, associated with fixed polynomials, that
provide local statistical randomness. These generators are candidates for cryptographic hash
functions. We associate with a polynomial P 6 ZN[X] of degree d a polynomial function
family Pz(y) P(z + y), where z is the function name and y is the input. For fixed

686 H. NIEDERREITER AND C. E SCHNORR

k, m < log2 N we associate with a random z 6 ZN a random function

Pzm "[0, 2k 1] --+ {0, 1}m, y P(z + y) [m

where P(z+ y) [m denotes the bit string consisting of the m least significant bits of the residue
P(z+y) modN in [0, N-1].

We call a function family Pz} (e, e)-locally random if for random z and for any e distinct
points yl Ye the distribution of the bit string Pz(yl)"" Pz (Ye) is in the L 1-norm at most
e away from the uniform distribution on em-bit strings.

We prove in Theorem 3.1 that the above family offunctions Pz is (e, e)-locally random,
if N is prime, d deg P satisfies e + < d < N, and if

N-1/Z(log N)e+12em+Zd <_ e.

A family of functions is an e-universal family of hash functions as introduced by Carter and
Wegman [7] if and only if it is (0, e)-locally random. Our hash functions require fewer random
bits than those of Carter and Wegman since we randomize only the input of the polynomial,
whereas Carter and Wegman randomize all its coefficients. The main point, however, is that
our hash functions are--if deg P is sufficiently large--candidates for a cryptographically
secure hash function, whereas the Carter-Wegman hash functions are easy to invert. Thus for
the first time we establish local randomness in families of cryptographic hash functions.

2. Random number generators that provide statistical local randomness. We present
in Theorem 2.1 our main result and we derive from it RNGs that are locally random. In
order to prove Theorem 2.1 we establish in Theorem 2.3 an upper bound on the discrepancy
for multidimensional polynomial number sequences. This upper bound relies on an upper
bound for exponential sums given in Lemma 2.4 and on an inequality of Niederreiter 15] on
quantitative Fourier inversion.

Notation. Let p Pr be r distinct primes, N Pl Pr (i.e., N is squarefree), and
7fN Z/NZ. Let F (J] J) be an -tuple of polynomials j 6 Z[x], j .
We denote by di(fj) the degree of j when J) is considered mod Pi and we put
di(F) maxl_<j_<e di(fj). We define ci(F) min(di(F) 1, /-p-) for r and
c(F) Y]i=l (ci(F) + 1) We call F N-admissible if for every prime divisor pi of N
the polynomials j] J are linearly independent modulo the subspace of polynomials of
degree < in Zp; [x]. In this case we also call the set ofpolynomials fl J N-admissible.
Thus j] j are N-admissible if for 1, r and for all al ae Z either the
polynomial =1 ajfj(mod Pi) is nonlinear or al ae 0(mod Pi).

We let log N denote the natural logarithm of N. We identify ZN with the integer
interval [0, N 1]. We abbreviate the set {0, }" as In and we identify the integer interval
[0, 2" 1] with In. If y 6 [0, N- 1] ZN and n < log2 N, we let y[n In denote the bit
string consisting of the n least significant bits of y. Let N denote the set of positive integers.

A collection of m least significant output bits. We associate with F (j] J) 6

(Z[x]) N N, and m (m me) e the mapping

Fm" [1, N] --+ Im, X -- I--I(fj.(x)[mj) with fj.(x) 6 ZN,
j--1

where m -= mj and I--I is the concatenation of strings. The mapping Fm outputs a
collection of m least significant bits of F(x), where F(x) is taken modulo N.

Our main theorem provides explicit estimates for the max-norm difference between the
distribution induced by Fm(x) for random x 6 [1, M] C [1, N], N-admissible F and the
uniform distribution on {0, }m.

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM GENERATORS 687

THEOREM 2.1. Let N be odd and squarefree, let F, in, m, Fm be as above and let F
be N-admissible. Thenfor N > 148, < M < N, and random x [1, M] we have

max
zE{0,1},,,

4
Iprob[Fm(x) z] 2-ml < -’-(1og N)t+ c(F).

The condition that F is N-admissible cannot be completely removed from Theorem 2.1.
Theorem 2.1 does not hold for linear polynomials j] j with g > 2. This is because
the least significant bits in two linear polynomials are highly correlated. On the other hand,
our proof shows that Theorem 2.1 holds for a single polynomial of degree in the case that
N--M.

For example, let N > 2512 be prime and let d 232. Then the polynomials x2 xa

are N-admissible. Consider for random x 6 [0, N-l] the bit string (x2[1 xd[1) Id-1.
For any choice of 24 bit positions 2 < il < i2’’" < i24 _< 232 and every z 6 {0, }24 we
have that

]prob(xi’[1 ...xi24[1 z) 2-241 < 2-44

This follows from Theorem 2.1 with 24, fj xlj for j 24, N M, and
c(F) _< 232.

DEFINITION. A random variable y ranging over a finite set S is called statistically
random within e (in S) if -ss Iprob(y s) 1/#S[<_ s, i.e., the L 1-norm statistical
difference of y from the uniform distribution on S is at most e.

DEFINITION. A probability distribution D on In is called (e, e)-locally random if for any
sequence of positions < jl < j2 < < L < n the substring (yj, yj,.) Ie of a
D-random string y (y Yn) is statistically random within e.

Using Theorem 2.1 we can stretch a short random seed into a long bit string that is "locally
random."

COROLLARY 2.2. Let N- p’"pr be a product of r distinct oddprimes, < M < N,
and N > 148. Let f fe Z[x] be polynomials of degree at most d that are N-
admissible. Thenfor random x [0, M the bit string (f (x)[j(x)[1) 6 Ie with

fj(x) ZN is (e, e)-locally random with e- 2(v/-l/M)(21ogN)e+ld for e- g.

Proof. Let < jl < j2 < < je <_ g. be any sequence of e output bit positions.
We apply Theorem 2.1 with F (fj, e), in (1 1) 6 1e, and m e.
The L -norm difference between the distribution induced by Fm(x) 6 {0, }e and the uniform
distribution is at most 2e-times the max-norm difference. We have c(F) < dr, and thus by
Theorem 2.1 F(x) is statistically random within 2(v//M) (2 log N)e+ d

The discrepancy D D)(yl YM) of M points y YM [0, 1) isdefined
to be

a4 (Y Yt) sup FM (25) V
2-

where 2" ranges over all half-open subintervals 2" of [0, 1)e, i.e.,

{(Zl Z) G [0, 1) [ai <_ zi < bi for

with 0 _< ai < bi _< for i-- g. V(2-) is the volume of Z and FM(2")-
M-l#{klyk 2-}.

The proof of Theorem 2.1 relies on the following upper bound for the discrepancy of
multidimensional polynomial sequences. For a real number a we let {a} denote the residue
of a mod Z in the interval [0, 1).

688 H. NIEDERREITER AND C. R SCHNORR

THEOREM 2.3 Let N be squarefree and let r(e) be the discrepancy of the M points-"m
({f(k)/N} {fe(k)/N}) [0, 1) for k M. If F (f fe) is N-
admissible, then r(e < (4B/M)4r(log N)e+lc(F) for < M < N and N > 148
Here B- if N is even and B= if N is odd.

The proof is based on a bound for exponential sums. For f 6 Z[x] and n 6 N define

S(f, n) e (f(x)) with e(u) e2’/-" for
x=l

11

LEMMA 2.4. If N p Pr is squarefree, B is as in Theorem 2.3, and f Z[x]
is arbitrary, then IS(f, N)I < BI-[7= el(f), where el(f) if di(f) < and
c (f) min(di (f) 1, q/-,) if di (f) > 1.

Proof. Since

IS(f,n)l -[S(f- f(O), n)[,

we can assume that f(0) 0. Let n, n2 1%t with gcd(n, n2) 1. If Yl ranges over
Z C3 [1, nl] and y2 ranges over Z C’l [1, n2] then x nzyl -+- nlY2, considered modnn2,
ranges over Z A [1, nln2]. Therefore

(f(n2yl+nlY2))S(f, nln2) e
111112y=l

If f(x) Yj ajxJ, then

f(n2yl + n y2)
d d

aj(112Y -1
I- 111Y2)j--- Z aj(nJ2Y(+ nfyJ2)

j=l j=l

f(nzyl) + f(ny2) mod nln2.

Thus

S(f, nln2) e
yl=l y2--1 111/’/2

(3) (ny=e(f(n2y’))) e(f(nlY2)))nln2--
_s(f(112x))(f(111x)),nl S ,n2 [3

t12 111

Now consider S(f, N) with N pl... pr. We prove the bound in the lemma by
induction on r. For r 1, dl (f) > 1, and pl f d (f) we have the inequality

IS(f, pl)[_< (dl (f) 1)@-].

This inequality is a consequence of the Riemann hypothesis for finite fields established by
Weil [18]; see Carlitz and Uchiyama [6], and also Theorem 5.38 in Lidl and Niederreiter [10].
We always have the trivial bound

IS(f, pl)[_<

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM GENERATORS 689

Thus in all cases

(4)]S(f, p)] _< Bc’ (f)v/-.
We need the additional factor B to cover the case Pl dl (f) 2, where c’ (f)
and IS(f, 2)] < 2. Now suppose the result has been shown for some r > and consider
N Pl P,.P,.+, where the prime factors have been arranged in such a way that Pr+ is
odd. We apply (3) with n p... Pr and n2 Pr+, then

CCr+l n
i=1 n2

where we used the induction hypothesis and (4) in the second step We have

d

n2 j=

Thus di(f(n2x)/n2) is the largest j such that ajn- :/: 0 mod pi. If < < r, then

ajnJ2- :/: 0 mod Pi ifandonly if aj :/: 0 mod pi, and so di(f(nzx)/n2) di(f). Therefore
(f),ci(f(n2x)/n2) ci(f) for < < r. Similarly, we showthat cr+(f(nx)/n) cr+

and the proof is complete
LEMMA 2.5 Let re) be the discrepancy ofthe M points Yk 6 [0, 1)e for k- M"m

and let re+) be the discrepancy of the N points (Yk (k- 1)/N) for k N’N

Then re < (N/M) re+l for < M < N’M "-"N

Proof. Let J be a half-open subinterval of [0, 1)e. Then the conditions Yk 6 J and
< k _< M hold simultaneously if and only if

Y’ N J 0,-
Thus, if .s denotes the s-dimensional Lebesgue measure, then

#11 <k < M’yk e J]-)e(J)

1___# <k<N" Yk, J 0, -ke(J)
M N

M -# <_k<_N" Yk, N
6J 0,-

N re+)< M--.N
ProofofTheorem 2.3. Let N have r distinct prime factors. Put Ce(N) (-N/2, N/2]

Ze, C(N) Ce(N)\{0} (here we use, as in Niederreiter [15], the interval (-N/2, N/2]
rather than [0, N)). For h (h he) Ce(N) we put

J if hj 0
r(h, N) H r(hj, N) with r(hj, N) Nsin if hj:/:O.j---1

690 H. NIEDERREITER AND C. R SCHNORR

By Lemma 2.2 of Niederreiter [15], we get

+1r(e+) < -F(5) N N Z]S(hlf+...+hefe+he+lX, N) l,
heC+,(N)

r(h, N)

where h (ha he+a) and f j 6 Z[x]. By Lemma 2.4 we have

(6) IS(hi j] +... + hefe + he+x, N)I < BN/2 (-Ici(hlf +"" + hefe + he+ix).
i=1

If h 6 Ce*+(N with (ha he) O, then ci(hlfl + + hefe + he+ix)
ci(he+x) 0 for some i, namely, when he+l 0 mod pi, and so

ci(hl f +... + he fe + he+ix) O.
i=1

Thus we have to consider only those h 6 Ce*+ (N) with (h he) O. We split up the set
of (ha he) C(N) accordingtothe setofi’s forwhich di(hlfl +...+hefe) < 1. For
I c_ Ar {1,2 r} weput H(I) {(hi he) C(N)’di(hf +...+hefe) <_
if and only if 6 I}. If (hi he) H(I) and A,\I, thenforany he+ C(N)
we have

di(hlf +... + hefe + he+ix) di(hlfl +... + hefe) > 2.

Since di(hlf + + hefe) < di(F), it follows that

ci(hl fl +... + he fe + he+ix) < ci(F).

,(f)< 1/2Using the trivial bound c Pi we obtain

H 1/2ci(hl fl +... + he fe + he+ix) <_ Pi
i:1 il

(F)11 ci

for any (ha he) H(I) and he+l CI(N). Together with (5) and (6) this yields

+ 1/2Z .1/2D+3< -F BN- HPi H ci(F) Z r(h, N) r(he+ N)N
1C_A,. il iA,.\l h6H(I) he+C (N)

Using the inequality

2 2
(7) < log rn +

r(h m) rc 5
h6C(m)

for m>2

from Niederreiter [15, Eq. (2.7)] this yields

(__) __1/2g +1 7 Z H D, H Ci (F) Z ?.(h, N)
-F BN-1/2 log N + - Zc_Ar iI iAr\I hH(I)

By the assumption of the theorem, (J] J) is N-admissible. Therefore if (ha,..., he)
H(I) we get hk-0modpi for 6 I and <k<;thus h,-0modl-lipifor

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM GENERATORS 691

< k _< . Therefore with L HiI Pi we obtain

hH(/) r(h N) r(h N) r(Lh, N)
hC(N) h6Ce(N/L)
h=0modL

-1

1= +
hec(/ r(Lh, N- hC(N/L)

r(h, N/L)

+Z
7)log N +

hC(N/L)

-1

r(Lh, N

(by the inequality (7))

where we applied the mean-value theorem in the last step. It follows that

+1 (_ 7)
e+l

U <
X

Bg.X-I/2 log N + - Z H p711/2" U ci(F)
IC__A,. il iA,.\I

N + BgN-/ logN + (ci(F) +
i=1

< BN-/(logN)e+c(F)
N/(logN)e+

+g + 5 log N

< BN-/Z(logN)e+c(F) (g + 1)5-e + -- +< 4BN-/(log N)e+ c(F)

provided that log N > 5, i.e., that N > 148. Together with Lemma 2.5 we get the result of
Theorem 2.3.

ProofofTheorem 2.1. Let N be an odd squarefree integer and fj Z[x] be polynomials
such that fj (x) 2-mJ fj.(x) (modN) for j e. Application of Theorem 2.3 to

---(e)
F (f fe) shows that the discrepancy LM of ({f(k)/N} {fe(k)/N}) for
k M satisfies

4 N)e+M .< /-(log c(F),

where we use that c(F) c(F). We apply to this inequality the equivalence

{fj(x)/N} [kj2-mJ, (kj + 1)2-m./)

[L’(X)]N -kjN(mod2mj) for j

where [fj(x)]N is the residue of fj(x) mod N in [0, N), and 0 < kj < 2mJ. To see the
equivalence we note that {fj(x)/N} [kj2-m.j (kj + 1)2-m.;) implies that there is an integer

692 H. NIEDERREITER AND C. R SCHNORR

y satisfying

kjN <_ y < (kj + 1)N, y fj(x) mod N, y 0 mod 2m

and thus [A(X)]N -kjN(mod2mj). This proves one direction of the equivalence and the
converse direction is an immediate consequence.

We see from the above inequality and the equivalence that for every y 6 {0, }m

-7-;.#{x [1, M] Fm(x) y}-
M

4 N)e+_< v/-(log c(F).

The proof of Theorem 2.1 extends to the following larger class of functions Fu. Let the
polynomials J] j) 6 ZN[X] be N-admissible and let u ue be integers that are
relatively prime to N, F (fl j), and u (u ue). Define Fu as

FL[0, N-1]gx - (f(x) mod N) mod ui for g).

COROLLARY 2.6. For N > 148, < M < N, and random x [0, M-1] the
max-norm difference between the distribution induced by Fu (x) and the uniform distribution
on [0, Ul- 1] x x [O, ue- l] isatmost ((4/M)-(logN)e+c(F)).

Theorem 2.1 deals with the particular case that the integers u are powers of 2. It is
necessary that u u are relatively prime to N. The proof of the corollary uses the
polynomials fj u-ffj (modN) and thus requires a division by uj modulo N.

3. Random function generators that provide statistical local randomness. Let Hk,e
Iek "the set of functions f I -+ Ie." A random function generator F is an efficient
algorithm that generates from names x 6 In a function fx F(x, .) Hk,e.

We call a probability distribution D on Hk,e (, e)-locally random if for random f,
f 6z) Hk,e, for any set of e distinct inputs .Yl Ye I the concatenated output
f(Y)f(Y2) f(Ye) lee is statistically random within e.

The concept of (e, e)-locally random distribution D on Hk,e extends the concept of uni-
versal hash functions of Carter and Wegman [7]. If D is (0, e)-locally random, then for any
distinct inputs y Ye I the bit string f(Yl) f(Y2) f(Ye) Ie is truly random,
i.e., D is the probability distribution of an e-universal family of hash functions in the sense of
Carter and Wegman.

Carter and Wegman show how to generate an e-universal family of hash functions in Hk,k
from ke random bits. Let K GF(2k) bethe fieldwith 2 elements. If (a0 ae-1) K

e-Iis random, then the polynomial P Yi=0 aixt K[x] yields an e-universal family of hash
functions in Hk,k.

Let N be a prime and P 6 ZN[X] be a polynomial with coefficients in the field ZN. We
associate with P and k, g 6 N, k, g < log2 N, the function

pe N)< [0, 2k --1] -- Ie, (z, y) P(y + z)[g.

Here we let P(y + z)[e, for < log2 N, denote the bit string consisting of the least
significant bits of the residue of P(y / z) mod N that is in Zx. We let Pf I --+ Ie denote
the function Pe(z, ,).

THEOREM 3.1. Let Nbe prime, N > 148, P 6 ZN[X], k, g < log2 N, let Pf I --+ Ie
be as above and let e + < deg P < N. Then for random z ZN the family offunctions
{Pf} is (e, e)-locally random with e N-/Z(log N)e+12ee+2 deg P.

Proof. Let d deg P, let yl Ye ZN be pairwise distinct, and let f 6 ZN[X]
be the polynomial fi (x) P(yi + x) for e. We next show that the polynomials

LOCAL RANDOMNESS IN POLYNOMIAL RANDOM GENERATORS 693

j] fe are linearly independent modulo the subspace of polynomials of degree < in
ZN[X]. For suppose that there are b be ZN such that

Then for j d e + d the jth derivative of this linear combination vanishes at
x 0, hence

bi P(J) (Yi) 0
i=1

for j-d-e/l d.

It is sufficient to prove that the coefficient matrix [P(J)(Yi)] <_i<_e is nonsingular since this
d-e+l <j<_d

implies that b be 0. Suppose that there exist ha-e+ ha Zu such that

d

Z hj P(J) (Yi) 0 for
j=d-e+

l<i<e.

d p(j)Put g(x)= j=d_e+hj (x), then g(Yi)= 0 for _<i_< e. Since yl Ye are
distinct and deg(g)_<d-(d-e+l)=e-1 we have g--0, so

d

Z hjP(J(x) O.
j=d-e+

Comparing coefficients of Xe-I we get hd_e+ 0 (the coefficient of xe- in p(d-e+l) is
nonzero since d < N). Continuing in this manner, we obtain hd-e+ hd O.

Since fl fe are linearly independent modulo ZN + XZx, we can apply Theorem
2.1 to F (j] fe). Since 1-Ij= fj.(z)[6 lee the m in Theorem 2.1 is e. The
in Theorem 2.1 is e. Hence 1-Ij=l P(Yj / z)[6 lee is statistically random within e

N-1/Z(logN)e+d2ee+2. Therefore {Pf} is (e, e)-locally random. [3

REFERENCES

[1] W. ALEXI, B. CHOR, O. GOLDREICH, AND C. P. SCHNORR, RSA and Rabin functions: certain parts are as hard
as the whole, SIAM J. Comput., 17 (1988), pp. 194-208.

[2] N. ALON, L. BABAI, AND A. ITAI, Afast and simple randomisedparallel algorithmfor the maximal independent
set problem, J. Algebra, 7 (1986), pp. 567-583.

[3] N. ALON, O. GOLDREICH, J. HASTAD, AND R. PERALTA, Simple constructions of almost k-wise independent
random variables, Proceedings of the 31 st IEEE Symposium on Foundations of Computer Science, 1990,
pp. 544-552.

[4] L. BLUM, M. BLUM, AND M. SHUB,A simple unpredictablepseudo-random numbergenerator, SIAM J. Comput.,
15 (! 986), pp. 364-383.

[5] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences ofpseudo-random bits, Pro-
ceedings of the 23rd IEEE Symposium on Foundations of Computer Science, 1982; SIAM J. Comput.,
13 (1984), pp. 850-864.

[6] L. CARLITZ AND S. UCHIYAMA, Boundsfor exponential sums, Duke Math. J., 24 (1957), pp. 37-41.
[7] L. CARTER AND M. WEGMAN, Universal hash functions, J. Comput. System Sci., 18 (1979), pp. 143-154.
[8] O. GOLDREICH, S. GOLDWASSER, AND S. MICALI, How to construct randomfunctions, Proceedings of the 25th

IEEE Symposium on Foundations of Computer Science, 1984; also J. Assoc. Comput. Mach., 33 (1986),
pp. 792-807.

[9] J.C. LAGARIAS AND J. A. REEDS, Unique extrapolation ofpolynomial recurrences, SIAM J. Comput., 17 (1988),
pp. 342-362.

694 H. NIEDERREITER AND C. R SCHNORR

10] R. LIDL AND H. NIEDERREITER, Finite Fields, Addison-Wesley, Reading, MA, 1983.
11 M. LuBY, A simple parallel algorithmfor the maximal independent set problem, SIAM J. Comput., 15 (1986),

pp. 1036-1053.
[12] U. M. MAURE: AND J. L. MASSEY, Perfect local randomness in pseudo-random sequences, in Proceedings

Crypto ’89, Lecture Notes in Computer Science, Vol. 435, Springer-Verlag, 1990, pp. 100-112.
[13] S. MICALI AND C. P. SCHNORR, Efficient, perfect polynomial random number generators, J. Cryptology,

3 (1991), pp. 157-172.
14] J. NAOR AND M. NAOR, Small-bias probability spaces: efficient constructions and applications, Proceedings of

the 22nd ACM Symposium on Theory of Computing, 1990, pp. 213-223.
[15] H. NIEDERREITER, Pseudo-random numbers and optimal coefficients, Adv. Math., 26 (1977), pp. 99-181.
16] N. NISAN, Pseudorandom generatorsfor space-bounded computation, Proceedings of the 22nd ACM Sympo-

sium on Theory of Computing, 1990, pp. 204-208.
17] C. E SCHNOIR, On the construction of random number generators and random function generators, Proc.

EUROCRYPT ’88, Lecture Notes in Computer Science, Vol. 330, Springer-Verlag, 1988, pp. 225-232.
[18] A. WELL, On some exponential sums, Proc. Nat. Acad. Sci. USA, 34 (1948), pp. 204-207.
[19] A. C. YAO, Theory and applications of trapdoor functions, Proceedings of the 23rd IEEE Symposium on

Foundations of Computer Science, 1982, pp. 80-91.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 695-704, August 1993

() 1993 Society for Industrial and Applied Mathematics
003

APPLYING CODING THEORY TO SPARSE INTERPOLATION*

A. D(0R ANI J. GRABMEIER

Abstract. Fast interpolation algorithms are presented for sparse sums of characters on the product monoid U
with values in a field K in two special cases. In the first case, U is a finite cyclic group of order e, and K is a field that
contains a root of unity of order e. Here linear codes over Z/eZ can be used to construct sets of evaluation points that
allow efficient interpolation by decoding Reed-Solomon codes. In the second case, K is the binary field GF(2), and
U is the multiplicative monoid of GF(2). Here sparse sums of characters coincide with sparse Boolean polynomials
and can be interpolated using the smallest set of evaluation points by decoding Reed-Muller codes.

Key words, interpolation, sparse multivariate polynomials, Boolean polynomials, coding theory, Reed-Muller
codes, Reed-Solomon codes

AMS subject classifications. 11T55, 12E20, 20M99, 68C25, 94B05

1. Introduction. The interpolation problem for k-sparse multivariate polynomials was
studied intensively in recent years [BT88], [CDGK88], [KY88], [GKS88], [DG89], [GKS89],
[Z90]. The most general approach was presented in [DG89] where, under the concept of sums
of characters of Abelian monoids, most of the earlier results could be unified.

We briefly recall the problem and setting from [DG89]: Let A be an Abelian monoid with
neutral element 1A and let K be a field. According to the well-known Dedekind lemma the
set Hom(A, (K, .)) of all characters, i.e., monoid homomorphisms with 1A - 1X from A
into the multiplicative monoid (K, .) of K, is a linearly independent subset of the K-space
of all maps from A into K. For any subset X Horn (A, (K, .)) of characters and for every
positive integer k define the set Xk of k-sums of characters from X by

Xk’-- f’A-+ Kl f f6K, x xk6X" f= fXK
t--I

In order not to have to discuss degenerate cases separately we assume #X >_ k and X - Xfor tc o- in f Y/’=l fX. For given X and k we are interested in procedures by which,
for any such f Y-x fxX in Xk, its support

supp(f) {X e X fx =/: 0}

and its coefficients fx can be determined from as few as possible evaluations of f. A first
step to solve this interpolation problem is, of course, the study of (small) subsets T of A
which allow us to distinguish any nontrivial k-sum of characters from X from the zero map;
that is, subsets T c__ A such that for any f 6 X, \ {0} there exists some a 6 T with
f(a) O. We will refer to such subsets as zero-test sets for Xk. Consequently, a subset
T of A is suitable for interpolation, i.e., allows us to distinguish any two distinct k-sums of
characters, if and only if T is a zero-test set for Xzk. However, there does not seem to exist
a universally applicable interpolation algorithm that systematically reconstructs the support
and the coefficients of f for any f 6 X, from its restriction to T for any field K, any monoid
A, any set X < Horn(A, (K, .)) of k-valued characters of A, and any zero-test set T

_
A

for X2/(. The exception is, of course, provided by the trivial, but surely inefficient, algorithm

*Received by the editors March 14, 1991" accepted for publication (in revised form) March 26, 1992.
Institute of Mathematics, University of Innsbruck, Technikerstrage 26-A-6020, Innsbruck Austria. This work

was prepared during a visit at the Scientific Center Heidelberg, IBM Germany, which is gratefully acknowledged.
tScientific Center Heidelberg, IBM Deutschland Informationssysteme 6mbH, Vangerowstrage 18, D-69020

Heidelberg, Germany (grabm@dhdibm 1.bitnet or arne.duer@uibk.ac.at).

695

696 A. DOR AND J. GRABMEIER

that, for all possible choices of X XK e X and j] fK E K, compares f(a) with
kY]K= fXK (a) for all a E T.
In the present paper we focus on the algorithmic aspects of interpolation on the product

monoid U in two special cases. In the first case, U is a finite cyclic group of order e, and
K is a finite field that contains a root of unity of order e. In 2 we show that the efficient
interpolation algorithm for cyclic monoids presented in Theorem of [DG89] can be applied
also to the product Un if a free linear code over Z/eZ of dimension n with the following
property can be found: For every selection of k distinct codewords, there exists a component
where all codewords are different. We prove that codes with large minimum distance possess
this property, and we prove the existence of such codes if e is the product of large primes. For
general e, however, the problem of finding such codes or proving their nonexistence remains
open.

In the second case, U is the multiplicative monoid ofthe binary field K GF(2). Here k-
sums of characters can be identified with k-sparse Boolean polynomials in n indeterminates. In
the paper [CDGK88] an interpolation algorithm was presented which uses 2k+ evaluations at
elements from the extension field GF(2), whereas the algorithm ofthe paper [GKS88] requires
evaluations at O(k4n2) elements from an extension field of GF(2) of degree O(log kn). The
most natural case of allowing no extension of the field can be dealt with by using the general
method of Theorem 5 of [DG89], but at the cost of O(knt) evaluations at elements from
GF(2), where

Moreover, the algorithm of Theorem 5 of [DG89] in this case is adaptive, in the sense that the
set of evaluation points is chosen during the execution of the algorithm and hence may depend
on f. In 3 we present a solution of the problem which uses the smallest set of evaluation
points. This set was determined in [CDGK88] and is of cardinality t. Our algorithm is
based on the theory of Reed-Muller codes from algebraic coding theory and has complexity
O (kn2+lg k (k + log n)). Unfortunately, we were not able to generalize this method to the case
where U is the multiplicative monoid of a field of more than two elements.

The idea of using well-known algorithms from algebraic coding theory for inteolation
is based on the following observation. For a zero-test set T A of Xk define a matrix

r (x(a))er,xX K#r#x.

Note that the row vectors of Hr are linearly independent if T is a minimal test set. We now
view Hr as a parity-check matrix of a linear code Cr which is the kernel of the linear map
K#x K#r given by Hr. Thus Cr is a linear code of length #X and dimension greater or
equal to #X- #T. We claim that the minimum distance of Cr is at least k + 1. To prove this,
suppose that there exists a nonzero codeword c K#x with at most k nonzero components.
Then f xexCxX is a nonzero element of X, but f(a) xexCxX(a) 0 for all
a T because cH 0, which contradicts the assumption that T is a zero-test set.

Next assume that a codeword (oflength# is sent over a noisy channel and f (fx)xX
is received. Then the syndrome of f is

fH (f(a))ar,

if f is identified with xeX fx X. Hence the task ofinteolating f from black box evaluations
amounts to reconstructing the eor positions and magnitudes from the syndrome if the all-zero
codeword has been sent.

APPLYING CODING THEORY TO SPARSE INTERPOLATION 697

For example, let A be a cyclic monoid. Then T {a 0 _< < 2k} is a zero-test
set for Xzk where X Horn(A, (K, .)) [DG89]. Here v is the parity-check matrix of a
Reed-Solomon code, anddecoding algorithms for Reed-Solomon codes implies interpolation
algorithms for the cyclic monoid, e.g., Theorem in [DG89].

A second example of this relation will be discussed in detail in 3.
2. Interpolation on products of cyclic groups. Let U be a finite cyclic group of order

e with generator 0, written multiplicatively, and let K be a field that contains a primitive eth
root of unity co. Identifying 0 with co, we can assume, without loss of generality, that U is
contained in K. Let A be the product group Un, and let X be the set of all characters of A
with values in K. The characters in X admit the parametrization

XOt X(Otl,ot2 or,,) U K

where

x(u u.) "= u’ u.
for ot otn e {0, e- 1}.

Interpolation of k-sparse sums of characters from Xcan be dealt with by using the general
method of Theorem 5 in [DG89]. In this section we study the question of whether the efficient
interpolation algorithm presented in Theorem of [DG89] for the cyclic case n can
be generalized to the case n > 1. In [DG89] a subset D c_ A is called a k-distinction
set for X if for any subset Y

_
X of cardinality at most k there exists some a 6 D such

that x(a) =/= (a) for all X, Y with X :/: . If D is ak-distinction set of X, then
Dlkl U {a a D, 0 < < k} is a zero-test set D for Xk. In the sequel we show how
to construct k-distinction sets from linear codes over rings. Then, in Theorem 2.4, we present
our algorithm to interpolate functions in Xzk from their values on D12kl.

LEMMA 2.1. Let C be a free linear block code over Z/eZ of dimension n and length r
with thefollowing property:

(re) For every collection of k distinct codewords, there exists a component where all
codewords are different.

Then a k-distinction setforX is given by

D {dp (r/C"p)l<<,l < p _< r},

where (c,p <<,, <p< is an arbitrary generator matrix ofC with linearly independent tvws.

I-I=(Pvof. Foracharacterx e Xand < p < r we havex(d))"

r/YJ,’,--, ’’"". Furthermore, as the rows of the matrix (c,p) are linearly independent, to each
given subset Y of X of cardinality at most k there correspond k different codewords
(= otc,p)<p<,. According to property (Tr), there exists a position p such that the p-
components of the k codewords are different. Hence, for a dp D, we have X (a) :/: (a)
for all X, Y with X - . q

Lemma 2.1 suggests looking for codes with property (7r). However, codes with property
(zr) do not exist for all values of e, n, and k, e.g., for e n 2 and k 3. A sufficient
condition for property (7r) that can be dealt with more easily is given by the following lemma.

LEMMA 2.2. Let C be a free linear block code over Z/eZ of length r, dimension n, and
minimum distance greater or equal to d such that

698 A. D0R AND J. GRABMEIER

Then C enjoys property (re).
Proof. Let S be a set of k distinct codewords of C, and let T denote the set of subsets of

S with two elements. For {v, w} 6 T, the set {p 6 l, 2 r}l v,, wp} has at most r d
elements. Consequently, the set {Pl v,, w, for some {v, w} 6 T} has at most ()(r d)
elements. Since (kz)(r d) < r by assumption, there exists some p such that v - wp for all
{v, w} T. El

Lemmas 2.1 and 2.2 show how to construct k-distinction sets from free linear codes over
Z/eZ of dimension n with large minimum distance. Finding such codes is the main problem
of algebraic coding theory and has been studied intensively for a finite field G F(q) instead
of the finite ring Z/eZ. For square-free e, the problem can be reduced to the case where e
is prime by the Chinese Remainder Theorem. Let p denote the smallest prime factor of e.
If p > (k2)(n 1) 1, a Reed-Solomon code over G F(p) of length r (kz)(n 1) and
minimum distance d r 4- n can be used. The following theorem proves the existence of
good codes under a weaker condition for p but does not provide a construction of the codes.
For general e, only a few constructions of good codes over Z/eZ are known [B72], [B75],
[$77], [$78].

THEOREM 2.3. Assume that e is square-free, and let p be the smallest primefactor of e.

If p > (k2) there exists a free linear code over Z/eZ of length r, dimension n, and minimum
distance d, such that

Proof. For brevity, we call a free linear code of length r, dimension n, and minimum
distance greater or equal to d an [r, n, >_ d] code. Let e 1-[;m= Pi be the prime factor
decomposition of e. Invoking the Chinese Remainder Theorem, an [r, n, > d] code over
Z/eZ can be constructed from Jr, n, > d] codes over Z/piZ by applying the ring isomorphism
between Z/eZ and Him=l 77/pi% to the entries of the generator matrices. Therefore, it suffices
to prove the existence of an [r, n, > d] code over Z/pZ such that d/r > , where

/ (k2)" Let d 1(1)rJ 4- 1. To apply the theorem of Gilbert and Varshamov [LN83],
we must choose r such that

pr-n > .= (P- 1)i

or, equivalently, such that

i=r-d+

(l)r-l-i < n-l,

where/ := 1/p. Introducing a random variable B, which obeys the binomial distribution
with parameters r and 13, the left-hand side equals Prob{B > r} and can be bounded
from above by

Prob{B > er} < Prob{[B (r 1)/3 l> (e -/3)r 4-/3} <
(r 1)/3(1 -/3)
[(e 13)r +]2’

where, in the last step, we have used Tschebyscheff’s inequality. Consequently, the condition
for the theorem of Gilbert and Varshamov can be satisfied if r is chosen sufficiently large.

APPLYING CODING THEORY TO SPARSE INTERPOLATION 699

The big advantage of zero-test sets derived from distinction sets is that sparse sums of
characters can be interpolated almost as efficiently as in the cyclic case.

THEOREM 2.4. Let D be a k-distinction set of X, and let D[2kl t2 {a a D, 0 <
< 2k} be the associated zero-test setfor Xzk. Then a function f in Xk can be interpolated

from its values on D[2k] asfollows:
Choose anelementa in D such thatthe rankofthe matrix (f(ai+J))o<_i,j<k is maximal,

say, it, which equals #supp(f).
Interpolate ffrom its values on 1, a, a2 a2/-1 as in the cyclic case described in
Theorem of[DG89].

Proof. We prove that, for an element a in D, the rank of the matrix (f(ai+J))o<_i,j<k
is maximal if and only if a distinguishes the characters in the support of f, and that the
maximum is equal to #supp(f). Write f y. fx, where I {oe X supp(f)}.
Then, for arbitrary a in D, the matrix (f(ai+J))o<_i,j<k can be written as the matrix product
(x(ai))Dz(x(ai)), where the square matrix Dz is the diagonal matrix diag((f)e). As
rankD #supp(f) and D contains an element a that distinguishes the characters X,
oe 6 I, we conclude that the maximal rank of {(f(ai+))o<_i,#<kla D} is/7 "= #supp(f).
Now suppose that the element a distinguishes the characters X, oe 6 I. Then the matrix
(X (ai)) has maximal rank, and we find that rank (f(ai+J))o<_i,j<l #supp(f). Conversely,
suppose that the rank of the matrix (f(ai+J))o<_i,j<k is maximal and hence equal to #supp(f).
Then also rank(x (ai)) #supp(f), and we conclude that the element a distinguishes the
characters X,

3. Interpolation of sparse Boolean polynomials. Let U {0, 1} be the multiplicative
monoid of K GF(2), and let X be the set of all characters of U" with values in K. These
characters are parametrized by the subsets V of n }"

xv := H pry,
vEV

where pry maps an element to its vth component. We can index the elements in U" by the
same parameter set by setting

for W c_ {1 n }. Here we have used Iverson’s symbol

{True, False} ---> {0, 1}, True w-> 1, False O,

from [GKP89]. For 0 < r < n, we define

"T(r) := {W c_ {1 n}l#W > n- r}.

In [CDGK88], Theorem 3.2, it was shown that T(1 + logkJ) parametrizes the smallest
zero-test set for X2/, where log denotes the logarithm to the base 2. Hence the matrix

7-/, := (xv(xw))wez-(r),vc_l

is a parity-check matrix of a binary linear code of length 2" that has dimension
because the test set is minimal.

THEOREM 3.1. The linear code defined by the smallest zero-test set of the interpolation
problem of k-sparse sums of characters of {0, }" is the Reed-Muller code of length 2" and
order n 2 llog kJ.

700 A. D/0R AND J. GRABMEIER

Proof. For V c_ {1 n} and W T(r), we have xv(xw) [V c_ W] [/ I7]
xg/(Xp). Thus the rows of the matrix 7-/r are the evaluations of the monomial characters of
total degree at most r at the elements of {0, }n. By the theory of Reed-Muller codes (see
[MS77, Chap. 13, 7]), the matrix r is a generator matrix of the Reed-Muller code of order
r and, therefore, is also the parity-check matrix of the Reed-Muller code of order n r.

Setting r :-- / [log kJ now implies the result.
Theorem 3.1 suggests interpolating k-sparse Boolean polynomials

f-- Z fsxs
S_{I n}

by decoding Reed-Muller codes. In technical applications, Reed-Muller codes of low dimen-
sion that can efficiently correct a large number of bit errors are used. The decoding algorithm
is based on majority voting, which gives, for every position in the received word, an estimate
of whether or not an error has occurred (see [MS77, Chap. 13, 7]). Applying majority voting
to interpolation we get, for every subset S of n }, whether the coefficient of xs is or 0.
This is feasible if many errors should be corrected, but inefficient in our situation where the
sparsity k is small compared to 2n.

Nevertheless, we shall derive an efficient interpolation algorithm for k-sparse Boolean
polynomials from the observation that the Reed-Muller code of order r is a subcode of the
extended BCH code of designed distance 2 1. More precisely, we choose a primitive
element w GF(2) and a GF(2)-linear map

(R) GF(2)" --+ GF(2").

For example, (R) could map an element of GF(2n), constructed as a residue class ring, to its
coordinates with respect to the canonical basis consisting of monomials. Then we order the
subsets of n} via (R) and X according to

09
0 < 091 < < CO

2’’-2 < 0.

This permutation transforms our Reed-Muller code into an extended cyclic code with zeros

(-Di < < 2n 2, t02(i) _< n r },

where 1/32 is the number of nonzero digits in the 2-adic expansion of (see [MS77, Chap. 13,
5]). We remark that, although not explicitly stated in the proof of Theorem 10, the GF(2)-
linearity of (R) is essential. Consequently, another parity-check matrix of our Reed-Muller
code is given by

10o)ij
<i<2 -2,w (i)

0_<.1_<2 -2

Choosing r n 2- [log kJ, we see that, in particular, the elements {oi < < 2k-
are zeros, and hence the code is a subcode of the extended BCH code with designed distance
2k + 1. Therefore, we can use the decoding methods for extended BCH codes to interpolate
k-sparse sums of characters of GF(2)" from the 2k syndrome components

-.sc() fs f(lll 1)
s.-, oz._<.-: j%-,<o.;>o.>/= +s_l .) fsO(xs)

for/--0

forl <i <2k-1

APPLYING CODING THEORY TO SPARSE INTERPOLATION 701

However, only in the case 0 do we get the syndrome component directly from the black
box. In the other cases, the syndrome components must be calculated from the evaluations
of f on 7-(1 + [log kJ). The following lemma shows how this can be accomplished by
basic arithmetic operations in GF(2n). To see the relation to the method of Theorem 4.2 of
[CDGK88], note that in [CDGK88], BCH-decoding was also used. In [CDGK88], however,
the points in GF(2) were labelled by the 2-adic expansion which does not give a connection to
Reed-Muller codes. Consequently, the algorithm there must get the syndromes directly from
the oracle, which requires that the oracle be capable of accepting elements from an extension
of GF(2) of degree n.

LEMMA 3.2. For < < 2k- we have

sf, f(XT)lT,
T’T(l+LlogkJ)

where

lT,i Z l(Ss)i"
T_S

Proof The linear map

GF(2)/0,11 __+ GF(2)7-l+Llogkj)

f - (f(XT))TT(I+LlogkJ)

is surjective and has the Reed-Muller code of order n 2- [log kJ as its kernel. Furthermore,
for < < 2k 1, the map sending an f GF(2)Isls-I ,11 to the syndrome component
Sf, is linear in f and vanishes on the code. Therefore there exists a GF(2)-linear map

GF(2)7(+Llogkl) ._+ GF(2n):zk-I

(f(xr))r7+LogkJ) (Sf,i)l<i<Zk-

given by the matrix (lT, i)l<i<2k-l,T6"T(l+LlogkJ), such that

S.i lr, f(Xv).
T6"T(I+ Llog kJ)

Specializing to fr .=]--I=l ([v ’ T]+xlo/) -r_v xv and observing that fr (Xs) [T
S], we obtain the formula

lT, Sfr,i I(Xs)i.
T_S

Summarizing the above considerations and invoking the theory ofBCH codes [B84, Chap.
10], we get the following algorithm"

Interpolation algorithm for k-sparse n-ary Boolean polynomialsf. Let f s:r xs
be a k-sparse n-ary Boolean polynomial, i.e., is a subset ofthe power set of n with
cardinality at most k.

INPUT." Oraclefor f

Step 1. Construct the test set 7-(1 + [log kJ).

702 A. DR AND J. GRABMEIER

l+[_logk]2. Ask the oracle for the "= ’.v=0 () values (/(Xr))reT-(l+klogkJ).Step

Step 3. Provide arithmetic of GF(2") by constructing an irreducible polynomial ofdegree n
over GF(2), and choose a GF(2)-linear map (R) GF(2)" --+ GF(2)’.

Step 4. Calculate the syndrome transformation matrix (lT,i)l<i<2k-l,T6"T(l+llogkJ).

Step 5. Calculate the syndrome (Sf, <i<2k-1.

Step 6. Determine the shortest linear-feedback shift register ((Ai)o<i<2k, l), where Ai
GF(2"), A0 1, 6 N, which generates the sequence (sf, o f(1, 1),
sf, sf,2,-l), i.e., sf, <L<i Asf,i_Lfor all + < < 2k 1.

Step 7. Calculate the 1rots {,kill < <_ l} of the polynomial 0<i<l Al-ixi.

OUTPUT: .T"- {(R)-1 (,k/.)ll _< _< l}

Note in particular that a primitive element of GF(2n) is required only for theoretical
considerations and not in the algorithm. In step 5 one can use the Galois relations

2
Sf,2i Sf,

where the second subscripts are to be read modulo 2 1, e.g., sf,3 SJ;52 if n 3. The length
of the shift-register determined in step 6 equals #U. Using as the degree of 0<i<l Al-iX

guarantees that the location 0 corresponding to the extension position (constant term of f) is
a zero of this polynomial as well. Indeed and max{tlA, - 0} differ by one if and only if f
has a constant term, and are equal otherwise.

We next analyze the computational complexity of the algorithm in a serial model of
computation. The steps 1, 3, and 4 of the algorithm depend only on k and n, but not on f and,
therefore, can be precomputed. The determination of the test set requires O (t) < O (n +og ,)
steps, and the questioning of the oracle in step 2 is counted for free. The irreducible polynomial
of degree n over GF(2) required in step 3 can be found rapidly by probabilistic algorithms,
see, e.g., [B81], the expected number of operations in GF(2) being O(n2 log2 n log log n). A
deterministic algorithm to find an irreducible polynomial of degree n is given in [AL86]. The
proof that this algorithm runs in polynomial time assumes the extended Riemann hypothesis
[K86]. To calculate the syndrome transformation matrix we need at most O(tk2) additions
and O(tk) multiplications in GF(2n). The calculation of the syndrome in GF(2") requires at
most O(tk) additions of elements in GF(2").

The shift register in step 6 can be computed by the Berlekamp-Massey algorithm, which
requires O(k2), in its recursive form only slightly more than O(k log k) operations in GF(2"),
cf. [B83, 7.4, 7.5, 7.6, and 11.7].

In the last step we must find all roots of a univariate polynomial of degree at most k, which
happen to be pairwise different and all in GF(2"). This can be done by Berlekamp’s trace

algorithm [LN83] if k > n, and by the affine method of Van Oorschot and Vanstone [OV89]
otherwise. The precomputations require O(nk2), respectively, O(k + nk) multiplications in
GF(2"). The remaining costs are O(nk2 + nZk). Summing up and counting operations in
GF(2), the precomputations require on average O(kn2+lgk (k + log n)) operations in GF(2).
Here we used the estimates for the probabilistic algorithm in step 3. For the bit complexity
of multiplication in GF(2") see [LSW83]. The remaining costs for a specific black box are
O(kn2+lgk) operations in GF(2).

APPLYING CODING THEORY TO SPARSE INTERPOLATION 703

The complexity in a parallel model of computation depends heavily on the open questions
of whether the construction of irreducible polynomials and factoring polynomials are in NC,
see [KR90], respectively, [G84] and [G85]. A probabilistic solution of the second problem
is given in [G84], where a parallel version of the Cantor-Zassenhaus algorithm is presented
with time O(log4(n)), the number of processors being polynomial in n. Solving a system
of linear equations can be done within O(k4’5) arithmetic processors and O(log2 k) parallel
time [M86], and this can be used to solve step 6. We do not know whether there are better
parallel algorithms that exploit the special structure of the matrix of the coefficients as does
the Berlekamp-Massey algorithm in the sequential case.

Finally, we remark that the approach presented above for the binary field GF(2n) does
not generalize to arbitrary finite fields GF(q) in a straightforward way. For instance, consider
the special case k and q > 2. In Theorem 3.5 of [CDGK88] it has been proved that the
minimum number of points in a zero-test set for X2 is 2n 4- 1. However, for any zero-test set
with 2n 4- elements, the associated linear code is no generalized Reed-Muller code [L71]
because generalized Reed-Muller codes over GF(q) cannot have codimension 2n 4- 1.

We have implemented the algorithm in the computer algebra system Scratchpad.

Acknowledgment. We thank K. Werther for implementing parts of the algorithm.

[AL861

[B72]
[B751
[B811
[B83l
[B84]

[BT88]

[CDGK88]

[DG89]

[G841

[G85]

[GKP89]

[GKS88]

[GKS891

[KR90]

[K86]
[KY88]

[L71]
[LN83]

REFERENCES

L. M. ADLEMAN AND H. W. LENSTRA JR, Finding irreducible polynomials overfinitefields, Proc. ACM
STOC, 8 (1986), pp. 350-355.

I. F. BLAKE, Codes over certain rings, Inform. and Control, 20 (1972), pp. 396-404.
Codes over integer residue rings, Inform. and Control, 29 (1975), pp. 295-300.

M. BEN-OR, Pvbabilistic algorithms in finite fields, Proc. 22nd IEEE FOCS (1981), pp. 394-398.
R. E. BLAHUT, Theory and Practice ofErvr Control Codes, Addison-Wesley, Reading, MA, 1983.
E. R. BERLEKAMP, Algebraic Coding Theory, Revised Ed., Aegean Park Press, Laguna Hills, CA,

1984.
M. BEN-OR AND P. TIWARI, A deterministic algorithmfor sparse multivariatepolynomial interpolation,

Proc. 20th ACM STOC 10 (1988), pp. 301-309.
M. CLAUSEN, A, DRESS, J. GRABMEIER,AND M. KARPINSKI, On zero-testing and interpolation ofk-sparse

multivariate polynomials over finite fields, Theoret. Comput. Sci., 84 1991), pp. 151-164.
A. DRESS AND J. GRABMEIER, The interpolation problemfor k-sparse polynomials and character sums,

Adv. Appl. Math., 12 (1991), pp. 57-75.
J. YON ZUR GATHEN, Parallel algorithm for algebraic’ problems, SIAM J. Comput., 13 (1984), pp.

808-824.
J. YON ZUR GATHEN, h’reducible polynomials over finite fields, Univ. Ztirich, Ztirich, Switzerland,

preprint, 1985.
R. L. GRAHAM, D. E. KNUTH. AND O. PATASHNiK, Concrete Mathematics, Addison-Wesley, Reading,

MA, 1989.
D. Y. GRIGORIEV, M. KARPINSKI, AND M. F. SINGER, Fast parallel algorithms for sparse multivariate

polynomial interpolation overfinite fields, SIAM J. Comput., 19 (1990), pp. 1059-1063.
The interpolation problemfor k-sparse sums ofeigenfunctions ofoperators, Adv. Appl. Math.,

12 (1991), pp. 76-81.
R. M. KARP AND g. L. RAMACHANDRAN, Parallel Algorithmsfor Shared-Memory Machines, in Hand-

book of Theoretical Computer Science, Vol. A, Algorithms and Complexity, Chap. 17, J. van

Leuwen, ed., North-Holland, Amsterdam, 1990.
E. KRANAKIS, Primality and Cryptography, Wiley-Teubner, Stuttgart, Germany, 1986.
E. KALTOFEN AND L. YAGATI, Improved sparse multivariate polynomial interpolation algorithms,

Report 88-17, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY,
1988.

J. H. VAN LINT, Coding Theory, Lecture Notes in Math. 201, Springer-Verlag, Berlin, 1971.
H. LIDL AND H. NIEDERREITER, Finite Fields, Addison-Wesley, Reading, MA, 1983.

704 A. D/R AND J. GRABMEIER

[LSW83]

[MS77]

[M86]

[OV891

[$77]
[S781
[Z90]

A. LF.Mr’F.t, G. SF.ROUSSI, AND S. WINOGRAD, On the complexity ofmultiplication infinitefields, Theoret.
Comput. Sci., 22 (1983), pp. 285-296.

F. J. MACWILLIAMS AND N. J. A. SIOANE, The Theory of Error Correcting Codes, North-Holland,
Amsterdam, 1977.

K. MULMUt,EY, A Fast Parallel Algorithm to Compute the Rank ofa Matrix over an Arbitrary Field,
Proc. ACM STOC, (1986), pp. 338-339.

P. C. VAN OORSCHOT AND S. A. VANSTONE, A geometric approach to root finding in G F(qm), IEEE
Trans. Inform. Theory, IT-35 (1989), pp. 444-453.

E. Sr’IEGEL, Codes over Zm, Inform. and Control, 35 (1977), pp. 48-51.
,Codes over Zm, revisited, Inform. and Control 37, (1978), pp. 100-104.
R. ZIPPEt, Interpolating polynomialsfi’om.their values, J. Symbolic Comput., 9 (1990), pp. 375-403.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 705-726, August 1993

() 1993 Society for Industrial and Applied Mathematics
004

EXACT IDENTIFICATION OF READ-ONCE FORMULAS USING
FIXED POINTS OF AMPLIFICATION FUNCTIONS*

SALLY A. GOLDMANt, MICHAEL J. KEARNSt, AND ROBERT E. SCHAPIRE

Abstract. In this paper a new technique is described for exactly identifying certain classes of read-once Boolean
formulas. The method is based on sampling the input-output behavior ofthe target formula on a probability distribution
that is determined by the fixed point of the formula’s amplification function (defined as the probability that a one
is output by the formula when each iriput bit is one independently with probability p). By performing various
statistical tests on easily sampled variants of the fixed-point distribution, it is possible to efficiently infer all structural
information about any logarithmic-depth formula (with high probability). Results are applied to prove the existence
of short universal identification sequences for large classes of formulas. Also described are extensions of these
algorithms to handle high rates of noise, and to learn formulas of unbounded depth in Valiant’s model with respect to

specific distributions.

Key words, computational learning theory, machine learning, learning with queries, Boolean formulas, read-
once formulas, amplification functions, learning with noise

AMS subject classifications. 68Q25, 68T05

1. Introduction. In this paper we describe efficient algorithms for exactly identifying
certain classes of read-once Boolean formulas by observing the target formula’s behavior on
examples drawn randomly according to a fixed and simple distribution that is related to the
formula’s amplificationfunction. The class of read-once Boolean formulas is the subclass of
Boolean formulas in which each variable appears at most once. The amplification function
Af(p) for a function f {0, }n

__
{0, is defined as the probability that the output of f is

one when each of the n inputs to f is one independently with probability p. Amplification
functions were first studied by Valiant [24] and Boppana [4], [5] in obtaining bounds on
monotone formula size for the majority function.

The method used by our algorithms is of central interest. For several classes of formulas,
we show that the behavior of the amplification function is unstable near the fixed point; that
is, the value of Af(p) varies greatly with a small change in p. This in turn implies that small
but easily sampled perturbations of the fixed-point distribution (that is, the distribution where
each input is one with probability p, where Af(p) p) reveal structural information about
the formula. For instance, a typical perturbation of the fixed-point distribution hard-wires a
single variable to one and sets the remaining variables to one with probability p.

We apply this method to obtain efficient algorithms for exact identification of classes of
read-once formulas over various bases. These include the class of logarithmic-depth read-once
formulas constructed with Noa gates and three-input majority gates (for which the fixed-point
distribution is the uniform distribution), as well as the class of logarithmic-depth read-once
formulas constructed with NAND gates (for which the fixed-point distribution assigns one to
each input independently with probability 1/4 0.618, where 4 (1 + v/-)/2 is the golden

*Received by the editor July 11, 1991; accepted for publication (in revised form) March 9, 1992. Most of this
research was carried out while all three authors were at the Massachusetts Institute of Technology, Laboratory for
Computer Science with support provided by Army Research Office grant DAAL03-86-K-0171, Defense Advanced
Research Projects Agency contract N00014-89-J-1988, National Science Foundation grant CCR-88914428, and a
grant from the Siemens Corporation.

Department of Computer Science, Washington University, St. Louis, Missouri 63130 (s cj @ c s. wu s: 3.. edu).
This author is supported by a General Electric Foundation Junior Faculty grant and National Science Foundation
grant CCR-9110108.

AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (rnkearns@ research, at:t:, ccrn).
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (s chap +/- re @ research. at: t:. corn). Support was

received from Air Force Office of Scientific Research grant 89-0506 while at Harvard University.

705

706 GOLDMAN, KEARNS, AND SCHAPIRE

ratio). Thus, for these classes, since the fixed point of the amplification function is the same
for all formulas in the class, for each class we obtain a simple product distribution under
which the class is learnable. As proved by Kearns and Valiant [16], [13], these same classes
of formulas cannot be even weakly approximated in polynomial time when no restriction is
placed on the target distribution; thus, our results may be interpreted as demonstrating that
while there are some distributions that, in a computationally bounded setting, reveal essentially
no information about the target formula, there are natural and simple distributions that reveal
all information.

For Boolean read-once formulas (a superset of the class of formulas constructed from
NAN,) gates) there is an efficient, exact-identification algorithm using membership and equiv-
alence queries due to Angluin, Hellerstein, and Karpinski [1], [11]. The class of read-once
majority formulas can also be exactly identified using membership and equivalence queries, as
proved by Hancock and Hellerstein [9] and Bshouty et al. [6]. Briefly, in the query model, the
learner attempts to infer the target formula by asking questions, or queries, of a "teacher." For
instance, the learner might ask the teacher what the formula’s output would be for a specific
assignment to the input variable; this is called a membership query. On an equivalence query,
the learner asks if a given conjectured formula is equivalent to the target formula.

Note that our algorithms’ use of afixed distribution can be regarded as a form of "random"
membership queries, since this fixed and known distribution can be easily simulated by mak-
ing random membership queries. Thus, our algorithms are the first efficient procedures for
exact identification of logarithmic-depth majority and NAND formulas using only membership
queries. Furthermore, the queries used are nonadaptive in the sense that they do not depend
upon the answers received to previous queries. In contrast, all previous algorithms for exact
identification, including the algorithms mentioned above, require highly adaptive queries. As
a consequence, our results can be applied to prove the existence ofpolynomial-length universal

identification sequences for large classes of formulas; these are fixed sequences of instances
for which every unique formula in the class induces a different labeling.

We also prove that our algorithms are robust against a large amount of random misclas-

sificatio noise, similar to, but slightly more general than, that considered by Sloan [23] and
Angluin and Laird [2]. Specifically, if r0 and r represent the respective probabilities that an
output of 0 or is misclassified, then a robust version of our algorithm can handle any noise
rate for which r0 + r 1; the sample size and computation time required increase only by an
inverse quadratic factor in I1 r0 rl I. Again regarding our algorithms as using "random"
membership queries, these are the first efficient procedures performing exact identification in
some reasonable model of noisy queries. Our algorithms can also tolerate a modest rate of
malicious noise, as considered by Kearns and Li [14].

Finally, we present an algorithm that learns any (not necessarily logarithmic-depth) read-
once majority formula in Valiant’s model against the uniform distribution. To obtain this result
we first show that the target formula can be well approximated by truncating the formula to
have only logarithmic depth. We then generalize our algorithm for learning logarithmic-depth
read-once formulas to handle such truncated formulas. A similar result also holds for read-once
NAND formulas of unbounded depth.

The problem of learning Boolean formulas against special distributions has been consid-
ered by a number of other authors. In particular, our technique closely resembles that used
by Kearns et al. [15] for learning the class of read-once formulas in disjunctive normal form
(DNF) against the uniform distribution. A similar result, though based on a different method,
was obtained by Pagallo and Haussler [18]. These results were extended by Hancock and
Mansour [10], and by Schapire [21 as described in the following.

Also, Linial, Mansour, and Nisan [17] used a technique based on Fourier spectra to learn
the class of constant-depth circuits (constructed from gates of unbounded fan-in) against the

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 707

uniform distribution. Furst, Jackson, and Smith [7] generalized this result to learn this same
class against anyproduct distribution (i.e., any distribution in which the setting ofeach variable
is chosen independently of the settings of the other variables). Verbeurgt [25] gives a different
algorithm for learning DNF formulas against the uniform distribution. However, all three
of these algorithms require quasi-polynomial (nplylg(n)) time, though Verbeurgt’s procedure
only requires a polynomial-size sample.

Finally, Schapire [21 has recently extended our technique to handle a probabilistic gen-
eralization of the class of all read-once Boolean formulas constructed from the usual basis
{AND, OR, NOT}. He shows that an arbitrarily good approximation of such formulas can be
inferred in polynomial time against any product distribution.

2. Preliminaries. Given a Boolean function f {0, }n
__

{0, }, Boppana [4], [5]
defines its amplification function Af as follows: Af(p) Pr[f(X1 Xn) 1], where

X1 X, are independent Bernoulli variables that are each one with probability p. The
quantity Af(p) is called the amplification of f at p. Valiant [24] uses properties of the
amplification function to prove the existence of monotone Boolean formulas of size O(n53)
for the majority function on n inputs. We denote by D(p) the distribution over {0, } induced
by having each variable independently set to one with probability p.

For qj E {0, 1} and ij E {1 n}, < j < r, we write flxi, +-q Xi,. +-qr to
denote the function obtained from f by fixing or hard wiring each variable xij to the value qj.
If each qj q for some value q, we abbreviate this by flxi xi,. +-q.

In our framework, the learner is attempting to infer an unknown target concept c chosen
from some known concept class C. In this paper, C U> C is parameterized by the
number of variables n, and each c Cn represents a Boolean function on the domain {0, }.
A polynomial-time learning algorithm achieves exact identification of a concept class (from
some source of information about the target, such as examples or queries) if it can infer a

concept that is equal to the target concept on all inputs. A polynomial-time learning algorithm
achieves exact identification with high plvbability if, for any 6 > 0, it can with probability
at least 6 infer a concept that is equal to the target concept on all inputs. In this setting
polynomial time means polynomial in n and 1/6. Our algorithms achieve exact identification
with high probability when the example source is a particular, fixed distribution.

In the distribution-fiee or pivbably approximately correct (PAC) learning model, intro-
duced by Valiant [24], the learner is given access to labeled (positive and negative) examples
of the target concept, drawn randomly according to some unknown target distribution D. The
learner is also given as input positive real numbers and 6. The learner’s goal is to output with
probability at least 6 a hypothesis h that has probability at most of disagreeing with c on
a randomly drawn example from D (thus, the hypothesis has accuracy at least). In the
case of a randomized hypothesis h, the probability that h disagrees with c is taken over both
the random draw from D and the random coin flips used by h. If such a learning algorithm
exists (that is, a polynomial-time algorithm meeting the goal for any n > 1, any c Cn, any
distribution D, and any e, 6), we say that C is PAC learnable. In this setting, polynomial time
means polynomial in n, 1/, and 1/6. In this paper, we are primarily interested in a variant
of Valiant’s model in which the target distribution is known a priori to belong to a specific
restricted class of distributions. This distribution-specific model has also been studied by
Benedek and Itai [3].

In this paper we give efficient algorithms that, with high probability, exactly identify the
following classes of formulas:

The class of logarithmic-depth read-once majority formulas" This class consists
of Boolean formulas of logarithmic depth constructed from the basis {MA, NOT}
where a MA gate computes the majority of three inputs, and each variable appears

708 GOLDMAN, KEARNS, AND SCHAPIRE

at most once in the formula. Without loss of generality, we assume all Nor gates are
at the input level.
The class of logarithmic-depth read-once positive N AN D formulas: This is the
class of read-once formulas of logarithmic depth constructed from a basis {NAND}
where a NAND gate computes the negation of the logical AND of two inputs. Note
that each input appears at most once in the formula and all variables are positive
(unnegated). Observe also that the class of read-once positive NAND formulas is
equivalent to the class of read-once formulas constructed from alternating levels of
OR/AND gates, starting with an oR gate at the top level, with the additional condition
that each variable is negated if and only if it enters an oR gate. This observation is
easily proved by repeated application of DeMorgan’s law.

Note that by a symmetry argument we can also handle read-once formulas constructed
over the {NOR} basis.

In both cases above, our results depend on the restriction on the fan-in of the gates, as well
as the requirement that only variables (and not constants) appear in the leaves of the target
formula.

Note that because we consider only read-once formulas, there is a unique path from any
gate or variable to the output. We define the level or depth of a gate to be the number of
gates (not including) itself) on the path from) to the output. Thus, the output gate is at level
0. Likewise, we define the level or depth ofan input variable to be the number of gates on the
path from the variable to the output. The depth of the entire formula is the maximum level of
any input, and the bottom level consists of all gates and variables of maximum depth.

An input xi, or a gate .,feeds a gate U if the path from xi or to the output goes through
U. If xi or) is an input to U, then we say that xi or) immediatelyfeeds U. For any two input
bits xi and xj we define F(xi, xj) to be the deepest gate . fed by both xi and xj. Likewise,
F (xi, xj, xk) is the deepest gate ,k fed by xi, xj, and xk. We say that a pair of variables xi and

xj meet at the gate 1-" (xi, xj). Also, if 1-" (xi, xj) F (xi, xk) (xj, x/) F’ (xi, xj, xk), then
we say that the variables xi, xj, and xk meet at gate F(xi, xj, xk); otherwise, the triple does
not meet in the formula. (Note that this only makes sense if there are gates with more than
two inputs, such as a three-input majority gate.)

All logarithms in this paper are base two.

3. Exact identification of read-once majority formulas. In this section we use prop-
erties of amplification functions to obtain a polynomial-time algorithm that, with high prob-
ability, exactly identifies any read-once majority formula of logarithmic depth from random
examples drawn according to a uniform distribution.

This type of formula is used by Schapire [20] in his proof that a concept class is weakly
learnable in polynomial time if and only if it is strongly learnable in polynomial time. That is,
the hypothesis output by his boosting procedure can be viewed as a majority formula whose
inputs are the hypotheses output by the weak learning algorithm. We also note that a read-
once majority formula cannot in general be converted into a read-once Boolean formula over
the usual {ANr, OR, or} basis. (For example, a single three-input majority gate cannot be
converted into a read-once Boolean formula over this basis; this can be proved, for instance,
by enumerating all three-input read-once Boolean formulas.)

It can be shown that the class of logarithmic-depth read-once majority formulas is not
learnable in the distribution-free model, modulo assorted cryptographic assumptions, depend
on the assumed intractability of factoring Blum integers, inverting RSA functions, and rec-
ognizing quadratic residues. See Kearns and Valiant 16] for details. Briefly, this can be proved

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 709

using a Pitt and Warmuth-style "prediction-preserving reduction" [19] to show that learning
read-once majority formulas is at least as hard as learning general Boolean formulas. Our
reduction starts with a given Boolean formula which we can assume, without loss of generality,
has been converted using standard techniques into an equivalent formula of logarithmic depth.
The main idea of the reduction is to replace each oft gate (respectively, AND gate) occurring in
this formula with a MAJ gate, one of whose inputs is wired to a distinct variable that, under the
target distribution, always has the value (respectively, 0). The resulting majority formula can
further be reduced to one that is read-once using the substitution method of Kearns et al. 15].
Finally, combined with Kearns and Valiant’s result that Boolean formulas are not learnable
(modulo cryptographic assumptions), this shows that majority formulas are also not learnable.

Despite the hardness of this class in the general distribution-free framework, we show
that the class is nevertheless exactly identifiable when examples are chosen from the uniform
distribution. The algorithm consists oftwo phases. In the first phase, we determine the relevant
variables (i.e., those that occur in the formula), their signs (i.e., whether they are negated or
not), and their levels. To achieve this goal, for each variable, we hard wire its value to and
estimate the amplification of the induced function at 2 using examples drawn randomly from
the uniform distribution on the remaining variables. Here, by "hard wiring" a variable to 1,
we really mean that we apply a filter that only lets through examples for which that variable
is 1. We prove that if the variable is relevant, then with high probability this estimate will

depending on whether the variable occurs negatedbe significantly smaller or greater than ,
Furthermore, the levelor unnegated in the formula; otherwise, this estimate will be near 7"

of a relevant variable can be determined from the amount by which the amplification of the
induced function differs from 7"

In the second phase of the algorithm, we construct the formula. More precisely, we first
construct the bottom level of the formula, and then recursively construct the remaining levels.
To construct the bottom level of the formula, we begin by finding triples of variables that
are inputs to the same bottom-level gate. To do this, for each triple of relevant variables that
have the largest level number, we hard wire the three variables to one and again estimate the
amplification of the induced function from random examples. We show that we can determine
whether the three variables all enter the same bottom-level gate based on this estimate.

Briefly, the recursion works as follows. When constructing level of the formula, if we
find that xi, xj, and xk are inputs to the same level-t gate, then in the recursive call we replace
Xi,Xj, andxk by a level-t metavariable y MA3(xi, xj, Xk). Since yis a known subformula, its
output on any example can be easily computed and y can be treated like an ordinary variable.
Furthermore, since is the fixed point for the amplification function of any read-once majority
formula, it follows that y is with probability 7" Thus, for the recursive call we replace all
triples of variables that enter level-t gates with metavariables, and we easily obtain our needed
source of random examples drawn according to the uniform distribution on the new variable
set from the original source of examples.

For the remainder of this section, we explore some of the properties of the amplification
function of read-once majority formulas, leading eventually to a proof of the correctness of
this algorithm.

LEMMA 3.1. Let X, X2, and X3 be three independent Bernoulli variables, each with
probability p, P2, and p3, respectively. Then Pr[MA3(X, X2, X3) 1] PP2 + PP3 +
P2P3 2p P2 P3.

Proof. The stated probability is exactly the chance that at least two of the three variables
are 1. [3

710 GOLDMAN, KEARNS, AND SCHAPIRE

lisafor any read-once majority formula f. Thus, 2Lemma 3.1 implies that Af(2) 2
fixed point of Aj.

meaning thatOur approach depends on the fact that the first derivative of Af is large at 2,
a slight perturbation of D(1/2) (i.e., the uniform distribution) tends to perturb the statistical
behavior ofthe formula sufficiently to allow exact identification. See Fig. for a graph showing
the amplification function for balanced read-once majority formulas of various depths.

0.9--

0,8--

0.7--

0.6"-

0.5

0,4

0.3

0.2

Af(p)

h=l

h=lO

0.1 0.2 0.3 0.4 0.5 0.6
0.0 P

0.0 0.7 0.8 0.9 1.0

FIG. 1. The amplification functionfor read-once majorityformulasfor complete ternary trees ofdepth h.

We perturb D(1/2) by hard wiring a small number of variables to be 1; such perturba-
tions can always be efficiently sampled by simply waiting for the desired variables to be
simultaneously set to in a random example from D(1/2).

We begin by considering the effect on the function’s amplification of altering the proba-
bility with which one of the variables xj is set to 1. This will be important in the analysis that
follows.

LEMMA 3.2. Let f be a read-once majorityformula, and let be the level ofan unnegated
1)variable xj. Thenfor q E {0, 1}, A flxs+__q(2) 2 + (2 (q 2)"

Proof. The proof is by induction on t. When 0, the formula consists of just the
variable xj, and the lemma holds. For the inductive step, let j], j, and j be the functions
computed by the three subformulas obtained by deleting the output gate of f; thus, f is just
the majority of j], j, and j. Note that xj occurs in exactly one of these three subformulas
assume it occurs in the first. Since xj occurs at level of this subformula, by the inductive
hypothesis, Aflxs+_q(1/2) (1/2) + (1/2)t-l(q (1/2)), and since xj does not occur in the

fori 2 3 From Lemma 3.1 it follows that A.flxj_q(2)other subformulas, A f,. Ix. +-q (1/2) 2
has the stated value, completing the induction. [3

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 711

It can now be seen how we use the amplification function to determine the relevant
variables of f: If xj is relevant, then the statistical behavior of the output of f changes
significantly when xj is hard wired to 1. Similarly, the sign and the level of each variable can
be readily determined in this manner.

THEOREM 3.3. Let f be a read-once majority formula of depth h. Let dt be an estimate

ofc A flxj<_l(1/2) for some variable xj, and assume that Id’ -o<1 < r < (1/2)h+2. Then"

xj is relevant ifand only if Idt -1 > r"

1.if xj is relevant, then it occurs negated ifand only if dt <

xj occurs at level ifand only iflld (1/2)1 (1/2)t+l < r.

Proof. This proof follows from straightforward calculations using Lemma 3.2.
Thus, if one estimates the value of the amplification function from a sample whose size

is polynomial in 2h, then with high probability we can determine which variables are relevant,
as well as the sign and level of every relevant variable. Specifically, we can apply Chernoff
bounds [12] to derive a sample size sufficient to ensure that all the above information is
properly computed with high probability. We therefore assume henceforth that the level of
every variable has been determined and that, (without loss of generality), all variables are
relevant and unnegated.

More problematic is determining exactly how the variables are combined in f. A natural
approach is to try hard wiring pairs of variables to 1, and to again estimate the amplification
of the induced function in the hopes that some structural information will be revealed. The
following lemma, that is useful at a later point, shows that this approach fails.

LEMMA 3.4. Let f be a read-once majority formula, and let Xi and xj be distinct,
unnegated variables that occur at levels tl and t2, respectively. Then

t+l t2+l
Aflx,,x.,-,<) + () + (1/21

regardless of the depth d of), F’ (xi, xj).
Proof. By induction on d. Let jq, f2, and J be the three subformulas of f that are inputs

to the output gate so that f MA)(J], j, j).
If d 0, then . is the output gate, and xi and xj occur in two of the subformulas (say, fi

and j, respectively). From Lemma 3.2, it follows that

tkAflxi,x/_,(1/2)- - + ()
The stated valuefor k 1, 2, and, since neither xi nor x is relevant to j, Af, lx,,xj+_ (1/2) 2"

for A Ylx; ,x. <--1 (7) follows then from Lemma 3.1.
If d > 0, then ,k is a gate occurring in one of the subformulas (say, j]) at level d of

the subformula. By inductive hypothesis,

Also, Aflx,,xj_(1/2) for k 2, 3. The stated value for Aflx,,x<__l(-) again follows from
Lemma 3.1. [

Thus, if two relevant variables are hard-wired to 1, no information is obtained by knowing
the value of the amplification function. That is, the amplification function is independent of
the level at which the two variables meet.

Therefore, we instead consider what happens when three relevant variables of the same
level are fixed to 1. In fact, it turns out to be sufficient to do so for triples of variables, all of
which occur at the bottom level of the formula. We show that by doing so we can determine
the full structure of the formula.

712 GOLDMAN, KEARNS, AND SCHAPIRE

For each triple Xi, Xj, and xk all occurring at level t, there are essentially two cases to
consider; either

1. the triple xi, xj, xk does not meet in the formula; or
2. the three variables xi, xj, and xk meet at the gate F (xi, xj, xk). We divide this case

into two subcases:
(a) xi, xj, and xk are inputs to the same gate so that 1" (xi, xj, xk) occurs at level

t- 1;or
(b) F (xi, xj, xk) occurs at some level d < 1.

We are interested in separating Case 2(a) from the other cases by estimating the amplification
of the function when all three variables are hard wired to 1. This is sufficient to reconstruct the
structure of the formula: If we can find three variables that are inputs to some gate (and there
must always exist such a triple), then we can essentially replace the subformula consisting of
the three variables and the gate) by a new metavariable whose value can easily be determined
from the values of the original three variables. Furthermore, since 7 is a fixed point for all
read-once majority formulas, the metavariables’ statistics will be the same as those of the
original variables. Thus, the total number of variables is reduced by two, and the rest of the
formula’s structure can be determined recursively.

The following two lemmas analyze the amplification of the function when three variables
are hard wired to in both of the above cases. We begin with Case 2.

LEMMA 3.5. Let f be a read-once majorityformula. Let xi, xj, and xk be three distinct,
unnegated inputs that occur at levels t, t2, and t3, respectively, and which meet at gate
) F (xi, xj, xk). Let d be the level of ,k. Then

t+l t2+l t3+l t+t+t3-2d-IA flxi,xj,x,’(1/2) 7 + (7) q-(7) q-(1/2) --(7)

Proof. The proof is by induction on d. As in the preceding lemmas, suppose f
MAJ(J], J, J). Ifd 0, then ,k is the output gate of f and, without loss of generality, xi, xj,
and xk occur one each in J], j, and J, respectively. From Lemma 3.2, Af,.ix,.,x.;,x -1 (1/2)
(1/2) + (1/2)tr, for r 1, 2, 3. The stated value for Aflx,,x,x (1/2) follows from Lemma
3.1.

If d > 0, then one of the subformulas (say, J]) contains) at depth d 1. By inductive
hypothesis,

t2 t3 tt+tz+t3-2d-2A f, lxi,xj,x,’(1/2) 7 q- (7) t’ -- () + (1/2) -(7)

for r 2, 3 The proof is completed by again applyingand of course, AU,.I;,.,_ (1/2) 7
Lemma 3.1.

So, unlike the situation in which only two variables are hard wired to 1, here the value
of the amplification function depends on the level of the formula at which the three variables
meet. However, it may be the case that x, xj, and xk do not meet at all (i.e., we may be in
Case 1). The next lemma considers this case.

LEMMA 3.6. Let f be a read-once majorityformula. Let xi, xj, and xk be three distinct,
unnegated inputs that occur at levels tl t2, and t3, respectively, andfor which)’ F (Xi Xj)
F(xi, xj, x,) ,k. Then

t+l _1 ,t2+l t3+l
Aflx,,x,x-(7) 7 + (7) + (:z, + (1/2)

regardless of the levels d and d’ ofgates and U.
Proof. The proof is by induction on d. As before, assume that f MA.(J], J, J).

If d 0, then) is the output gate,)’ occurs (say) in j], and xk in f2. From Lemma

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 713

3.4, AAixi,x.j,xk_l(1/2) (1/2) + (1/2)t’ -)- (1/2)t2, and from Lemma 3.2, Af21xi,.j,x<.l
(1/2) (1/2) + (1/2)t3. Also, Af.,lx,x/,xk-(1/2) (1/2). Lemma 3.1 then implies the
stated value for Aflx,x.i,x <--1 (1/2).

If d > 0, then , occurs, say, in f. By the inductive hypothesis, AAI,j,
_

(1/2)
(1/2) + (1/2) t’ -4- (1/2) t2 + (1/2)t3, and clearly Afl;,xj,_l (1/2) (1/2) for r 2, 3. An
application of Lemma 3.1 completes the induction. [3

Combining these lemmas, we can show that Case 2(a) can be separated from the other
cases by estimating the function’s amplification with triples of variables hard wired to 1.

THEOREM 3.7. Let f be a read-once majority formula. Let xi, xj, and xk be three
distinct, unnegated, level-t inputs. Let dt be an estimate of or Aflx,x,x_ (1/2 for which

Io oil < r < 3(1/2)t+4. Then xi, xj, and xk are inputs to the same gate off ifand only if
o < (1/2) + (1/2) + r.

Proof. If Case 2(a) applies, then Lemma 3.5 implies that ot (1/2) + (1/2)t. Otherwise,
if either Case or 2(b) applies, then Lemmas 3.5 and 3.6 imply that ot >_ (1/2) + (1/2) +
3(1/2)+3. The theorem follows immediately. [3

We are now ready to state the main result of this section.

THEOREM 3.8. There exists an algorithm with thefollowing properties: Given h, n, 6 > O,
and access to examples drawn from the uniform distribution on {0, }" and labeled by any
read-once majorityformula f ofdepth at most h on n variables, the algorithm exactly identifies
f with pvbability at least 3. The algorithm’s sample complexity is O(4h log(n/g)), and
its time complexity is O(4h (r + n). log(n/g)), where r is the number ofrelevant variables
appearing in the targetformula.

Proof First, for each variable xi, estimate the function’s amplification with xi hard-wired
to 1. (We will ensure that, with high probability, this estimate is within (1/2)h+2 of the true

amplification.) It follows from Theorem 3.3 that after this phase of the algorithm, with high
probability we know which variables are relevant, and we know the sign and depth of each
relevant variable. (So, we assume from now on that the formula is monotone.)

In the second phase of the algorithm, we build the formula level by level from bottom to
top. To build the bottom level, for all triples of variables xi, xj, xk that enter the bottom level,
we estimate the amplification with xi, xj, and xk hard wired to 1. (We will ensure that, with
high probability, this estimate is within 3(1/2)+4 of the true amplification.) It follows from
Theorem 3.7 that we can determine which variables enter the same bottom-level gates.

We want to recurse to compute the other levels; however, we cannot hard wire too many
variables without the filter requiring too many examples. The key observation is that on exam-
ples drawn from the uniform distribution, the output of any subformula is with probability .
Thus, the inputs into any level are in fact distributed according to a uniform distribution. Since
we compute the formula from bottom to top, the filter can just compute the value for the known
levels to determine the inputs to the level currently being learned. Our algorithm is described
in Fig. 2.

Given that the estimates for the formula’s amplification have the needed accuracy, the
proof of correctness follows from Theorems 3.3 and 3.7. To compute the actual sample size
needed to make these estimates, we use Hoeffding’s inequality 12] (also known as a form of
Chemoff bounds) as stated in the following lemma.

LEMMA 3.9 (Hoeffding’s Inequality). Let XI Xm be a sequence of rn independent
Bernoulli trials, each succeeding with probability p. Let S Xl + + Xm be the random
variable describing the total number of successes. Thenfor 0 < ’ < 1, thefollowing holds:

Pr[IS- pml > vm] < 2e-:m2.

714 GOLDMAN, KEARNS, AND SCHAPIRE

LearnMa jorityFormula(n, h, 6)
m +- 228 4 In(8n/6)
E <-- {m labeled examples from D(1/2)

X<--0
forl <i <n

E’ <-- examples from E for which xi
o +- fraction of E’ that are positive

h+2if Io} [I > (1/2) then
if o} > [then X <-- X t {xi}

else X +- X t {)i
t(xi) +- compute-level(, h)

BuildFormula(h, X, E)

BuildFormula(t, X, E)
if 0 then the target formula is the only variable in X
else

for all distinct triples xi, xj, xk E X for which t(xi)--t(xj)--t(xk)
E’ <--- examples from E for which X Xj Xk
o} +-- fraction of E’ that are positive

)t t+4ifo < [+(+3(1/2) then
let y MAJ(xi, xj, xk) be a new variable
(y) +-
X <---- (X[,_J {y}) {xi,xj, xk}

BuildFormula(t 1, X, E)

FIG. 2. Algorithm for exactly identifying read-once majority formulas of depth h. Procedure
compute-level((}, h) computes the level associated with as given by Theorem 3.3.

In the first phase of the algorithm, for each variable Xi, we need a good estimate d of
ot Aflxi<_ (1/2); specifically, we require that the chosen sample be sufficiently large that

lot -(] < 2-(/+2) with probability at least 3/2n. Then every such estimate for the n
variables will have the needed accuracy with probability at least 3/2.

Using Hoeffding’s inequality it can be shown that a filtered sample (i.e., the sample after
all examples are removed for which xi 0) of size m > 8 4h ln(8n/3) is sufficiently large
to ensure that the estimate c has the needed accuracy with probability at least 3/4n. Again
using Hoeffding’s inequality, it can be shown that if we draw an (unfiltered) sample of size at
least max{4ml, 8 ln(4/3)} then with probability at least 3/4n, at least one quarter of the
examples chosen will be such that xi 1, and thus, the filtered sample will have size at least
m. So by using a sample of size exceeding 32.4 ln(8n/3), all of the estimates satisfy the
requirements for the first phase of the algorithm with probability at least 3/2.

In the second phase, we require good estimates of the formula’s amplification when triples
of variables are hard wired. In fact, we need such estimates not only when ordinary variables
are hard wired, but also when we hard wire metavariables. Note that, assuming all estimates
have the needed accuracy, every (meta-)variable added to the set X in Fig. 2 in fact computes
some subformula g of f. Thus, for every triple of subformulas g, g2, and g of f, our

given that the output ofalgorithm requires an estimate o} of ot, the amplification of f at [,
each subformula g, g2, and g3 is fixed to the value 1. Since a read-once majority formula on
n variables has at most 3n/2 subformulas (since it has at most n/2 MAJ gates), we require a
sample sufficiently large that lot -[< 3(1/2)+4 with probability at least -43/27n. The
chance that all of the (at most (3n/2)) estimates have the needed accuracy is then at least

3/2. The analysis is similar to that given above, yielding the sample size stated in the
figure.

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 715

Finally, the time complexity follows from the fact that LearnMajorityFormula
makes n estimates from the sample and BuildFormula makes O(r3) estimates from the
sample.

Note that our algorithm’s sample complexity has only a logarithmic dependence on the
number of irrelevant attributes. Also, it follows immediately from Theorem 3.8 that any
read-once majority formula of depth O (log n) can be exactly identified in polynomial time.

Finally, we note that our algorithm can be modified to work without receiving a bound for
the height of the formula as input; the time and sample complexity only increase by a factor
of two. The idea is to guess an initial value of h and to increment our guess each time
the algorithm fails; it can be shown that, if the formula’s height is greater than our current
guess, then this fact will become evident by our algorithm’s inability to successfully construct
a formula. (Specifically, the algorithm BuildFormula in Fig. 2 will reach a point at which
there remain level-t variables in X, but no three remaining level-t variables are immediate
inputs to the same gate.)

4. Exact identification of read-once positive N A N D formulas. In this section we use
the properties of the amplification function to obtain a polynomial-time algorithm that, with
high probability, exactly identifies any read-once positive NAND formula of logarithmic depth
from D() where is the constant (/- 1)/2 0.618. Note that 1/b q 1, where
4 is the golden ratio.

As noted earlier, the class of read-once positive NAND formulas is equivalent to the class
of read-once formulas constructed from alternating levels of OR/AND gates, starting with an
OR gate at top level, and with the additional condition that each variable is negated if and only
if it enters an oR gate.

We show that this class of formulas is learnable when examples are chosen from a dis-
tribution in which each variable is with probability . The basic structure of the algorithm
is just like that of the preceding algorithm for identifying read-once majority formulas. In
the first phase of the algorithm, we determine the relevant variables and their depths by hard
wiring each variable to 0, and estimating the amplification of the induced function at 7t using
random examples from D(). In the second phase of the algorithm, we construct the formula
by finding pairs of variables that are direct inputs to a bottom-level gate. Here, we show that
this is possible by hard wiring pairs of variables to 0 and estimating the function’s amplifi-
cation. After learning the structure of the bottom level of the formula, we again are able to
construct the remaining levels recursively.

Since the techniques used in this section are so similar to those in 3, the proofs of
the lemmas and theorems have been omitted. Most of the lemmas can be proved by simple
induction arguments as before.

We turn now to a discussion of some of the properties of the amplification function of
read-once positive NAND formulas; these lead to a proof of the correctness of our algorithm.

LEMMA 4.1. Let X and X2 be independent Bernoulli variables, each with probability
Pi and p2, respectively. Then Pr[NAND(XI, X2) 1] p P2.

It is easily verified that 2 , and thus that is a fixed point of the amplification
function Af whenever f is a read-once positive NAND formula. Once again, our approach
depends on the fact that slight perturbations of D<) tend to perturb the statistical behavior of
the formula sufficiently to allow exact identification.

LEMMA 4.2. Let f be a read-once positive NANDformula, and let be the level ofsome
variable Xj. Then A fix. +-q (lr) -}- (q 7’) (- 7’)t.

Thus, hard wiring an even-leveled input to 0 decreases the amplification while hard wiring
an odd-leveled input to 0 increases the amplification. To give some intuition explaining this
behavior, consider the correspondence described above between read-once positive NAND

716 GOLDMAN, KEARNS, AND SCHAPIRE

formulas and leveled OR/AND formulas. An even-leveled input corresponds to an input to an
AND gate and thus hard wiring that input to 0 clearly decreases the amplification. However,
an odd-leveled input corresponds to an input that is first negated and then fed to an OR gate;
thus, this case corresponds to hard wiring the input to an OR gate to which clearly increases
the amplification function.

As we saw in the last section, the amplification function can be used to determine the
relevant variables of f: if xj is relevant then the statistical behavior of the output of f changes
significantly when xj is hard wired to 0. Similarly, the level of each variable can be computed
in this manner.

THEOREM 4.3. Let f be a read-once positive NAND formula of depth h. Let fit be an
estimate of ot AflxjO() for some variable xj, and assume that lift -otl < r < h+l /2.
Then:

xj is relevant ifand only if lift l > r;

xj occurs at level ifand only if l + (-)t+l o1 < r.

We next consider the effect on the amplification function of hard wiring two inputs.
Unlike the case of majority formulas, measuring the amplification of the function when pairs
of variables are hard wired to 0 reveals a great deal of information about the structure of the
formula. In particular, the value of the amplification function when two level-t variables xi
and xj are hard wired to 0 depends critically on the depth of F (xi, xj).

LEMMA 4.4. Let f be a read-once positive NANDfOrmula, and let xi and xj be two distinct
variables that occur at levels t and t2, respectively, andfor which X I(xi, xj) is at level
d. Then

A.fl;,x;_o() 7t + (-Tt)t’+l + (-Tt)t+

Using the same ideas as in the last section, it can now be proved that, given a good estimate
of the amplification function, we can determine which variables meet at bottom-level gates.

THEOREM 4.5. Let f be a read-once positive NANDformula. Let xi and xj be two level-t
inputs. Let be an estimate of ot A flx,x.j,__o() for which Io-or/ < r < rt+3/2. Then xi
and xj are inputs to the same level-(t 1) gate off ifand only if l + (_)t+l fftl < r.

We are now ready to state the main result of this section.
THEOREM 4.6. Let p 1/b (,/ 1)/2. Then there exists an algorithm with the

following properties: Given h, n, 6 > O, and access to examples drawnfrom the distribution
D(’) on {0, }", and labeled by any read-once positive NANDformula f ofdepth at most h on
n variables, the algorithm exactly identifies f with probability at least 6. The algorithm’s
sample complexity is O(b2h. log(n/6)), and its time complexity is O(qb2h (r2 4-n). log(n/3)),
where r is the number of relevant variables appearing in the targetformula.

Our algorithm is modifying both BuildFormula and LearnMa jorityFormula in
a straightforward fashion. The proof that this algorithm is correct follows from the preceding
lemmas and theorems, and is similar to the proof of Theorem 3.8.

As before, it follows immediately that any read-once positive NAND formula of depth at
most O(log n) can be exactly identified in polynomial time.

5. Short universal identification sequences. In this section we describe an interesting
consequence ofour results. Observe that ifwe regard our algorithms’ use of afixed distribution
as a form of"random" membership queries, then it is apparent that these queries are nonadap-
tive; each query is independent of all previous answers. In other words, our algorithms pick
all membership queries before seeing the outcome of any. From this observation we can apply
our results to prove the existence of polynomial-length universal identification sequences for
classes of formulas; that is, fixed sequences of instances that distinguish all concepts from one
another.

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 717

More formally, we define an instance sequence to be an unlabeled sequence of instances,
and an example sequence to be a labeled sequence of instances. Let Cn be a concept class.
We say an instance sequence S distinguishes a concept c if the example sequence obtained
by labeling S according to c distinguishes c from all other concepts in Cn; that is, c is the
only concept consistent with the example sequence so obtained. A universal identification
sequence for a concept class Cn is an instance sequence that distinguishes every concept c E C.

In the language used in the related work of Goldman and Kearns [8], a sequence that
distinguishes c would be called a teaching sequence for c. Thus, in their terminology, a
universal identification sequence is one that acts as a teaching sequence for every c E C,. See
also the related work of Shinohara and Miyano [22].

The following theorem gives general conditions for when a deterministic exact identifica-
tion algorithm implies the existence of a polynomial-length universal identification sequence.
We then apply this theorem to our algorithms of the previous sections.

THEOREM 5.1. Let Cn be a concept class with cardinality ICnl _< 2pn), where p(n) is
some polynomial. Let A be a deterministic algorithm that, given > 0 and random, labeled
examples drawnfrom somefixed distribution D, exactly identifies any c C, with probability
exceeding . Furthermore, suppose that the sample complexity of A is q(n) logk(1/3)
for some polynomial q (n) and constant k. Then there exists a polynomial-length universal

identification sequence for C. Specifically, there exists such a sequence of length q(n)
(p(n)).

Proof. The proof uses a standard probabilistic argument. Fix c 6 Cn, and let S be
the random example sequence drawn by algorithm A. Since algorithm A achieves exact
identification of c with probability exceeding we have that the probability, taken over all
random example sequences for c, that A fails to exactly identify the particular target concept
c is less than . Letting 2-pn) it follows that the probability, taken over all random
instance sequences, that A fails to identify any target concept in Cn is less than ICnl <_ 1.
Thus, with positive probability, an instance sequence of length q(n)(p(n)) drawn randomly
from D causes A to exactly identify any c 6 C. Call such a sequence good. Therefore there
must exist some good instance sequence S of this length.

We now show that a good S distinguishes all c 6 C. For c E C, let S be the example
sequence obtained by labeling S according to c. Suppose some c’ 6 C is consistent with Sc
so that Sc Sc,. Since S is a good sequence and since A is a deterministic exact identification
algorithm, it follows that on input Sc, A must output c and on input S, S, A must output c’.
Clearly this can only be true if c c’. Thus c must be the only concept in Cn that is consistent
with Sc. [3

Applying this theorem to our exact identification algorithms, we obtain the following
corollary.

COROLLARY 5.2. There existpolynomial-length universal identification sequencesfor the
classes of logarithmic-depth read-once majority formulas and logarithmic-depth read-once
positive NANDformulas.

6. Handling random misclassification noise. Because the algorithms described in 3
and 4 are statistical in nature, they are easily modified to handle a considerable amount ofnoise.
In this section, we describe a robust version of our algorithm for learning logarithmic-depth
read-once majority formulas. Although omitted, a similar (though slightly more involved)
algorithm can be derived for NAND formulas.

Our algorithm is able to handle a kind of random misclassification noise that is similar,
but slightly more general than that considered by Angluin and Laird [2] and Sloan [23].
Specifically, the output of the target formula is "flipped" with some fixed probability that may
depend on the formula’s output. Thus, if the true, computed output of the formula is 0, then

718 GOLDMAN, KEARNS, AND SCHAPIRE

the learner sees 0 with probability 00, and with probability 0o, for some quantity 00.
Similarly, a true output of is observed to be 0 with probability 01 and with probability

01. When 00 01, this noise model is equivalent to that considered by Angluin and
Laird, and Sloan. Note that when 00 + 01 1, outputs of 0 or are entirely indistinguishable
in an information-theoretic sense. Moreover, we can assume without loss of generality that

0o + 01 _< by symmetry of the behavior of the formula f with its negation f.
If we regard our algorithm’s use of a fixed distribution as a form of membership query,

we can also handle large rates of misclassification noise in the queries. Here the formulation
of a meaningful noise model is more problematic. In particular, we wish to disallow the
uninteresting technique of repeatedly querying a particular instance in order to obtain its true
classification with overwhelming probability. Thus, we consider a model in which noisy labels
are persistent." For each instance x, on the first query to x, the true output of the target concept
is computed and is reversed with probability 00 or 01, according to whether the true output is
0 or (as described above). However, on all subsequent queries to x, the label returned is the
same as the label returned with the first query to x. A natural interpretation of such persistent
noise is that of a teacher who is simply wrong on certain instances, and cannot be expected
to change his mind with repeated sampling. This kind of persistent noise is not a problem for
our algorithms because, when n is large, the algorithm is extremely unlikely to query the same
instance twice.

Our algorithm assumes that 0o + 0 is bounded away from so that 00 / 01 < p
for some known positive quantity p. The error rates themselves, 00 and 01, are assumed to
be unknown. Our algorithm exactly identifies the target formula with high probability in time
polynomial in all of the usual parameters, and 1/p.

Our robust algorithm has a similar structure to that of the algorithm described previously
for the noise-free case: The algorithm begins by determining the relevance and sign of each
variable. However, it is not clear at this pointhow the level ofeach variable might be ascertained
in the presence of noise. Nevertheless, it turns out to be possible to find three bottom-level
variables that are inputs to the same gate. As before, once such a triple has been discovered,
the remainder of the formula can be identified recursively.

To start with, note that if p is the probability that a is output by the target formula f
under some distribution on {0, }n, then the probability that a is observed by the learner is

p(1 0) + (1 P)00 P(1 0o 01) +
Thus, ly(p) Af(p) (1 00 01) / 0o is the probability that a is observed when each
input is with probability p. Under the uniform distribution, a is observed with probability

.f(). Since 0o and 0 are unknown, is unknown as well. However, an accurate

estimate (say, within (R)(p/2h) of) can be efficiently obtained in the usual manner by
sampling.

The next lemma shows that a variable xi’s relevance and sign can be determined by hard
wiring it to and comparing to an estimate of the value ot A flxi --1 ().

LEMMA 6.1. Let f be read-once majorityformula ofdepth h. Let and dt be estimates of
Ay()~ and ot 4 flxj +--1 (’1), for some variable xj. Assume lot 1 < r and I l < r

for some < p/2+3. Then:
xj is relevant ifand only ifldt [> 2r;

ifxj is relevant, then it occurs negated ifand only if dt < .
Proof. Note that ot- (1 0o- 01)(Aflx.;-I (1/2)- 7). The lemma then follows from

Lemma 3.2, and by noting that 0o 01 /9. [--]

More difficult is the problem of determining the level of each variable since 0o and 0
are unknown. Nevertheless, it turns out to be possible to identify the formula without first

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 719

determining the level of each variable. In particular, we can determine a triple of variables
that are inputs to the same bottom-level gate. As described in 3, once this is done, the three
variables can be replaced by a metavariable, and the rest of the formula can be constructed
recursively. Thus, to complete the algorithm, we need only describe a technique for finding
such a triple.

From the comments above, we can assume, without loss of generality, that all variables
are relevant and unnegated. The key point, to be proved, is the following: flx,x,xl (5)
is minimized over triples xi, xj, and xk whenever the three variables are inputs to the same
bottom-level gate. Thus, such a triple can be found by estimating .flxi,x;,x.- (1/2) for each
triple and choosing the one with the smallest estimated value.

LEMMA 6.2. Let f be a monotone, read-once majorityformula ofdepth h. For all triples
of distinct indices i, j, and k, let llijk be an estimate of cijk A flxi,x;,x (5), and assume
that Ioeijk dijk[< r _< 3p/2h+4. Suppose that dq. min{oijk i, j, k distinct}. Then Xq,
x and Xs are bottom-level variables that are inputs to the same gate.

Proof. From Lemma 3.5, if xi, xj, and xk are bottom-level variables that are inputs to the
same gate, then

Otherwise, Lemmas 3.5 and 3.6 imply that

(1 1)h +3)olijk (1 ri0- ril) 5 -- (5 _ql_ 3 (5) -- rio.

Furthermore, since rio ri1 P we get that

h)oijk > (1 rio ri1) 5 ’3k- (5) -3
t- 0 + 3p/2+3.

Since each llijk is accurate to within 3p/2+4, it follows that llqr can be minimal only if Xq,
x, and xs are bottom-level inputs to the same gate.

Thus, Lemma 6.2 gives a technique for finding bottom-level inputs to the same gate and,
as previously mentioned, the remainder of the formula can be constructed recursively as in

3. We thus obtain the main result of this section.
THEOREM 6.3. There exists an algorithm with the following properties: Given h, n,

p > O, > O, and access to examples drawnfrom the uniform distribution on {0, }n, labeled
by a read-once majorityformula f ofdepth at most h on n variables, and misclassified with
probabilities rio and ri1 (as described above)for rio+ ri < -p the algorithm exactly identifies
f with probability at least -8. The algorithm’s sample complexity is O((4/102) log(n/g)),
and its time complexity is O((4/p2) (n + r3) log(n/3)), where r is the number ofrelevant
variables appearing in the targetformula.

Finally, we comment that our algorithms can be extended to handle a modest amount of
malicious noise. In this model, first considered by Kearns and Li 14], an adversary is allowed
to corrupt each example in any manner he chooses (both the labels and the variable settings)
with probability ri. We can show that the algorithm described in 3 for majority formulas can
handle malicious error rates as large as (R)(2-h) where h is the height of the target formula.
Thus, for logarithmic-depth formulas, we can handle malicious error rates up to an inverse
polynomial in the number of relevant variables. Similar results also hold for NAND formulas.

The extension ofthe algorithm to handle malicious noise is straightforward. The algorithm
of 3 depends only on accurate estimates of the amplification of f when some of f’s inputs
are hard wired. For instance, in the first phase of the algorithm, we need to estimate, for

720 GOLDMAN, KEARNS, AND SCHAPIRE

each input Xi, the amplification ot Aflx,l (). This quantity is really just the conditional
probability

Pr[f- 1/xxi- 1]
Pr[f lxi 1] 2. Pr[f 1/x xi- 1]

Pr[xi 1]

where the probabilities are computed with respect to the uniform distribution. Thus, we can
compute an estimate of oe using an estimate for/3 Pr[f 1/x xi]. Note that malicious
noise can affect this probability/3 by at most an additive factor of 0; that is, the chance that

f and xi (in the presence of malicious noise) is at least/3 r/and at most
Thus, using Hoeffding’s inequality (Lemma 3.9), an estimate of/3 that is accurate to

within r/+ r can be obtained from a sample of size polynomial in 1/r (with high probability).
Such an estimate for/3 yields an estimate for c that is accurate to within 2(r/+ r).

A similar argument can be made for computing the estimates required in the second phase
of the algorithm. Since Theorems 3.3 and 3.7 show that the required estimates need only be
accurate to within 3/2h+4, it follows that a malicious error rate of, say, one-sixteenth this
amount can be tolerated without increasing the algorithm’s complexity by more than constant
factors.

7. Learning unbounded-depth formulas. In this final section, we describe extensions
of our algorithms to learn formulas of unbounded depth in Valiant’s PAC model with respect
to specific distributions. As in the last section, we focus only on majority formulas, omitting
the similar application of these techniques to NAND formulas.

For formulas of unbounded depth, exact identification from the uniform distribution in
polynomial time is too much to ask; for purely information-theoretic reasons, at least (2h)
examples must be drawn from the uniform distribution to exactly identify a majority formula
of depth h. This can be proved by showing (say, by induction on h) that if xi occurs at

level h of formula f, then 2- is the probability that an instance is chosen for which the
output of f depends on xi (i.e., for which f’s output changes if xi is flipped). Thus, f2 (2h)
random examples are needed simply to determine, for example, whether xi occurs negated or

unnegated.
Therefore, to handle arbitrarily deep formulas, we must relax our requirement of exact

identification. Instead, we adopt Valiant’s criterion of obtaining a good approximation of
the target concept (with high probability). As before, our algorithms do not work for all
distributions, just the fixed-point distribution. We describe an algorithm that, given e, 6 >
0, and access to random examples of the target majority formula drawn from the uniform
distribution, outputs with probability 6 an e-good hypothesis; that is, one that agrees
with the target formula on a randomly chosen instance from the uniform distribution with

probability at least e. Furthermore, the running time is polynomial in 1/5, 1/e, and the
number of variables n.

We begin by briefly discussing the main ideas of the algorithm. First, as noted above,
variables that occur deep in the formula are unimportant in the sense that their values are
unlikely to influence the formula’s output on a randomly chosen instance. Intuitively, we
would like to take advantage of this fact by somehow treating such variables as irrelevant.
However, they cannot be simply deleted from the formula without leaving "holes" that must
in some way be handled.

We therefore introduce the notion of a partially visible function. This is a function on
a set of visible variables whose values can be observed by the learner, and a set of hidden

1Alternatively, the algorithm recently described by Schapire [21] could be used to PAC learn unbounded-depth
N A N D formulas. His algorithm is more general but less efficient than the approach described in this section.

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 721

variables that are not observable. With respect to a distribution on the set of assignments to
the hidden variables, we say that two partially visible Boolean functions are equivalent if, for all
assignments to the visible variables, the probabilities are the same that each function evaluates
to (where the probabilities are taken over random assignments to the hidden variables). In
other words, the behaviors of the two functions are indistinguishable with respect to the visible
variables.

Thus, we handle all deep variables by regarding them as hidden variables, and the target
formula as one that is partially visible. In particular, insignificant variables--those that occur
below level h [log(n/2e)q--are considered hidden and their actual values ignored. We call
the partially visible formula obtained from the target formula f in this manner the truncated
target.

Our algorithm works by exactly identifying the truncated target; that is, by constructing a
partially visible formula f’ that is equivalent to it (in the sense described above, with respect to
the uniform distribution). It will be shown that f and f’ agree on a randomly chosen instance
with probability at least e, and therefore f’ is an e-good hypothesis satisfying the PAC
criterion.

It remains then only to show how f’ can be constructed. First, observe that by Lemma 3.2
all significant variables occurring in f can be detected (and their signs and levels determined)
in polynomial time. Moreover, by arguments similar to those given in 3, it can be shown
that if some triple of significant variables meet at a gate, then the level of that gate can be
detected from the amplification function by hard wiring the three variables to 1. We call this
information (the level and sign of each significant variable, and the level at which each triple
of significant variables meet, if at all) the formula’s schedule. It turns out that the schedule
alone is sufficient to fully reconstruct the partially visible formula f’, as is shown below.

These then are the main ideas of the algorithm. What follows is a more detailed exposition.
A partially visiblefunction f(x y) is a Boolean function f on a set of visible variables

x x...xr, and a set of hidden variables y yl’"ys. Two partially visible functions

f(x y) and g(x z) on the same set of visible variables are equivalent with respect to distri-
butions D and E on the domains of y and z if, for all x, Pr[f(x Y) Pr[g(x Z)],
where Y and Z are random variables representing a random assignment to y and z according
to D and E. In the discussion that follows, we will only be interested in uniform distributions.

As described above, our algorithm regards variables that occur deep in the target formula
as hidden variables. The next two lemmas show that two partially visible read-once majority
formulas that are identical, except for some deep hidden variables, are very likely to produce
the same output on randomly chosen inputs.

LEMMA 7.1. Let f be a read-once majorityformula on n variables. Let be the level ofxn
in f Let Xl Xn-1, Y and Z be independent Bernoulli variables, each with probability
1/2. Then Pr[f(Xl Xn-l, Y) :/: f(X Xn-l, Z)] 2-t-.

Proof. The proof is by induction on t. If 0, then f is the function xn and since
Pr[Y :/- Z] 1/2, the lemma holds. If > 0, then let f MAJ(fl, f2, j), and suppose
that Ji is the subformula in which x, occurs. Since x, does not also occur in j or j, we
will regard these as functions only on the remaining n variables. It is not hard to see
then that f(X X,-I, Y) (= f(X X,_, Z) if and only if j(Xl,..., Xn_) -f3(X X,-1) and f (X1 X,_, Y) 7 fl (X X,_, Z). Since j and j each
output independently with probability 1/2, we have

Pr[f2(Xl X,_) f3(Xt X,_)] 1/2.

Also, by inductive hypothesis,

Pr[j’q (X, X,_l, Y) :fi fl (XI X,-l, Z)] 2-t.

722 GOLDMAN, KEARNS, AND SCHAPIRE

The lemma then follows by independence. [

LEMMA 7.2. Let f be a read-once majority formula on n variables. Let ti be the level

ofvariable xi in f Let XI Xn, Xtl Xt, r < n, be independent Bernoulli variables,
each with probability 1/2. Then

Proof. The proof is by induction on r. If r 0, then the lemma holds trivially. For r > 0,
we have

Pr{f(X Xn) f(X Xr, Xr+ X)]
< Pr{f(X X,) # f(X’ X’_, X X,)]

+ Pr{f(X’ X’_,, X Xn) f(X’ X’r, X+I X,)]
r--I

< Z 2-ti- + 2-t"-
i--1

where the last inequality follows from our inductive hypothesis as well as from the preceding
lemma. q

As proved below, Lemma 7.2 implies that any partially visible formula is an -good
hypothesis if it is equivalent to the truncated target, the partially visible formula obtained from
the target formula by regarding all variables at or below level h log(n/2) as hidden
variables. Given an assignment to the visible variables, such a hypothesis is evaluated in the
obvious manner by choosing a random assignment to the hidden variables and computing the
output of the formula on the combined assignments to the hidden and visible variables. (Thus,
the hypothesis is likely to be randomized.)

LEMMA 7.3. Let > O, and let f be a read-once majority formula on n variables. Let
x x ...x be the variables occurring above level h [log(n/2)], and let y y yn_
be the remaining variables. Let g(x z) be any partially visible formula equivalent to the
partially visible formula f(x y). Then Pr[f(X" Y) 5/: g(X" Z)] < , where X, Y, and Z
are random variables representing the uniformly random choice of assignments to x, y, and
z; that is, g(x z) is an -good hypothesisfor f

Proof. Let Y’ be a random variable representing a random assignment to y, chosen
independently of Y. Since f(x y) is equivalent to g(x z), we have

Pr[f(X" Y) g(X" Z)]- Pr[f(X" Y) f(X" Y’)].

By Lemma 7.2, the right-hand side of this equation is bounded by , since each of the n r < n
variables yi occurs at or below level h in f.

For > 0 and target formula f, we will henceforth say that variables occurring above
level h [log(n/2)q are significant. Note that Theorem 3.3 implies that the significance,
sign, and level of any variable xj can be determined by hard wiring that variable to 1, as usual.
More specifically, if o is an estimate of o Aflx;_ (7) for which

then xj is significant if and only if

h+l

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 723

and, if it is significant, then its sign and level can be determined as in Theorem 3.3.
Similar to Theorem 3.7, we can show that, for any triple of significant variables, we can

determine the level of the gate at which the triple meets, if at all. More precisely, if xi, xj,
and xk are three unnegated variables occurring at levels t, t2, and t3, and if o is an estimate
of c A f]xi,xj,x,, --1 (1/2) for which]o o < T _< 2-3h, then it follows from Lemmas 3.5 and
3.6 that xi, xj, and xk meet at a level-d gate if and only if

As mentioned above, we call the sum total of this information--the significance of each
variable, the level and sign of each significant variable, and the level of the gate at which
each triple of significant variables meet, if at all--the formula’s schedule. It remains then
only to show how an -good hypothesis can be constructed from the schedule. Specifically,
we show how to construct a partially visible formula that is equivalent to the truncated target
f(x y). (Here, x is the vector of visible (i.e., significant) variables, and y is the vector of
hidden (insignificant) variables.)

Suppose first that no three visible variables meet in f. Such a formula is said to be
unstructured. Although, strictly speaking, f cannot be unstructured (by our choice of h), this
special case turns out nevertheless to be important in handling the more general case since

subformulas of f may be unstructured.
Lemma 7.4 below shows that an unstructured formula f(x y) is equivalent to any other

unstructured partially visible formula whenever each visible variable occurs at the same level
with the same sign in both formulas. Thus, unstructured formulas are not changed when
visible variables are moved around within the same level. This fact makes the identification
of unstructured formulas from their schedules quite easy. For any partially visible read-once
majority formula f(x:y), let pf(x) Pr[f(x:Y) 1] where Y represents a random
assignment to y.

LEMMA 7.4. Let f(x y) and g(x z) be unstructured read-once majorityformulas on s

visible variables. Suppose that each visible variable xj is relevant and occurs at the same level
tj with the same sign in bothformulas. Then the two partially visibleformulas are equivalent.

Proof. It suffices to prove the lemma when no visible variable is negated since negated
variables can simply be replaced by unnegated metavariables.

To prove the lemma, we show that

2-t;(1) pf(x) + (xi).
i=1

Since this statement applies to any unstructured formula, it follows immediately that pf(x)
pg(x) and the two partially visible formulas are equivalent.

We prove equation (1) by induction on the height h of f. If h 0, then f consists of
a single visible or hidden variable. If f is the formula xj, where xj is some visible variable,
then pf(x) xj, satisfying (1). If f is the formula yj, where yj is a hidden variable, then
pf(x) 7, also satisfying (1).

If h > 0, then let f MAJ(f, J, J) where j], J, and j are partially visible sub-
formulas. Since f is unstructured, one of these (say, j) contains no visible variables, and
thus Pf3 (x) 7. Suppose, without loss of generality, that x xr are the visible variables
relevant to j]. Then, by inductive hypothesis,

2-t;+lpf, (x) - + ,._, (xi -)
i=1

724 GOLDMAN, KEARNS, AND SCHAPIRE

and

2-t;+lp, (x) + (x;-).
i=r+l

Applying Lemma 3.1, it is easily verified that (1) is satisfied, completing the induction.
Thus, if f(x y) is unstructured, then an equivalent unstructured formula can be con-

structed from f’s schedule. For instance, here is an efficient algorithm: Let be the depth
of the deepest visible variable in f. Break the set of all level-t variables into pairs. Replace
each such pair xi, xj by a level-(t 1) visible metavariable w =-- MAJ(xi, xj, y), where y is
a new hidden variable. If an odd level-t variable xi remains, replace it with a level-(t 1)
visible metavariable w MAJ(xi, y, y’), where y and y’ are new hidden variables. Repeat
for levels 1, 2 1. It is not hard to show that this algorithm results in a formula that
is unstructured, and that is consistent with f’s schedule (and so is equivalent).

With these tools in hand for dealing with unstructured formulas, we are now ready to
describe an algorithm for handling the general case, i.e., for reconstructing any (not necessarily
unstructured) formula from its schedule.

Let f(x y) be the truncated target. If f is unstructured, then the previous algorithm
applies. Otherwise, we can find from the schedule three visible variables xi, xj, and x, that
meet at some maximum-depth gate) of f; that is, they meet at a level-d gate, and no triple
of visible variables meet at any gate of depth exceeding d. Then the subformula g subsumed
by ,k computes the majority of three subformulas g, g2, and g3, each containing one of xi,

xj, and xk (say, in that order). Let xe be some other visible variable. Then it is easily verified
that xe is relevant to gl if and only if xe, Xj, and x, meet at a level-d gate (namely, X). Thus,
all of the visible variables relevant to gl (and likewise for g2 and g3) can be determined from
the schedule. Moreover, note that each of these subformulas is unstructured since ,k is of
maximum depth. Thus, each subformula can be identified using the previous algorithm for
unstructured formulas, and therefore, the entire subformula subsumed by (and including)
can be identified.

The rest of the formula can be identified recursively: We replace subformula g by a new
metavariable w, and update the schedule appropriately.

This completes the description of the algorithm. We thus have the following theorem.
THEOREM 7.5. There exists an algorithm with the following properties: Given n, g > O,

and access to examples drawn from the uniform distribution on {0, }’, and labeled by any
read-once majorityformula f on n variables, the algorithm outputs an f-good hypothesisfor
f with probability at least -g. The algorithm’s sample complexity is O((n/:)6. log(n/g)),
and its time complexity is O((n9/66) log(n/g)).

Proof. As before, let h Flog(n/2)]. To implement the procedure outlined above, we
must be able to compute from a random sample: (1) each variable’s significance, (2) each
significant variable’s sign and level, and (3) the level of the gate (if any) at which each triple of
significant variables meet. As noted above, to compute (1) and (2), we need to find, for each
variable Xi, an estimate o of ot A.flx i(1/2) for which [c c[< (1/2)h+2. Hoeffding’s
inequality (Lemma 3.9) implies that such estimates can be derived, with high probability,
from a sample of size O(22h log(n/g)). We also noted above that we can compute (3) given,
for each triple of significant variables xi, xj, xk, an estimate o of ot Af[xi,x.j,xk --1 () for
which Io -ot < 2-3h. Again applying Hoeffding’s inequality, we see that such estimates
can be computed (with high probability) for all triples of variables from a sample of size
O(26h log(n/g)). This proves the stated sample size.

The running time of the procedure is dominated by the computation from the sample of
the O(n3) estimates described above.

EXACT IDENTIFICATION OF READ-ONCE FORMULAS 725

8. Summary. In this paper, we described a general technique for inferring the structure
of read-once formulas over various bases. We have shown how this technique can be applied
to achieve exact identification when the formula is of logarithmic depth, even in the presence
of noise. We have also described how to use this technique to infer good approximations of
formulas with unbounded depth.

Acknowledgments. We are very grateful to Ron Rivest for his comments on this material,
and for a careful reading he made of an earlier draft. We also thank Avrim Blum for suggesting
the notion of a universal identification sequence. Finally, we thank the anonymous referees
for their comments.

REFERENCES

D. ANGLUN, L. HEt.LERSTEN, AND M. KARPNSKI, Learning read-onceformulas with queries, J. Assoc. Comput.
Mach., 40(1993), pp. 185-210.

[2] D. ANGt.UIN ANO P. LAmD, Learningfrom noisy examples, Machine Learning, 2 (1988), pp. 343-370.
[3] G.M. BENEDEK AND A. ITAI, Learnability with respect tofixed distributions, Theoret. Comput. Sci., 86 (1991),

pp. 377-389.
[4] Amplification ofprobabilistic Booleanformulas, in Advances in Computing Research 5: Randomness

and Computation, S. Micali, ed., JAI Press, Greenwich, CT, 1989, pp. 27-45.
[5] Lower boundsfor monotone circuits andformulas, Ph.D. thesis, Massachusetts Institute ofTechnology,

Cambridge, MA, 1986.
[6] N. BSHOUTY, T. HANCOCK, L. HELLERSTEIN, AND M. KARPINSKI, Read-onceformulas, justifying assignments,

and generic transformations, unpublished manuscript, 1991.
[7] M. FURST, J. JACKSON, AND S. SMITH, Improved learning of A Cfunctions, in Proceedings of the Fourth Annual

Workshop on Computational Learning Theory, Aug. 1991, pp. 317-325.
[8] S. A. GOLDMAN AND M. J. KEARNS, On the complexity of teaching, in Proceedings of the Fourth Annual

Workshop on Computational Learning Theory, Aug. 1991, pp. 303-314.
[9] T. HANCOCK AND L. HELLERSTEIN, Learning read-onceformulas overfields and extended bases, in Proceedings

of the Fourth Annual Workshop on Computational Learning Theory, Aug. 1991, pp. 326-336.
10] T. HANCOCK AND Y. MANSOUR, Learning monotone klz DNFformulas on product distributions, in Proceedings

of the Fourth Annual Workshop on Computational Learning Theory, Aug. 1991, pp. 179-183.
11 L. HELLZSTEIN, On characterizing and learning some classes of read-onceformulas, Ph.d. thesis, University

of California, Berkeley, CA, 1989.
12] W. HOFVDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58

(1963), pp. 13-30.
[13] J. KZARNS, The Computational Complexity ofMachine Learning, MIT Press, Cambridge, MA, 1990.
14] M. KARNS ANO M. L, Learning in the presence of malicious errors, in Proceedings of the Twentieth Annual

ACM Symposium on Theory of Computing, May 1988, pp. 267-280.
[15] M. KZARNS, M. L, L. PTT, AND L. VALIANT, On the learnability ofBooleanformulae, in Proceedings of the

Nineteenth Annual ACM Symposium on Theory of Computing, May 1987, pp. 285-295.
16] M. KZANS AND L. G. VALIANT, Cryptographic limitations on learning Booleanformulae andfinite automata,

in Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, May 1989,
pp. 433-444; J. Assoc. Comput. Mach., to appear.

[17] N. LINIAL, Y. MANSOUR, AND N. NISAN, Constant depth circuits, Fourier transform, and learnability, in Pro-
ceedings of the 30th Annual Symposium on Foundations of Computer Science, Oct. 1989, pp. 574-579.

18] G. PAGALLO AND D. HAUSSLER, A greedy methodfor learning # DNFfunctions under the uniform distribution,
Tech. Report UCSC-CRL-89-12, Computer Research Laboratory, University of California, Santa Cruz,
CA, June 1989.

[19] L. PITT AND M. K. WARMUTH, Prediction-preserving reducibility, J. Comput. System Sci., 41 (1990), pp. 430-
467.

[20] R.E. SCHAPm, The strength ofweak learnability, Machine Learning, 5 (1990), pp. 197-227.
[21] Learning probabilistic read-once formulas on product distributions, in Proceedings of the Fourth

Annual Workshop on Computational Learning Theory, Aug. 1991, pp. 184-198, Machine Learning, to

appear.
[22] A. SHINOHARA AND S. MIYANO, Teachability in computational learning, New Generation Computing, 8 (1991),

pp. 237-247.

726 GOLDMAN, KEARNS, AND SCHAPIRE

[23] R.H. SLOAN, Types of noise in datafor concept learning, in Proceedings of the 1988 Workshop on Computa-
tional Learning Theory, Aug. 1988, pp. 91-96.

[24] L.G. VALIANT, A theory ofthe learnable, Comm. ACM, 27 (1984), pp. 1134-1142.
[25] K. VEr3EtrGT, Learning DNF under the uniform distribution in quasi-polynomial time, in Proceedings of the

Third Annual Workshop on Computational Learning Theory, Aug. 1990, pp. 314-326.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 727-750, August 1993

() 1993 Society for Industrial and Applied Mathematics
OO5

ASYNCHRONOUS FAULT-TOLERANT
TOTAL ORDERING ALGORITHMS *

LOUISE E. MOSERt, P. M. MELLIAR-SMITHt, ANt) VIVEK AGRAWALA

Abstract. Two novel efficient algorithms for placing a total order on messages in an asynchronous fault-tolerant
distributed system are presented. The algorithms are resilient to fewer than n/3 and n/2 faulty processes in an
n-process system. Partial correctness and probabilistic termination are demonstrated; it is also shown that there does
not exist a total ordering algorithm that is guaranteed to terminate. A comparison of the complexity of the algorithms
is given.

Key words, distributed computing, fault tolerance, asynchronism, probabilistic algorithm, partial order, total
order

AMS subject classifications. 68M10, 68N25, 68Q10, 68Q20

1. Introduction. As computers have become less expensive, many computer systems are
now being designed as distributed networks of computers cooperating to provide an overall
service. One advantage of a network of computers is the fault tolerance made possible by the
use of multiple processes executing on different computers. Fault tolerance requires not only
extra processes but also replication ofdata so that the application can continue unaffected by the
loss of a process. Operation of a fault-tolerant distributed system requires careful coordination
to ensure that inconsistencies do not develop between the data located at different processes.
The problem of ensuring that the various processes of a distributed system make consistent
decisions, despite process and communication faults, is an important area of research, of great
intellectual interest, and of practical importance.

The problem of achieving distributed consensus in synchronous and partially synchronous
systems is relatively easy, and effective fault-tolerant algorithms for reaching consensus have
been developed [5], [6], [10]; synchronous systems are, however, limited in flexibility. In
asynchronous systems, the consensus problem is much more difficult; it is, in fact, impossible
to construct an asynchronous fault-tolerant consensus algorithm that is guaranteed to terminate
[8]. Consequently, probabilistic algorithms have been devised for which the probability of not
reaching consensus diminishes asymptotically to zero as more messages are processed [1],
[3], [7], [12], [14]; such algorithms typically involve the exchange of many messages for each
consensus decision and, thus, are expensive to operate.

An alternative approach to achieving consensus in a distributed system involves placing
a total order on messages broadcast or multicast to process groups; such an order allows
distributed consensus decisions to be reached using simple sequential algorithms. Several
systems have been developed that use a total ordering ofmessages [2], [4], 13]. These systems
share the characteristic that their ordering algorithms are not inherently fault tolerant. Rather, in
the event of a process fault, the algorithms stop until an underlying fault-detection and system-
reconfiguration algorithm has removed the faulty processes and formed a new configuration.
Services requiring consensus decisions cannot be provided until this reconfiguration activity
is completed.

We describe here the first truly fault-tolerant total ordering algorithms that continue to
formthe total order even in the presence of faulty processes so that system operation continues
uninterrupted; this property is very desirable, ifnot essential, for many fault-tolerant distributed

*Received by the editors October 24, 1990; accepted for publication (in revised form) May 10, 1992. This
research was supported by National Science Foundation grants CCR-8908515 and NCR-9016361.

Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106.
Siemens Corporate Research, 755 College Road East, Princeton, New Jersey 08540.

727

728 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

systems. The total ordering problem in an asynchronous fault-tolerant distributed system is
as hard as the consensus problem; in fact, we show that it is impossible to construct a fault-
tolerant total ordering algorithm that is guaranteed to terminate. The difficulty is that messages
may be lost and may have to be retransmitted; thus, different processes may receive the same
messages in different orders. Communication faults can cause arbitrary delays in the delivery
of a message, but a process cannot wait forever for a message from another process because
that process may have failed and the message may never be delivered.

The Total algorithms presented here are fault-tolerant algorithms for incrementally con-
verting a partial order on messages into a total order in such a way that every nonfaulty process
constructs the same total order and all processes construct consistent total orders. Because
of the impossibility of constructing a terminating fault-tolerant total ordering algorithm, the
Total algorithms are necessarily probabilistic algorithms. There are basically two ways to
incorporate probabilities into the possible executions of an algorithm. In the first approach

], explicit random steps are introduced into the algorithm. The second approach [3], which
is the one we adopt, assumes probabilistic behavior of the communication mechanism.

The partial order on which the Total algorithms are based can be constructed from almost
any underlying communication mechanism. Typically, each message contains an acknowl-
edgment or context field that defines directly, or indirectly through the transitive closure, the
messages that it follows in the partial order. When the total algorithms are implemented using
broadcast communication, the partial order is "narrow" and high efficiency can be achieved.
The Total algorithms convert the partial order into a total order without the need to broadcast
additional messages. On average, each message broadcast extends the total order by one mes-
sage plus any retransmissions that may be required due to communication faults. We have
implemented the Total algorithms on a network of Sun workstations using the Trans protocol
11] to provide a partial order on broadcast messages.

The Total algorithms are genuinely distributed algorithms that are executed independently
and symmetrically by each process. The algorithms are completely transparent to process and
communication faults and continue to operate without the need to identify such faults. Because
they operate in an asynchronous fault-tolerant environment, termination cannot be guaranteed;
probabilistic termination is, however, guaranteed. Algorithms with these properties are not
easy to construct and may contain subtle errors; thus, detailed proofs of correctness are re-
quired. The proofs also help in understanding the characteristics of the algorithms.

This paper is organized as follows. In 2 we define our model of computation, and in 3
we introduce the basic idea of the Total algorithms. In 4 we present a Total algorithm that
is resilient to fewer than n/3 faulty processes along with an example and the proof of partial
correctness and probabilistic termination. In 5 we present a more complex Total algorithm
that is resilient to fewer than n/2 faulty processes. In 6 we compare the complexity of the
two algorithms, and in 7 we establish the impossibility result. The Appendix contains the
proof for the n/2 resilient Total algorithm.

2. The model. We consider an asynchronous fault-tolerant distributed system with n
processes, where n _> 2. The system is asynchronous in that no bound can be placed on the
time required for a computation or for communication of a message. The system is subject to
process and communication faults that are not malicious. Messages may be lost or arbitrarily
delayed. We assume that the maximum number of faulty processes (the resilience) is k, where
k < n/2. If the number of faulty processes is k or less, the fault-tolerant total ordering
algorithms operate to extend the total order; if the number of faulty processes exceeds k, the
algorithms stop.

A distributed total ordering algorithm executes on each process independently; thus, the
execution of such an algorithm is modeled as a single process. The input to the algorithm is

TOTAL ORDERING ALGORITHMS 729

an infinite partial order on messages, common to all processes. The output of the algorithm
is an infinite total order. The algorithm cannot, of course, examine the entire partial order but
accepts the partial order, and extends the total order, incrementally. Only information derived
from the partial order is used to construct the total order; no other communication between
processes is allowed.

We consider the set M of messages of a particular execution of the system and assume
that M is partially ordered by a partial order relation, called follows. Being a partial order,
the follows relation is reflexive, antisymmetric, and transitive. A total order relation satisfies
the additional property that every two elements are comparable. We let rnpi denote the th
message in the sequence of messages broadcast by process p and assume that rnpi follows
only a finite number of messages in the partial order and that rnp,i+l follows rnpi.

The partial order M can be derived from the acknowledgments of messages typically used
in broadcast communication. A message m’ from process q follows a message rn from process
p if m’ acknowledges rn or a message m" that follows m, where m" - rn and m" - m’. Some
care is required to ensure that messages are received as well as ordered 11]. Thus, m’ follows
m only if process q, when broadcasting message m’, received every message that process p
had received when broadcasting message m. The follows relation is a sulSset of Lamport’s
causality relation [9]. Because messages may be lost or delayed, some of the edges of the
causality relation may be excluded from the follows relation.

A prefix A ofa partial order M is a subset of the messages of M together with the partial
order relations between them such that, if m’ is an element of A and m’ follows m, then rn is
also an element of A. The size of a partial order prefix A is the number of messages in A.

A total order relation on a set of messages is, of course, reflexive, antisymmetric, and
transitive and, most importantly, satisfies the property that every two elements are comparable.
A total order prefix is a finite set of messages that is totally ordered and that can, therefore, be
represented as a finite sequence mp, i, mpti

An internal state of a process consists of a prefix of the partial order and a prefix of the
total order. The initial state of a process consists of an empty prefix of the partial order and
an empty prefix of the total order.

In a step, a process’s partial order prefix A is extended by one message m, together with the
partial order relations between m and the messages in A, and its total order prefix is extended
by zero or more messages. A step is applicable to an internal state if the only messages that
rn follows are in the partial order prefix of that state. Hereafter, we only consider steps that
are applicable.

A process p is nonfaulty in a partial order M if at least one message from p is included
in M and if each message from p is followed by a message from every nonfaulty process;
otherwise, process p is faulty. This implies that each nonfaulty process has infinitely many
messages in M.

The asynchronous nature and faulty behavior of the processes and the communication
mechanism are reflected in the partial order that is the input to the algorithm and in the order
in which messages are supplied to a process to extend its prefix. A process has no control
over which message extends its partial order prefix in a step, and it cannot determine whether
any future extension of its partial order prefix will involve a message that follows a particular
message. A message from a faulty process may be followed by no other message and, thus,
may be supplied to one process at an arbitrary number of steps after it has been supplied to
another process, if at all.

A partial order is admissible if it satisfies the following liveness and fairness properties.
Partial orders with these properties are readily obtained from the acknowledgments in broadcast
messages 11]. It is easy to construct partial orders which do not satisfy these properties and
which are, therefore, not admissible and to which our algorithms do not apply.

730 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

Liveness

1. For each message m from a nonfaulty process p, process p eventually obtains a prefix
A such that m A.

Let p and q be distinct nonfaulty processes and let rn be a message from p. We define
E(m, p, q) to be the event that there exists a message m’ from q that follows the message m
from p and that there does not exist a message m such that m’ follows m" and rn follows m,
where m" =fi m and m" 7 m’.

Fairness

1. 0<e <pr(E(m,p,q))< 1.
2. E(m, p, q) and E(m’, r, s) are independent events, where rn 7 m’ or q -/= s.

The above fairness properties formalize an assumption of no bias in the selection of pro-
cesses to broadcast or in the choice of processes to receive messages. The intuition underlying
the first fairness property is that, for each process q, the event that message m from process
p is directly followed by a message from process q is neither guaranteed nor precluded from
happening. Similarly, the second fairness property requires that two such events neither force
nor preclude each other.

The validity of the total ordering algorithms depends on the following properties.

Partial Correctness

1. The total orders determined by any two processes are consistent, i.e., if any process
determines that m is the th message of the total order, then no process determines
that m’ is the ith message, where m - m.

2. The total order is consistent with the partial order, i.e., if m’ follows m in the total
order, then rn does not follow m’ in the partial order, where m’ - m.

Probabilistie Termination

1. The probability that a nonfaulty process p places an th message in the total order
increases asymptotically to unity as the number of steps taken by p tends to infinity.

2. For each message m broadcast by a nonfaulty process q, the probability that a non-
faulty process p places rn in the total order increases asymptotically to unity as the
number of steps taken by p tends to infinity.

Termination is unfortunately precluded by the impossibility result.

3. The total ordering algorithms. The Total algorithms operate within the context of
a system in which processes communicate by broadcasting messages. The objective of the
algorithms is to place a total order on messages in such a way that nonfaulty processes construct
identical total order prefixes and all processes construct consistent total order prefixes. The
total order prefixes are constructed incrementally and independently by each of the processes.
A total order on messages is useful for applications that require distributed consensus decisions.

The input to the Total algorithms is a partial order prefix, i.e., a finite set of messages that
is partially ordered. As each process receives messages, it builds its partial order prefix (a
process is assumed to receive each message it broadcasts). Sometimes receipt of a message
may result in no addition to the partial order prefix, while receipt of another message may lead
to the inclusion of several messages in the partial order prefix. The partial order construction
is not, however, the subject of this paper.

In our description of the algorithms, an execution step consists of adding exactly one
message to the partial order prefix and executing one of the Total algorithms described in

TOTAL ORDERING ALGORITHMS 731

4 and 5. The algorithms are executed independently and concurrently by each process.
Execution of these algorithms results in a process’s total order prefix being extended by zero
or more messages.

The messages in the partial order prefix that have already been advanced to the total order
play no part in the further extension of the total order prefix. Some of the messages in the
partial order prefix follow other messages that have not yet been advanced to the total order;
such a message cannot be the next message to extend the total order prefix. Thus, for each
partial order prefix, we define a candidate message to be a message that is not yet in the total
order prefix and that follows only messages that are already in the total order prefix. A set of
candidate messages is referred to as a candidate set.

In each execution step, the algorithms consider all candidate sets that can be constructed
from the candidate messages in the partial order prefix. A step may result in a decision to
extend the total order prefix. Alternatively, a step may result in no candidate set’s obtaining a
favorable decision and, thus, no extension to the total order prefix. In the next step, with an
additional message in the partial order prefix, another attempt will be made to extend the total
order prefix.

The/th decision of a process p in favor of a candidate set for inclusion in the total order
determines a set Sp of candidate messages by which p extends its total order prefix Tp- to

obtain Tp. The initial candidate set Sp and the initial total order prefix Tp are empty. The

messages of the candidate set Sp are included in the total order, following the messages in Tp-I
in any arbitrary but deterministic order, such as lexicographic order of message identifiers.

A decision by a process to advance a candidate set to the total order is determined by the
votes of the messages in its partial order prefix. These votes are not contained explicitly in
the messages but are deduced from the partial order relationships between messages in the
partial order prefix, as we will describe. Each process makes its own decisions independently
without reference to the decisions being made by other processes.

In an execution step, each candidate set is voted on separately and independently; messages
in the partial order prefix provide votes on the candidate sets. Voting on a candidate set takes
place in a sequence of stages; each candidate set has its own sequence of stages. In a step,
voting proceeds sequentially through the stages for a particular candidate set but concurrently
on all of the candidate sets, since it cannot be predetermined which message is able to vote
for which candidate set at which stage. A decision in favor of a candidate set cannot be made
until decisions against all of its proper subsets have been made.

At stage 0, the vote of a message on a candidate set depends on which candidate messages
that message follows. At stage > 0, the vote of a message on a candidate set depends on
whether that message follows "enough" (defined below) messages that vote at stage 1. A
message may not vote at a stage at which a previous message from its source votes. A message
may be unable to vote at any stage on a candidate set if the voting criteria (given below) are not
satisfied. Conversely, a message may be able to vote at several stages if the voting criteria are
satisfied for each of those stages and no previous message from its source has voted at those
stages. Since each message follows itself in the partial order, a message can include itself in
the number of messages required to vote.

In 4 and 5 we present the two alternative Total algorithms that are resilient to n/3 and
n/2 faulty processes. The second algorithm involves an intermediate form of voting and is
more complex than the first but provides higher resilience. In the presentation, each sequence
of stages refers to a particular candidate set S, but we write, for example, "votes for S at stage
i" as an abbreviation for "votes for S at stage of the sequence of stages for S." We use
"follows" to mean "follows in the partial order," and "for the/th extension" to mean "for the
/th extension of the total order." If a lemma is stated in terms of "for (against) a candidate

732 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

set," we prove the statement for one alternative only, provided that the proof for the other
alternative is similar.

4. The n/3 resilient algorithm. For this algorithm, we assume that the resilience k <

n/3. The algorithm is defined by the following voting and deciding criteria; these criteria
determine which candidate set is chosen for inclusion in the total order at the lth extension.

Each process, before determining the vote of a message m on a candidate set S for
the lth extension of the total order, must obtain a prefix A of the partial order such
that rn A.
A message can vote on a candidate set S for the/th extension of the total order at stage
only if no previous message from its source has voted on S for the/th extension at

stage i.
The number of votes required for a decision and the number of votes required for a
further vote are at least Na and No, where

Na (n + k +)/2 and N, (n k)/2.

The Criteria for Voting on a Candidate Set S for the/th Extension

At stage 0,

A message votes for S if that message follows every message in S and it follows
no other candidate message. (A candidate message votes for the set containing only
itself.)

A message votes against S if that message follows any candidate message other than
those in S. (A candidate message votes against all sets of which it is not a member.)

At stage i, where > 0,

A message votes for S if

it follows at least two messages that vote on S at stage 1,
it follows at least Nv messages that vote for S at stage 1, and
it follows fewer messages that vote against S than vote for S at stage 1.

A message votes against S if

it follows at least two messages that vote on S at stage 1,
it follows at least No messages that vote against S at stage 1, and
it does not vote for S at stage i.

The Criteria for Deciding on a Candidate Set S for the/th Extension

At stage i, where >_ 0,

A process decides for S if

it determines that at least Na messages vote for S at stage i, and
for each proper subset of S, it decides against that proper subset.

A process decides against S if

it determines that at least Na messages vote against S at stage i, or
it decides for a proper subset of S.

The numbers ofvotes, which determine the values ofNa and No, are based on the following
properties: Decisions do not conflict (Na + Nv > n and 2 N > n), decisions are feasible
(Na _< n -k), and stages of voting advance (2. No < n -k). Analysis of these inequalities
readily yields the requirements given above and also yields the constraint k < n/3.

TOTAL ORDERING ALGORITHMS 733

4.1. An example. Consider the messages of the partial order prefix that have not been
advanced to the total order shown in Fig. 1. Here there are n 6 processes and the resilience
k 1. Thus, Nd 4 and No 2.5, requiring at least four votes for a decision and at least
three votes for a further vote.

FIG. 1. A partial orderprefix in an n 6 process system with resilience k 1, Nd 4, and Nv 2.5, requiring
at leastfour votesfor a decision and at least three votesfor afurther vote. Here the candidate sets {mal }, {mel }, and
{m./ obtain too many un.favorable votes at stage 0 and, thus, are decided against, but the set {mel mfi obtains

.fourfavorable votes at stage Ofrom md mc me:, and m.f:z, enoughfor afavorable decision. Even ifmessage m.f2
is lost, there remain three favorable votes at stage O, but there are four favorable votes at stage from me2, md2,

ma2, and mb2; again, enoughfor afavorable decision.

We assume initially that the process executing the algorithm has the entire partial order
prefix. The partial order prefix contains three candidate messages mal, mel, and mf. ’I’he
candidate sets {mel} and {mLfl are voted for only by the messages themselves. Messages
ma and m, vote for the set {ma} but messages mc2 and md2 do not because they follow
other candidate messages in the partial order. Messages md, m, me2, and mf2 vote for the
set {mel, my! }, a sufficient number of votes for a decision. Note that the candidates in the
set {ma, mel, mf} precede the four messages mc2, md2, ma2, and mb2. A process cannot,
however, decide immediately in favor of the set {ma!, me!, mf! since it must first decide on
the set {mel m.fl }.

Next we consider the possibility that a process may fail. In particular, suppose that process
f fails some time after broadcasting message mfl and before broadcasting message my2. The
partial order prefix seen by the other processes does not include message j and, thus, they
do not know whether f had received messages mel, md!, mc!, and me2 and, thus, had decided
in favor of the set {me, mr! }. Nor can they be confident that f had indeed failed; f may
be trying to broadcast but may be blocked by contention for the bus, or may be working on
an urgent task, or may be taking a short siesta from which it will awake to announce that it
has indeed received those messages and decided for {mel, mfl} or, alternatively, that it has
received message ma!, and, thus, has decided against {mel, mfl }, as the case may be.

734 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

However, even without knowledge of process f’s vote, three messages mall, mcl, and me2
vote in favor of the set {reel, mfl at stage 0, and four messages me2, rod2, ma2, and mb2 follow
those three messages and, therefore, vote in favor of {me, mfl at stage 1. Consequently,
messages me2, rod2, ma2, and rob2 suffice for the decision to include the set {reel, mfl} in the
total order.

4.2. The proof for the n/3 resilient algorithm.

Partial Correctness

The proof of partial correctness involves showing that if processes p and q make/th

extensions to their total order prefixes, then the candidate sets they choose for those extensions
are identical and, thus, their lth total order prefixes are identical, i.e., S/p S and Tp Tq.
The proof is by induction on 1. The base case is trivial since, if 0, these sets are all empty.
The bulk of the proof constitutes establishing the inductive step.

Lemma 4.1 is important because it stipulates that the only information used by the algo-
rithm to determine the vote of a message is the partial order on messages. By "determine the
vote of a message" we mean determine if the message voted for or against a candidate set, or
was unable to vote because it did not follow enough messages that voted on the candidate set.

LEMMA 4.1. Let p and q be processes such that Tp- Tq- where > O. If p and q
each determine the vote ofa message m on a candidate set Sfor the lth extension of the total
order at stage i, then they determine the same vote ofm on S at stage i.

Proof. The proof is by induction on i. If process p determines the vote of a message m on
a candidate set S at stage 0, then p has obtained a partial order prefix A that contains message
m. Since A is a prefix, all of the messages that m follows are contained in A. Process q
likewise has obtained a partial order prefix A’ that contains message m and all of the messages
that m follows. Since the vote of a message m on a candidate set S at stage 0 is determined
by the messages that m follows, p and q determine the same vote of m.

We now assume that the statement holds for 1, where > 0. If process p determines
the vote of a message m on a candidate set S at stage i, then p has obtained a partial order
prefix A that contains m and all of the messages that m follows. Process q likewise obtains a
partial order prefix A’ that contains m and all of the messages that m follows. The vote of a
message at stage i, where > 0, is determined by the votes of the messages that m follows at

stage 1. By the induction hypothesis, p and q determine the same votes of the messages
that m follows at stage 1. Thus, they determine the same vote of m. V1

LEMMA 4.2. Each process p broadcasts at most one message that votes on a candi-
date set S at stage i; that message does not vote both for and against the candidate set S at

stage i.

Proof. The first statement follows from the requirement that a message votes on a candidate
set S at stage only if no previous message from its source has voted on S at stage i. The
second statement follows from the voting criteria. [3

Lemmas 4.1 and 4.2 will be used in subsequent proofs without reference.
LEMMA 4.3. Ifa messagefollows at least Nd messages that votefor (against) a candidate

set S at stage 1, then no message votes against (for) S at stage i, where > O.
Pvof. if a message follows N > Nd (n + k + 1)/2 messages that vote for S at stage
1, then at most n N < n (n + k + 1)/2 < (n k)/2 No messages vote against S at

stage 1. if a message m’ votes against S at stage i, then m’ follows at least No messages
that vote against S at stage 1, which is a contradiction. V]

LEMMA 4.4. Ifmessage m votes against or) a candidate set S at stage j then, for each
such that 0 < < j, m follows a message that votes against (for) S at stage i.

Proof. The proof is by a simple induction on j using the voting criteria. [3

TOTAL ORDERING ALGORITHMS 735

LEMMA 4.5. Ifno message votes against or) a candidate set S at stage i, then no message
votes against (for) S at stage j, where j > i. Likewise, ifprocess p decides for (against) a
candidate set S at stage i, then no message votes against (for) S at stage j, where j > i.

Proof. To prove the first statement, we note that if a message m votes against a candidate
set S at stage j then, by Lemma 4.4, m follows a message that votes against S at stage i, which
is a contradiction. The second statement follows from the decision criteria, Lemma 4.3, and
the first statement.

Propositions 4.1-4.5 constitute a major part of the proof and are used in proving Theorem
4.1, which establishes consistency of decisions among the processes.

PROPOSITION 4.1. Let p and q be processes such that Tp Tq -1 where > O. If p
decides for a candidate set Sfor the th extension of the total order, then q does not decide

for a proper subset S’ of Sfor the lth extension.

Pvof. The proof is by induction on the cardinality c of S. If c 1, the statement holds
since, by the voting and decision criteria and a simple induction, no process decides on the
empty candidate set.

Assume that the statement holds for candidate sets S of cardinality less than c. We argue
by contradiction, assuming further that p decides for S and that q decides for a proper subset
S’ of S at some stage j. Thus, q determines that N’ >_ Nd messages vote for S’ at stage j.

By the inductive assumption, since q decides for a proper subset S’ of S, p does not decide
for a proper subset S" of S’. Thus, since p decides for S, p decides against S’ at some stage for
the reason that p determines that at least N > Nd messages vote against S’ at stage i. By
Lemma 4.1, p and q determine the same vote of any message at each stage of the voting on S.

If j then, by Lemma 4.2, since no message votes both for and against S’, N + N’ >_
N + Na n + k + > n, which is a contradiction. If j > then, by Lemma 4.5, since
p decides against S’ at stage i, no message votes for S’ at stage j, which is a contradiction.
Similarly, if > j, we obtain a contradiction by applying Lemma 4.5 to process q with and
j interchanged.

PROPOSITION 4.2. Let p and q be pvcesses such that T-1 Tq- where > O. If p
decidesfor (against) a candidate set Sfor the lth extension ofthe total order, then q does not

decide against or) Sfor the th extension.

Pvof. Assume that p decides for S at stage and that q decides against S at stage j.
Since p decides for S at stage i, p determines that at least N > Na messages vote for S at

stage i. Furthermore, by Proposition 4.1, q does not decide for a proper subset S’ of S. Thus,
q decides against S at stage j for the reason that q determines that at least N’ > Nu messages
vote against S at stage j. By Lemma 4.1, p and q determine the same vote of any message at

each stage of the voting on S.
If j then, by Lemma 4.2, since no message votes both for and against S at stage j,

N + N’ > Nd + Na n + k + > n, which is a contradiction. Otherwise, we reach a
contradiction by Lemma 4.5.

LEMMA 4.6. Let S and S’ denote candidate sets for the lth extension of the total order
such that there exist s e S, s . S’, and s’ S’, s’ qJ S. Ifmessage m from process p votesfor
S at stage i, then m or a previous messagefrom p votes against S’ at stage i.

Proof. The proof is by induction on i. If message m from process p votes for S at stage
0, then it follows the candidate message s e S. Since m follows s and s ’ S’, by the voting
criteria, m or a previous message from p votes against S’ at stage 0, which establishes the base
case.

We now assume the statement for 1. Let m follow N messages that vote for S at stage
1, messages that vote against S at stage 1, N’ messages that vote for S’ at stage 1,

and 7’ messages that vote against S’ at stage 1. Since m votes for S at stage i, N > N,

736 L.E. MASER, R M. MELLIAR-SMITH, AND V. AGRAWALA

N > 29, and N + > 2. Thus, N > 2. By the inductive assumption, if a message votes for
S at stage 1, that message or a previous message from its source votes against S’ at stage

1. Thus, N’ > N. Similarly, if a message votes for S’ at stage 1, that message or a
previous message from its source votes against S at stage 1. Thus, N > N’. Consequently,
AT’ >_ Nv, AT’ > N’, and N’ + AT’ > 2. Thus, m or a previous message from p votes against
S’ at stage unless a previous message from p votes for S’ at stage i.

Now suppose that there exists such a message m’ from p that votes for S at stage i. As
above, we conclude that m’ or a previous message from p votes against S at stage unless
a previous message from p votes for S at stage i. Since rn votes for S at stage i, we have a
contradiction by Lemma 4.2. [3

PROPOSITION 4.3. Let p and q be processes such that Tip- Tlq -1 where > O, and
let S and S’ denote candidate setsfor the th extension of the total order such that there exist
messages s S, s S’, and s’ S’, s’ q2 S. If p decides for Sfor the lth extension of the
total order, then q does not decide for S’ for the lth extension.

Proof. If process p decides for S at stage i, then p determines that at least Nd messages
vote for S at stage and thus p has obtained a prefix of the partial order containing those
messages and all of the messages that they follow. Let rn denote any message that votes for S
at stage i. By Lemma 4.6, m or a previous message from its source votes against S’ at stage
i. Thus, p determines that at least Nd messages vote against S at stage and, therefore, p
decides against S’ at stage i. By Proposition 4.2, q does not decide for S’. [3

PROPOSITION 4.4. Ifprocess p makes the lth extension of its total order prefix Tp-1 by
including the candidate set Sip, and ifprocess q makes the lth extension ofits total orderprefix

rtq -’ by including the candidate set Sq, and if rip-1 Ttq -’ then Stp S and, consequently,

Proof. By Proposition 4.2, if process p decides for S, then process q does not decide

against S and, by Propositions 4.1 and 4.3, q does not decide for S’, where S’ -J: S. Thus,

S <. Since T-’ Tq-’ and, since p and q order the elements of S in the same
deterministic order, Tp Tq. [3

PROPOSITION 4.5. Ifprocess p makes the lth extension of the total order and process q
makes the th extension of the total order, then Sip Slq and Tip Tlq.

Proof. The proof is by induction on l. If 0, then Sp 4 and Tp Tq q. We
now assume the statement for 1. If process p makes the lth extension of the total order,
it must have made the (l 1)st extension, and similarly for q. By the inductive assumption,
Tp-1 Tq-’ Consequently, by Proposition 4.4, Sp Sq and Tp Tq. [3

The main theorem, Theorem 4.1, guarantees that the total orders determined by different
processes, even faulty processes, are consistent.

THEOREM 4.1. Ifprocess p determines that rn is the th message in the total order, then
process q does not determine that m’ is the th message, where m’ k m.

Proof. If process p determines that rn is the th message in the total order, then there
exists an > 0 such that m is in Tp and rn is not in Tp-1 Similarly, if process q determines that

m’ is the ith message in the total order, then there exists an l’ > 0 such that m’ is in Tpt’ and m’
is not in Tpr- Without loss of generality, assume that l’ >_ 1. By Proposition 4.5, Tp Tq.
Thus, rn is the/th message in Tp Tq and also the th message in Tqr; so rn m’.

Theorem 4.2 guarantees that no message that follows a message in the partial order
precedes that message in the total order. Thus, the total order is not arbitrary but is consistent
with the partial order.

THEOREM 4.2. If m’ follows rn in process p’s total order prefix, where m’ (: m, then rn
does notfollow m’ in the partial order.

TOTAL ORDERING ALGORITHMS 737

Proof. Before process p can advance rn to its total order prefix, m must become a candidate
message. As a candidate message, rn only follows messages in the partial order that are already
in p’s total order prefix. Since m’ follows rn in the total order, m’ is not in process p’s total
order prefix when rn becomes a candidate message. Thus, rn does not follow m’ in the partial
order.

Probabilistic Termination

To prove probabilistic termination we use the following definition.
A deciding pattern consists of three ranks, as shown in Fig. 2, such that:

1. Each rank contains n k messages from distinct nonfaulty processes, and all ranks
contain messages from the same n k processes.

2. Each message in the second rank directly follows every message in the first rank and
no other message.

3. Each message in the third rank directly follows every message in the second rank and
no other message.

Previous messages in
the partial order prefix

Rank 1

Rank 2

Rank 3

FIG. 2. A deciding pattern ofthree ranks. Each rank contains n k messagesfrom distinct nonfaulty processes,
and all three ranks contain messagesfrom the same n k processes. Here n 5 and k 1.

A deciding pattern is only one ofmany possible partial order patterns that lead to a decision
to extend the total order. This particular pattern was chosen because it is easy to analyze, for
every message in the second rank follows exactly the same set of messages, aside from itself,
and every message in the third rank follows exactly the same set of messages, aside from itself.
This pattern is, however, quite improbable. Other partial order patterns exist that are much
more likely and that lead to a decision to extend the total order just as quickly but that yield
more complex proofs.

In Proposition 4.6 we show that there always exists a candidate set that can be advanced to
the total order at the lth extension, i.e., a process cannot decide against all available candidate

738 L.E. MOSER, P. M. MELLIAR-SMITH, AND V. AGRAWALA

sets. However, in unfavorable circumstances, a process may take an arbitrarily large number
of steps without reaching a decision, as the impossibility result requires.

PROPOSITION 4.6. Let S be the largest set ofcandidate messages in the partial orderfor
the lth extension of the total order, each of which is followed by a messagefvm a nonfaulty
process. Then S c and, ifprocess p makes the lth extension of its total order prefix Tp-then p cannot decide against S unless p has decidedfor a proper subset of St.

Proof. For each process q consider the message mqj in the partial order with smallest
sequence number j that is not in process p’s total order prefix Tp- and that is followed by a
message from a nonfaulty process. By the definition of nonfaulty, there exist at least n k
such messages. Furthermore, there exists one or more such messages that do not follow any
messages other than those in Tp-1 Thus, S 4.

Ifprocess p decides against S at stage and p has not decided for a proper subset of St, then
p determines that at least Nd messages vote against S at stage i. Now Nd (n / k/ 1)/2 > k
and, therefore, at least one of those messages is from a nonfaulty process. Let m be such a
message. By Lemma 4.4, m follows a message m’ that votes against S at stage 0. Thus, m’
follows a candidate message s such that s ’ St. But m also follows s, which contradicts the
definition of S

The next three lemmas are used to prove Lemma 4.10, which states that there exists a
largest at which a message m or a previous message from its source votes on a candidate set
S.

LEMMA 4.7. If message m votes on a candidate set S at stage i, where > O, then m

follows a message that votes on S at stage but does not vote on S at stage i.

Proof. If message m votes on S at stage then, by the voting criteria, it follows at least
two messages that vote on S at stage 1. Consider the set of all messages that m follows
and that vote on S at stage 1. This set is finite (of cardinality at most n) and the follows
relation is acyclic (except for cycles of length one). Thus, this set contains a message m’ that
follows no message that votes on S at stage 1, aside from itself. Consequently, m’ does
not vote on S at stage i.

LEMMA 4.8. Ifmessage m from process p votes on a candidate set S at stage j then, for
each such that 0 < < j, m or a previous messagefrom p votes on S at stage i.

Proof. The proof is by induction on j. If j 0, then the statement holds since m follows
itself. If j 1, then m follows at least No > 0 messages that vote for S at stage 0 or at
least N > 0 messages that vote against S at stage 0. Each of these messages follows all
messages in S or a message not in S. Thus, m follows all messages in S or a message not in
S. Consequently, m or a previous message from p votes on S at stage 0.

Now assume that the statement holds for j 1, where j > 1. If m votes on S at stage
j, then m follows at least N > 0 messages that vote for S at stage j or at least N > 0
messages that vote against S at stage j 1. Each of these messages follows at least two
messages that vote on S at stage j 2 and at least N messages that vote for S at stage j 2 or
at least Nv messages that vote against S at stage j 2. Thus, m follows at least two messages
that vote on S at stage j 2 and at least Nv messages that vote for S at stage j 2 or at least
N messages that vote against S at stage j 2. Consequently, m or a previous message from
p votes on S at stage j 1. The inductive assumption now gives the result.

LEMMA 4.9. Ifmessage m votes on a candidate set S at stage i, then m follows at least
distinct messages that vote on S at stages 0 through 1.

Proof. The proof is by a simple induction on using Lemmas 4.7 and 4.8.
LEMMA 4.10. If message m from process q follows each message in a candidate set S,

then there exists an such that m or a previous message from q votes on S at stage and
neither m nor any previous messagefrom q votes on S at stage / 1.

TOTAL ORDERING ALGORITHMS 739

Proof. The number of messages that precede message m in the partial order is finite, say
x, and the number of messages that precede any previous message from process q is less than
x. By Lemma 4.9, there exists a j (for example, j x + 1) such that neither m nor any
previous message from q votes on S at stage j. Since m follows each message in S, m or a
previous message from q votes on S at stage 0. Thus, there exists an i, 0 < < j, such that
m or a previous message from q votes on S at stage and neither m nor any previous message
from q votes on S at stage / 1. [

The above lemma is used in the proof ofLemma 4.11, which demonstrates that a deciding
pattern is indeed a deciding pattern.

LEMMA 4.11. Ifthe partial order prefix ofprocess p contains a deciding pattern such that
each message in its first rankfollows all of the messages in a candidate set S, then process p
decides on S.

Pivof. Every message in the second rank of the deciding pattern follows exactly the same
set of messages, aside from itself. Thus, if any message in the second rank or a previous
message from its source votes on S at stage i, then every message in the second rank or a
previous message from its source votes on S at stage i. Consequently, by Lemma 4.10, there
exists a largest stage at which every message in the second rank or a previous message from
its source votes on S.

Now every message in the third rank follows the same set of messages, aside from itself.
In particular, each of these messages follows exactly the same set of at least n k messages
that vote on S at stage and follows no message that votes on S at stage / 1, aside from itself.
Consequently, by the voting criteria, all n k third rank messages vote for S at stage / or
all vote against S at stage / 1. By the decision criteria and induction on the cardinality of
the candidate sets, process p decides on S at stage / 1.]

Lemma 4.12 shows that the probability that a process decides on a candidate set increases
with the size of its partial order prefix, while Proposition 4.7 shows that the probability that a
process decides on a candidate set increases with the number of steps the process takes.

LEMMA 4.12. Let S be a candidate set, each message of which isfollowed by a message
fiom a nonfaulty pivcess q. The pvbability that a partial order prefix of size x obtained by
a nonfaulty process p contains a deciding pattern, such that each message in its first rank

follows all of the messages in S, increases asymptotically to unity as x tends to infinity.
Proof. Consider a substructure of process p’s partial order prefix consisting of three

consecutive messages from each of n k nonfaulty processes. By the fairness properties, for
each such substructure, the probability that the substructure is a deciding pattern is greater
than some positive constant. As x tends to infinity, the number of such substructures tends
to infinity. Thus, the probability that the partial order prefix contains a deciding pattern, such
that each message in its first rank follows all of the messages in S, increases asymptotically
to unity as x tends to infinity.

PROPOSITION 4.7. Let S be a candidate set, each message of which is followed
by a message from a nonfaulty ptvcess q and let p be a nonfaulty process. The probability
that p’s partial order prefix at step contains a deciding pattern, such that each message in
its first rank follows all of the messages in S, increases asymptotically to unity as tends to

infinity.
Proof. As the number of steps taken by process p tends to infinity, the size x of p’s

partial order prefix tends to infinity. The statement now follows from Lemma 4.12. [

Lemma 4.13 provides the inductive step for Proposition 4.8, which shows that the prob-
ability that a process constructs the/th extension of the total order increases with the number
of steps taken by that process. This leads directly to Theorems 4.3 and 4.4, which establish
the probabilistic termination requirements.

740 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

LEMMA 4.13. The probability that a nonfaulty process p selects a set Sip of candidate

messagesfor its total orderprefix Tip, contingent on its having constructed its total orderprefix
Tp-1 increases asymptotically to unity as the number ofsteps taken by p tends to infinity.

Proof. Let S be the largest set of candidate messages in the partial order for the/th
extension of the total order, each of which is followed by a message from a nonfaulty process.
By Proposition 4.6, p cannot decide against S unless p has decided for a proper subset of
St. By Lemma 4.1 1, if all of the messages of S are followed by each of the messages of a
deciding pattern, then p decides for S or for a proper subset of St. By Proposition 4.7, the
probability that each message of S is followed by all of the messages of a deciding pattern
tends to unity as the number of steps taken by p tends to infinity. 71

PROPOSITION 4.8. The probability that a nonfaulty process p selects a set Sp ofcandidate
messagesfor the lth extension ofthe total order increases asymptotically to unity as the number
of steps taken by p tends to infinity. Consequently, the probability that p constructs a total
order prefix Tip increases asymptotically to unity as the number of steps taken by p tends to
infinity.

Proof. The statement follows by induction on from Lemma 4.13 and from elementary
probability theory. 71

THEOREM 4.3. The probability that a nonfaulty process p places an th message
in the total order increases asymptotically to unity as the number ofsteps taken by p tends to

infinity.

Proof. By Proposition 4.8, for any given l, the probability that p constructs a total order
prefix Tp increases asymptotically to unity as the number of steps taken by p tends to infinity.
Choose an such that >_ i. Then the ith message in the total order is contained in Tp/. [3

THEOREM 4.4. For each message rn from a nonfaulty process q, the probability that a

nonfaulty process p places message rn in the total order increases asymptotically to unity as
the number ofsteps taken by p tends to infinity.

Proof. Only messages that are followed by a message from a nonfaulty process can be
included in p’s total order prefix, and only such messages can be elements of a candidate set,
each message of which is followed by a message from a nonfaulty process.

Since message rn is broadcast by a nonfaulty process q, rn is followed by a message from
each nonfaulty process. Since each such message follows a finite number of messages in the
partial order, there exists a finite number, say l, ofmessages that are followed by a message from
a nonfaulty process and that do not follow m. By Proposition 4.8, the probability that p selects
a set Sp of candidate messages for the/th extension of the total order increases asymptotically
to unity as the number of steps taken by p tends to infinity. At the/th extension, either rn
is already in the total order prefix Tpt-I or all messages that are followed by a message from
a nonfaulty process and that do not follow rn are in Tp/-1 In the latter case, rn is the only
candidate message and is selected for the/th extension. [3

5. The n/2 resilient algorithm. For this algorithm, we assume that the resilience k <

n/2. The algorithm is defined by the following voting, proposing and deciding criteria; these
criteria determine which candidate set is chosen for inclusion in the total order.

Each process, before determining the vote or proposal of a message m on a candidate
set S for the/th extension of the total order, must obtain a prefix A of the partial order
such that rn 6 A.

A message can vote or propose on a candidate set S for the/th extension of the total
order at stage only if no previous message from its source has already done so at
stage i.

TOTAL ORDERING ALGORITHMS 741

The number of proposals required for a decision, the number of votes required for a
proposal, and the number of messages related to an indifferent proposal must be at
least Nd, Np, and Nv, respectively, where

Nd k + l, Np (n +)/2, and Nv n k.

The Criteria for Voting on a Candidate Set S for the/th Extension

At stage 0,

A message votes for S if it follows every message in S and it follows no other candidate
message. (A candidate message votes for the set containing only itself.)

A message votes against S if it follows a candidate message not in S. (A candidate
message votes against all sets of which it is not a member.)

At stage i, where > 0,

A message votes for S if

it follows a message that proposes for S at stage 1.

A message votes against S if

it follows a message that proposes against S at stage 1,

or

it follows no message that proposes for or against S at stage 1, and
it follows at least Nv messages that propose indifferent to S at stage 1.

The Criteria for Proposing on a Candidate Set S for the/th Extension

At stage i, where >_ 0,

A message proposes for S if

it follows at least Np messages that vote for S at stage i.

A message proposes against S if

it follows at least Np messages that vote against S at stage i.

A message proposes indifferent to S if

it does not propose for or against S at stage i, and
it follows at least N messages that vote on S at stage i.

The Criteria for Deciding on a Candidate Set S for the/th Extension

At stage i, where > 0,

A process decides for S if

it determines that at least N messages propose for S at stage i, and
for each proper subset of S, it decides against that proper subset.

A process decides against S if

it determines that at least Ne messages propose against S at stage i, or
it decides for a proper subset of S.

The numbers ofvotes, which determine the values ofN and N, are based on the following
properties: Decisions do not conflict (N > k), proposals do not conflict (2 Np > n),
decisions are feasible (Nd < n -k), proposals for or against are feasible (Np < n -k and Np <

N), and stages of voting and proposing advance (Nv < n k). These inequalities lead to the
above requirements and also to the constraint k < n/2.

The proof for the n/2 Total algorithm is generally similar to that for the n/3 algorithm
and can be found in the Appendix.

742 L.E. MOSER, P. M. MELLIAR-SMITH, AND V. AGRAWALA

6. Complexity analysis. The primary complexity measures of a total ordering algorithm
are the number of messages broadcast per message ordered and the latency or delay between
broadcasting a message and placing it in the total order.

The Total algorithms are based on a partial order that can be constructed from acknowl-
edgments of messages that most broadcast protocols provide. Using an appropriate broadcast
protocol that piggybacks acknowledgments on messages, no additional messages are required
beyond retransmissions that are needed because messages are not received immediately 11].
The cost is thus one message broadcast per message placed in the total order. The algorithm
of Chang and Maxemchuk [4] typically requires about three broadcast messages, while other
algorithms [3], [12] require a multiple of n messages in an n-process system.

If the partial order is broad and contains many unordered pairs of messages, the analysis of
the latency of the Total algorithms is hard and is an area of continuing research. If, however,
the partial order is derived from messages broadcast over a network for which there is a
high probability that messages are received immediately by all processes, then it is likely
that substantial portions of the partial order are totally ordered with only occasional pairs of
unordered messages. Under these conditions, it is probable that there is only a single candidate
message since all other unordered messages follow that message. Subsequent messages vote
for the single candidate message at stage 0, and the latency is equal to the number of messages
in the partial order prefix when enough messages have voted at stage 0 to satisfy the decision
criteria.

In our demonstration of probabilistic termination we made the weakest assumptions about
the probability distributions for messages from different processes, assumptions of indepen-
dence and nonzero probability. A complexity analysis, however, requires stronger assump-
tions; we now assume that every process is equally likely to broadcast at each moment. This
allows us to calculate a mean latency as an accurate measure of performance on a broadcast
medium that delivers almost all messages immediately.

Consider first the n/3 resilient algorithm. To place a message m in the total order,
(n + k + 1)/2 messages from distinct processes must vote for the singleton set containing
m. The first of these is the message m itself and, thus, the latency is the expected number of
messages to obtain (n + k- 1)/2q messages from the n other processes that vote for m.
If messages from distinct processes have voted, then the probability that the next message is
from one of the remaining n processes is (n i)/n. Consequently, the expected number
of messages to obtain the (i + 1)st vote is

n-i n-i ()2 n-i n
1, 2,-,+3,

n n n n n-i

and the expected latency of the n/3 resilient algorithm is

n+k-I

n

Zn-i
i=1

broadcast messages.
For the n/2 resilient algorithm, first [(n + 1)/2 votes must be obtained to propose and

then k + 1. proposals must be obtained to decide. By an analysis similar to the above, the
expected latency of the n/2 resilient algorithm is

i=
n-i - .= n-i

broadcast messages.

TOTAL ORDERING ALGORITHMS 743

LEMMA 6.1. If none of the processes is faulty and n is odd and k is odd or n is even and
k is even, the expected latency for the n/2 algorithm is less than thatfor the n/3 algorithm,
whereas if n is odd and k is even, or n is even and k is odd, the expected latency for the n/3
algorithm is less than thatfor the n/2 algorithm.

Proof. The proof consists of a case analysis and is omitted.
The above analysis assumes that none of the processes is faulty. If k of the n processes

are faulty and do not broadcast, the expected latency is

n kZ n-k-i
i=1

broadcast messages for the n/3 resilient algorithm and

F-I n-k k n-k

i= n k-
+ il n k-

broadcast messages for the n/2 resilient algorithm.
LEMMA 6.2. If k of the n processes are faulty and contribute no messages to the partial

order and ifn is odd and k is odd, n is odd and k is even, or n is even and k is even, then the
expected latencyfor the n /2 algorithm is less than thatfor the n /3 algorithm, whereas if n is
even and k 1, then the expected latency for the n/3 algorithm is less than thatfor the n/2
algorithm.

Proof. The proof consists of a case analysis and is omitted.
n-kThe analysis in the case that n is even and k is odd is difficult in general because -= n---

k-I

has one more term thanj 2(n-k However, we have the following conjecture.n-2k-2j"
CONJECTURE. Ifk of the n processes arefaulty and contribute no messages to the partial

order and ifn is even and k is odd, then the expected latencyfor the n/2 algorithm is less than
thatfor the n/3 algorithm ifand only if n < k(k + 1) + 2[(k 1)/4/.

We have written a Pascal program to compute the latencies for the n/3 and n/2 algorithms
and have verified this conjecture for all n and k such that n _< 215 and k < n/3, but we have
not been able to find an analytical proof.

7. Impossibility of a terminating algorithm. It is easy to demonstrate that it is impos-
sible to construct a totally correct algorithm (i.e., an algorithm that terminates) for converting
a partial order on messages into a total order in an asynchronous distributed system with n
processes (n > 2) in which even a single process is faulty. The proof depends on the well-
known result of Fischer, Lynch, and Paterson [8], who demonstrated that no algorithm using
asynchronous processes and asynchronous FIFO communication channels can be guaranteed
to reach a consensus decision in a finite number of steps if even one process can fail.

Given an asynchronous distributed system with FIFO communication channels it is easy
to construct a partial order on messages. Simplistically, each process includes in its message
all of the messages it has received and that, thus, precede that message in the partial order.
More efficient strategies are, of course, available [2], 11]. Given a consistent total order on
messages, processes can easily reach a consensus decision; the content of the first message in
the total order is the consensus value on which they decide [6]. If there exists a totally correct

algorithm for converting a partial order on messages into a total order in an asynchronous
distributed system in which even a single process is faulty, then that algorithm can be combined
with the two algorithms above to yield a totally correct algorithm for reaching consensus in
an asynchronous distributed system with FIFO channels, in contradiction to [8].

744 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

8. Conclusion. The justification of the Total algorithms is not just that they provide
an elegant solution to the total ordering problem, but that they have practical application to
distributed systems that utilize broadcast communication over a local area network. Because
local area networks are quite reliable, almost every decision is a best case decision in which
there is only one candidate message, and the decision is reached at stage 0 with minimal
delay and little computational cost. Only one broadcast message is required for each decision
plus any additional retransmissions that may be required due to messages not being received
immediately. We have implemented the Total algorithms on a network of Sun workstations
and have built a fault-tolerant distributed database on top of them.

Appendix-The Proof for the n/2 Resilient Algorithm

Partial Correctness

The proof of partial correctness involves showing that, if processes p and q make lth
extensions to their total order prefixes, then the candidate sets they choose for those extensions
are identical and, thus, their lth total order prefixes are identical, i.e., Sp Sq and Tp Tq.
The proof is by induction on 1. The base case is trivial since, if 0, these sets are all empty.
The bulk of the proof constitutes establishing the inductive step.

As in the n/3 resilient case, we have the following lemma which states that the only
information used by the algorithm is the partial order on messages. By "determine the vote

(proposal) of a message," we mean determine if the message voted (proposed) for or against
a candidate set or was unable to vote (propose).

LEMMA 5.1. Let p and q be processes such that Tp Tq- where > O. If p and q
each determine the vote ofa message rn on a candidate set Sfor the lth extension of the total
order at stage i, then they determine the same vote ofrn on S at stage i.

Proof. The proof is similar to that of Lemma 4.1. [3

LEMMA 5.2. Each process p broadcasts at most one message that votes on a candidate
set Sat stage i; that message does not vote bothfor and against Sat stage i.

Proof. Since process p broadcasts at most one message that votes on S at stage i, it
suffices to show that if a message rn votes for (against) a candidate set S at stage i, then rn
does not vote against (for) S at stage i. The proof is by induction on i. For 0, the voting
criteria imply the statement.

We now assume the statement for and argue by contradiction to establish the
statement for i. Thus, we assume that rn votes both for and against S at stage i. By the voting
criteria, since rn votes for S at stage i, it follows a message that proposes for S at stage 1.
Consequently, since m votes against S at stage i, it follows a message that proposes against
S at stage 1. By the proposing criteria, rn follows N > Np messages that vote against S
at stage 1. Moreover, the inductive assumption implies that those messages do not vote
for S at stage 1. Thus, the number of messages that vote for S at stage is at most
n N < (n 1)/2 < (n + 1)/2 Np. Consequently, no message proposes for S at stage

1, which is a contradiction. 3
LEMMA 5.2.1. Ifmessage rn votes against or) a candidate set S at stage i, then rn follows

a message that votes against (for) S at stage 1, where > O.

Proof. Assume that rn votes against S at stage and that m follows no message that votes
against S at stage 1. Then, by the proposing criteria, m follows no message that proposes
against S at stage 1. But rn votes against S at stage i. Therefore, by the voting criteria,
rn follows at least N messages that propose indifferent to S at stage 1. Hence, by the
proposing criteria, m follows N > N messages that vote on S at stage 1. If they all vote
for S then, since No n k > (n + 1)/2 Np (since k < n/2), m proposes for S at stage

and, therefore, votes for S at stage i, which is a contradiction. Consequently, at least

TOTAL ORDERING ALGORITHMS 745

one of the N messages votes against S at stage 1. The proof in the case that m votes for S
at stage is obvious. [3

LEMMA 5.2.2. If message m proposesfor (against) a candidate set S at stage i, then no
message proposes against (for) S at stage i.

Proof. The statement follows from Lemma 5.2 and the fact that Np %- Np > n. fq

LEMMA 5.2.3. Each process p broadcasts at most one message that proposes on a
candidate set S at stage i; that message proposes only once at stage i.

Proof. The first statement follows from the requirement that a message proposes on a
candidate set S at stage only if no previous message from its source has proposed on S at
stage i. The second statement is given by Lemma 5.2.2. [3

LEMMA 5.3. If a message follows at least Nd messages that propose for (against) a
candidate set S at stage 1, then no message votes against (for) S at stage i, where > O.

Proof. Assume that message m’ votes against S at stage i. Then, either (1) m’ follows
a message that proposes against S at stage 1, or (2) m’ follows at least No messages that
propose indifferent to S at stage 1. By the hypothesis and Lemma 5.2.2, case (1) cannot
occur. In case (2), by the hypothesis andLemma 5.2.3, at mostn-Na n-k-1 < n-k No
messages propose indifferent to S at stage 1, which is a contradiction. The proof for the
alternative statement of the lemma is similar but simpler, because only case (1) arises. [3

LEMMA 5.4. Ifmessage m votes against (for) a candidate set S at stage j then, for each
such that 0 < < j, m follows a message that votes against (for) Sat stage i.

Proof. The proof is similar to that of Lemma 4.4 and uses Lemma 5.2.1 in place of the
voting criteria. [3

LEMMA 5.5. Ifno message votes against or) a candidate set S at stage i, then no message
votes against or) S at stage j, where j > i. Likewise, ifprocess p decides for (against) a
candidate set S at stage i, then no message proposes against or) S at stage j, where j > i.

Proof. The proof of the first statement is identical to that of the first statement of Lemma
4.5. To prove the second statement, we note that if process p decides for a candidate set S at

stage i, then p determines that at least N messages propose for S at stage i. By Lemma 5.3,
no message votes against S at stage %- 1. By the first statement, no message votes against S at
stage j, where j > %- 1. Therefore, by the proposing criteria, no message proposes against
S at stage j, where j > i. [3

PROPOSITION 5.1. Let p and q be processes such that Ttp- Tq- where > O. If p
decides for a candidate set Sfor the th extension of the total order, then q does not decide

for a proper subset S’ of Sfor the lth extension.

Proof. The proof is similar to that of Proposition 4.1 but is based on Lemma 5.1, Lemma
5.2.2, and Lemma 5.5. [3

PROPOSITION 5.2. Let p and q be processes such that Tp Tq- where > O. If p
decidesfor (against) a candidate set Sfor the lth extension ofthe total order, then q does not
decide against (for) Sfor the th extension.

Proof. The proof is similar to that of Proposition 4.2 but is based on Proposition 5.1,
Lemma 5.1, Lemma 5.2.2, and Lemma 5.5. [3

The statement of Lemma 5.6 is weaker than that of Lemma 4.6, but it suffices to prove
Lemma 5.6.1, which is needed to prove Proposition 5.3 below.

LEMMA 5.6. Let S and S’ denote candidate sets for the lth extension of the total order
such that there exist s S, s S’, and s’ S’, s’ S. Ifmessage m from process p votesfor
S at stage i, then no messagefrom p votesfor S’ at stage i.

Proof. The proof is by induction on i. If message m from process p votes for S at stage
0, then it follows the candidate message s 6 S and no previous message from p votes on S.
Since m follows s and s f S’, m votes against S’ at stage 0. By Lemma 5.2, no message from
p votes for S’ at stage 0.

746 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

We now assume the statement for 1. If m votes for S at stage then, by the voting and
proposing criteria, m follows N > Np messages from distinct processes that vote for S at stage

1. By the inductive assumption, for each of those messages, no message from its source
votes for S’ at stage -1. Thus, at mostn-N <n-Np-- (n- 1)/2 < (n+l)/2=Np
messages from distinct processes vote for S’ at stage 1. Consequently, by the proposing
criteria, no message proposes for S’ at stage and, by the voting criteria, no message votes
for S’ at stage i.

LEMMA 5.6.1. Let S and S’ denote candidate setsfor the lth extension of the total order
such that there exist s S, s . S’, and s’ S’, s’ S. Ifmessage m proposesfor S at stage
i, then no message proposesfor S’ at stage i.

Proof. If m proposes for S at stage then, by the proposing criteria, at least Np messages
from distinct processes vote for S at stage i. By Lemma 5.6, for each of those messages,
no message from its source votes for S’ at stage i. Thus, at most n Np (n 1)/2 <
(n + 1)/2 Np messages from distinct processes vote for S’ at stage i. By the proposing
criteria, no message proposes for S’ at stage i.

PROPOSITION 5.3. Let p and q be processes such that Tp-1 Tq -1, where > O, and
let S and S’ denote candidate setsfor the th extension of the total order such that there exist

messages s S, s qg S’, and s’ S’, s’

_
S. lfprocess p decides for Sfor the lth extension

of the total order, then process q does not decidefor S’ for the th extension.

Pvof. If process p decides for S at stage then, by the decision criteria, p determines
that a message (in fact, at least Nd messages) proposes for S at stage i. Thus, by Lemma 5.6.1,
no message proposes for S’ at stage i. Consequently, by the decision criteria, process q does
not decide for S’ at stage i.

PROPOSITION 5.4. Ifprocess p makes the lth extension of its total order prefix Tp-1 by
including the candidate set Sp, and ifpvcess q makes the lth extension ofits total order prefix

rlq -’ by including the candidate set S, and if Tip-1 Tlq -’ then Sip S and, consequently,

Pvof. The proof is identical to that of Proposition 4.4.
PROPOSITION 5.5. Ifprocess p makes the th extension of the total order and process q

makes the th extension of the total order, then S S’ and f TIc
Pvof. The proof is identical to that of Proposition 4.5.
The main theorem, Theorem 5.1, guarantees that the total orders determined by different

processes, even faulty processes, are consistent.
THEOREM 5.1. Ifprocess p determines that m is the th message in the total order, then

process q does not determine that m’ is the th message, where m’ : m.

Proof. The proof is identical to that of Theorem 4.1.
Theorem 5.2 guarantees that no message that follows a message in the partial order

precedes that message in the total order. Thus, the total order is not arbitrary but is consistent
with the partial order.

THEOREM 5.2. If m’ follows m in pvcess p’s total order prefix, where m’ : m, then m
does notfollow m’ in the partial ordet:

Proof. The proof is identical to that of Theorem 4.2.

Probabilistie Termination

To prove probabilistic termination we use the following definition.
A deciding pattern consists of five ranks such that:

1. Each rank contains n k messages from distinct nonfaulty processes, and all ranks
contain messages from the same n k processes.

2. Each message in the second rank directly follows every message in the first rank and
no other message.

TOTAL ORDERING ALGORITHMS 747

sets.

3. Each message in the third rank directly follows every message in the second rank and
no other message.

4. Each message in the fourth rank directly follows every message in the third rank and
no other message.

5. Each message in the fifth rank directly follows every message in the fourth rank and
no other message.

In Proposition 5.6 we show that a process cannot decide against all available candidate

PROPOSITION 5.6. Let S be the largest set ofcandidate messages in the partial orderfor
the th extension of the total order, each of which is followed by a messagefrom a nonfaulty
process. Then S : and, ifprocess p makes the lth extension of its total order prefix Tp-then p cannot decide against S unless p has decidedfor a proper subset of S

Pivof. The proof that S -J= q5 is identical to the corresponding proof of Proposition 4.6.
Now, if process p decides against S at stage and p has not decided for a proper subset of
S, then p determines that at least Nd messages propose against S at stage i. Each of those
messages follows at least Np messages that vote against S at stage i. Since Np (n+ 1)/2 > k
(since k < n/2), at least one of those messages is from a nonfaulty process. Let m be such a
message. By Lemma 5.4, m follows a message m’ that votes against S at stage 0. Thus, m’
follows a candidate message s such that s ’ St. But, m also follows s, which contradicts the
definition of St.

The next three lemmas are used to prove Lemma 5.10, which states that there exists a
largest at which a message m or a previous message from its source votes on a candidate set S.

LEMMA 5.7. If message m votes on a candidate set S at stage i, where > O, then m
follows a message that votes on S at stage but does not vote on S at stage i.

Proof. Consider the set of all messages that m follows and that vote on S at stage 1.
This set is finite (of cardinality at most n) and the follows relation is acyclic (except for cycles
of length one). Thus, this set contains a message m’ that follows no message that votes on S
at stage 1, aside from itself. Since Np (n + 1)/2 > and N n k > 1, m’ does not

propose on S at stage and thus does not vote on S at stage i.

LEMMA 5.8. Ifmessage m fi’om process p votes on a candidate set S at stage j then, for
each such that 0 < < j, m or a previous messagefi’om p votes on S at stage i.

Proof. The proof is by induction on j. If j 0, then the statement holds since m follows
itself. If j 1, then three cases arise" (1) m follows a message m’ that proposes for S at

stage 0 and, thus, m’ follows at least Np messages that vote for S at stage 0, (2) m follows a
message m’ that proposes against S at stage 0 and, thus, m’ follows at least Np messages that
vote against S at stage 0, or (3) m follows at least Nv messages that propose indifferent to S
at stage 0, each of which follows at least Nv messages that vote on S at stage 0. In each case,
m follows a message that votes on S at stage 0 and, thus, m follows every message in S or it
follows a message that is not in S. Consequently, m or a previous message from p votes on S
at stage 0.

Now assume that the statement holds for j 1, where j > 1. If m votes on S at stage
j, then three cases arise: (1) m follows a message m’ that proposes for S at stage j and,
thus, m’ follows at least Np messages that vote for S at stage j 1, each of which follows a
message that proposes for S at stage j 2, (2) m follows a message m’ that proposes against
S at stage j and, thus, m’ follows at least Np messages that vote against S at stage j 1,
each of which follows a message that proposes against S at stage j 2 or follows at least N
messages that propose indifferent to S at stage j 2, or (3) m follows at least N messages
that propose indifferent to S at stage j 1, each of which follows at least N messages that

748 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

vote on S at stage j 1; each of these messages either follows a message that proposes for S
at stage j 2, follows a message that proposes against S at stage j 2, or follows at least No
messages that propose indifferent to S at stage j 2. In each case, m or a previous message
from p votes on S at stage j 1. The inductive assumption now gives the result. [3

LEMMA 5.9. Ifmessage m votes on a candidate set S at stage i, then m follows at least
distinct messages that vote on S at stages 0 through 1.

Proof. The proof is identical to that of Lemma 4.9. [3

LEMMA 5.10. If message m from process q follows each message in a candidate set S,
then there exists an such that m or a previous message from q votes on S at stage and
neither m nor any previous messagefrom q votes on S at stage + 1.

Proof. The proof is identical to that of Lemma 4.10. [3

The above lemma is used in the proof ofLemma 5.11, which demonstrates that a deciding
pattern is indeed a deciding pattern.

LEMMA 5.11. Ifthe partial order prefix ofprocess p contains a deciding pattern such that
each message in its first rankfollows all of the messages in a candidate set S, then process p
decides on S.

Proof. Every message in the second rank of the deciding pattern follows exactly the same
set of messages, aside from itself. Thus, if any message in the second rank or a previous
message from its source votes on S at stage i, then every message in the second rank or a
previous message from its source votes on S at stage i. Consequently, by Lemma 5.10, there
exists a largest stage at which every message in the second rank or a previous message from
its source votes on S.

If any message in the second rank proposes on S at stage i, then all messages in the second
rank propose on S at stage and, furthermore, they all propose the same way. Four cases arise:
(1) All messages in the second rank propose for S or all propose against S at stage i. This
results in a decision at stage based on the proposals by messages in the second rank. (2) All
messages in the second rank propose indifferent to S at stage i. In this case, all messages in
the third rank vote against S at stage / 1, and all messages in the fourth rank propose against
S at stage + 1, resulting in a decision against S at stage / 1. (3) No message in the second
rank proposes on S at stage i, and all messages in the third rank propose for S or all propose
against S at stage i, resulting in a decision at stage i. (4) No message in the second rank
proposes on S at stage and all messages in the third rank propose indifferent to S at stage i.

In this case, all messages in the fourth rank vote against S at stage / 1, and all messages in
the fifth rank propose against S at stage / 1, which results in a decision against S at stage
i/1. [3

Lemma 5.12 shows that the probability that a process decides on a candidate set increases
with the size of its partial order prefix, while Proposition 5.7 shows that the probability that a
process decides on a candidate set increases with the number of steps the process takes.

LEMMA 5.12. Let S be a candidate set, each message ofwhich isfollowed by a message
from a nonfaulty process q. The probability that a partial order prefix of size x obtained by
a nonfaulty process p contains a deciding pattern, such that each message in its first rank

follows all of the messages in S, increases asymptotically to unity as x tends to infinity.
Proof. The proof is identical to that of Lemma 4.12. [3

PROPOSITION 5.7. Let S be a candidate set, each message of which is followed by a

message from a nonfaulty process q, and let p be a nonfaulty process. The probability that
p’s partial order prefix at step contains a deciding pattern, such that each message in its

first rank follows all of the messages in a candidate set S, increases asymptotically to unity
as tends to infinity.

Proof. The proof is identical to that of Proposition 4.7.

TOTAL ORDERING ALGORITHMS 749

Lemma 5.13 provides the inductive step for Proposition 5.8, which shows that the prob-
ability that a process constructs the/th extension of the total order increases with the number
of steps taken by that process. This leads directly to Theorems 5.3 and 5.4, which establish
the probabilistic termination requirements.

LEMMA 5.13. The probability that a nonfaulty process p selects a set Sp of candidate
messagesfor its total orderprefix Tp, contingent on its having constructed its total orderprefix

Tp-j increases asymptotically to unity as the number ofsteps taken by p tends to infinity.
Proof. The proof is identical to that of Lemma 4.13. [3

PROPOSITION 5.8. The probability that a nonfaulty plvcess p selects a set Sp ofcandidate
messagesfor the lth extension ofthe total order increases asymptotically to unity as the number

of steps taken by p tends to infinity. Consequently, the probability that p constructs a total
order prefix Tp increases asymptotically to unity as the number of steps taken by p tends to

infinity.
Proof. The proof is identical to that of Proposition 4.8. [3

THEOREM 5.3. The probability that a nonfaulty process p places an ith message in the
total order increases asymptotically to unity as the number ofsteps taken by p tends to infinity.

Proof. The proof is identical to that of Theorem 4.3. [3

THEOREM 5.4. For each message m from a nonfaulty process q, the probability that a
nonfaulty process p places message m in the total order increases asymptotically to unity as
the number ofsteps taken by p tends to infinity.

Proof. The proof is identical to that of Theorem 4.4. [3

Acknowledgment. We wish to thank the referees for their valuable comments and criti-
cisms which have greatly improved this paper.

REFERENCES

M. BEN-OR, Another advantage offi’ee choice: Completely asynchronous agreementprotocols, in Proceedings
of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1986,
pp. 27-30.

[2] K. P. BIRMAN AND T. A. JOSEPH, Reliable communication in the presence offailures, ACM Trans. Comput.
Systems, 5 (1987), pp. 47-76.

[3] G. BRACHA AND S. TOUEG, Asynchronous consensus and broadcastprotocols, J. ACM, 32 (1985), pp. 824-840.
[4] J. CHANG AND N. E MAXEMCHUK, Reliable broadcast protocols, ACM Trans. Comput. Systems, 2 (1984),

pp. 251-273.
[5] F. CRISTIAN, H. AGHILI, AND R. STRONG, Atomic broadcast: From simple message diffusion to Byzantine

agreement, in Proceedings of the IEEE Symposium on Fault Tolerant Comput. Systems, June 1985,
pp. 200-206.

[6] D. DOLEV, C. DWORI, AND L. STOCk<MEYER, On the minimal synchronism neededfor distributed consensus, J.
ACM, 34 (1987), pp. 77-97.

[7] P.O. EZHILCHELVAN, Early stopping algorithmsfor distributed agreement underfail-stop, omission and timing
faults, in Proceedings of the IEEE Symposium on Reliability in Distributed Software and Database
Systems, March 1987, pp. 201-212.

[8] M. J. FISCHER, N. A. LYNCH, AND M. S. PATERSON, Impossibility of distributed consensus with one faulty
pivcess, J. ACM, 32 (1985), pp. 374-382.

[9] L. LAMPORT, Time, clocks and the ordering of events in a distributed system, Comm. ACM, 21 (1978),
pp. 558-565.

10] L. LAMPORT, R. SHOSTAK, AND M. PEASE, The Byzantine generals problem, ACM Trans. Programming Lan-
guages and Systems, 4 (1982), pp. 382-401.

11 E M. MELLIAR-SMITH, L. E. MOSER, AND V. AGRAWALA, Broadcast protocols]br distributed systems, IEEE
Trans. Parallel and Distributed Systems, (1990), pp. 17-25.

[12] K. J. PERRY AND S. TOUEG, Distributed agreement in the presence of processor and communication faults,
IEEE Trans. Software Engrg., SE-12 (1986), pp. 477-482.

750 L.E. MOSER, R M. MELLIAR-SMITH, AND V. AGRAWALA

[13] L. L. PETERSON, N. C. BUCHHOtZ, AND R. D. ScrnICHTING, Preserving and using context in.f?)rmation in
interptvcess communication, ACM Trans. Comput. Systems, 7 (1989), pp. 217-246.

14] M. RABIN, RandomizedByzantine generals, in Proceedings ofthe 24th Symposium on Foundations of Computer
Science, November 1983, pp. 403-409.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 751-777, August 1993

() 1993 Society for Industrial and Applied Mathematics
006

A FIBONACCI VERSION OF KRAFT’S INEQUALITY APPLIED TO DISCRETE
UNIMODAL SEARCH*

ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLDt

Abstract. A function is unimodal if it strictly increases to a unique maximum and then strictly decreases. The
problem of determining the smallest possible interval containing the maximum of a unimodal function, by probing
only at integer values is studied. In the finite case, the search takes place over the range 0 to N, while in the infinite
case the search takes place over the nonnegative integers. The analyses are based on an unusual Fibonacci version of
Krafi’s inequality.

Key words, unimodal search, Fibonacci search, Kraft’s inequality, Fibonacci numbers, unimodal functions,
unbounded search, optimal algorithms, Ackermann’s function, inverse Ackermann’s function

AMS subject classifications. 68Q25, 68Q20, 11B39

1. Introduction. A function is unimodal if it strictly increases to a unique maximum
and then strictly decreases; that is, a function f is unimodal if there exists a unique value
Msuchthat f(x) < f(y)ifx < y < Mandf(x) > f(y)ifM < x < y. Kiefer[5]
studied the problem of finding the maximum of a unimodal function over the unit interval and
gave an algorithm that, in n function evaluations (probes), narrows the interval containing the
maximum to at most 1/Fn+l + e, for any fixed e > 0, where F/. is the ith Fibonacci number
defined by F0 0, F 1, F/ F/_ + F/_2. Kiefer proved that his algorithm is optimal in
the sense that any algorithm using n probes that narrows the interval containing the maximum
to at most / Fn+l, for some functions, must fail to narrow the interval to at most / F,+l + e
for other functions. Note that finding the maximum of a differentiable unimodal function is
equivalent to finding the zero of its first derivative.

Oliver and Wilde [11] considered a discrete search for the maximum of a unimodal
function: All probes must be at least 3 apart, but the probes need not be at integer values.
They gave an algorithm that uses n function evaluations over the unit interval to narrow
the interval containing the maximum to (1 + Fn-)/F+I, where 3 < 1/F,+2. Avriel and
Wilde [3] proved Oliver and Wilde’s algorithm optimal for 3 1/F+2, inthe sense that
any other algorithm must fail to narrow the interval to (1 + Fn_l)/F,+I for some function.
Witzgall [15] considered the case when the first probe occurs at a prescribed value.

We study a form of the discrete unimodal search problem--determining the smallest
possible interval containing the maximum of a unimodal function, by probing only at integer
values. In the finite case, the search takes place over the range 0 to N and we assume that
f(O) f(N) -cxz. Oliver and Wilde’s algorithm [11] can solve this discrete unimodal
search problem in n function evaluations, when scaled to an initial interval of length F,+2;
our results, based on a Fibonacci version of Kraft’s inequality [9], give a new derivation of
the results in [3] and [11], and extend them to intervals that are not of Fibonacci length.
Furthermore, the new techniques we use to analyze the finite case are applied to the infinite
case, the unbounded discrete unimodal search problem, introduced by Raoult and Vuillemin
[12], in which the search takes place over the nonnegative integers and we assume that f(0)
limN f(N) -:x.

Note that a single function value gives no information about the location of the maximum.
Two function values, however, do give information, as shown in Fig. 1" For < j, if f(i) <
f(j) then the maximum occurs to the right of i, while if f(i) > f(j) then the maximum
occurs to the left of j; if f(i) f(j) then the maximum occurs between and j. Thus

*Received by the editors October 9, 1990; accepted for publication April 24, 1992.
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

751

752 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

if f(i) < f(i + 1) > f(i + 2), we know that the maximum occurs between and + 2
and we can narrow the interval no further (by probes at integer values) since the maximum
could occur on either side of + as shown in Fig. 2. Only in the special cases when either
f(i) f(i + 1) or f(i + 1) f(i + 2) can we narrow the interval further to < M < +
or + < M < + 2, respectively.

j j j

(a) f(i) < f(j) (b) f(i) > f(j) (c) f(i) f(j)

Fie. 1. A unimodalfunction f(x) and probes at and j.

i+1 i+2 i+1 i+2

(a) (b)

FIG. 2. Unimodalfunctions f with f(i) < f(i + 1) > f(i + 2). In (a) the maximum occurs between and

+ l’in (b) the maximum occurs between + and + 2.

We define the cost of i, c(i), to be the number of probes needed by an algorithm, in the
worst case, to find the smallest possible interval containing the maximum when < M < + 1.
If the search range is finite, we want a search algorithm that minimizes max0_<i<N c(i). When
the search range is infinite, we try to minimize the growth rate of c(i), as --+ ec. Although
it is possible to compute a lower bound on c(i) by induction on N in the finite case [3], [5],
11], we employ new techniques that apply to the unbounded search problem as well.

2. Finite unirnodal search trees. An algorithm that solves the finite discrete unimodal
search problem can be represented as a unimodal search tree as shown in Fig. 3. Each
node has the form [i, j, k] with < j < k, meaning that the algorithm has found that
f(i) <_ f(j) > f(k) and hence that the maximum occurs between and k. The left and right
children of a node [i, j, k] are [i, x, j] and [x, j, k], respectively, if the next value probed, x,
satisfies < x < j; otherwise, if j < x < k, the left and right children of [i, j, k] are [i, j, x]
and [j, x, k], respectively. The root of the tree is [0, i0, N], where i0 is the first value probed
and the interval searched is from 0 to N. External nodes have the form [i, + 1, + 2], meaning
that the algorithm has determined that the maximum occurs in the interval < M < + 2.
Note that there are no redundant probes in the tree.

The cost of i, c(i), is one more than the longest distance from the root to a node of the
form [i 1, i, + or [i, + 1, + 2], since these are the only two nodes corresponding to
< M < + 1. To derive a lower bound on c(i), 0 <_ < N, we will compute a lower bound

on the height of the search tree.
To motivate our approach to the determination of a lower bound on c(i), consider the

problem of determining the unit interval containing the zero of a strictly increasing function

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 753

[0,

3, 8]..[, 5,.8]

[0, 2,3]0 3,[2,5] 3,5] [3, 4, 5] [4, 5, 8]

1,2] ;2, 3] [2,3 4, 5] [4,5, 6, 8]

8]

FIG. 3. A unimodal search tree with N 8. Thefirst two probes ofthe algorithm are at 3 and 5. If f(3) > f(5)
the next probe is at 2; otherwise the next probe is at 4. We have c(0) c(1) c(2) c(3) c(4) 4 and
c(5) c(6) c(7) 5.

with probes only at integer values; that is, we have f(x) < f(y) for x < y and we want to
find such that f(i) <_ 0 and f(i + 1) > 0. In this case, too, the cost of i, c(i), is the number
of probes, in the worst case, needed by an algorithm to find i. For the bounded version of
this problem, in which we minimize max0_<i <N c(i), we would use simple binary search (see
[7, pp. 406-422], for example). The unbounded version of this problem, in which we try to
minimize the growth rate of c(i), as --+ x, has been studied extensively by Bentley and
Yao [4], Knuth [8], Reingold and Shen [13], [14], and others. Lower bounds for both the
bounded and unbounded search follow from Kraft’s inequality [9] (see [1, pp. 53-59] or [8]):

N-1

() <
i=0

2c(i)

We will prove a Fibonacci version of Kraft’s inequality for unimodal search trees and
hence obtain lower bounds on the number of probes. Specifically, we prove the following
theorem in 3.

THEOREM 1. In a unimodal search tree, let [A, x, Z] be a node at distance from the
1rot, where x is any value such that A < x < Z, and let q be a value in the range A < q < Z
having the least cost in the tree; that is, for all i, A < < Z, c(q) <_ c(i). Then

fc(q)+2-I
(2) <

i=A Fc(i)+2 Fc(q)+2

This theorem is similar to the following, easily proved, observation: In a binary tree,
let u be a node at distance from the root and let E(u) be the set of external nodes that are
descendents of u. If the cost of node i, c(i), is its distance from the root and v E(u) is an
external node of least cost among E(u), then

2c(v)-tZ 2c(i 2c(v) 2
iLL(u)

Kraft’s inequality (1) follows from this observation by taking u as the root (l 0). Similarly,
from Theorem we obtain the following corollary.

COROLLARY 1. A unimodal search treefor the range 0 to N satisfies

N N-1

iO <|"--<
Fc(i)+2

(3)
FN+ .=

754 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

Proof. The upper bound follows from Theorem by taking [A, x, Z] as the root [0, i0, N],
that is, taking 0.

To prove the lower bound, we give a unimodal search tree for the range [0, N] in which
every path from the root to a leaf has length N 2, that is, probes at every integer in the
range 1, N]; the case N 5 is shown in Fig. 4. The root of the search tree is [0, 1, N].
In general, every node at a distance k from the root has the form [i, + 1, + N- k]
or [i,i + N- k- 1, / N- k]. In either case, we let the children be [i,i + 1, i+
N-k- 1] and [i + 1, +N-k- 1, i+N-k]. Each external node corresponds to
k N 2 and is at a distance N 2 from the root. Thus each of the N terms in the sum in
(3) is of the form 1/FN+. Since there can be at most N nonredundant probes for
any path in any search algorithm, no other tree can have deeper external nodes or a
smaller sum.]

[0, 1,2] 2, 3]

,_40,

41

[1,2,3]] [2,3,4]

1,5. 4, 5]

[1, 2, 4]

[1,2,3] [2,3,4] [2, 4[3],4 5]

FIG. 4. A worst-case unimodal search tree with N 5. No matter where the maximum is, the algorithm
corresponding to such a tree will use N probes.

The upper bound in Corollary is similar to the inequality

(4) p-c(X)dx <-,

from 12], in which c(x) is the number of probes, in the worst case, used by an algorithm to
locate the maximum to within an interval of length two; (p (1 + x/)/2 is the golden ratio.
However, Corollary is tighter than (4) in the sense that (3) is tight for infinitely many N (the
Fibonacci numbers), but the integral in (4) cannot equal 2/(p for N > 2.

A lower bound on the number of probes in an algorithm for the finite unimodal search
problem follows from Corollary 1. Let F-l(n) be the inverse Fibonaccifunction defined by

Fy-(n)- < n < FF-(n);

note that

F- (n)-I F F-I(n) (n)(/9 (__) (n)-I
(/0

0+ 0+
where g3 1/(p p (-1 + x/)/2. Taking logarithms and using Taylor series gives

F_,(n) l(_)F_,(n)_,l ()-- O F-’(n)-l+l lgo((p +
(D
y- (n)-I In 0

< logo n

< F_,(n) (_)F-(,) ()+ O 1ogo ((p +
(t9 F-(n) In p (/9 F- (n)+l

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 755

and therefore
F- (n) log0 n 4- O(1).

We have the following corollary.
COROLLARY 2. For any discrete unimodal search algorithm over the range 0 to N, the

number ofprobes needed in the worst case is at least F- N) 2.
Proof. If the maximum cost of an algorithm is at most FF-(N)-3, we have

N

i--0 Fc(i)+2- FF-’(N)-I
>1,

contradicting Corollary 1. F1
The lower bound in Corollary 2 is achievable, as we show in 4.
3. Proof of Theorem 1.

3.1. Some Fibonacci identities. We need the basic identities

() F,+ E. F.+ +
and

(6) F,+F,_- F2 (-1)n;

see Knuth [6, pp. 78-86], for example. With these identities we prove

(7) Fn+m- F, F,_ Fn+m =Fm (- 1)+

as follows:

F.+m-I F. F._ F.+m

by (5), which simplifies to

and by (6) we get

Fm(F. F._I

Urn(-1)n/.

PROPOSITION 1, For >_ 0, j > 0, and k > 0, if is odd then

Fi Fi-i-j
F,.+ F,.+j+

and if is even then

Fi Fi-i-j
F+ F+/+

Proof. The relations can be written jointly as

756 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

which by (5) becomes

F/FF/+/+ + F/F_ F,.+/ > FF/+ Fi+/+ F_ Fi F/+j.

Simplifying, we get

Ft F/+/+ .9> F/+I Fi+j

and rewriting,

C F/+/+ Fi+ F++/ > o.

By (7), with n + and m j, this becomes

Fj(-I)i+I <?> 0.

Thus the term on the left is larger if is odd and smaller if is even.
Remark. Proposition can be restated as

2 5 13 -i+3 21 8
> > >...>q9 >...> >

Ft. Fi+2 Fi+4 Fi+5 Fi+3
3

Fi+l

fori > 4.
PROPOSITION 2. For > O, j > O, and k > O,

Fi F,.+j
Fi+k F,.+/+k

Fj Fk (-1) +

F,.+k Fi+/+

Proof. We have

F,. F/+/ Fi+/+ F,. F,.++. Fi+
Fi+ F,.+/+ E.+ F,.+/+

which, by (5),

F,.+k F,.+j+
Simplifying, we get

Fj (F/+k_ F/ F/_ E-f-k)
Ft.+k F,.+/+k

which, by (7),

f.jfk(-1)i+l

Fi+k F,.+j+k

as desired.

3.2. Inductive proof of Theorem 1. For convenience, we restate the theorem here.
THEOREM 1. In a unimodal search tree, let [A, x, Z] be a node at distance from the

root, where x is any value such that A < x < Z, and let q be a value in the range A < q < Z
having the least cost in the tree; that is, for all i, A < < Z, c(q) < c(i). Then

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 757

Fc(q)+2_

i=A
fc(i)+2 fc(q)+2

We prove Theorem by induction on the height of the subtree rooted at a node. The basis
of the induction is an external node for which this height is zero. For internal nodes, we will
assume that Theorem is true for all descendents of a node; there will be two different cases
depending on the parity of c(q) l.

3.2.1. Basis of the induction. Consider an external node [A, A + 1, A + 2], that is,
Z A + 2, at distance from the root. If c(A + 1) >_ c(A) > + 1, then q A and

2 Fc(q)+2_
Fc(A)+2 Fc(A+I)+2- Fc(A)+2- Fc(q)+2

otherwise c(A) > c(A + 1) > + 1, implying q A + and

2 Fc(q)+2_
< <

Fc(A)+2 Fc(A+I)+2- Fc(A+I)+2 Fc(q)+2

This establishes the basis of the induction for Theorem 1.

3.2.2. Induction when c(q)-l is odd. Let c(q) > 0 be odd for internal node [A, x, Z]
at distance from the root. We consider the case when we have a subtree ofthe form in Fig. 5 (or
its mirror image, in which case the arguments that follow are easily adjusted); in the degenerate
case, [A, C, E] is an external node. First note that by applying Theorem inductively to node
[C, E, Z] we get

(8)
Fc(q)+l_

i=C Fc(i)+2 Fc(q)+2

If [A, C, E] is an external node then, since c(A) > c(q) > l, we have

i--A
fc(i)+2 fc(A)+2 - .= Fc(i)+2

Fc(q)+l_
< +

Fc(A)+2 Fc(q)+2

<
Fc(q)+2-l
Fc(q)+2

proving Theorem 1.
If [A, C, E] is an internal node, by applying Theorem to node [A, B, D] we get

(9)
D-I F()_

Fc(i)+2 Fc(r)+2i=A

for some r, A _< r < D, with c(r) > c(q) by the definition of q. Since c(q) is odd, we
have, by Proposition 1,

Fc(r)-I Fc(q)-l
(1 O)

Fc(r)+2 Fc(q)+2

758 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

__x,,+-- distance from the root

FIG. 5. Subtreefor the case c(q) odd. The value of C is either B or D; the value ofx is either C or E. The
value with least cost among A through Z 1, q, is contained in the subtree rooted at [C, E, Z]. In the degenerate
case, [A, C, E] may be an external node.

Since C < D,

and from (8) and (9)

---< - P--(i)+2i=A Fc(i)+ 2 "= Fc(i)+2 i--c

so by (10)

Fc(r)-I Fc(q)+l-I
Fc(r)+2 Fc(q)+2

<
fc(q)-I
Fc(q)+:
Fc(q +2-l
Fc(q)+2

Fc(q)+ -I

Fc(q)+2

proving Theorem for c(q) odd.
Note that inequality (10) does not hold if c(q) is even and therefore a separate case is

needed.

3.2.3. Induction when c(q)- is even. Let c(q) > 0 be even for internal node
[A, x, Z] at distance from the root, so c(q) > + 1. We consider the case when we have a
subtree of the form in Fig. 6 (or its mirror image, in which case the arguments given below
are easily adjusted); in various degenerate cases, one or more of the internal nodes shown in
Fig. 6 are external nodes. First note the following identities: applying Theorem inductively
to node [D, H, Z] we get

z- Fc(q)+-
(11) Z <;

i=D Fc(i)+2 Fc(q)+2

applying Theorem to [A, D, H],

H-I Fc(r)+l-iy <
i=A Fc(i)+2- Fc(r)+2

for some r, A < r < H with c(r) > c(q). Since c(q) is even, c(q) + is odd and we
have, by Proposition 1,

Fc(q)+l-I
(12) <;

i=A Fc(i)+2- Fc(q)+2

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 759

z]

FIG. 6. Subtreefor the case c(q) even. The value ofC is either B or E; D is C or F; L is K or M; J is I or

L" H is G or J; x is D or H. The value ofleast cost among A through Z 1, q, is contained in the subtree rooted at

D, H, Z]. In various degenerate cases, some of the nodes shown as internal nodes may actually be external nodes.

applying Theorem to [G, I, L],

Fc(i)+2 Fc(s)+2

for some s, G < s < L, with c(s) > c(q). Since c(q)- -l is odd, we have, by Proposition 1,

(13)
Fc(q)_l_

If [A, D, H] is an external node, then

z-

A +
"= Fc(i)+2 Fc(A)+2 i=D/Z Fc(i)+2

which, by (11) and noting that c(A) > c(q) > + 1,

Fc(q)+l-I
<

Fc(A)+2 Fc(q)+2
Fc(q +2-I
Fc(q)+2

Otherwise, if [A, D, H] is an internal node but [D, H, Z] is an external node,

i=A Fc(i)+2 i=A Fc(i)+2 Fc(4)+2

which, by (12) and noting that c(H) > c(q) > + 1,

Fc(q)+ +
Fc(q)+2 Fc(H)+2

Fc(q)+2-l
Fc(q)+2

760 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

Otherwise, if [A, D, H] and [D, H, Z] are both internal nodes but [A, C, F] is an external
node,

<_ [-
Fc(i)+2i=A Fc(i)+2 Fc(A)+2 Fc(c)+2 "=

which, by (11) and noting that c(A) > c(q), c(C) > c(q), and c(q) > + 1,

fc(q)+l-I+ +
fc(A)/2 fc(c)+2 fc(q)+2

<
Fc(q)+2-1
Fc(q)+2

Otherwise, if [A, D, HI, [D, H, Z], and [A, C, F] are all internal nodes but [G, J, Z] is an
external node,

/4-

i=A Fc(i)+2 A’= Fc(i)+2 Fc(G)+2 Fc(J)+2

which, by (12) and noting that c(G) >_ c(q), c(J) >_ c(q), and c(q) > + 1,

Fc(q)+
-t-

Fc(q)+2 Fc(G)+2 Fc(J)+2

Fc(q)+2-l
Fc(q)+2

Otherwise, if [A, D, H], [D, H, Z], [A, C, F], and [G, J, Z] are all internal nodes but
[I, L, Z] is an external node, then since G < H,

i---A Fc(i)+2 i-A Fc(i)+2 i=G Fc(i)+2 Fc(L)+2

which, by (12), (13), and noting that c(L) > c(q) > + 1,

Fc(q)+l_ Fc(q)_l_+ +
Fc(q)+2 Fc(q)+2 Fc(L)+2

Fc(q)+2-1
Fc(q)+2

Having handled all possible degenerate cases, we may now assume that all the nodes in
Fig. 6 are present. We outline the remainder of the proof to give a clear picture of what is being
done and to show that the proof is complete. We know by hypothesis that D _< q < Z. We
consider the case G _< q < Z and show that Theorem holds. Next we assume D < q < J
and consider the least cost value s such that G < s < Z with c(s) > c(q); otherwise we
can set q s and revert to the previous case G < q < Z. We show Theorem holds if
c(s) > c(q) + 2, leaving only the case c(s) c(q) + 1. We divide this case into two subcases.
In the first subcase we show Theorem holds if I _< s < Z; in the second subcase we show
Theorem holds if G < s < L and the least cost value such that I < < Z satisfies
c(t) > c(s); if not, we can set s and revert to the previous case I < s < Z.

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 761

IfG_<q <ZthensinceG< H,

z-I

Fe(i)+2 i=A Fc(i)+2 i=G Fc(i)+2

and by (12) and applying Theorem to [G, J, Z] we get

<
Fc(q)+1-1 + Fc(q)-l-I
Fc(q)+2 Fc(q)+2

Fc(q)+2-1
Fc(q)/2

For the remainder of the proof, assume D < q < J and that the least cost value s such that
G < s < Z, satisfies c(s) > c(q). Note the important observation that if we apply Theorem
and Proposition to [A, B, E] we get

(14)
E-I Fc(r)--t Fc(q)+l-I

< <
i=A Fc(i)+2 Fc(r)+2 Fc(q)+4

for some r, A < r < E, with c(r) > c(q), for if c(r) c(q) we would have the mirror image
of the caseG <q <Z.

If c(s) > c(q) + 2, then applying Theorem and Proposition to [G, J, Z] we get

(15)
z- Fc(s)-t Fc(q)+3-1

.= Fc(i+- Fc(s+- Fc(ql+5

Because C < E and G < H,

E-I H-I Z-/< -" Fc(i)+2
l-

Fc(i)+2i=A Fc(i)+2 i=A Fc(i)+2 .= .=

hence by (14) and (15) and applying Theorem to [C, F, HI we get

Fc(q)+l-I q_ Fc(q)-1 Fc(q)+3-I
Fc(q)+4 Fc(q)+2 Fc(q)+5

Therefore, we must prove

Fc(q)+1-1
__

Fc(q) -l
Fc(q)+4 Fc(q)+2

Fc(q)+2-1Fc(q)+3-l z
Fc(q)+5 Fc(q)+2

Subtracting Fc(q)-l/Fc(q)+2 from both sides this becomes

Fc(q)+_tFc(q)+l-i
@

Fc(q)+3-i ..
Fc(q)+4 Fc(q)+5 Fc(q)+2

Writing Fc(q)+l-I as Fc(q)-I -Jr- Fc(q)-l-I we get

Fc(q)+ -I

Fc(q)+4
Fc(q)+3-1 Fc(q)-l-I+ . Fc(q)-I
Fc(q)+5 Fc(q)+2 F(q)+2

762 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

and rewriting,

Fc(q)/3-l Fc(q)-I Fc(q)-l-I Fc(q)+l-I
Fc(q)/5 Fc(q)/2 Fc(q)/2 Fc(q)/4

Applying Proposition 2 to both sides gives

2F2+l(-1)c(q)+l-l Fl+3(-1)c(q)-!

Fc(q)/z Fc(q)/5 Fc(q)/4Fc(q)/2

Canceling 1/Fc(q)+2 from both sides and recalling that c(q) is even we get

F/+2F/+2 Z:
Fc(q)+ Fc(q)+4

which we can rewrite as

+3Fc(q)+4 z
Fc(q)+5 2F/+2

or, by writing/+3 as/+2 @/+1,

Fc(q)/4
<

Fc(q)+5 2 2/+2

By Proposition the term on the left is at most 5/8, whereas the term on the right is at least
3/4 and the relation is proven.

We can now assume that c(s) c(q) + 1. If F < s < Z, then by applying Theorem and
Proposition to [A, C, F] in a manner similar to the derivation of (14), applying Theorem
to [D, G, J], and applying Theorem to [I, L, Z], we get

< -- Fc(i)/2 Fc(i)/2i=A Fc(i)/2 i=A Fc(i)/2 i=D i=I

<
Fc(q)+l-I Fc(q)-l Fc(q)-I
Fc(q)/ Fc(q)/2 Fc(q)/3

Fc(q)+2-1 Fc(q)-I
<

Fc(q)+ Fc(q)+2

We must prove

Fc(q)+2-I Fc(q)-I "- Fc(q)+2-1
Fc(q)+3 Fc(q)+2 Fc(q)+2

which simplifies to

Fc(q)+2-1 Fc(q)+l-I
Fc(q)/ Fc(q)+2

This inequality follows from Proposition because c(q) is even.
The final case is c(s) c(q) / 1, G < s < J, and the least cost value such that

I _< < Z, satisfies c(t) > c(s). Then by (14), applying Theorem to [C, H, E], applying

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 763

Theorem to [G, I, L], and applying Theorem and Proposition to [K, M, Z] in a manner
similar to the derivation of (14), we get

z-

Fc(i)+2 Fc(i)+2 Fc(i Fc(i)+2 Fc(i)+2= i=c)+2 i=G =

<
Fc(q)+l-I Fc(q)-I Fc(q)-l Fc(q)+l-I
Fc(q)+4 Fc(q)+2 Fc(q)+3 Fc(q)+5

We must prove

Fc(q)+l-I Fc(q)-l Fc(q)-I Fc(q)+l-I Fc(q)+2-l
Fc(q)+4 Fc(q)+2 Fc(q)+3 Fc(q)+5 Fc(q)+2

Subtracting Fc(q)_l/Fc(q)+2 from both sides we get

Fc(q)+l-I Fc(q)-I
Fc(q)+4 Fc(q)+3

fc(q)+l_fc(q)+l-I
fc(q)+5 fc(q)+2

The term on the right is equal to

2 Fc(q)- -I

Fc(q)+2
Fc(q)-2-l+
Fc(q)+2

so rearranging terms gives

Fc(q)+ -I

Fc(q)+5 fc(q)+2 fc(q)+2
Fc(q)+2-1 Fc(q)-l-I Fc(q)-l+
Fc(q)+4 Fc(q)+2 Fc(q)+3

Applying Proposition 2 gives

2fl+4(--1)c(q)-l-l fl+3(--1)c(q)-I

fc(q)+5 fc(q)+2 fc(q)+2 fc(q)+4

Fl+3 (-1)c(q)-1+
Fc(q)+2 Fc(q)/3

Noting that c(q) is even and canceling 1/Fc(q)+2 gives

2/+4
F/+3 (

Fc(q)+ Fc(q)+4

Dividing by Ft+3 and multiplying by fc(q)+5 we get

2F/+4 fc(q)+5
f/+3 fc(q)+4

Fc(q)+5
Fc(q+3

and expanding the numerators,

2/+2 fc(q)+3 fc(q)+22-+-
f/+3 fc(q)+4 fc(q)+3

The term on the left is at most 2 + 2(1 / 1) 4 and the term on the right is at least 3 + (2/3) +
(1/2) 25/6 > 4, so the inequality holds.

The proof of Theorem is now complete.

764 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

4. An optimal finite unimodal search algorithm. Procedure UnimodalSearch,
given in Algorithm 1, solves the finite discrete unimodal search problem by finding the unique
maximum of a unimodal function f over the interval (i, k). UnimodalSearch can be de-
scribed inductively as follows" Given and k, let j > 0 be a value such that Fj < k- _< Fj+2
and assume we know that f(i) <_ f(i + Fj) >_ f(k). If k > Fj+I, the next probe of f is
made at + Fj+; otherwise the next probe is at + Fj_. The appropriate subinterval is then
searched recursively until an interval of length 2 is obtained.

ALGORITHM
Optimal discrete unimodal search algorithm.

procedure UnimodalSearch(
var i" Nonnegativelnteger; Upon entry, search has reached...
j, k: Nonnegativelnteger; {... node [i, + , k]
var CurrentMax" real; Upon entry, value of f(i + Fj)
f: function(Nonnegativelnteger): real); Unimodal function to search

Upon return, the maximum of f is in the range [i, + 1, / 2]
and CurrentMax f(i + 1)

var
NewValue: real;

begin UnimodalSearch
invariant: CurrentMax f(i + Fj) is maximum of all probes

andFj <k-i< Fj+2}
if k 2 then

UnimodalSearch ends at interval [i, + 1, + 2]
else if k < Fj+l then begin
NewValue := f(i / Fj_);
if NewValue > CurrentMax then begin
CurrentMax := NewValue;
UnimodalSearch(i, j 1, / Fj, CurrentMax, f)
end

else begin
"= / Fj_;

UnimodalSearch(i, j 2, k, CurrentMax, f)
end

end
else k- > Fj+ begin
NewValue := f(i / Fj+l);
if NewValue > CurrentMax then begin
CurrentMax "= NewValue;
:=i/Fj;

UnimodalSearch(i, j 1, k, CurrentMax, f)
end

else
UnimodalSearch(i, j, / Fj+, CurrentMax, f)

end
end; UnimodalSearch

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 765

ALGORITHM 2
Optimal discrete unimodal search over the interval (0, N).

function FiniteUnimodalSearch(
N: Positivelnteger; Search over interval (0, N), N > 2
f: function(Nonnegativelnteger): real Unimodal function to be searched
): Nonnegativelnteger; Left endpoint of a length-two interval

containing the unique maximum of f
procedure UnimodalSearch

See Algorithm
end;
var

i" Nonnegativelnteger; Left endpoint of interval containing the maximum
Maximum" real; Largest value of f found in the probes

begin{ FiniteUnimodalSearch
:--0;

Maximum := f(FF-N)-,);
UnimodalSearch (i, F-1 (N) 1, N, Maximum, f);
return(i)

end;{ FiniteUnimodalSearch

LEMMA 1. The invariant always holds as stated in UnimodalSearch, whenproper initial
values are given.

Proof. The invariant says

CurrentMax f(i + Fj) is maximum of all probes and Fj < k < Fj+2.

We first remark that CurrentMax is only changed if the new value probed is larger and
so therefore it remains the maximum of all probes.

We prove the other part of the invariant by induction. Let is, js, and ks be the values of
the parameters i, j, and k, respectively, for the sth call to UnimodalSearch. By hypothesis,
i0, j0, and k0 are such that the invariant holds. Assume the invariant is true at the sth call to
UnimodalSearch; we show that the invariant is true on the (s+ 1)st call to UnimodalSearch.

If js < 2, then is ks 2 and there is no (s + 1)st recursive call. Suppose js > 2; there
are four possible recursive calls in UnimodalSearch. We consider them in turn. For each
case we must show

Fj.,.+ < ks+, is+, < Fj.,.+,+2,

given that the invariant holds for i,, is, and ks.
The first recursive call is the easiest case: We have i,+ is, js+ js 1, and

k,+ Fj.,. + is and so

Fj.,.+.-- Fj.,._, < Fj.,. --ks+,- is+, < +, Fj,+,+2,

as desired.
In the second recursive call, we have is+ is + Fj.,._, js+ js 2, and

and hence Fj.,.+. Fj.,._2. By the invariant at step s, ks is > Fj,,. and hence

Fj,,-2 < ks is Fj.,._, ks+ is+l.

766 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

By the conditions leading to the call, ks is < .+l and hence

ks- i Fj._ <_ Fj. Fj.+, +2,

as desired.
In the third recursive call, we have is+l is + Fjs, j+ j 1, and ks+ ks. Thus,

By the conditions leading to the call, ks is > Fjs+l so

Fj.,.+, < ks is Fj ks+ is+l.

By the invariant at step s, ks is < Fjs+2 and hence

ks+l- is+l < FL+I Fj+,+2,

as desired.
Finally, in the fourth recursive call, we have is+l is, j+l js, and k+l is + Fj..+l.

Thus,

Fj:,.+.- ,. < Fj.,.+l- ks+- is+l < Fjs+2 Fjs+l+2,

as desired. [

LEMMA 2. Let is and ks be the values of and k, respectively, for the sth recursive call
to UnimodalSearch. We have

ks is < FF- (ko-io)-s.

Proof. We prove the lemma by induction. When s O, by definition of F-1, we
have ko io < FF-’(ko-io), as required. Therefore, assume the lemma is true in the sth
call to UnimodalSearch, and we show that the lemma is true on the (s + 1)st call to
UnimodalSearch.

We consider each recursive call to UnimodalSearch as done in the proof ofLemma and
examine what happens to the size of the interval in each case. In the first call k, is > Fj.., by
theinvariant, is+l is,andks+ is+Fj,,, sok+|-i+l Fj.,.. In the second call ks i > Fj
by the invariant, ks is < Fj.,.+ by the conditions leading to the call, is+l is + Fjs-1, and

ks+ ks so ks+ -is+l ks-is- Fj.,._l < ,.+ Fj._l Fj,. In the third call ks-is < Fj,+2
by the invariant, ks is > Fj.,.+l by the conditions leading to the call, is+l is + Fj,, and

ks+l kssoks+-is+ ks-is-Fj,,. < Fj.,.+2-Fj.. Fj,,.+l. In the fourth call k, is > Fjs+l,
by the conditions leading to the call, is+l is, and ks+l is + Fa.,,.+l so ks+l is+l Fj,+. In
each of the four cases the interval has been narrowed by at least one Fibonacci index, proving
the lemma. [3

THEOREM 2. Let io and ko be the values of and k, respectively, for the initial call
to UnimodalSearch. When procedure UnimodalSearch is given proper initial values, it
returns an interval oflength two containing the maximum ofunimodalfunction f after at most
F- (ko io) 3 steps.

Proof. Let is and ks be the values of k and i, respectively, for the sth recursive call to
UnimodalSearch. UnimodalSearch stops when k, i, 2, so that by Lemma 2 we have

2 < FF- (ko-io)-s.

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 767

Therefore

3 < F-l(k0-i0)-s,

so that

s < F-l(k0-i0)-3.

By Lemma it will return the proper interval. q

The function FiniteUnimodalSearch, given in Algorithm 2, uses UnimodalSearch to
solve the finite discrete unimodal search problem over the interval (0, N). FiniteUnimodal-
Search is a generalization of Oliver and Wilde’s algorithm, behaving identically to it when
N is a Fibonacci number.

COROLLARY 3. Thefunction FiniteUnimodalSearch uses at most F- (N) 2 calls to
locate the interval containing the maximum; it is therefore optimal.

Proof. FiniteUnimodalSearch passes 0 and k N to UnimodalSearch so that
by Theorem 2 there are at most F- (N) 3 probes by UnimodalSearch. Since there is
one initial probe before the call to UnimodalSearch in FiniteUnimodalSearch the total
number of probes is at most F-a(N) 2. By Corollary 2 this is optimal. q

5. The unbounded unirnodal search problem. In the unbounded discrete unimodal
search problem, the search takes place over the nonnegative integers and we assume that
f(0) limN__, f(N) -x. In this section we establish lower bounds on the growth rate
of c(i) as -- , where c(i) is the number of probes used in the worst case to determine
the maximum when the maximum occurs in the range [i, + 1). Then, we give a series of
algorithms that approach these lower bounds.

We have the following Corollary to Theorem 1.
COROLLARY 4. In an unbounded discrete unimodal search, ifc(i) is the number ofprobes

used in the worst case to determine the maximum when the maximum occurs in the range
[i, + 1), then

(16)
Fc(i)+2

Proof. If not, then there must be some N for which

i=0 Fc(i)+2
>1,

contradicting Corollary 1.
Similarly, (4) can be extended to

2
(17) p-c(X)dx <

0

As a direct consequence of Corollary 4, we obtain a lower bound on the cost function for
the unbounded discrete unimodal search problem.

COROLLARY 5. Let c(i) be the number ofprobes used in the worst case by an unbounded
discrete unimodal search algorithm when the maximum occurs in the range [i, + 1). If, for

xsome nondecreasing integer-valuedfunction d the sum Yi=0 diverges, then c(i) > d(i)Fd(i)+2
for infinitely many i.

768 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

The following presentation of an infinite hierarchy of algorithms for the unbounded dis-
crete unimodal search problem is based on the methods of Reingold and Shen 13]. We need
several definitions. The Fibonacci Ackermann’s function, a slight modification of Acker-
mann’s function [2], is defined as follows for n > 0:

(18)
Fn+2 i-- 1,

Ai(n)
zn)li_l(1 > 2,

where zJ) (n) A (Aj-l(n)) and A (n) n Thus, A2(n) fibtower(n), an n-high""i-1 i-1 i-1 i-1

tower of Fibonacci numbers defined as

(19)
!

fibtower(n)-- {
[Ffibtower(n- 1)+2

n 0,

n>l.

Some values of A (n) are shown in Table 1.

TABLE
Fibonacci Ackermann’sfunction as defined by (18). f btower(n is an n-high tower ofFibonacci numbers as

defined by (19).

n 0 2 3 4 5 6 7 8 9 10 11 12 13

A l(n) Fn+2
A2(n) fibtower(n)
A3(n)

2 3 5 8 13 21 34 55 89 144 233 377 610
2 3 5 13 610 F612 FF612+2
2 3 5 610 A2(610)

(20)

The inverse Fibonacci Ackermann’sfunction is defined as follows for n > 1"

oti(n) { F-l(n + 1) 3

least j such that cfJ) (n) <

where otj), (n) oi_ (o/J- 1) (n)) and o_.) (n) n. For convenience, we let Oi(0 0. For
> 1, oti(n) is the functional inverse of Ai(n), that is,

oti(n) A (n) greatest x > such that Ai(x) < n,

and therefore oti(Ai(n)) n. See Table 2 for some values of oti(n).

TABLE 2
Inverse Fibonacci Ackermann’sfunction as defined by (20).

n 0 2 3 4 5...7 8... 12 13... 20 609 610

cl(n)= F-I (n -4-1) 3
otz(n)
c3(n)

0 0 2 2 3...3 4... 4 5.-. 5 12 13
0 0 2 2 3...3 3... 3 4..- 4 4 5
0 0 2 2 3...3 3... 3 3... 3 3 4

The lengthfunction L (n) is defined as follows for n > 1"

(21) Li(n)=
Otl(n)--F-l(n+l)--3

/ Zi-1 (n) + Li(oti-1 (n))

1,

i>2.

For convenience, we let Li(O) 0. Table 3 has some values of Li(n).

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 769

TABLE 3
The lengthfunction Li(n) as defined by (21).

n 0 2 3 4 5... 7 8... 12 13... 20 609 610

Ll(n) F-l(n + 1) 3
L2(n)
L3(n)

0 0 2 2 3..- 3 4... 4 5... 5 12 13
0 0 3 3 6... 6 7... 7 11... 11 19 24
0 0 4 4 I0... 10 11... 11 15... 15 23 34

LEMMA 3. diverges.FLI (n)+2

Proof. We can rewrite the sum as

n=0 FL(n)+2 m=l n>2, otl(n)=m FL(n)+2

Noting that oil (n) L (n) F-1 (n -- 1) 3 for n > 1, we have

n>2, o(n)=m FLu(n)+2 n>2, F-l(n+l)=m+3 Fro+2
Since there are Fm+ integers whose inverse Fibonacci number is m + 3,

(22)

for m > 1. Thus

Fm+l
Fm+2

2’

n=0 FL(n)+2
> 2+ml ’

which diverges.
LEMMA 4. -]n=0 diverges.FL (n)--or (.)+2

Proof. We can rewrite the sum as

n=0 FLz(n)-tz(n)+2 m=l n>2, ot2(n)=m FLz(n)+2-m

Noting that ot2(n) ot2(Otl (n)) + and using the definition of L2(n),

n>2, ot2(n)--m FL2(n)+2-m n>2, ot2(otl(n))=m--I FLl(n)+l+L2(tl(n))-(m-1)

We will show by induction that the above sum is at least 1. As a basis, if m then n 2
and the sum is 1. By (5)

n>2, ot2(ot(n))=m-I FL(n)+l FL2(t(n))+l-(m-1) .qt_ FLt(n) FL2(ot(n))_(m_l
and can be rewritten as

FLu(n)+1 FL2(ot(n))+2_(m_l Fq ...[_n>2, 2(Ul (n))=m- Fq+l Fr+l Fq+l

770 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

where q FLz(otl(n))+l_(m_l) and r Fcl(n. We have

Fq Fr Fq-1 Fr+ Fq + Fr Fq-1 F+q
Fq+l Fr+l Fq+l Fq+l Fr+l Fq+l Fr+l

by (5). By a relation similar to Proposition we get

Thus

FL2(n)+2_mn>2, ot2 (n)=m

n>2, o2(o(n))=m-1
fL(n)+l fL(ol(n))+2-(m-1)

k>2, FL2((k))+2-(m-1) n_2, FL(n)+I

By an argument similar to the one leading to (22), the inner sum is 1, so

n>2, ot2(n)=m FL2(n)+2-m k>2, ot2(k)=m-I FL2(l(k))+2-(m-l)

which is greater than by the induction hypothesis.
Therefore

0 >I+I+ZI’FLz(n)-tz(n)+2 m=l

which diverges.
THEOREM 3. L (n) and L2(n) oe2(n) are lower bounds on the unbounded discrete

unimodal searchproblem, in the sense that ifan unboundeddiscrete unimodal search algorithm
uses c(n) probes to narrow the interval to [n, n + 1, n + 2], then c(n) > L (n) and c(n) >
L2(n) ot2(n)for infinitely many n.

Proof. The proof follows directly from Corollary 5 and Lemmas 3 and 4. 1
We would have liked to establish that for >_ 3, Li(n) koti(n) is a lower bound on the

unbounded discrete unimodal search for some constant k. Unfortunately, it can be shown that

FLi(n)+2-koi(n)n=0

converges for > 3 and any constant k. Therefore our methods are insufficient to show that
for levels > 3, InfiniteUnimodalSearch is within koti(n) of being optimal for constant k.

We now have lower bounds on the growth rate of c(n) for unbounded discrete unimodal
search. Upper bounds follow from the performance of the function InfiniteUnimodal-
Search and the procedure LevelSearch, Algorithms 3 and 4, which solves the unbounded
discrete unimodal search problem as follows. For a given unimodal function f and a given
value oflevel, Inf n eUn modalSearch probes successively at Atevet (0), Ateve (1) until
f(Aeve(p)) >_ f(Aevet(p + 1)) and then passes the information to procedure LevelSearch.

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 771

ALGORITHM 3
Unbounded discrete unimodal search.

function InfiniteUnimodalSearch(
level: PositiveInteger; Level of the search

f: funetion(Nonnegativelnteger): real Unimodal function to be searched
): Nonnegativelnteger; Left endpoint of a length-two interval containing the

unique maximum of f
procedure LevelSearch

See Algorithm 4
end;
Yar

p: integer;
CurrentValue: real; Value of f(Aevet(P + 1))
Next Value: real; Value of f(Ateve(p + 2))

begin{ InfiniteUnimodalSearch
p := -1;
Current Value := f(1);
Next Value := f(2);
while Next Value > Current Value do begin

invariant: NextValue f(Azee(p + 2)) > CurrentValue
f(Ait(p + 1)) > f(A(p)) >... > f(Aeez(O))

p:=p+l;
CurrentValue :-- NextValue;
Next Value := f(Atvei(p + 2))
end;

if p then
p := 0 Interval containing the maximum is [0, 1, 2]

else
LevelSearch(level, p, CurrentValue, f);

return(p)
end;{ InfiniteUnimodalSearch

772 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

ALGORITHM 4
Level-by-level unbounded discrete unimodal search.

procedure LevelSearch(
)" Positivelnteger; Level of the search
vat m" Nonnegativelnteger; Upon entry, the left endpoint of the interval

containing the maximum of f, relative to f(Az);
that is, the maximum is in the range
(Az(m), Az(m + 2))

var CurrentMax" real; Upon entry, the value of f(Az(m + 1)), the largest
known value of f

f: funetion(Nonnegativelnteger): real); Unimodal function to be searched at
current level

Upon return, rn and CurrentMax are such that the maximum of f is in the range
[rn, m + 1,rn + 2] and CurrentMax f(m + 1)

procedure UnimodalSearch

See Algorithm
end;
’ar

temp: Nonnegativelnteger;
begin{ LevelSearch

precondition: rn > 0 and
f(Az(m)) < f(Az(m + 1))--CurrentMax > f(Az(m + 2))

if rn 0 then
rn "= Return interval [Az(0), Az(1), Az(2)] [1, 2, 3]

else if ,k then begin
temp := Al(m);
Since A(m) Fro+z, Al(m + 2) Fm+4, and CurrentMax f(Fm+3),
the following call to UnimodalSearch is correct

UnimodalSearch(temp, m + 1, Al(m + 2), CurrentMax, f)
Location of the maximum has been determined by UnimodalSearch

rn "= temp
end

else rn > 0 and) > begin
m:=m-1;
LevelSearch(), m, CurrentMax, f(Az_l));
As a result of the call to LevelSearch, we have
f(Az_l(m)) < f(Az_(m + 1))--CurrentMax > f(Az_(m + 2))

LevelSearch()- 1, m, CurrentMax, f)
end
postcondition" m > 0 and f(m) < f(m + 1)--CurrentMax > f(m + 2)

end;{ LeveISearch

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 773

In LevelSearch, the parameters are ,k, the level of the search, f, the unimodal function
being searched, CurrentMax, the largest known value of f, and m, the left endpoint of the
interval containing the maximum of f relative to f(Az), that is,

f(A(m)) < f(A(m + 1)) CurrentMax > f(A(m + 2)).

Since Az(0) 1, Az(1) 2, and Az(2) 3, if rn 0 then the maximum is in the range
(1, 3). Ifm > and,k 1, LevelSearch performs thefinite optimal discrete unimodal search
(Algorithm 1)over the interval (A(m), A(m + 2)) (Fm+2, Fm+4) with the maximum of
all probes occurring at A l(m + 1) Fm+3. Otherwise, if m > and ,k > 1, LevelSearch
recursively performs a level ,k search on the composite function f(Az_) over the interval
(Az(m), Az(rn + 2)) with the maximum of all probes occurring at Az(m + 1). This narrows
the interval containing the maximum to (Az_ (rh), Az_ (rh +2)) for some rh with the maximum
of all probes occurring at Az_ (rh + 1). A level) search is recursively performed over the
interval (Az_ (rh), Az_ (rh + 2)) on the function f which narrows the interval to a length-two
interval containing the unique maximum of f. The recursion works because the composite
function f(Az_) is unimodal, since Az_ is a strictly increasing function.

LEMMA 5. In procedure LevelSearch, if the precondition is true for a given call, then
the precondition and postcondition will be truefor allfollowing recursive calls and the post-
condition will be truefor the given call.

Proof. We prove the lemma by induction on rn and . If rn 0, there are no recursive calls
and LevelSearch simply returns the interval [1, 2, 3] with CurrentMax f(2), as desired.
If ,k 1, there are no recursive calls and LevelSearch calls procedure UnimodalSearch
which, by Theorem 2, returns interval [temp, temp + 1, temp + 2] containing the maximum.
The value of rn is set to temp and CurrentMax f(m + 1), as desired.

Let rh > 0 and) > and assume the lemma is true for all m when <) and for rn < rh
when) . There are two recursive calls to consider. Before the first recursive call we have

(23) f(A(rh)) < f(A(rh + 1)) > f(A(rh + 2)).

Let rh rh and f f(A_l); to show that the precondition holds for the first recursive
call we need

(24) f(A:(rh)) < j(A(rh + 1)) >_ f(A(th + 2)).

Note the Ackermann function property that, for > 1,

A (n)Ai(n) ./_1(1)

Ai I(A (n-l)
i-1 (1))

Ai_l(Ai(n- 1)).

Therefore

Similarly,

f(A(rh)) f(A_l(A(rh- 1)))

f(A(rh)).

and
f(A(rh + 1)) f(AOh +))

f(A(rh + 2)) f(A(rh + 2)).

774 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

Thus (24) follows by substitution into (23). By the induction hypothesis, after the first
recursive call has been completed and before the second recursive call,

(25)

(26)

f(A;_l(rh)) < f(Af_(rh + 1)) -CurrentMax > f(A2_l(th + 2)).

Let 2. 1; to show that the precondition holds for the second recursive call we need

As above, we have

and

f(A2(rh)) <_ f(A2(rh + 1)) > f(A2(rh + 2)).

f(A2_ (rh)) f(A2(rh)),
f(A2_l(rh + 1)) f(A2(rh + 1)),

f(A;_ (th / 2)) f(A2(rh + 2)).

Thus (26) follows by substitution into (25). By the induction hypothesis and the postcondition
of the second recursive call, the second recursive call returns the interval [rh, rh + 1, rh / 2]
with the maximum probe CurrentMax f(rh / 1); this is the postcondition for the given
call to LevelSearch. [3

LEMMA 6. For all) > and n > O, Lx (n is the number ofprobes unction evaluations)
used in the worst case infinding the length-two interval [n, n / 1, n / 2] containing the maxi-
mum ofa unimodalfunction f with procedure LevelSearch, after the interval has been nar-
rowed to [A) (otx (n)), A) (otx (n) / 1), Ax (otx (n) /2)] byfunction InfiniteUnimodalSearch.

Proof. We prove the lemma by induction on n and ,k. Procedure LevelSearch is not called
if n 0 and therefore does no probes, satisfying the lemma for this case since Lx (0) 0. If
n 1, then ot)(n) 0 and LevelSearch does no probes satisfying the lemma for this case
since L)(1) 0. If n > 1, then ot)(n) > 0 and if ,k 1, LevelSearch performs a discrete
unimodal search over the interval (Al(Otl(n)), Al(Oel(n) + 2)) (Fo,(n)+2, Fo,(n)+4). Since
this interval has length Fl(n)+3 and the value of f at F,(,+3 has already been probed, the
number of probes done by UnimodalSearch is, from Lemma 2, at most o (n) L (n).

Assume the lemma is true for h < n and < l. Ifn > thenox(n) > 0, and if
) > 1, LevelSearch performs two recursive calls. Let Px(n) be the number of probes by
LevelSearch at level) if the maximum occurs at n. In the first recursive call, the procedure
searches the function f(A_) over ot_l(n) values and making P(o_ (n)) probes. In the
second recursive call, the procedure searches the function f on the interval

[Ax_ (or(n)), Ax-1 (oe(n) / 1), A)-l (c(n) / 2)]

as returned by the first call. This is the interval searched by a level . algorithm in the
worst case by induction resulting in Px_ (n) probes for the second call. Thus, P).(n)
P(c_l(n)) + P-l (n), precisely the definition of Li(n). [3

THEOREM 4. Using the function InfiniteUnimodalSearch, the cost offinding the
interval In, n + 1, n + 2] containing the maximum ofa unimodalfunction f is, for level > 1,

(27) Levet (n) + Olleve (n) +
2 n O,

! 3 n>0.

Proof. In the worst case, InfiniteUnimodalSearch probes until reaching interval

[Ateel(Oleel(n)), Alevel(Otevel(n) / 1), Aeve(Oteet(n) / 2)],

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 775

which procedure LevelSearch searches in Llevel(n) probes (Lemma 6). We count the number
of probes leading to the call to LevelSearch. If n 0 then the maximum is in the interval
[0, 1, 2], and only two probes are made satisfying the lemma since Ottevet(0) 0. Otherwise,
if n > 0, function InfiniteUnimodalSearch increases p until

f(Alevel(P + 1)) > f(Atevel(P / 2)),

and then calls LevelSearch. In the worst case, the function probes until n < Aeel(P + 1),
once at each Ateel(i) for _< p + 2. Thus, by the definition of Otleel(n), the number of probes
for n > is Oevel (n) + 3.

By Theorems 4 and 3 the function InfiniteUnimodalSearch with level is within

ot (n) of being optimal and with level 2 is within 2otz(n) of being optimal (this is similar
to [12]).

6. Conclusions and open problems. We can get asymptotically better algorithms for
the unbounded discrete unimodal search by repeated diagonalization. Define, for example,

A,(n) i- 1,
(28) i(n)

..i_1(1) >2,

for n > 0, where AJ (n) Z-, (AJ_1 (n)) and let Z(0) 0 for all i. For a given level),

make the initial probes at Az (0), Az (1), Az (2) and then perform a recursive search in a
manner similar to that done in [14]. The diagonalization can be repeated transfinitely often.
Unfortunately, although each algorithm thus constructed is better than its predecessors, we
cannot show that these algorithms get significantly closer to being optimal.

We can improve InfiniteUnimodalSearch so that for level > 3, c(n) is lower by
at least ot3(n) than the cost given in Theorem 4. Consider the subtree in Fig. 7. After

InfiniteUnimodalSearch has narrowed the interval containing the maximum to [A, B, D],
the procedure LevelSearch searches that interval. Notice that there is overlap between that
interval and the interval [B, D, E]; values B to D occur in each. LevelSearch gains
nothing by keeping the external nodes with values B to D close to the root in the subtree
rooted at [A, B, D] because they occur deep in the subtree rooted at [B, D, E]. This problem
occurs throughout the tree.

B, .x] +-- node along right edge of tree

"[B,D,]

[B,]

FIG. 7. Subtree of the search tree offunction InfiniteUnimodalSearch. A Ottevet(p), B Otevet(P + 1),
D Otlevel(p + 2), and E Otlevel(p + 3), for some level and p. The value of C is determinedfrom procedure
LevelSearch.

Suppose the next probe, C, is at B + 1, followed by a probe where LevelSearch would
probe, and incorporate such changes throughout the recursive calls of the algorithm. This
modification decreases the cost for values A to B without increasing the cost of values

776 ARTHUR S. GOLDSTEIN AND EDWARD M. REINGOLD

from B to D 1, since they occur deeper in the tree elsewhere. The resulting algorithm is
much more complicated than LevelSearch; its cost can be shown to be

(29) /tevet (n) + Ottevet (n) +] 2 n 0,

/ 3 n>0,

where [i(n) is a new length function defined by

i (F/)

Oil (n) F-(n + 1) 3

/i-l(n)

i-1 (n) .qt_ i(Oli_l

i-l,

i>2andn <4,

>2andn>5.

Subtracting (29) from (27) we get

Li(n) i(n)

--0 n<2,

=0 i= landn > 3,

i=2andn >3,

ot3(n) 3 and n > 3,

>ot3(n) >4andn >3,

so that InfiniteUnimodalSearch is improved by ot3(n) for level > 3. Thus no level of

InfiniteUnimodalSearch is within ot4(n) of being optimal, but it is open whether or not

InfiniteUnimodalSearch is within ot3(n) of being optimal for level > 3. We do not know
how close to optimal the modified In finiteUnimodalSearch is, though we believe it is not
within O/4 (n) of being optimal for any level.

We can also ask about a converse to Corollary 1. Knuth [8] gives a converse to Kraft’s
inequality: If c(1), c(2), c(3), is a nondecreasing sequence of positive integers such that
-],, 2-c(n 1, then there is an unbounded search algorithm in which the number of probes
made is c(n) if the zero occurs in the interval [n, n + 1). Similarly, we can ask if c(1), c(2),
c(3) is a nondecreasing sequence of positive integers such that --]n= F,.I;+2 < 1, under
what conditions can one construct a unbounded discrete unimodal search algorithm in which
the number of probes made is c(n) if the maximum occurs in the interval [n, n + 1)?

Finally, can one analyze ?(i), the average cost in a unimodal search tree, where ?(i) is
the average path length from the root to a node of the form [i 1, i, + or [i, + 1, / 2]?

Note added in proof. Anmol Mathur and the second author [10] have generalized the
results of this paper to k-modal searching.

Acknowledgments. We thank Xiaojun Shen for extensive preliminary discussions of
ideas relating to this material.

REFERENCES

N. ABRAMSON, Information Theory and Coding, McGraw-Hill, New York, 1963.
[2] W. ACKERMANN, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann., 99 (1928), pp. 118-133.
[3] M. AVRIEL AND D. J. WILDE, Optimality prooffor the symmetric Fibonacci search technique, Fib. Quart., 4

(1966), pp. 265-269.

FIBONACCI-KRAFT INEQUALITY AND DISCRETE UNIMODAL SEARCH 777

[4] J. L. BENTLEY AND A. C.-C. YAO, An almost optimal algorithm for unbounded searching, Inform. Process.
Lett., 5 (1976), pp. 82-87.

[5] J. KIEFER, Sequential minimax searchfor a maximum, Proc. Amer. Math. Soc., 4 (1955), pp. 502-505.
[6] D. E. KNUTH, The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd ed., Addison-

Wesley, Reading, MA, 1973.
[7] The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[8] Supernatural numbers, in The Mathematical Gardner, D. A. Klarner, ed., Wadsworth International,

Belmont, CA, 1981, pp. 310-325.
[9] L.G. KRAFT,A devicefor quantizing, grouping andcoding amplitude modifiedpulses, Master’s thesis, Electrical

Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, 1949.
10] A. MATHUR AND E. M. REINGOLD, Generalized Kraft’s inequality and discrete k-modal search, Report Number

UIUCDCS-R-93-1798, Department of Computer Science, University of Illinois, Urbana, IL, March,
1993.

[1 l] L.Z. OLIVER AND D. J. WILDE, Symmetrical sequential minimax searchfor a maximum, Fib. Quart., 2 (1964),
pp. 169-175.

12] J.-C. RAOULT AND J. VUILLEMIN, Optimal unbounded search strategies, Rapport de Recherche 33, Laboratoire
de Recherche en Informatique, Universit6 de Paris-Sud, Orsay, France, 1979.

[13] E. M. REINGOLD AND X. SHEN, More nearly optimal algorithms for unbounded searching, Part I: The finite
case, SIAM J. Comput., 20 (1991), pp. 156-183.

[14] More nearly optimal algorithms for unbounded searching, Part II: The transfinite case, SIAM J.
Comput., 20 1991), pp. 184-208.

15] C. WITZGALL, Fibonacci search with arbitrary first evaluation, Fib. Quart. 10, (1972), pp. 113-134; 146.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 778-793, August 1993

() 1993 Society for Industrial and Applied Mathematics
O07

COUNTING CIRCULAR ARC INTERSECTIONS*

PANKAJ K. AGARWAL,t MARCO PELLEGRINI, Arid MICHA SHARIR

Abstract. In this paper efficient algorithms for counting intersections in a collection of circles or circular arcs
are presented. An algorithm for counting intersections in a collection of n circles is presented whose running time is
O (n3/2+), for any e > 0 is presented. Using this algorithm as a subroutine, it is shown that the intersections in a set
of n circular arcs can also be counted in time O(n3/2+). If all arcs have the same radius, the running time can be
improved to 0(n4/3+), for any e > 0.

Key words, arrangements, point location, random sampling, partition tree

AMS subject classifications. 68P05, 68Q25, 68Q40, 68U05

1. Introduction. Intersection problems are among the fundamental topics in compu-
tational geometry. In 1979, Bentley and Ottmann, in their famous paper on the line sweep
technique, showed that all K intersections in a collection of n Jordan arcs in I2 can be reported
in time O((n + K) log n) [BO] (under reasonable assumptions concerning the shape of these
arcs and on the model of computation). Their algorithm is significantly faster than the naive
quadratic algorithm for small values of K, but is worse than the naive approach if K (R) (n2).
Since then much effort has been invested to remove the log n factor from K. Recently Chazelle
and Edelsbrunner [CE] presented an O (n log n + K) time algorithm to report all intersections
in a collection of line segments. However, for general arcs, the Bentley-Ottmann algorithm
is still the best known deterministic algorithm. If we allow randomization, algorithms with
improved running time of O(n log n / K) can be obtained (see Clarkson and Shor [CS2] and
Mulmuley [Mu]).

All of the above algorithms are quite efficient if we want to report the intersections
explicitly. In some applications, however, we are only interested in counting the total number
of intersections (not in finding the actual intersection points). In that case we prefer an
algorithm whose running time does not depend on K, because K can be as large as (R)(n2).
Ideally we would like to have an algorithm that counts the number of intersections in time
O(n log n), but developing such an algorithm seems to be quite hard. For line segments,
Chazelle [Cha] proposed an O(n3/2 log n) time algorithm. Later Guibas, Overmars, and
Sharir [GOS] gave a randomized algorithm whose expected running time was O(rt4/3+), for
any e > 0. Their algorithm can be made deterministic and somewhat improved using recent
partitioning algorithms of Matougek [Mat l] and Agarwal [Agl]. The best known running
time, at present, for counting segment intersections is O(rt4/3 log 1/3 n) (see [Ag2], [Chb]),
and the corresponding algorithms are deterministic.

The "bichromatic" version of the segment intersection counting problem has also been
studied. Here we are given a set of"red" segments and another set of"blue" segments, and we
want to count the number of red-blue intersections. This problem can also be solved in time

*Received by the editors January 28, 1991; accepted for publication (in revised form) May 20, 1992. Part of this
work was done while the first author was visiting the Center for Discrete Machematics and Theoretical Computer
Science (DIMACS), Rutgers University. Work by the first author has been supported by DIMACS, a National
Science Foundation Science and Technology Center, under grant NSF-STC88-09648. Work by the third author has
been supported by Office of Naval Research grant N00014-90-J-1284, National Science Foundation grant CCR-89-
01484, by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research administered by
the Israeli Academy of Sciences, and the German-Israeli Foundation for Scientific Research and Development.

Computer Science Department, Duke University, Durham, North Carolina 27706.
{Computer Science Department, King’s College, London, United Kingdom.
School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel and Department of Computer Science,

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.

778

COUNTING CIRCULAR ARC INTERSECTIONS 779

O(n4/3 log 1/3 n) using a variant of the Guibas, Overmars, and Sharir algorithm (see [Ag2]).
For the special case, where no two red segments and no two blue segments intersect, an optimal
O(n log n)algorithm has been developed by Chazelle et al. [CEGS2].

The intersection counting problem seems to be much harder for general arcs, because
unlike segments, two arcs may intersect at more than one point, which makes their intersec-
tion patterns more involved than those of segments. Using Chazelle and Sharir’s generalized
point location technique in semi-algebraic varieties [CS], the arc intersection problem can
be solved in slightly subquadratic time (roughly O(n198)). However, we are not aware of any
substantially subquadratic algorithm for the general case. The recent algorithm of Agarwal
et al. [AASS] can be applied to obtain an O(n4/3 log2/3 n) time algorithm for counting inter-
sections in a set of circles with the same radius, but it does not extend to circles of arbitrary
radii.

In this paper we consider the intersection-counting problem for a collection of arbitrary
circles and of circular arcs. Our main results are:

(i) An algorithm for counting intersections in a collection of n arbitrary circles whose
running time is 0(n3/2+), for any e > 0.1

(ii) An algorithm for counting intersections in a collection of n circular arcs, whose
running time is 0(n3/2+).

(iii) If all arcs are of circles of the same radius, the running time of both algorithms can
be improved to 0(n4/3+).

The remainder ofthe paper is organized as follows. In 2 we present our circle intersection
algorithm. Section 3 deals with counting intersections between a set of circles and a set of
circular arcs. In 4 we describe our main algorithm, that is, counting intersections in a set of
circular arcs. We conclude with some open problems in 5.

2. Counting circle intersections. In this section we present a divide-and-conquer al-
gorithm for the following problem: "Given a collection C {C1 Cn} of n circles,
count the number of pairs of intersecting circles in C." Let CI {C1 CFn/21} and
C2 {CFn/21+l C}. We first count the number of pairs of intersecting circles in C1 and
in C2 recursively, and then we count the number of intersecting pairs (Ci, Cj) E C x C2. Thus,
it is sufficient to solve the "bichromatic version" of the above problem, that is,

Given a collection C ofm "red" circles and another collection C’ ofn "blue"
circles in the plane, count Z(C, C’), the number of intersecting "red-blue"
pairs of circles.

Note that, assuming nondegenerate configurations, the number of red-blue intersection
points is twice that count.

LEMMA 2.1. Given a pair ofcircles C, C’ with centers p, p’ and radii p, p’, respectively,
C intersects C’ ifand only if

(1) I/9 P’I <_ d(p, p’) <_ p + p’.

Proof. The proof follows from elementary geometry. [3

To compute 2-(C, C’), we define two geometric transforms p and q. Let C be a circle
with center (a, b) and radius r. The first transform, 0, maps C to the point

(2) 0(C) (a, b, r)

Throughout this paper, denotes an arbitrarily small positive constant. The meaning of such a bound is that
for any > 0 the algorithm can be fine-tuned so that its running time is within that bound, where the constant of
proportionality depends on and usually tends to cx as $ 0.

780 P.K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

in N3, and the second transform, q, maps C to the region

(3) P(C)={(x,y,z)lz>0and(z+r)2>_(x-a)2+(y-b)2>(z-r)2}

in 3. The boundary of q(C) consists of two surfaces:

(i) (ii)

FIG. 1. (i) Shaded region denotes q(C); (ii) cross-section of q(c) at a vertical plane through (a, b).

(i) The outer surface, denoted aPo(C), is the truncated cone

(z -k- r)2 (x a)2 + (y- b)2, z >_ 0.

(ii) The inner sulface, denoted /(C), is the truncated double cone

(z r) 2 (x a)2 -k- (y b)2, z >_ 0.

A point p (a, b) can be considered a circle of radius zero, so p/(p) 7to(p) is the
cone z2 (x a) 2 -+- (y b) 2. An immediate consequence of the previous lemma is the
following lemma.

LEMMA 2.2. A circle C intersects another circle C’ ifand only if 99(C) q (C’).
It therefore suffices to count for each circle C 6 C the number of circles C’ 6 C’ for

which 99(C) 6 q(c’). We describe two algorithms for counting these quantities. The first
algorithm is quite simple and works well when rn > n 3, while the second algorithm, though
more complicated, is efficient for all ranges of rn and n.

2.1. A simple algorithm. Our first algorithm for computing Z(C, C’) works as follows.
Let

(4) {V/o(C’)lC’ ’}u {7(c’) c’ ’}.

Fix a surface H 6 7-t. Intersect it with all other surfaces of . It is easily checked that
each intersection curve is the intersection of H with a plane, and is thus a conic planar curve.
Moreover, each pair of such curves intersect each other in at most two points (these points are
the points of intersection of H with the line which is the intersection of the two corresponding
planes; since H is a quadric, there are at most two such points).

Let F denote the resulting collection of curves on H. We next form the two-dimensional
arrangement .A(F) of these curves on H. This can be done deterministically, e.g., in time
O(n2 log n) using a sweeping technique, similar to that of Bentley and Ottmann [BO]. For
each circle C’ C’ and each face f .4(1-’), f lies either fully inside or fully outside (C’).
Consequently, after 4(F) is computed, we can calculate, for each face f of this arrangement,

COUNTING CIRCULAR ARC INTERSECTIONS 781

the number rf of regions q (C’) that contain it. Since this number changes only by one as we
cross from one face to an adjacent one, a simple traversal of the arrangement will produce all
the quantities rf in time O(n2). We repeat this step for each surface H 6 in overall time
O(n3 log n).

Next, preprocess ,A(7-/) for spatial point location in time O(n3+) using the algorithm of
Chazelle et al. [CEGS].2 The processing is done so that the output to a query is the surface
that lies directly below it. The time to answer a query is O(log n). Note that the method of
[CEGS does not require an explicit construction of the arrangement of , especially if the
output to queries is to have this restricted form.

We now take each circle C C and locate its image 0(C) in 4(), obtaining the surface
H lying directly below 0(C) and the vertical projection co(C) of 0(C) on that surface. We
now locate the face f of the corresponding arrangement on H that contains co(C), and add
either rf or rf + to a global count, depending on whether the region q (C’) bounded by H
lies below H or above it near the face f. The sum of these quantities, over all C 6 C, is the
desired Z(C, C’). The time required by this step is O (m log n), so the total running time of the
algorithm is O(n3+ + rn log n).

The running time can be improved using a standard "batching" technique; that is, partition
C’ into m-3] sets C C,’ each containing at mostm 1/3 circles. For each i, we compute
Z(C, C) separately, and then add these quantities to determine 2-(C, C’). The overall running
time is therefore

Inl +) 0 n+m).O(m (m2/3+ 1+

Hence, we obtain the following result.
THEOREM 2.3. Given a collection C of rn "red" circles and a collection C’ of n "blue"

circles, the number ofintersecting red-blue pairs can be counted in time O(m2/3+n + rn +),
for any > O.

Remark 2.4.
1. By flipping the role of red and blue circles, we can obtain another algorithm whose

running time is O(mn2/3+ -+- n+e).
2. Note that if n < m /3 (or m < n/3), then the above algorithm runs in time O(m +)

(respectively, O (n +)), which is almost optimal.
COROLLARY 2.5. Given a collection ofn circles, the number ofintersectingpairs ofcircles

can be counted in time O(nS/3+),for any > O.

2.2. An improved algorithm. We now present an algorithm for computing 2-(C, C’),
which is significantly faster than the previous one, especially when rn and n are of the same
order of magnitude.

If n > m 3, 2(C, C’) is computed using the previous algorithm, in time O(nl+’), so
assume that n < m 3. Let be the set of surfaces defined in (4). Let r be some sufficiently
large constant. We compute a if-net

_
1-’, of size O(r log r), in time O(n) [Mat2] We

decompose 4() into M O(r3(r) log r) simple cells (of constant complexity), using
the algorithm of Chazelle et al. [CEGS1] (see also [CEGSW, 6]);/3(r) is an extremely slow

2Although the algorithm described in the original paper is randomized, it can be made deterministic without
affecting its asymptotic performance, using a recent result of Matousek for deterministic construction of -nets
[Mat2].

3Specializing from the general concept, we call a subset

_
F of a set of n (algebraic) surfaces a {-net, r < n,

if every (open) cell of constant complexity, of the form obtained in the stratification algorithm of [CEGS], which
does not intersect any surface of 7, intersects at most n/r surfaces of F" see [HW] for a more formal definition.
Haussler and Welzl [HW] showed that a random subset of I" of size O(r log r) is a 7-net with high probability. Later
Matousek [Mat2] gave an O(nr))-time deterministic algorithm for computing a 7-net of size O(r log r).

782 E K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

growing function, which depends on the inverse Ackermann function o(r). Let .,4* () denote
the resulting subdivision. Since A* (7) is a r-net of 7-[, each cell r 6 A* (7) of dimension
_> intersects at most 2n/2r n/r surfaces of

Our approach is to partition the points qg(C) among the cells r 6 A*() and to distribute
the surfaces 7rt, o among those cells that they intersect. This gives us a collection of
subproblems, one for each cell r, whose combined solutions give us the desired count.

In more detail, we regard A*() as a collection of pairwise disjoint relatively open cells
of dimensions 3, 2, 1, or 0. For each cell r 6 A* (7), we define C’ as the set of circles C’ for
which I(C’) or gro(C’) intersects r. Similarly, we define C as the set of circles C for which
0(C) lies in r. Let m ICr I, n IC’ l, and let i. be the number of circles C’ for which

Itr _c q(C’). Every r of dimension >_ intersects at most n/r surfaces of 7-[, thus n <_ 7"
is easy to see that

Z(C, C’) Z Z(C, Cr) + mr

Since each cell r has constant complexity, Cr, C’ and)r can be calculated in O(m + n)
time per cell, so the total time required to compute these quantities is O((m + n)r3(r) log r)
O(m + n), as r is constant. Next, the quantities 2-(Cr, C’r) are computed as follows. If

r is a three-dimensional cell, we compute 2-(C, C’r) recursively. If r is a two-dimensional
cell, we also proceed recursively, except that we have a two-dimensional problem at hand.
This can still be solved using an analogous two-dimensional partitioning scheme. If r is an
edge of 4"(7), we can compute 2-(C, C’), in time O((mr + nr) logn), by computing the
intersection points of r and 0P (C’), for C’ 6 C’, sorting them along r, and then locating the
points 9(C) along r, for C 6 C. Finally, if r is a vertex, then we have 2(C, C’) m nr
(note that in this case mr 0 or 1). The maximum total running time T (m, n) to compute
2-(C, C’) therefore satisfies:

(5)

a l(m + n) logn +
T(m,n) <_

a2n +’

Z T(mr,n) if n <m
r4*()
dim >2

if n >_m

where a a2 are some constants (a2 depending on e’) mr < m and n < for every
r. It is easily checked that these equations also hold when we recurse on a two-dimensional
problem. In this case the second equation holds already when n > m 2.

LEMMA 2.6. For every > O, there exist constants A, B, D > 0 depending on such
that

(6) T(m, n) < Am3/4+en3/4
nt- Bn 1+/3 q- Dm log2 n.

Proof. For n >_ m 3, (6) is obviously true provided we choose B _> a2 and e >_ 3e’. For
n < m3, we prove the lemma by induction on n. If A and B are chosen appropriately, (6)
holds trivially for small values of n. Assume that the claim is true for all n’ < n. If r > 2,
then by inductive hypothesis, (5) can be written as follows (here we bound the number of cells
in A*(7) by cr3fl(r) log r for an appropriate constant cl > 0):

T(m,n) < Z (Amr3/4+en3/4+Bnl+/3+Dmrlg2n)-t-al(m+n)lOgn’’r
rA*()
dim >2

COUNTING CIRCULAR ARC INTERSECTIONS 783

<__ A m + Bcr fl(r) log r
.A* (7-)

F

dim >2

+a (m + n) log n + D log n log m
r

dim r>2

< Am3/a+en3/4 (clr3(r) log r)/4- + Bn+/ + Dm log2 n

(r2_e/3 allogn)-+-Bn l+e/3 c (r) logr- 1- ne/
+(al -Dlogr)mlogn

where the first term of the last inequality follows from H61der’s inequality. If D > a, then
al D log r < 0 (as r > 2). Since n < m 3, we have n +/3 _< m3/4+n3/4. We therefore
obtain

T(m,n) < Am3/4+n3/4 ((clfl(r) log3 r) 1/4-)- + Bn 1+/3 + Dm logZn

+Em3/4+n3/4,

where

a log n)E- B clr2-/3(r)log3r- - B n

If we choose r and A sufficiently large so that

(Clfl(r) log r) 1/4- E
r3

-t- -- _< 1,

the running time becomes

T(m, n) <_ Am3/4+en3/4 -+- Bn +/3 +Dm log2 n.

THEOREM 2.7. Given a collection C ofm "red" circles and a collection C’ ofn "blue" cir-
cles, the number ofintersecting red-bluepairs ofcircles can be counted in time O(m/4+n/4+
n l+e + m log2 n), for any > O.

Returning to the original problem of counting circle intersections, the above theorem
implies that the merge step of our divide-and-conquer algorithm can be performed in time
O(n/2+). Hence, we obtain the main result of this section.

THEOREM 2.8. Given a collection of n circles in the plane, the number of intersecting
pairs can be counted in time O(n/2+),for any > O.

3. Counting intersections between circles and arcs. In this section, we study the prob-
lem of counting the number of intersection points between a collection C of n circles and
another collection F of m circular arcs. For the sake of simplicity we assume that all intersec-
tions are transversal and do not lie at the endpoints of the arcs.

Let o,/3 denote the endpoints of an arc ?,, and let c denote the center of the circle
containing ?,. The lines supporting the segments oc and/3c partition the plane into four
wedges (quadrants), and ?’ clearly lies completely in one of the wedges; we will denote this
wedge by co(?,), and denote by 05(?,) the wedge lying opposite to co(?,); see Fig, 3 for an

784 P.K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

FIG. 2. Wedges o9(?’) and (5(/).

(i) (ii) (iii)

FIG. 3. Various circle-arc intersection patterns.

example. For a set C of circles, let E(C) (respectively, I (C)) denote the common exterior
(respectively, interior) of circles in C.

LEMMA 3.1. A circular arc ?" intersects a circle C at one point if and only if one of the
endpoints of 9/lies in the interior ofC and the other endpoint lies in the exterior of C.

Proof. The proof follows immediately from the Jordan curve theorem and the fact that
two circles intersect in at most two points.

LEMMA 3.2. A circular arc V, which does not span more than a semicircle, intersects C
at two points if and only if C intersects the circle containing ?’, and one of the following two
conditions is satisfied:

(i) the endpoints of ?" lie outside C and the center ofC lies in co(?,) (see Fig. 3(i)) or

(ii) the endpoints of ?, lie inside C and the center of C lies in o(?,) (see Fig. 3(ii)).
Proof. Assume that ?, and C intersect at two points, say z, z2. Let e be the perpendicular

bisector of zz2. Let C* be the circle containing ?,, and let c, r (respectively, c*, r*) denote the
center and radius of C (respectively, C*). Clearly, both c and c* lie on e. Since z, z2 E co(?,),
we can easily show that is fully contained in co(?,) U o5(?,), so either c E co(?,) or c 6 o5(?,).
See Fig. 4 an illustration.

If we fix Zl, z2, and let c slide along , we obtain a one-parameter family of circles C all
passing through z and z2. The line through z and z2 divides the plane into two halfplanes;
we denote by H1 the halfplane containing c* and by H2 the complementary halfplane. It is

COUNTING CIRCULAR ARC INTERSECTIONS 785

FIG. 4. lllustration ofLemma 3.2.

easily checked that, as c moves along g towards co(?’), C A H1 keeps shrinking while C N H2
keeps expanding. Since the endpoints of ?’ lie in HI, and are incident to C when c c*, they
clearly lie outside C if and only if c 6 co (?’) and inside C if and only if c 6 03(?’). This proves
the "only if" part of the lemma.

The "if" part is proved in a similar manner. We let z, z2 denote the two points of
intersection of C and C*, and define g, H, and H2 as above. Any of the conditions (i), (ii)
implies that is contained in co(?’) tO O3(?’). It then suffices to show that both endpoints of ?’ lie
in HI. If condition (i) occurs then, by the observation made above, we have CN H2

_
C* f) H2,

so both endpoints of ?’ must lie in HI. A similar argument applies for condition (ii). This
completes the proof of the lemma.

In view of Lemmas 3.1 and 3.2, we can divide the pairs of intersecting arcs and circles,
(?’, C) 6 F C, into the following three categories:

I. Both endpoints of ?’ lie in the exterior of C, the center of C lies in co(?’), and C
intersects the circle containing ?’; let Z (F, C) denote the number of such pairs.

II. Both endpoints of ?’ lie in the interior of C, the center of C lies in O3(?’), arid C
intersects the circle containing ?’; let Zz(F, C) denote the number of such pairs.

III. Exactly one of the endpoints of ?’ lies in the exterior of C; let 2-3(F, C) denote the
number of such pairs.

Although all three types of intersecting pairs can be counted by a single algorithm, we
prefer to count each of them by a separate procedure, for the sake of clarity.

3.1. Counting Z (1-’, C). We will view condition I as a conjunction of five constraints,
four of which constrain the locations of endpoints of arcs and the locations ofcenters of circles,
and the fifth one requires the two circles to intersect. We will construct a four-level structure,
based on the decomposition scheme of Chazelle, Sharir, and Welzl [CSW], which decomposes
1-’ and C into a family .T" of canonical pairs

" {(r’, c) (1-’,,

such that
(i) Fi_FandCi_C,
(ii) for every pair (?’, C) 6 (Fi, Ci), the endpoints of ?’ lie in the exterior of C and the

center of C lies in co(?’), and

786 E K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

(iii) for every pair (V, C) E I-’ C such that the endpoints of V lie in the exterior of C
and the center of C lies in co(v), there is a unique such that , E I-’ and C Ci.

Each of the four constraints will be satisfied at a different level of the structure. The
first-level structure decomposes F’ and C into a family of canonical pairs (1-’,, C/), 1-’/ c__
F, C C, so that the counterclockwise endpoints of all arcs in 1-’/, lie in E(C/). The second-
level structure then takes each of these canonical pairs and further decomposes them into a
collection of canonical pairs (1-’, C), so that the clockwise endpoints of all arcs in I-’ also lie
in E(C). Thus the first two levels together ensure that the endpoints of all arcs in 1-’ lie in
E(C:).

Next, the third and fourth levels decompose each (1-’r, Cr) into a family of canonical
subsets (17, C), so that the centers of circles in C lie inr co(Y). It is easily checked that
the set of all fourth-level canonical pairs gives the decomposition . So, for each fourth-level
canonical pair, we compute the number of intersecting pairs of circles using the algorithm
described in 2.1, and add up the resulting counts to obtain 2- (1-’, C).

In order to describe the algorithm in detail, we have to define some geometric transforms.
For a circle C of radius r, centered at (a, b), let re(C) denote the plane in 3

(7) re(C) z 2ax + 2by + (r2 a2 b2).

For a point p (o,/3), let r (p) denote the point in R

(8) (p) (c,/, c: + :).

We will use re*(C) to denote the point dual to the plane re(C),

(9) re*(C) (2a, 2b, r2 a 2 b2),

and *(p) to denote the plane dual to the point r (p),

(10) *(C) "z -otx fly + Og
2 -- /2.It is easily seen that p lies in the exterior of C if and only if (p) lies above the plane

re(C), which is the same as saying that the point re*(C) lies below the plane *(p).
As in 2, we describe two algorithms. The first algorithm works efficiently when m _< n,

and the second algorithm, which uses the first algorithm as a subroutine, works well for all
ranges of rn and n.

3.2. First algorithm. Let r be some sufficiently large fixed constant. We map the coun-
terclockwise endpoints of arcs in F to a collection of planes in IR

{r*(ot) o is a counterclockwise endpoint of an arc in 1-’},

and decompose the space into a set ,g of O(r3) simplices, each of which intersects at most

m/r planes. E can be computed in O(m) time using the algorithm of Matouek [Mat2]. We
associate with each simplex/ a subset F/ c_ F of arcs and a subset C/, c_ C of circles. An arc

V, whose counterclockwise endpoint is or, is in F/ if*(o) intersects the interior of/, and a
circle C 6 C/ if re* (C) 6 A. Let A/ c_ F denote the set of arcs corresponding to the planes
that lie above . It follows from the above discussion that the counterclockwise endpoints of
all arcs in A/ lie in E(C/), so we output (A,, C/) as one of the first-level canonical pairs.

We recursively decompose each (F/, C/). The recursion stops when the number of arcs
or circles fall below some fixed constant. In this case, we decompose them by a brute-force
method.

COUNTING CIRCULAR ARC INTERSECTIONS 787

Next, we decompose each first-level canonical pair further using the same partitioning
techniques, except that we now map the clockwise endpoints (instead of the counterclockwise
endpoints) of arcs to planes. Let (1-’, C) be a second-level canonical pair. The endpoints of
all arcs in F lie in E(C).

Let eccw(?’) (respectively, ecv (Y)) denote the line passing through the center of ?’ and
its counterclockwise (respectively, clockwise) endpoint. We map the arcs of F to a set of
lines {gccw(Y) 6 1-’} and decompose the plane in O(IFI) time into O(r2) triangle, each
of which intersects at most II-’l/r lines, again using the technique of [Mat2]. We associate
with each triangle a subset of arcs F 1-’ and a subset of circles C c__ C. An arc ?’ 6 FC
if ccw (?’) intersects , and a circle C 6 C if the center of C lies in . We also associate two
other subsets A and Be of 1-’ with . An arc y is in A (respectively, Be) if both and lie
below (respectively, above) the line eccw(?’). We output (Ac, C) and (B, C) as third-level
canonical pairs and continue decomposing (F, C) recursively.

Next, for each third-level canonical pair (F, Co), we map each arc ’ 6 FC to the line
g.cw (?’) and apply the same partitioning scheme. For each triangle , 1-’, and C are defined
in the same way as in the third-level structure. If eccw (?’), for each arc ?’ 6 l-’c, lies below
(respectively, above) , we define A c_ F to be the set of arcs ?’ such that g.cw(’) lies below
(respectively, above) both and ,. We output (A, C) as a fourth-level canonical pair, and
continue decomposing (1-’, C) recursively.

Each fourth-level canonical pair (F, C) has the properties that the endpoints of all arcs
in F lie in E(C) and that centers of all circles in C lie in (-]r oo(y). By Lemma 3.2,
an arc y F intersects a circle C C if and only if C intersects the circle containing y.
Therefore, the number of intersecting pairs of arcs in F and of circles in C can be counted in
time O(IC 13+ + IFI log IC I) by the algorithm described in 2.1. For the sake ofconvenience,
we will consider the circle intersection counting procedure as a fifth-level step ofthe algorithm.

Let T (i) (a, b) denote the maximum time spent in processing a set of a arcs and another
set of b circles at level (i.e., the time spent constructing and processing the structures at levels
> i). It follows from 2.1 that T(5(a,b) O(a3+ -k- bloga). For < 4 we decompose
the problem into tc level-/subproblems, each involving at most a/r arcs and bj circles, and
into tc level-(/+ 1) problems, each involving at most a arcs and b circles. By construction,

,j bj b, t O(r3) for 1, 2, and tc O(r2) for 3, 4. Since we spend O(a + b)
time in computing the set of simplices and various subsets of arcs and circles, we obtain the
following recurrence"

(11) Ti(a,b)

O(bloga + a3+) ifi 5,

O(a + b)

if/ <5,

where tc O(r3) and j=l bj b. The solution of the above recurrence is easily seen to be

T(i(a, b) O(a3+’ + b log6-i a) for/<_ 5.

Hence we can conclude that, given a set of m circular arcs and another set of n circles, we can
count the number of intersection points between them in time O(n log5 m + m3+), for any
>0.

Remark 3.3. (i) The running time can be improved to O(n log m q-m3+) by an appropriate
modification of the algorithm, but for our purposes the time bound derived above is sufficient.

(ii) If the endpoints of arcs in F are already known to lie in E(C), we do not have to
construct the first two levels.

788 E K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

3.3. Second algorithm. Wenow describe another algorithm that works well for all ranges
ofm and n. In the above algorithm we mapped the endpoints of arcs to planes/lines and circles
to points, and constructed a multilevel structure. We follow the same approach, but there are
two key differences. The first difference is that we flip the roles of arcs and circles, i.e., we
now map circles to planes/lines and endpoints of arcs to points. The second difference is that
we stop the recursion when the ratio of the number of circles to the number of points becomes
large and solve the problem directly using the first algorithm.

In more detail, we map the circles of C to a set of planes {7r(C) C 6 C}, and partition
3 into a set E of O(r3) simplices each of which intersects at most n/r planes [Mat2]. We
associate with each simplex/ 6 ,E a subset F/ _c F and another subset C/ _c C of circles.
An arc F, whose counterclockwise endpoint is c, is in F/ if r (or) /, and a circle C is in

Ca if 7r(C) intersects the interior of/. Let L/ c_ C denote the set of circles C such that 7r(C)
lies below/. By the above discussion, the counterclockwise endpoints of all arcs in F/ lie
in E(L/). We output (F/, L/) as one of the first-level canonical pairs.

We recursively construct the first-level structure for (F/, Ca). The recursion stops when

IFal < ICal. In this case, we process (F/, C/) using the first algorithm.
Next, for each first-level canonical pair we apply the same procedure for the clockwise

endpoints of arcs. Let (F, C) be a second-level canonical pair. As earlier, the endpoints of
arcs in F lie in E(C).

In the third level, we dualize the centers of circles of Cr to a set of lines, and partition the
plane into O(r2) triangles so that each triangle intersects at most ICl/r lines. We associate
with each triangle three subsets C, LC, and U ofC and a subset F of F. An arc 7’ 6 FC
if the point dual to eccw (F) lies in . A circle C is in C (respectively, L, U) if the line
dual to its center intersects (respectively, lies above, lies below) . Let F (respectively, F’)
be the subset of arcs in FC that lie above (respectively, below) the line g.ccw(F). We output
(Lc, F’) and (U, F) as third-level canonical pairs. We recursively continue constructing
the third-level structure on (F, C). The recursion stops when IF 13 < 1C I. In this case, we
invoke the first algorithm.

Next, for each third-level canonical pair (F, C), we apply a similar two-dimensional
decomposition to the lines dual to the centers of circles in Cc and to the points dual to the
lines cw (F) for g F. Each fourth-level canonical pair (F, C) has the property that the
endpoints of arcs in F lie in E(C), and that the centers of circles in C lie in ["]rv w(F)"
The number of intersection points between C, and the circles containing the arcs of F can

3/4+/3/4 a+ nl+now be computed in time Oa , + + , using Theorem 2.7.

Let T(i) (a, b) denote the maximum running time of the algorithm at level i, defined as
above. Notice that we invoke the first algorithm only when a < b, so the time required by the
first algorithm is only O(b+’). Following the same argument as in the previous subsection,
we obtain the following recurrence:

(12)

O(a3/4+b3/4 -1- a+ + b+) for 5,

T(i)(a, b) O(b+) for < 5, a3 <__ b,

tc.Ti+l)(a,b)+Ti)(aj, b-s)+O(a+b) for/ <5, 0
3 >b,

\Jj=l

where c O(r) and ja a. The solution of the above recurrence is

T(i)(a, b) O(a3/4+b3/4 -k- a l+ + b+) for < 5.

COUNTING CIRCULAR ARC INTERSECTIONS 789

Hence, Z1 (I’, C) can be counted in time O(m3/4+Ert 3/4 -}- m+ + r/l+e).
3.4. Counting 2"2 (1-’, C). 2"2 (1-’, C) is counted using an algorithm very similar to the one

we just described. The only difference is that conditions (ii) and (iii) for f" now become:
(ii’) For every pair (?’, C) 6 (I"i, C,i), the endpoints of y lie in the interior of C and the

center of C lies in oS(y), and
(iii’) For every pair (, C) 6 1-’ x C, which satisfies the first four constraints of condition II,

there is a unique such that 6 1-’i and C Ci.
To this end, we construct a four-level structure similar to that for counting 2"1 (1-’, C), but

we define the subsets of arcs at each level in a somewhat different way, to meet the new kind
of constraints. For example, at the first level of the first algorithm, we define A/ _c F to be
the set of arcs corresponding to planes that lie below A, and at the third level we define A
(respectively, B) to be the set of arcs such that , lies above (respectively, below) ccw(?’)
and/ lies below (respectively, above) ccw(?’). Similarly, we redefine L/, L, U in the
second algorithm. Following the same analysis as above, we can show that 2"2 (1-’, C) can be
counted in time O(m3/4+n3/4 nt- m 1+ -q- nl+).

3.5. Counting 2"3 (F, C). Counting 2"3 (F, C) is relatively simpler, because the conditions
on (, C’) are now defined as a conjunction of only two constraints. Suppose we want to count
the number of pairs (, C) such that the counterclockwise endpoint of ?’ lies in the exterior
of C and the clockwise endpoint of ?’ lies in the interior of C; the other case can be handled
symmetrically.

The first-level structure is exactly the same as that for counting 2" (F, C). Next, for each
first-level canonical pair (F/, Ca), we map the clockwise endpoints of arcs in F/ to a set of
planes using (10) and apply the same decomposition scheme, except that for each simplex r
we output a canonical pair (Ur, C), if the planes corresponding to arcs in U lie below r.
By Lemma 3.1, each 6 U intersects every circle C 6 C. The total running time is again
O(m3/4+En3/4 -Jr- m 1+ q-- nl+).

Hence, we can conclude the following theorem.
THEOREM 3.4. Given a set of rn circular arcs and a set of n circles, we can count the

number of intersection points between them in time O(m3/4+en3/4 + m l+e q- nl+e).

3.6. The case of unit circles and arcs. If all the circles in C and the circles supporting
the arcs of F have the same radius, say 1, we can count the number of intersections between
C and F more efficiently by modifying the algorithms given above. First, instead of using the
algorithm described in 2, we use the algorithm of Agarwal et al. [AASS] to count the number
of intersection points between two families of unit circles. Second, it turns out that we only
need to apply the decomposition schemes in two dimensions at all levels of the structure (even
in the previous algorithms the third and fourth levels apply two-dimensional decomposition
schemes; only the first two levels of the structure required three-dimensional schemes). We
will describe how to construct the first-level structure for both algorithms; the second-level
structure can be handled analogously.

For a point p in the plane, let D(p) denote the unit disk centered at p. We construct the
first-level structure of the first algorithm as follows. We map the counterclockwise endpoints
of arcs in 1-" to a set of unit circles

D(I-’) {D(ot) Iot is the counterclockwise endpoint of an arc 6 1-’}.

We compute a 7-net R
_

D(1-’) of size O(r log r) in time O(m) (see 2 for a definition of a

-net). We compute the vertical decomposition of the arrangement of R, i.e., draw a vertical
line from every vertex of the arrangement and all the points of vertical tangency of every
circle in both directions until such a line hits an edge of the arrangement. If there is no such

790 P.K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

edge, the line is extended to infinity. The vertical decomposition of R partitions the plane
into O(r2 log2 r) trapezoidal cells. Since R is a ;-net, each cell of the vertical decomposition
intersects at most m/r circles of D(F). We associate with each cell a subset F/ c_ F of
arcs and another subset C/

_
C of circles; an arc F, whose counterclockwise endpoint is o, is

in F/ if D(c) intersects/, and a circle C is in C/ if the center of C lies in/X. Let A/ _c F
be the set of arcs corresponding to discs that contain in their exterior. It is easily seen that
the counterclockwise endpoints of arcs in A/ lie in E(C/), so we output (A/, C/) as one of
the first-level canonical pairs. We recursively decompose (F/, C/).

The second-level structure can also be modified similarly. The third and fourth levels
remain the same. Finally, for each fourth-level canonical pair, we use the algorithm of [AASS]
to count the number of intersection points between two families of circles, so T(5 (a, b)
O(a2 + b log a). Furthermore, tc O(r2 log r) for all < 4, so we have the following
recurrence for < 4:

T (i) (a, b) O(r2 log2 r) T (i+l) (a, b) +
O(r log r)

j=l

where -.j by b. The solution of the above recurrence is O (a2+ -+- b log6-i a).
At the first-level structure of the second algorithm, we choose a {-net R’ ofC and compute

the vertical decomposition of its arrangement. For each cell/x of the vertical decomposition,
we associate the subset C/ c_ C of circles that intersect dx and a subset of arcs F/

_
F whose

counterclockwise endpoints lie in/. The set L/x is now defined to be the subset of circles that
contain/x in their exterior. We output the pair (L/, C/) and recursively decompose the pair
(F, C/).

By [AASS], T5(a, b) is now O(a2/3+b2/3 + a+ -b- b+). Since c O(r2 log r), the
solution of (12) now becomes O (a2/3+e b2/3 -+- a+ b+), which yields the following result.

THEOREM 3.5. Given a set ofm circular arcs, each ofradius 1, and another set ofn unit
circles, we can count the number ofintersection points between them in time 0 (m2/3+n2/ +
m+ + nl+).

4. Counting arc intersections. In this section we obtain the main result of the paper:
We present an algorithm to count the number of intersection points in a collection F of n
arbitrary circular arcs. As in the previous section, we assume that all arcs in F are in general
position. The algorithm is based on the following two lemmas.

LEMMA 4.1. An arc F ofa circle C intersects an arc F’ ofanother circle C’ at two points

ifand only if IF N C’] 2 and IF’ N CI 2 (see Fig. 5(i)).
Proof. The "only if" part is trivial. The "if" part follows from the observation that C and

C’ must intersect at two points, both of which lie in both g and g’.
The case where two given arcs intersect each other in exactly one point is more involved

and depends on the pattern of intersections between each arc and the circle containing the
other.

LEMMA 4.2. An arc F of a circle C intersects an arc F’ of another circle C’ at exactly
one point ifand only if one of thefollowing conditions holds:

(i)]FNC’[= land[F’NC[=2.
(ii) IF (3 C’] 2 and IF’ C] (see Fig. 5(ii)).
(iii) IF C’] and]F’ C] 1, and thefollowing additional condition holds. Divide

F into two equal subarcs, and let F/2 be the subarc for which [F1/2 C’] 1. Define F[/2
in an analogous manner. Then both arcs F1/2 and F’ fully lie on the same side of the line1/2
connecting the centers of the circles C, C’ (see Fig. 5(iii)).

COUNTING CIRCULAR ARC INTERSECTIONS 791

FIG. 5. Different cases ofarcs intersections.

Proof. To prove the "only if" part of the lemma, suppose 19/N V’I 1. Then clearly
19/f) C’I > and 19/’ N CI > 1. Suppose neither condition (i) nor (ii) holds. Then necessarily
19/ C’I and 19/’ fq C 1. (If both these numbers were 2, Lemma 4.1 would imply that
19/ 9/’1 2, contrary to assumption.) Let 9/be an arc that intersects a circle C’ in exactly one
point. Then it is easily verified that its corresponding halfarc ?’1/2 lies completely on one side
of the line connecting the centers of C’ and one one side of the circle containing 9/, which is
the same side containing the point of intersection between 9/and C’. This observation easily
implies that the second part of condition (iii) is also satisfied.

Consider now the "if" part of the lemma. If 9/and 9/’ satisfy condition (i), then 9/’ contains
the two points of intersection between C and C’, and 9/contains just one of these points, so
clearly these arcs intersect at exactly one point. A symmetric argument applies if condition
(ii) holds. Suppose condition (iii) holds, so that 19/f3 C’] and 19/’ CI 1. If 9/and 9/’
do not intersect, then p 9/fq C’ and q 9/’ f) C are the two distinct points of intersection
between C and C’, each lying on a different side of the line connecting the circle centers. But
then the above observation implies that each of the corresponding halfarcs 9//2 and 9//2 fully
lie on a different side of this line, contradicting the second part of (iii). This completes the
proof of the lemma. [3

Lemmas 4.1 and 4.2 suggest the following multilevel structure to count the number of
pairs of intersecting arcs in 1-" F’. The preceding lemmas imply that we must count pairs of
arcs, (9/, 9/’), that satisfy one of the following four conditions (where C is the circle containing
9/and C’ is the circle containing 9/’):

(a) 19/fq C’I 2 and 19/’ fq CI 2.
(b) [9/ C’I and 19/’ CI 2.
(c) 19/ C’I 2 and 19/’ CI 1.
(d) 19/ C’I and 19/’ CI 1, and the two halfarcs of condition (iii) of Lemma 4.2

lie on the same side of the line connecting the centers of the circles C, C’.
Finding those pairs of arcs that satisfy one of the conditions (a), (b), or (c) is relatively

simple, applying appropriate variants of the machinery presented in the preceding section.
Consider for example condition (a). By Lemma 3.2, we can find all these pairs by constructing
a nine-level data structure; the first four levels are the same as the first four levels in the data
structures of the preceding section, the next four levels are symmetric variants of the first four
levels (obtained by interchanging the roles of F and 1-"), and the last level tests for intersections
between the corresponding circles C, C’. In a similar manner (but using fewer levels) we can
find all pairs satisfying condition (b) or (c).

Condition (d) is somewhat more involved. Again we use a multilevel structure. The first
two levels enforce, as in the preceding section, the conditions that one endpoint of 9/lies inside

792 P.K. AGARWAL, M. PELLEGRINI, AND M. SHARIR

C’ and one endpoint lies outside C’; the next two levels enforce the symmetric condition for V’
and C. Each resulting canonical pair of subsets (1-’i, 1-’) now has the property that I’ NC’I
and IV’ N CI 1, for each , 6 l-’i, V’ 6 1-’, with C and C’ defined as above.

We next enforce the second part of condition (d). For an arc ,, let o3(,) denote the double
wedge formed by o9(,) U co’ (,). It is easily verified that the second part of (d) is equivalent
to requiring that the center of C’ lies outside the double-wedge o5(?q/2) and the center of C
lies outside the double-wedge o3(,(/2). These two subconditions are easy to test for, using
standard range counting techniques. That is, we take the collection of centers c’ of the circles
C’ containing the arcs of F, and the collection of double wedges that are complements of
o3(v1/2), ’ 6 F’i, and process them, as in the preceding section, to obtain a canonical collection
ofpairs of subsets, (F’ij., 1-’itj), SO that, for each such pair, the centers ofa circle containing the arc
of I"j lie outside every double-wedge O(V1/2) / G I"ij. Finally we apply a symmetric variant
of this step to each of these canonical pairs, with the roles of 1-" and 1-" being interchanged.
The resulting new canonical pairs now fully satisfy condition (d), and the final counting is
thus straightforward.

We omit the details of the analysis of the running time of the algorithm, since it is nearly
identical to the analysis given in the preceding section. We summarize our results in the
following theorem.

THEOREM 4.3. Given a set F ofn circular airs, we can count the number of intersection
points in I" in time 0 (n3/2+), for any > O.

If all arcs in 1-’ have the same radius then, as in 3.6, all levels of the data structure use
only two-dimensional decomposition schemes. Thus, following the analysis of the previous
section, we can easily conclude the following result.

THEOREM 4.4. Given a collection F’ ofn arcs ofthe same radius, we can count the number

of intersection points in F in time O(n4/3+), for any > O.

5. Conclusion. In this paper we presented efficient algorithms for counting intersections
in collections of circles, of circular arcs, and of circles or circular arcs of some fixed radius.
Although our algorithms are significantly faster than the best previously known algorithms,
we believe that their running time can be further improved, because the best known lower
bound for these problems is only f2 (n log n). As a first goal, can circular arc intersections be
counted in time close to 0(n4/3), as is the case for collections of segments? We showed that
this is the case for circular arcs of the same radius.

Finally, the techniques presented here seem to be quite general. An open problem is to
extend them to counting intersections for other types of arcs.

[Agl]

[Ag2]

[AASS]

[BO]

[Cha]

[Chb]

[CE]

REFERENCES

P. K. AGARWAL, Partitioning arrangements of lines: I. An efficient deterministic algorithm, Discrete
Comput. Geom., 5 (1990), pp. 449-483.

Partitioning arrangements of lines: II. Applications, Discrete Comput. Geom., 5 (1990),
pp. 533-573.

P. K. AGARWAL, B. ARONOV, M. SHARIR, AND S. SURI, Selecting distances in the plane, Proc. 6th ACM
Symposium on Computational Geometry, 1990, pp. 321-331; Algorithmica, to appear.

J. L. BENTLEY AND and T. OTTMANN, Algorithms for reporting and counting geometric intersections,
IEEE Trans. Comput., C-28 (1979), pp. 643-647.

B. CHAZELtE, Reporting and counting segment intersections, J. Comput. Systems Sci., 32 (1986),
pp. 156-182.

An optimal convex hull algorithm and new results on cuttings, Proc. 32nd Annual IEEE Sym-
posium on Foundations of Computer Science, 1991, pp. 29-38.

B. CHAZELLE AND H. EDZLSBrUNNZR, An optimal algorithm for intersecting line segments in the plane,
J. Assoc. Comput. Mach., 39 (1992), pp. 1-54.

COUNTING CIRCULAR ARC INTERSECTIONS 793

[CEGSI]

[CEGS2]

[CS1]

[CSW]

[C1]

[CEGSW]

[CS2]

[Ed]
[EGS]

[GOS]

[HW]

[Mat
[Mat2]

[Mu]

B. CHAZELLE, H. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, A singly-exponential stratification scheme
for real semi-algebraic varieties and its applications, Proc. 16th International Colloquium on

Automata, Languages and Programming, 1989, pp. 179-193; Theoret. Comput. Sci, 84 1991),
pp. 77-105.

Algorithms for bichromatic line segment problems and polyhedral terrains, Algorithmica, to

appear.
B. CHAZELLE AND M. SHARIR, An algorithmfor generalizedpoint location and its application, J. Symb.

Comput., 10 (1990), pp. 281-309.
B. CHAZELLE, M. SHARIR, AND E. WELZL, Quasi-optimal upper boundsfor simplex range searching and

new zone theorems, Algorithmica, 8 (1992), pp. 407--430.
K. CLARKSON, New applications of random sampling in computational geometry, Discrete Comput.

Geom., 2 (I 987), pp. 195-222.
K. CLARKSON, H. EDELSBRUNNER, L. GUIBAS, M. SHARIR, AND E. WELZL, Combinatorial complexity

boundsfor arrangements ofcurves and spheres, Discrete Comput. Geom., 5 (1990), pp. 99-160.
K. CLARKSON AND P. SHOR, Applications of random sampling in computational geometry II, Discrete

Comput. Geom., 4 (1989), pp. 387-421.
H. EDELSBRUNNER, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.
H. EDELSBRUNNER, L. J. GUIBAS, AND J. STOLFI, Optimal point location in a monotone subdivision,

SIAM J. Comput., 15 (1986), pp. 317-340.
L. GUmAS, M. OVERMARS, AND M. SHARIR, Counting and reporting intersections in arrangements of

line segments, Tech. Report 434, Dept. Computer Science, New York University, New York, NY,
March 1989.

D. HAUSSLER AND E. WELZL, e-nets and simplex range queries, Discrete Comput. Geom., 2 (1987),
pp. 127-151.

J. MATOUEK, Construction ofe-nets, Discrete Comput. Geom., 5 (1990), pp. 427-448.
Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Symposium on

Theory of Computing, 1991.
K. MULMULEY, Afast planar partition algorithm, I, J. Symb. Comput., l0 (1990), pp. 253-280.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 794-806, August 1993

() 1993 Society for Industrial and Applied Mathematics
008

RAY SHOOTING AND PARAMETRIC SEARCH*

PANKAJ K. AGARWAL ANO JIl MATOUEK$

Abstract. Efficient algorithms for the ray shooting problem are presented: Given a collection F of objects in
d, build a data structure so that, for a query ray, the first object of F hit by the ray can be quickly determined. Using
the parametric search technique, this problem is reduced to the segment emptiness problem. For various ray shooting
problems, space/query-time trade-offs of the following type are achieved: For some integer b and a parameter m
(n _< m < nb) the queries are answered in time O((n/m /b) log<) n), with O(m !+) space and preprocessing time

(t > 0 is arbitrarily small but fixed constant), b Ld/2J is obtained for ray shooting in a convex d-polytope defined
as an intersection of n half spaces, b d for an arrangement of n hyperplanes in d, and b 3 for an arrangement
of n half planes in 3. This approach also yields fast procedures for finding the first k objects hit by a query ray, for
searching nearest and farthest neighbors, and for the hidden surface removal. All the data structures can be maintained

dynamically in amortized time O(m +/n) per insert/delete operation.

Key words, ray shooting, arrangements, convex polytope, range searching, parametric search

AMS subject classifications. 52B 11, 68P05, 68Q20, 68Q25, 68u05

1. Introduction. Consider the following ray shooting problem: Given a collection F of
n objects in d, build a data structure so that, for a query ray p, we can quickly determine
the first object of F intersected by p.

The ray shooting problem has received much attention in the past few years because of its
applications in graphics and other geometric problems [11], [20], [1], [13], [6], [4], [9], [7].
But most of the work done so far has been for the planar case where F is a collection of line
segments in 2. Chazelle and Guibas proposed an optimal algorithm for the special case where
F is the boundary of a simple polygon [11]. Their algorithm answers a ray shooting query
in O(log n) time using O(n) space (see also [9]). If F is a collection of arbitrary segments
in the plane, the best known algorithm answers a ray shooting query in time O(log) n)

using O(m l+) space and preprocessing [1], [6], [4]. Although no lower bound is known for
this case, it is conjectured that this bound is close to optimal. However, in three and higher
dimensions the problem is far from being solved. For example, no efficient ray shooting
algorithm is known for a convex d-polytope for d > 3. Even in 3, nontrivial solutions have
been obtained only very recently (cf. [4], [7]).

In this paper, we present ray shooting algorithms for several cases in higher dimensions
(d > 3), including a convex polytope, a collection of n hyperplanes in d, and a collection of
n half planes in IK3. We will use a unified approach for all cases, which is, roughly speaking, a
binary search along the query ray p. In order to make this approach work, we need to handle
two problems: (i) Perform a binary search without computing all intersection points of p and
the objects of F, and (ii) given a point x 6 p, determine whether the first intersection point of
F and p lies before or after x.

To handle the first problem we perform an implicit binary search using the parametric
search technique of Megiddo [26], and, to handle the second problem, we use suitable range
searching structures for detecting an intersection between p and the objects of F. Our approach
can be easily extended to report the first k objects hit by the query ray.

*Received by the editors June 10, 1991; accepted for publication (in revised form) May 20, 1992. Work by the
first author has been supported by National Science Foundation grant CCR-91-06514. Part of the work was done
while the second author was visiting School of Mathematical Sciences, Georgia Tech University, Atlanta, Georgia.

Computer Science Department, Duke University, Durham, North Carolina 27706 (pankaj @cs. duke.edu).
Department of Applied Mathematics, Charles University, Prague, Czech.
1Throughout this paper, t denotes an arbitrarily small positive constant. The multiplicative constants in the

asymptotic bounds may depend on e.

794

RAY SHOOTING AND PARAMETRIC SEARCH 795

The range searching algorithms we have at our disposal usually admit space/query-time
trade-offs" the more space (and preprocessing time) we use, the faster the queries can be
answered. Such a trade-off then transfers to the ray shooting results. A usual form of this
trade-off is the following: There are two fixed integers b, c (specific to the considered problem),
such that with O(m 1+) space and preprocessing time, where n < m < nb, a query can be
answered in time O(m- log n) [12]. Note that since we require m > n, the smallest amount
of space we consider in this trade-off is O(n+). Hence the log n factor plays a role only
when m is close to nb; actually it expresses the query complexity for the maximum permissible
amount of space. For the sake of brevity, we just say that such a problem admits a standard

trade-off with a certain value of b. It is understood that c is always a (reasonably small)
constant. For the sake of simplicity, we will not discuss the best value of c. Also, in many
cases the space and/or preprocessing time can be somewhat reduced because of improved
results in range searching (e.g., for m n, or m n); we will not pay too much attention to
this either.

In this paper, we consider the following specific ray shooting problems"
(i) Ray shooting in an arrangement of n hyperplanes in Rd. We get a standard trade-off

with b d. Previously, efficient solutions were known only for d _< 3. Moreover, they did
not support insertion/deletion of planes for d 3.

(ii) Ray shooting in a convex d-polytope defined as the intersection of n half spaces. We
get a standard trade-off with b Id/2J. Previously, nontrivial solutions were known only for
d < 3 [17].

(iii) Ray shooting in an arrangement of n half planes in R3. We obtain a standard trade-off
with b 3. The previously best known result answered a query in time O(nl6/15+e/m4/15)
using O(m+) space and preprocessing [4].

By a well-known reduction, a suitable ray shooting algorithm yields a procedure that can
process a set of n points in IRd into a data structure, so that the nearest or the farthest neighbor
of a query point can be computed quickly; we get a standard trade-off with b [d/2] [18].
It can also report the first k neighbors, for any given k < n, at an additional cost of k log2 n in
the query time.

Finally, we consider the following hidden surface removal problem: Given a set T of n
nonintersecting triangles in N3 and a view point z +cx, compute the visibility map of T,
that is, the subdivision of the viewing plane so that the same triangle is visible from all the
points of a face. The goal is to come up with an "output-sensitive" algorithm. Although there
have been several output-sensitive algorithms for special cases, only very recently de Berg et
al. [7] presented an output-sensitive algorithm for the general case. Their algorithm relies on
a fast procedure for ray shooting among a collection of "curtains"; a curtain is an unbounded
vertical triangle with two of its edges being vertical rays extending to -ec. We shall present
a faster procedure for ray shooting among curtains, which will improve the running time of
the hidden surface removal algorithm of [7].

Tables and 2 offer a succinct comparison of our ray shooting and k-intersection results
with the previously known ones. In these tables, the space and preprocessing time are usually
O(m l+) (and better in some cases; see the appropriate sections).

TABLE
Ray shooting results.

Objects Previous results New results

log n)d-polytope O(logn),d < 3 [17] O(m/’ta/
I+e

hyperplanes in N4 O(m--77), d < 3 [4] O(m--r77/d log n)
/-)

16/15+e
half planes in I (.) [4] O(m-3 log4 n)

2+e
curtains in N O() [7] O(log n)

796 PANKAJ K. AGARWAL AND JIl,i MATOUEK

TABLE 2
k-intersection results.

Objects Previous results New results

hyperplanes in]d

segments in 2
triangles in/I

None

0(log(l) n + klogn)

None

O(m+/d log4 n + k)
(I)O(log n+k)

16/15 1)O(logO(n+k)

This paper is organized as follows. Section 2 introduces the ray shooting problem in
a general setting and gives a reduction to the segment emptiness problem using Megiddo’s
parametric search technique. In 3, we discuss specific applications of this general result to
ray shooting and related problems in various situations. Ray shooting algorithms are applied
to proximity problems and to the hidden surface removal problem in 4 and 5, respectively.
We finally conclude by mentioning some open problems.

2. Ray shooting using parametric search. It will be convenient to formulate the ray
shooting problem in a reasonably general setting. Let be a class of (topologically closed)
geometric objects in a (in the examples we consider, these will be hyperplanes or parts of
them), and let 1-’ be some set of n objects of . Further let be a set of admissible rays. Let
o(p) denote the origin point of a ray p. The points of every ray will be ordered increasingly
along the ray starting from its origin, i.e., for p, q 6 p we say p < q if o(p) is closer to
p than to q. For a ray p 7 and g F let 0(g, p) denote the first point of g hit by p if
it exists; otherwise 9(g, P) +cx. We set qg(F, p) mingv qg(g, p). We want to build a
data structure that, given a ray p 6 , computes 9(F, p) quickly, together with a g 6 F such
that p(g, p) 0(F, p). Abusing the notation slightly, we shall use 0(F, p) to denote the first
intersection point as well as the object that contains the intersection point.

Let Seg(7".) denote the set of all initial segments of the rays of 7, i.e.,

Seg(7) {o(p)x; p 7, x p }.

Suppose that we have an efficient algorithm that, given a segment ox Seg(7), decides
whether it intersects any object g 6 F. We refer to this procedure as the segment emptiness
algorithm. We also assume that the algorithm can detect the case when an initial segment ox
intersects F only at x and that it can identify the intersected object in this case.

Observe that, given a point x on a ray p 6 7, we can use the segment emptiness algorithm
to decide the relative order of x and 9(F, p): if the segment o(p)x intersects F only at x, then
x o(F, p); if ox is empty then x < 99(F, p); otherwise, x > p(F, p). As it is often the
case in similar situations, the parametric search technique due to Megiddo [26] can be used to
turn this "verification" algorithm into a "searching" algorithm. Let us outline this technique
applied to our specific problem.

Let A be a segment emptiness algorithm. Let v be the unit direction vector of p and
let {x(t) o(p) + tv; +} be a parametric representation of p. Let t* denote the (yet
unknown) value of the parameter such that x(t*) qg(1-’, p). The first idea of the parametric
search technique is to run the algorithm A to decide the emptiness of the segment o(p)x(t*),
and to run it "generically," without specifying the value of t*. The execution of the algorithm
A will, sooner or later, need some information about t*. As observed earlier, we can gain
some information about t*: we can compare it with some given t, by running the segment
emptiness algorithm on the segment o(p)x(t) (for a reason which becomes apparent later, we
shall think of this algorithm as another "template" of A and call it B).

Specifically, assume that the flow of execution of A depends on comparisons, each of
which involves testing the sign of a low-degree polynomial in whose coefficients may depend

RAY SHOOTING AND PARAMETRIC SEARCH 797

on p, on the objects of 1-’ but not on t*. We maintain an interval I, which is either a singleton
or an open interval that contains t*. Each time a comparison is to be made, the few roots of the
associated polynomial are computed, and we run the algorithm B "off line" at each of them.
If one of the roots is t* itself, we can stop; otherwise we determine the location of t* among
these roots, and thus also the sign of the polynomial at t*. If we know the two consecutive
roots fli, fli+l such that t* (fli, fli+l), we can compute the sign of the polynomial at t*,
i.e., the outcome of the comparison at t*. We now set I to I N (fli, fli+l). If I 0, we can
conclude that t* does not exist, and we stop. Otherwise we resume the execution of the generic
algorithm A. As we proceed through this execution, each comparison that we resolve further
constrains the range where t* can lie, and we thus obtain a sequence of progressively smaller
intervals, each known to contain t*, until we either reach the end of A or hit t* at one of the
comparisons at A. Since the outcome of A changes at t*, it can be shown that t* is a root of a
polynomial associated with one of the comparisons resolved by A (see [3] for a proof). This
in turn implies that the computation will stop at the desired value t*.

The most expensive steps in this computation are calls to the subroutine B for resolving
comparisons. To reduce this cost, Megiddo suggests replacing the sequential algorithm A
by its parallel version, Ap. If Ap uses p processors and runs in TA parallel steps, then each
such step involves at most p independent comparisons, that is, each can be carried out without
having to know the outcome of the others. We can then compute the roots of all p polynomials
associated with these comparisons, and perform a binary search to locate t* among them (using
the algorithm B at each binary search step). If T is the time complexity of the subroutine
B, then the binary search requires O(p / T log p) time per parallel step, for a total of
O(pTA / Tg TA log p) time for a sequential algorithm that simulates Ap. An improvement
of this technique by Cole 15] can further reduce the running time in certain cases by another
logarithmic factor (this, however, depends on the specific algorithm Ap).

Let us summarize our discussion in a (rather long) theorem.
THEOREM 2.1. Let F be a set ofobjects and 7 a collection ofrays. Suppose that we have

a data structure E supporting segment emptiness queries with respect to for the segments

of Seg(). Let Ap be a parallel algorithm for answering a segment emptiness query, which
uses p processors and runs in TA parallel steps2, and such thatfor a query segment ox, the
computation of Ap uses the information about x only in deciding the signs of certain fixed-
degree polynomials in the coordinates of x. Let B be another version of segment emptiness
algorithm, which can report an object g I" intersecting the endpoint of the query segment,
provided that the segment is otherwise empty, and let Tg be the running time of B. Then the
ray shooting problem for rays in 7 can be solved using the same data structure E, in time
O(pTA / TTA log p).

This approach can obviously be extended to find the first k objects of 1-’ intersected by the
query ray. In this case, the generic algorithm Ap should decide whether the query segment
o(p)x(t*) intersects exactly k objects of F, and algorithm B decides whether the number of
the objects of F intersected by query segment are fewer than, equal to, or more than k. After
having computed the value of t*, the answer (the first k objects hit by p) can be computed by
a segment range reporting algorithm C; usually a variant of A or B gives such an algorithm.
The running time of the resulting algorithm will then be O(pTA + TTA log p + Tc), where
TA, T, and p have the same meaning as above and Tc is the running time of C (Tc may
depend on k).

3. Specific results on ray shooting. In this section we apply the general technique de-
scribed in the previous section to obtain fast solutions for some specific instances. In particular,

2Actually we count only the steps with comparisons involving x.

798 PANKAJ K. AGARWAL AND JIlS-, MATOUEK

we present ray shooting algorithms in an arrangement of hyperplanes in d-dimensions (3.1),
a collection of half spaces (3.2), and an arrangement of half planes in R (3.3).

3.1. Ray shooting among hyperplanes. In this section we describe an efficient ray
shooting algorithm for a collection H of n hyperplanes in Rd. For d _< 3, Agarwal and Sharir
[4] gave an algorithm that gives a standard trade-off for ray shooting among hyperplanes with
b d. In this section we obtain similar bounds for higher dimensions. In view ofTheorem 2.1,
it suffices to describe an efficient procedure for the segment emptiness problem.

The dual of a hyperplane (respectively, segment) in lKd is a point (respectively, double
wedge), and a segment e intersects a hyperplane h if and only if the double wedge e* contains
the point h*. Therefore, the segment emptiness problem for H is the same as detecting whether
a query double wedge contains any point of H*. This problem is a special case of the simplex
range searching problem, where we want to report or count the points contained in a query
simplex.

Chazelle, Sharir, and Welzl [12] showed that, using O(ml+), (n < m < nd) space
and preprocessing, we can answer a double wedge range query in time O(log2 n) (see
Appendix). A simpler algorithm (with improved performance for the case of linear space)
was given in [22]. More specific properties of this algorithm will be briefly described in
the Appendix. With a knowledge of this data structure, it is straightforward to check that
the algorithm can be run in O(logn) parallel steps using O(m-/ logn) processors. Also,
it is shown in [22] that the data structure can be maintained dynamically under inser-
tions and deletions of points. Hence, in view of Theorem 2.1, we can conclude the following
theorem.

THEOREM 3.1. Given a set H ofn hyperplanes in IRel, aparameterm n _< m _< nd, we can
build, in time 0(m +), a data structure of size 0 (m +) that supports ray shooting queries
in time O(n log4 n) The data structure can be maintained dynamically, as hyperplanes
are being inserted in or deletedfrom H, in O(ml+e/n) amortized time per update operation.

Remark 3.2. With a linear space and O(n log n) preprocessing time, we actually get
query time O(n -/d log(n). On the other hand, with O(nd+) space and preprocessing,
the query time becomes O(log2 n). This and other possibilities of small improvements follow
from more specific results of [12], [22].

In the above result, the simplex range searching results were applied only to decide the
emptiness of a query segment. However, these algorithms can also count the number of
hyperplanes intersecting a query segment within the same time bound, or can report all such
k hyperplanes at an additional cost of O(k). The remarks at the end of 2 thus imply the
following.

THEOREM 3.3. Given a set H ofn hyperplanes in IR, a parameter m, n _< m _< nd, we
can build, in time O(m l+e), a data structure so that, thefirst k hyperplanes ofH intersected by
a query ray can be reported in time 0(- log4 n + k). This data structure can be maintained

dynamically, as hyperplanes are being inserted in or deletedfrom H, in 0(m 1+/n) amortized
time per update operation.

Agarwal and Sharir [4] showed that if F is a set of n segments in]t2 or a set of n triangles
in IK3, we can count the number of objects in F intersected by a query segment in time
O(nl+e/q/--) or O(n16/15+e/m4/15), respectively, using O(m l+e) space and preprocessing,
where n < m < n2 and n < m < n4, respectively. Hence, we obtain similar bounds for
reporting the first k objects of 1-" hit by a query ray. A further improvement is possible using
recent results of Aronov and Sharir [5] on the complexity of a zone of an algebraic surface in
a hyperplane arrangement; we will not elaborate on this in this paper.

3Throughout this paper, we will denote by y* the dual of an object y, and by F* the set {),*" y 6 F}.

RAY SHOOTING AND PARAMETRIC SEARCH 799

3.2. Ray shooting in a convex polytope. In this section we consider the ray shooting
problem for a convex polytope 79 in d. We assume that 79 is described as the intersection
of n half spaces in Itd. Let H denote the set of hyperplanes bounding these half spaces. For
d 2 a straightforward binary search can answer a ray shooting query in O(log n) time,
and for d 3 we can use the Dobkin-Kirkpatrick hierarchical representation of a 3 polytope
to obtain an optimal algorithm [17]. But for d > 3, the Dobkin-Kirkpatrick hierarchical
representation does not work, and no efficient algorithm is known for ray shooting in higher
dimensions. Even in I no efficient ray shooting algorithm is known if the polytope 79 changes
dynamically.

We first describe the algorithm for the special case when o, the origin point of the ray,
lies inside 79. This is simpler and sufficient in many applications. After a suitable projective
transformation, we can assume that 79 is the region lying above all hyperplanes of H. (Actually,
the algorithm can be modified suitably, so that it works even if 79 does not lie above all
hyperplanes of H.) By Theorem 2.1, we are interested in a data structure that, for a query
segment ox, detects whether ox intersects the boundary of 79, which, by our assumption, is
equivalent to whether there is a hyperplane of H lying above x. In the dual setting, this means
that the half space lying above the hyperplane x* contains at least one point of H*.

We thus want to preprocess H* for half-space emptiness queries, i.e., we need a data
structure deciding whether there is a point of H* in a query half space. In [23] it is shown that
the half-space emptiness queries can be answered in time O(ml/nLcl/21 log n) using O(m 1+) space
and preprocessing (the algorithm includes the data structure due to Clarkson 14] for the "large
space" case). It also allows the insertion or deletion of a half space in O(m 1+/n) amortized
time, see, e.g., [2] for details. A parallel implementation with O(log n) time and number
of processors bounded by the sequential running time is quite straightforward. Furthermore,
the algorithm can also detect the case when the interior of the query half space is empty but
its boundary contains a point (see original papers [14], [23] for details). We thus have the
following lemma.

LEMMA 3.4. Given a convex polytope 79 in I, described as the intersection of n half
spaces, and a parameter m, n < rn <_ n Id/21 we can construct in time O(m+) a data
structure of size O(m 1+) so that, for a query ray whose origin point lies inside 79, we can
determine thefirst point ofthe polytope boundary hit by the ray in 0

m "/’nLc/1 lg n) time. This
data structure can be maintained dynamically, as halfspaces are being inserted in or deleted
from 79, in amortized time 0(m l+e / n) per update operation.

This result has one surprising consequence. Namely, the half-space emptiness algorithm
of [23] sometimes concludes that the query half space is nonempty, but does not exhibit a
"witness point" contained in the query half space (which may be required in some applications).
Our ray shooting result allows us to obtain such a witness" Let h denote the hyperplane
bounding the query half space and, without loss of generality, assume that the query half space
lies above h. In the dual setting, we thus want to return a hyperplane of H lying above the point
h* if it exists. We shoot a vertical ray in the -x direction from the point (h T h_,
(where (h T h) is the coordinate vector of h*). If h* lies below the first hyperplane hit by
the ray, then that hyperplane is the desired witness; otherwise h* lies above all hyperplanes of
H. Hence we have the following corollary.

COROLLARY 3.5. Given a set S of n points in , we can construct in time O(m l+e)
(n < rn < n ld/zj) a data structure of size O(m+), such that, for a query half space V, we
can determine in time O(m,/a/21 log n) a point of v N S or conclude that ?, f) S 0.

Next, we extend the ray shooting algorithm for the case when the origin point o of p does
not lie in 79 Note that this does not quite fall into our general framework (at least not if we take
the set of hyperplanes for F), so we must exhibit a specific (although very similar) solution
using parametric search. It suffices to find a point x* x(t*) of the query ray inside 79 if it

800 PANKAJ K. AGARWAL AND JIli MATOUEK

exists (then the previous ray shooting result can be applied); in our setting this means a point
x* of the ray lying above all hyperplanes of H. For this problem, the generic algorithm A will
check whether x(t) E 79. The oracle B should decide on which side of a point x x(t) the
potential intersection of the query ray with 7 lies. We let B be the algorithm dual to the one
from Corollary 3.5, i.e., it checks whether x E 7 (if yes the computation may finish), and if
not, it exhibits a hyperplane h 6 H lying above x. The crucial observation is that at least one
of the two portions of the query ray determined by x(t) also lies below h, and therefore p N 7
is bound to lie in the other portion (provided it exists at all). As a result the algorithm B can
still resolve comparisons. Clearly, if p intersects 7, a point in p 7 will be found. On the
other hand, if p does not intersect 7, the answers given by B will become inconsistent (i.e.,
the interval for t* becomes empty). By Corollary 3.5 and Theorem 2.1, we can conclude the
following theorem.

THEOREM 3.6. Given a convex polytope 79 in]1d described as the intersection of n half
spaces, and a parameter rn (n < rn < nld/2J), we can preprocess 79 in time O(m +) into a
data structure ofsize 0 (m +), so thatfor a query ray thefirstpoint of79 hit by the ray can be
determined in O(m,/t/2 log n) time. The data structure can be maintained dynamically, as

halfspaces are being inserted in or deletedfrom 79, in amortized time O(m+e/n) per update
operation.

Remark 3.7. This algorithm can also be improved in some special cases. For in-
stance, if we do not require a dynamic structure, we may apply a result of [23]" Given
O(n) space and O(n +) preprocessing time, we can answer half space emptiness queries
in O(n-!/Ld/ZJ20(lg* n)) time; the algorithm can be implemented with O(log log n) parallel
steps. Similarly, if we allow O(n Ld/2J+) space, the query time in the above theorem can be
improved to O (log2 n).

3.3. Ray shooting among half planes. In this section we consider the case when I-’ is a
set of half planes in 3. Although a ray shooting query among planes in]3 can be answered
in roughly n/m /3 time, no such procedure is known for half planes. The query time of
the best known algorithm for half spaces is close to n6/5/rn4/, which is the same as the
query time for ray shooting among triangles in 3 [4]. Here we improve the query time to
O(log() n); as usual, we will describe an efficient procedure for the segment emptiness
problem. We use a "multilevel" range searching structure tailored to this specific application.
General principles of building such structures are outlined in the Appendix.

Let H denote the set ofplanes supporting the halfplanes of V. We construct a partition tree
T on the set of points in H*. For a node v of T, let 1-’v be the set of half planes corresponding
to the points of the canonical subset associated with v, and let Lv be the set of lines bounding
the half planes of Fv. We orient each line g of Lv so that the half plane bounded by g lies to
its right (i.e., in the clockwise direction). L is thus a set of oriented lines.

As a secondary data structure in each node v, we construct a data structure for deciding
whether a query line (in our application, the line carrying the query segment) has positive
(or negative) orientation with respect to all lines of L. Chazelle et al. [10] give a data
structure for this problem with space and preprocessing time O(n2+) and with O(log n)
query time. They actually reduce the problem to answering a half-space emptiness query in
five dimensions4. Combining their reduction with the already mentioned results of [23] for

4The reduction uses so-called Plucker coordinates of lines. Every line U of the set Lv is mapped to a Plucker point
zr(g’) in projective five-space, and a query line is mapped to a Plucker hyperplane re(g) in projective five-space.
The query line g has positive (respectively, negative) orientation with respect to all lines in L if and only if the
hyperplane re(g) lies above (respectively, below) the Plucker points of all lines in Lv, see [29], [10] for details. The
problem thus reduces to determining whether the half space lying above (respectively, below) ur (g) is empty, which
can be done using the data structure of Clarkson 14].

RAY SHOOTING AND PARAMETRIC SEARCH 801

the half-space emptiness problem, we get a data structure for the segment emptiness problem
(with respect to half planes in three-dimensions) that admits a standard trade-off with b 2.

When answering a segment emptiness query for a segment e pq with this two-level
data structure, we first query the first level structure with the double wedge e* dual to e. It
gives the set of half planes, whose supporting planes intersect e, as a pairwise disjoint union of

O(m-/3 log n) canonical subsets. Let F’v be a first-level canonical subset of the query output.
Then either p lies below all the planes containing the half planes of Fv and q lies above all of
them, or vice versa. Without loss of generality, assume that p lies below all of them.

The query segment e intersects a half plane V 6 F if and only if e, the line supporting e
and oriented from p to q, intersects ?,. If the xy-projection of e is in clockwise (respectively,
counterclockwise) direction to the xy-projection of the line 0V, then e intersects y if and only
if lies below (respectively, above) 0y, i.e., has negative orientation with respect to Oy
(see Fig. 1). In other words, does not intersect any half plane of 1-’ if and only if e has
positive orientation with respect to all lines of Lo. Similarly, if p lies above all the planes
containing the half planes of 1-’, then e does not intersect any half plane of 1-’v if and only if
has negative orientation with respect to all lines of Lv. We can Perform this test using the

secondary structure stored at v. By repeating this step for all first-level canonical subsets of
the query output, we can answer the emptiness query. This data structure gives a standard
trade-off with b 3 for the segment emptiness problem. We thus obtain the following result.

FIG. 1. Query line e and halfplane y.

THEOREM 3.8. Given a set of n halfplanes in 3 and a parameter m, n < m < n3,
we can preprocess F, in time 0(m +), into a data structure of size 0(m +), so that a
ray shooting query can be answered in time O(m-/3 log(1) n). The data structure can be
maintained dynamically, as halfplanes are being inserted in or deletedfrom F, in amortized
time 0(m +e /n) per update operation.

4. Nearest and farthest neighbors searching. We now divert our attention to the neigh-
bor searching problems: Given a set S ofn points in]a, store S in a data structure so that,
for a query point , we can quickly compute a point of S closest to (orfarthestfrom) .

Clarkson showed that if we allow O(n rd/21+e) space, we can compute a nearest or farthest
neighbor of a query point in S in time O(log n), but no efficient algorithm is known, if we
allow, say, O(n log n) space. In this section we apply the ray shooting algorithms to search
for the closest and farthest neighbors.

We map each point p (pl, p2 Pd) of S to the hyperplane g(p) in d+, which is
the graph of a d-variate linear function

hp(Xl, x2 Xd) 2plx q- 2p2x2 +... + 2paxa (p + p +... + p).

802 PANKAJ K. AGARWAL AND JIl MATOUEK

It is well known that p 6 S is a closest neighbor of a point (1, 2 d) if and
only if

hp(l, 2 d) maxhq(se, se:z sed)
qrS

(see [18], [19] for details). The problem of computing a closest neighbor thus reduces to
finding a hyperplane in the upper envelope of g(S) hit by the vertical ray p, emanating from
the point (1, 2 d, +ocz) in --Xd+ direction. Since the upper envelope of g(S) is a
convex polytope defined as the intersection of n half spaces and the origin point of p lies in
’(S), we can use Lemma 3.4. Similarly, a farthest neighbor of in S is a point p if

hp(l, 2 d) min hq (1, 2 d),
qrS

and the problem of computing a farthest neighbor thus reduces to shooting a vertical ray
in the lower envelope of o(S) from (, 2 d,--oo) (in +Xd+ direction). Hence, by
Lemma 3.4, we obtain the following result.

THEOREM 4.1. Given a set S ofn points in]d and a parameter n < m < n Fa/21, we can
preprocess S in time O(m TM) into a data structure ofsize O(m+e), so that,for a query point, we can compute its closest orfarthest neighbor in S in time O(,/rn2i log n). Moreover,
the data structure can be maintained dynamically, as points are being inserted in or deleted

from S, in amortized time 0(m +/n) per update operation.
We can extend this algorithm to report k nearest or farthest neighbors of a query point. We

will restrict ourselves to nearest neighbors; the farthest neighbors can be handled analogously.
The k nearest neighbors of are the same as the first k hyperplanes of oe(S) intersected by
the vertical ray p emanating from (, 2 a, +oo). Therefore, by Theorem 3.3, we can
find k nearest neighbors of in time O(m/n+ log4 n + k), but we can do better when k is not
very large.

By our reductions, it suffices to have an algorithm deciding whether a query point lies
below at most k hyperplanes, and also to have a suitable reporting algorithm. A result of [23]
in a dual setting shows that, in IRa, all k hyperplanes lying above a query point can be reported
in time O(ml/lnd/2’j logn + k) using O(m+) space and preprocessing.

Such a reporting algorithm can be turned into an algorithm that checks whether there are at
most k hyperplanes above a query point: Given an integer k, let tk be (an upper bound for) the
running time of the reporting algorithm provided that it reports at most k points. One runs the
reporting algorithm, terminating it if it does not stop within tk time units. If it has not stopped
by this time, we know that the number of hyperplanes lying above the query hyperplane is
larger than k; otherwise we can check the number of reported hyperplanes directly. Hence,
we can check in time O(m n

/(u log4n + k) whether a query point lies below at least k hy-
perplanes. A parallel implementation of the reporting algorithm with O(log n) parallel steps
and O(m i(n+’i lg4 n + k) processors is again straightforward, and in the checking version, we
terminate it when it tries to use more than tk processors. Plugging these algorithms into the
parametric search technique, we obtain a data structure that reports the first k hyperplanes hit
by a ray originating in the polytope in time O(m,/tni lg3 n + k log2 n). As usual, the space
and preprocessing time of the algorithm are O(m+).

THEOREM 4.2. Given a set S ofn points in 1td, we can preprocess it, in time O(m+e),
into a data structure ofsize O(m+) so that, for a querypoint , we can compute its k closest
(or farthest) neighbors in S in time O(m/fnd/] log3 n + k log2 n). The data structure can be
maintained dynamically, as points are being inserted in or deletedfrom S, in amortized time
O(m TM/n) per update operation.

RAY SHOOTING AND PARAMETRIC SEARCH 803

5. Hidden surface removal. Consider the following problem: "Given a set T of n
triangles in]3 and a viewpoint p at z -+-zxz, we want to compute the visibility map All (T)
of T, i.e., the subdivision of the viewing plane z +cxz such that the same triangle of T
is visible in -z direction from all points of a face." Note that if we are given an arbitrary
viewpoint p, we can apply an appropriate transformation so that p maps to

In the last few years much work has been done on various special cases of the hidden
surface removal problem, see [27], [4], [8], [7]. Most of these algorithms apply efficient
ray shooting procedures to compute the visibility map. Recently, de Berg et al. [7] gave an
O (n 1+ + k) algorithm for the general case, where k is the size of the visibility map. Their
algorithm uses a ray shooting procedure for a collection of curtains as a subroutine; a curtain
is an unbounded vertical triangle with two of its edges being vertical rays extending to -x.
The overall running time of their algorithm is governed by the time complexity (query time
plus preprocessing) of the ray shooting procedure. In this section we will present a faster
solution for the ray shooting among a family of curtains, which in turn will improve the time
complexity of their hidden surface removal algorithm.

Let F’ be a collection of curtains in 3. As usual, we describe a data structure for the
segment emptiness problem for I-’. Let denote the line containing e, the line containing the
bounded segment of a curtain V, and $ the xy-projection ofan object 3. The segment e intersects
a curtain 9/ if and only if (i) Y intersects 97, and (ii) lies below . Let 1-’ {7 ?’ 6 1-’}
denote a set of n segments in R2. It is known (see, e.g., [4]) that Y intersects 7 if and only
if { separates the endpoints of 7 and Y intersects {. We construct a four-level data structure
(similar to the one used in [4]; see Appendix for details) on .

We first construct a partition tree on the left endpoints of the segments of and then, for
each node z of the tree, we construct a secondary partition tree on the right endpoints of the
segments of whose left endpoints are in the canonical subset associated with z. Next, for
each second-level node we extend the segments of 1-’, whose right endpoints are stored at that
node, to full lines in the plane and dualize them to points in 2. We construct a third-level
partition tree on these points. For a third-level node v, let Iv (respectively, 1-’v) be the set of
segments (respectively, curtains) corresponding to the points associated with v. Finally, at
each third level node v, we store a data structure that, for a query line (the one extending a
query segment e), decides whether it lies above all lines of {; 9/ 6 1-’} (see 3.3).

To detect an intersection between e and the curtains of F, we search the first two levels of
the above structure with {, the third level structure with the double-wedge dual to Y, and finally
the fourth level structure with the PRicker hyperplane of (see the Appendix for details). If the
tests come out positive for the fourth-level structures of every third-level node, filtered out by
the previous levels of the partition tree, our query segment is empty. Putting all this together,
we get a standard trade-off for the segment emptiness problem among curtains with b 2.

Plugging the resulting ray shooting procedure into the hidden surface removal algorithm
of[7] and choosing m InZ/3k2/31, we can compute the visibility map in time O(nZ/3+ek2/3 -+-
n+). Note that we do not know the value of k in advance, therefore we must guess an initial
value of m and update it as the algorithm proceeds, as in [7], [27]; see any of these papers for
details. Hence, we can conclude the following theorem.

THEOREM 5.1. The visibility map of a given set of n triangles in 3 with respect to a

viewing point can be computed in time O(nZ/3+ek2/3 -+- nl+e), where k is the output size.

6. Conclusion. In this paper we have applied the parametric search technique to obtain
efficient procedures for the ray shooting and related problems. Recently, further progress
was made in the construction of (static) range searching algorithms (see [24] for simplex
range searching algorithms and multilevel range searching structures and [28] for half-space
range reporting with polylogarithmic query time). As a result, the n factors appearing in the

804 PANKAJ K. AGARWAL AND JIlJ MATOUEK

complexity bounds for our static ray shooting algorithms can be replaced by polylogarithmic
factors. Also, in the case ofray shooting in a convex polytope, we can remove some ofthe extra
logarithmic factors in the query time arising by a straightforward application of the parametric
search method; see [25], [28].

Finally, we conclude by mentioning some open problems.
(i) Can the ray shooting algorithm for half planes be extended to triangles in IR3? The

currently best known algorithm admits the standard trade-off with b 4.
(ii) What about ray shooting in a collection of spheres or other nonlinear objects in IR3?

The authors are not aware of any efficient procedure for ray shooting or even intersection
detection algorithms for nonlinear objects.

(iii) Can the running time of k-nearest neighbor searching be improved to

O log n + k 9
mllral2q

Appendix. Multilevel partition trees. In some of our ray shooting problems (e.g., 3.3
and 5), we needed "tailored" range searching structures for the corresponding segment empti-
ness problems. These particular data structures are not explicitly described in the literature,
but they can be easily designed using multilevel (recursive) partition trees. Multilevel par-
tition trees were originally introduced by Dobkin and Edelsbrunner 16] and they have been
successfully applied to several geometric problems [12], [22], [4].

Let us start by describing a partition tree for the half-space range searching. We will
consider only some abstract properties without going into specific implementation details.
Thus our description encompasses the partition scheme of 12], as well as a somewhat simpler
and better partition scheme of [22].

Let S be a set of n points in IRa. A partition tree on S consists of a collection of certain
distinguished subsets of S, called the canonical subsets. The task of a partition tree is to
express the intersection of S with a given half space , as a disjoint union of canonical subsets;
such a decomposition of S N t’ is called a canonical decomposition. A partition tree is
implemented as a tree-like data structure, each of whose node is associated with canonical
subsets. At each node, we also store certain auxiliary information that allows us to find a
canonical decomposition of S rq ?, efficiently.

In order to answer the queries efficiently, we need a worst-case upper bound on the
maximum number of canonical subsets used in a canonical decomposition of S Cq ,. On
the other hand, the sum of sizes of all canonical subsets essentially determines the space
requirements of the partition tree. The results of 12], [22] show that, for any n < m < nd, we
can build a partition tree of size (i.e., the sum of the size of its canonical subsets is) O(ml+),
which can decompose S G , into O(log n) canonical subsets, for any query half space ?,.

Depending on the purpose of a partition tree, we also store some kind of additional
information along with each canonical subset. For example, we need to store the cardinality
of each canonical subset if we want to use it for answering queries of the form "how many
points of S are contained in a query half space."

To introduce the concept of a multilevel partition tree, let us consider a slightly more
complicated example, where we want to count the number of points of S in a query wedge,
i.e., in an intersection of two half-spaces5. We thus take every canonical subset C in our
partition tree, and build a "secondary" partition tree for C; this data structure corresponds
to the auxiliary information associated with C in the "primary" partition tree. The auxiliary
information stored at each node of the secondary partition tree is still the cardinality of the

5The partition trees of [22] allow us to handle such a query directly, since the points of S in every simplex can be
decomposed into the appropriate number of canonical subsets, but we want to illustrate the principle here.

RAY SHOOTING AND PARAMETRIC SEARCH 805

corresponding secondary canonical subset. Given a wedge w 7’ A 7’’, where 7’, 7’’ are two
half-spaces, we first obtain a canonical decomposition of S N 7’ with respect to the primary
tree. Then, for every canonical subset C in this decomposition, we use the corresponding
secondary data structure to count the number of points in C N 7’’. Finally we sum up all the
answers to compute the value of IS A w 1. Hence, the first level of our data structure sifts out
the points contained in 7’, and the second level sifts the points contained in 7’’. Thus, the two
levels together filter out the points of S that lie in w 7’ 7’’.

We need not limit ourselves to just two levels; for instance, we, need d + levels to handle
simplex range counting queries in this spirit. The examples described in this paper illustrate
that the secondary structure need not deal with the points of canonical subsets directly, but
rather it can be set up for some objects in one-to-one correspondence with these points (e.g.,
in 5, the primary partition tree is constructed on the left endpoints of some set of segments,
the secondary partition trees are constructed on right endpoints of the appropriate segments,
and the tertiary partition trees are constructed on the points dual to some set of lines).

In order to analyze the performance of such multilevel structures, we apparently need
more information about the distribution of sizes of the canonical subsets. From the analysis
in [12], [22], we can obtain the following convenient form.

THEOREM A.1. For an n-point set in a and a parameter m, n < m < na, we can
n I+e

construct, in time O(ml+e), a partition tree that contains at most O(max{ 7, -Sz-}) canonical
subsets ofsize exceeding s for any s < n and, for any half-space 7", the canonical decompo-
sition of 7" f3 S contains at most

O min
s-/d m/algn

canonical subsets ofsize exceeding s.
Using these estimates, the analysis of multilevel partition trees becomes straightforward,

especially if we ignore O(n) factors. Let us consider the above outlined two-level example
for wedge range counting. For the sake of simplicity, let us assume that m n for the primary
partition tree, and that, for every canonical subset C of size c, we build a secondary partition
tree with m c. The secondary structure constructed on C requires O(cl+e) space. The total
space required by this two-level structure is thus at most

n n TM

i=0

2i(l+e) O max
2i 2d

O(n TM)

and the number of second-level canonical subsets used for decomposition of a wedge is at
most

log n t {i(-/Clogn. O min
n-/+
2i(_l/d

n
i=0

1-1/dlogn}) O(nl-1/dlog2n).

As for other values of m, a similar calculation shows that the total space is O(m+) and a
query output consists of O(log2 n) canonical subsets. In general, the space requirements
and the query complexity of a multilevel partition tree are essentially determined by the least
efficient level. The basic analysis of this kind is given in [4], [12], and finer complexity
questions (the tuning of subpolynomial factors) are touched in [22].

Acknowledgments. The authors thank Marco Pellegrini for pointing out an error in an
earlier version of the paper, Micha Sharir for several helpful discussions, and the referees for
useful comments.

806 PANKAJ K. AGARWAL AND JIl[MATOUEK

REFERENCES

[1] EK. AGARWAL, Ray shooting and other applications of spanning trees with low stabbing number, SIAM J.
Comput., 21 (1992), pp. 540-570.

[2] R K. AGARWAL AND J. MATOUEK, Dynamic half-space range reporting and its applications, Tech. Report
CS-1991-43, Dept. of Computer Science, Duke University, Durham, NC, 1991; Algorithmica, to appear.

[3] P.K. AGARWAL AND M. SHARIR, Planar geometric location problems, Tech. Report 90-58, DIMACS, Rutgers
University, August, 1990. (Also to appear in Algorithmica.)

[4] Applications ofa new partitioning scheme, Discrete Comput. Geom., 9 (1993), pp. 11-38.
[5] B. ARONOV, M. PELLEGRINI; AND M. SHARIR, On the zone ofa surface in a hyperplane arrangement, Discrete

Comput. Geom., to appear.
[6] R. BAR YEHUDA AND S. FOGEL, Good splitters with applications to ray shooting, in Proc. 2nd Canadian Conf.

on Computational Geometry, 1990, pp. 81-85.
[7] M. DE BERG, D. HALPERIN, M. OVERMARS, J. SNOEYINK, AND M. VAN KREVELD, Efficient ray shooting and

hidden surface removal, in Proc. 7th Symposium on Computational Geometry, 1991, pp. 51-60.
[8] M. DE BERG AND M. OVERMARS, Hidden surface removalfor axis-parallelpolyhedra, Comput. Geom.: Theory

and Appl., (1992), pp. 247-268.
[9] B. CHAZELLE, H. EDELSBRUNNER, M. GRIGNI, L. GUII3AS, J. HERSHBERGER, M. SHARIR, AND J. SNOEYINK, Ray

shooting in polygons using geodesic triangulations, Proc. 17th International Colloquium on Automata,
Languages and Programming, 1991, pp. 661-673.

[10] B. CHAZELLE, H. EDF.LSBRUNNER, L. GUIBAS, M. SHARIR, AND J. STOLFI, Lines in space: Combinatorics and
algorithms, Proc. 21st ACM Symposium on Theory of Computing, 1989, pp. 382-393. Full version:
Tech. Report 491, Dept. of Computer Science, New York University, New York, February, 1990.

11 B. CI-IAZELLE AND L. GUIBAS, Visibility and intersection problems in plane geometry, Discrete Comput. Geom.,
4 (1989), pp. 551-589.

[12] B. CHAZELLF, M. SHARIR, AND E. WELZL, Quasi-optimal upper bounds for simplex range searching and new
zone theorems, Algorithmica, 8 (1992), pp. 407-430.

13] S.W. CHENG AND R. JANARDAN, Space efficient ray shooting and intersection searching: Algorithms, dynamiza-
tion, and applications, J. Algorithms, 3 (1992), pp. 670-692.

[14] K. CLARKSON, A randomized algorithmfor closest point queries, SIAM J. Comput., 17 (1988), pp. 830-847.
[15] R. COLE, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput. Mach., 31

(1984), pp. 200-208.
[16] D. DOBKIN AND H. EDELSBRUNNER, Space searching for intersecting objects, J. Algorithms, 8 (1987), pp.

348-361.
17] D. DOBKIN AND D. KIRKPATRICK, Determining the separation ofpreprocessed polyhedra: a unified approach,

Proc. 17th International Colloquium on Automata, Languages and Programming, 1990, pp. 400-413.
[18] H. EDELSI3RUNNEI, Algorithms in Combinatorial Geometry, Springer-Verlag, Berlin, New York, 1987.
19] H. EDELSBRUNNER AND R. SEIDEL, Voronoi diagrams and arrangements, Discrete Comput. Geom., (1985),

pp. 25-44.
[20] L. GUIBAS, M. OVERMARS, AND M. SHARIR, Ray shooting, implicit point location, and related queries in

arrangements ofsegments, Tech. Report 433, Courant Institute, New York University, New York, 1989.
[21] J. MATOUEK, Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Symposium on

Theory of Computing, 1991, pp. 506-511.
[22] Efficient partition trees, Discrete Comput. Geom., 8 (1992), pp. 315-334.
[23] Reporting points in halfspaces, Comput. Geom.: Theory and Appl., 2 (1992), pp. 169-186.
[24] Range searching with efficient hierarchical cuttings, Proc. 8th ACM Symposium on Computational

Geometry, 1992, pp. 276-285.
[25] J. MATOUEK AND O. SCHWARZKOPF, Linectr optimization queries, Proc. 8th ACM Symposium on Computational

Geometry, 1992, pp. 16-25.
[26] N. MEGIDDO, Applying parallel computation algorithms in the design ofserial algorithms, J. Assoc. Comput.

Mach., 30 (1983), pp. 852-865.
[27] M. OVERMARS AND M. SHARIR, Output-sensitive hidden surface removal, Proc. 30th Annual IEEE Symposium

on Foundations of Computer Science, 1989, pp. 598-603.
[28] O. SCHWARZKOPF, Ray shooting in convexpolytopes, Proc. 8th ACM Symposium on Computational Geometry,

1992, pp. 286-295.
[29] D. SOMMERVILLE, Analytical Geometry in Three Dimensions, Cambridge University Press, London, 1951.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 807-837, August 1993

() 1993 Society for Industrial and Applied Mathematics
009

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS*

MICHAEL KEARNS AND MING LI

Abstract. In this paper an extension of the distribution-free model of learning introduced by Valiant [Comm.
ACM, 27(1984), pp. 1134-1142] that allows the presence of malicious errors in the examples given to a learning
algorithm is studied. Such errors are generated by an adversary with unbounded computational power and access to

the entire history of the learning algorithm’s computation. Thus, a worst-case model of errors is studied.
The results of this research include general methods for bounding the rate of error tolerable by any learning

algorithm, efficient algorithms tolerating nontrivial rates of malicious errors, and equivalences between problems of
learning with errors and standard combinatorial optimization problems.

1. Introduction. In this paper, we study a practical extension to Valiant’s distribution-
free model of learning: the presence oferrors (possibly maliciously generated by an adversary)
in the sample data. The distribution-free model typically makes the idealized assumption
that the oracles POS and NEG (returning positive and negative examples of the unknown
target concept) always faithfully return untainted examples of the target representation drawn
according to the target distributions. In many environments, however, there is always some
chance that an erroneous example is given to the learning algorithm. In a training session for
an expert system, this might be due to an occasionally faulty teacher; in settings where the
examples are being transmitted electronically, it might be due to unreliable communication
equipment.

Since one of the strengths of Valiant’s model is the lack of assumptions on the probability
distributions from which examples are drawn, we seek to preserve this generality by making
no assumptions on the nature of the errors that occur. That is, we wish to avoid demanding
algorithms that work under any target distributions while at the same time assuming that the
errors in the examples have some "nice" form. Thus, we study a worst-case or malicious
model of errors, in which the errors are generated by an adversary whose goal is to foil the
learning algorithm.

The study of learning from examples with malicious errors was initiated by Valiant [24],
where it is assumed that there is a fixed probability/ of an error occurring independently on
each request for an example. This error may be of an arbitrary naturemin particular, it may
be chosen by an adversary with unbounded computational resources and exact knowledge of
the target representation, the target distributions, and the current internal state of the learning
algorithm.

In this paper we study the optimal malicious error rate EMAL (C) for a representation
class C--that is, the largest value of/ that can be tolerated by any learning algorithm (not
necessarily polynomial time) for C. Note that we expect the optimal error rate to depend on
e and 3 (and n in the case of a parameterized target class C). An upper bound on EMAL (C)
corresponds to a hardness result placing limitations on the rate of error that can be tolerated;

*Received by the editors July 2, 1990; accepted for publication (in revised form) March 10, 1992. A preliminary
version of this research appears in the Proceedings of the Twentieth Annual ACM Symposium on the Theory of
Computing.

AT&T Bell Laboratories, 600 Mountain Ave., Room 2A-423, P.O. Box 636, Murray Hill, New Jersey 07974-
0636. This research was done while the author was a graduate student at Harvard University and visiting the
University of California at Santa Cruz. This research was supported by an AT&T Bell Laboratories scholarship and
grants N00014-85-K-0445 and N00014-86-K-0454 from the Office of Naval Research and DCR-8606366 from the
National Science Foundation.

Department of Computer Science, University of Waterloo, Davis Center, Room 2339, Waterloo, Ontario N2L
3G1, Canada. This research was done while the author was at Harvard University. This research was supported
by grants N00014-85-K-0445 from the Office of Naval Research and DCR-8606366 from the National Science
Foundation.

807

808 MICHAEL KEARNS AND MING LI

lower bounds on EM,L (C) are obtained by giving algorithms that tolerate a certain rate of
error.

Using a proof technique called the method of induced distributions, we obtain general
upper bounds on EMAL (C) and apply these results to many representation classes. We also

lgpolyobtain lower bounds on AL(C) (the largest rate of malicious error tolerated by a polynomial-
time learning algorithm forC) by giving efficient learning algorithms for these same classes and

I:;, polyanalyzing their error tolerance. In several cases the upper and lower bounds on MA/ (C) meet.
A canonical method oftransforming standard learning algorithms into error-tolerant algorithms
is given, and we give approximation-preserving reductions between standard combinatorial
optimization problems such as set cover and natural problems of learning with errors. Several
of our results also apply to a more benign model of classification noise defined by Angluin
and Laird [1], in which the underlying target distributions are unaltered, but there is some
probability that a positive example is incorrectly classified as being negative and vice versa.

Several themes are brought out. One is that error tolerance need not come at the expense
of efficiency or simplicity. We show that there are representation classes for which the optimal
malicious error rate can be achieved by algorithms that run in polynomial time and are easily
coded. For example, we show that a polynomial-time algorithm for learning monomials with
errors due to Valiant [24] tolerates the largest malicious error rate possible for any algorithm,
polynomial-time or otherwise, that uses only positive examples. We give an efficient learning
algorithm for the class of symmetric functions that tolerates the optimal malicious error rate
and uses an optimal number of examples.

Another theme is the importance of using both positive and negative examples whenever
errors (either malicious errors or classification noise errors) are present. Several existing
learning algorithms use only positive examples or only negative examples (see, e.g., Valiant
[23] and Blumer et al. [5]). We demonstrate strong upper bounds on the tolerable error rate
when only one type is used and show that this rate can be provably increased when both types
are used. In addition to proving this for the class of symmetric functions, we give an efficient
algorithm that provides a provable increase in the malicious error rate over the positive-only
algorithm of Valiant [24] for the class of monomials.

A third theme is that there are strong ties between learning with errors and more traditional
problems in combinatorial optimization. We give a reduction from learning monomials with
errors to a generalization of the weighted set cover problem and an approximation algorithm
for this problem (generalizing the greedy algorithm analyzed by several authors [7], [11],
[18]) that is of independent interest. This approximation algorithm is used as a subroutine
in a learning algorithm that tolerates an improved error rate for monomials. In the other
direction, we prove that for the class of monomials M, approaching the optimal error rate

EMAL (M) with a polynomial-time algorithm using hypothesis space M is at least as hard as
finding an efficient approximation algorithm with an improved performance guarantee for the
set cover problem. This suggests that there are classes for which the optimal error rate that
can be tolerated efficiently may be considerably smaller than the optimal information-theoretic
rate. The best approximation known for the set cover problem remains the greedy algorithm
analyzed by Chvatal [7], Johnson 11], Lovasz 17], and Nigmatullin 18]. Finally, we give a
canonical reduction that allows many learning with errors problems to be studied as equivalent
optimization problems, thus allowing one to sidestep some of the difficulties of analysis in the
distribution-free model. Similar results are given for the error-free model by Haussler et al.
[10].

We now give a brief survey of other studies of error in the distribution-free model. Valiant
[24] modified his initial definitions of learnability to include the presence of errors in the
examples. He also gave a generalization ofhis algorithm for learning monomials from positive

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 809

examples, and analyzed the rate ofmalicious error tolerated by this algorithm. Valiant’s results
led him to suggest the possibility that "the learning phenomenon is only feasible with very low
error rates" (at least in the distribution-free setting with malicious errors); some of the results
presented in this paper can be viewed as giving formal verification of this intuition. On the
other hand, some of our algorithms provide hope that if one can somehow reliably control the
rate of error to a small amount, then errors of an arbitrary nature can be compensated for by
the learning process.

Angluin and Laird subsequently modified Valiant’s definitions to study a nonmalicious
model of errors, defined in 2.3 as the classification noise model. Their results demonstrate
that under stronger assumptions on the nature of the errors, large rates of error can be tolerated
by polynomial-time algorithms for nontrivial representation classes. Shackelford and Volper
[21] investigate a model of random noise in the instances rather than the labels, and Sloan
[22] and Laird 15] discuss a number of variants of both the malicious error and classification
noise models.

2. Definitions for distribution-free learning. In this section we give definitions and
motivation for the model of machine learning we study. This model was first defined by
Valiant [23] in 1984; he then went on to generalize his definitions to allow errors in 1985 [24].
In addition to the basic definitions and notation, we give the form of Chernoff bounds we use,
define the Vapnik-Chervonenkis dimension, and define a number of classes of representations
whose error-tolerant learnability we will study.

2.1. Representing subsets of a domain.
Concept classes and their representation. Let X be a set called a domain (also some-

times referred to as the instance space). We think of X as containing encodings of all objects
of interest to us in our learning problem. For example, each instance in X may represent a
different object in a particular room, with discrete attributes representing properties such as
color, and continuous values representing properties such as height. The goal of a learning
algorithm is then to infer some unknown subset of X, called a concept, chosen from a known
concept class.

For computational purposes we always need a way of naming or representing concepts.
Thus, we formally define a representation class over X to be a pair (or, C), where C c_ {0, }*
and r is a mapping r C --+ 2x (here 2x denotes the power set of X). For c 6 C, cr (c) is called
a concept over X; the image space r(C) is the concept class that is represented by (or, C).
For c 6 C, we define pos(c) or(c) (the positive examples of c) and neg(c) X- or(c)
(the negative examples of c). The domain X and the mapping cr will usually be clear from
the context, and we will simply refer to the representation class C. We will sometimes use
the notation c(x) to denote the value of the characteristic function of r(c) on the domain
point x; thus x pos(c)(x neg(c), respectively) and c(x) (c(x) O, respectively) are
used interchangeably. We assume that domain points x 6 X and representations c 6 C are
efficiently encoded using any of the standard schemes (see [9]) and denote by Ix[and Icl the
length of these encodings measured in bits.

Parameterized representation classes. In this paper we will studyparameterized classes
of representations. Here we have a stratified domain X tO.>_Xn and representation class
C t3.>_C.. The parameter n can be regarded as an appropriate measure of the complexity
of concepts in r(C) (such as the number of domain attributes), and we assume that for a

representation c 6 C. we have pos(c) c_ Xn and neg(c) Xn pos(c). For example,
X. may be the set {0, }", and C. the class of all Boolean formulae over n variables whose
length is at most n2. Then for c Cn, r(c) would contain all satisfying assignments of the
formula c.

810 MICHAEL KEARNS AND MING LI

Efficient evaluation of representations. In general, we will be primarily concerned with
learning algorithms that are computationally efficient. In order to prevent this demand from
being vacuous, we need to ensure that the hypotheses output by a learning algorithm can be
efficiently evaluated as well. Thus if C is a representation class over X, we say that C is
polynomially evaluatable if there is a (probabilistic) polynomial-time evaluation algorithm A
that on input a representation c 6 C and a domain point x 6 Xoutputs c(x). All representation
classes considered here are polynomially evaluatable. It is worth mentioning at this point that
Schapire [20] has shown that if a representation class is not polynomially evaluatable, then it
is not efficiently learnable in our model. Thus, perhaps not surprisingly we see that classes
that are not polynomially evaluatable constitute "unfair" learning problems.

Samples. A labeledexample from a domain Xisapair (x, b), wherex Xandb {0, }.
A labeled sample S (x, b (Xm, bm from X is a finite sequence of labeled examples
from X. If C is a representation class, a labeled example of c C is a labeled example
(x, c(x)), where x 6 X. A labeled sample of c is a labeled sample S where each example of
S is a labeled example of c. In the case where all labels bi or (xi) are (0, respectively), we
may omit the labels and simply write S as a list of points x Xm, and we call the sample
a positive (negative, respectively) sample.

We say that a representation h and an example (x, b) agree if h(x) b; otherwise they
disagree. We say that a representation h and a sample S are consistent if h agrees with each
example in S; otherwise they are inconsistent.

2.2. Distribution-free learning.
Distributions on examples. On any given execution, a learning algorithm for a represen-

tation class C will be receiving examples of a single distinguished representation c 6 C. We
call this distinguished c the target representation. Examples of the target representation are
generated probabilistically as follows" Let D+ be a fixed but arbitrary probability distribution
over pos(c), and let D- be a fixed but arbitrary probability distribution over neg(c). We call
these distributions the target distributions. When learning c, learning algorithms will be given
access to two oracles, POS and NEG, that behave as follows: oracle POS (NEG, respectively)
returns in unit time a positive (negative, respectively) example of the target representation,
drawn randomly according to the target distribution D+(D, respectively).

The distribution-free model is sometimes defined in the literature with a single target
distribution over the entire domain; the learning algorithm is then given labeled examples ofthe
target concept drawn from this distribution. We choose to explicitly separate the distributions
over the positive and negative examples to facilitate the study of algorithms that learn using
only positive examples or only negative examples. These models, however, are equivalent
with respect to polynomial-time computation, as is shown by Haussler et al. 10].

Given a fixed target representation c 6 C, and given fixed target distributions D+ and
D-, there is a natural measure of the error (with respect to c, D+, and D-) of a representation

+(h) D+(neg(h)) (i.e., the weight of the seth from a representation class H. We define e
neg(h) under the probability distribution D+) and e(h) D(pos(h)) (the weight of the

+ (h) (respectively, e- (h)) isset pos(h) under the probability distribution D-). Note that ec
simply the probability that a random positive (respectively, negative) example of c is identified

+ (h) < and e-(h) < , then we say thatas negative (respectively, positive) by h. If both e
h is an -good hypothesis (with respect to c, D+, and D-); otherwise, h is -bad. We define

+(h), e-(h)).the accuracy of h to be the value min(1 e
It is worth noting that our definitions so far assume that the hypothesis h is deterministic.

+(h) to be theHowever, this need not be the case; for example, we can instead define e
probability that h classifies a random positive example of c as negative, where the probability
is now over both the random example and the coin flips of h. All of the results presented here
hold under these generalized definitions.

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 811

When the target representation c is clear from the context, we will drop the subscript c
and simply write D+, D-, e+, and e-.

In the definitions that follow, we will demand that a learning algorithm produce with high
probability an -good hypothesis regardless ofthe target representation and target distributions.
Although at first this may seem like a strong criterion, note that the error of the hypothesis
output is always measured with respect to the same target distributions on which the algorithm
was trained. Thus, while it is true that certain examples of the target representation may be
extremely unlikely to be generated in the training process, these same examples intuitively may
be "ignored" by the hypothesis of the learning algorithm, since they contribute a negligible
amount of error.

Learnability. Let C and H be representation classes over X. Then C is learnable

from examples by H if there is a (probabilistic) algorithm A with access to POS and NEG,
taking inputs , 6, with the property that for any target representation c 6 C, for any target
distributions D+ over pos(c) and D- over neg(c), and for any inputs 0 < , 6 < 1, algorithm
A halts and outputs a representation hA G H that with probability greater than 6 satisfies
e+(hA) < and e-(hA) < ..

We call C the target class and H the hypothesis class; the output h A H is called the
hypothesis of A. A will be called a learning algorithm for C. If C and H are polynomially
evaluatable, and A runs in time polynomial in 1/, 1/6, and Icl, then we say that C is polyno-
mially learnable from examples by H; if C is parameterized, we also allow the running time
of A to have polynomial dependence on the parameter n.

We will drop the phrase "from examples" and simply say that C is learnable by H, and
C is polynomially learnable by H. We say C is polynomially learnable to mean that C is
polynomially learnable by H for some polynomially evaluatable H. We will sometimes call
the accuracy parameter and 6 the confidence parameter.

Thus, we ask that for any target representation and any target distributions, a learning
algorithm finds an -good hypothesis with probability at least 1-6. A primary goal ofresearch
in this model is to discover which representation classes C are polynomially learnable.

We refer to Valiant’s model as the distribution-free model to emphasize that we seek
algorithms that work for any target distributions. It is also known in the literature as the
probably approximately correct model.

Positive-only and negative-only learning algorithms. We will sometimes study learning
algorithms that need only positive examples or only negative examples. If A is a learning
algorithm for a representation class C, and A makes no calls to the oracle NEG (respectively,
POS), then we say that A is a positive-only (respectively, negative-only) learning algorithm,
and C is learnable from positive examples (respectively, learnable from negative examples).
Note that although the learning algorithm receives only one type of examples, the hypothesis
output must still be accurate with respect to both the positive and negative distributions.

Several learning algorithms in the distribution-free model are positive-only or negative-
only. The study of positive-only and negative-only learning is interesting for at least two

reasons. First, it helps to quantify more precisely what kind of information is required for
learning various representation classes. Second, it may be important for situations where, for
instance, negative examples are rare but must be classified accurately when they do occur.

2.3. Definitions for learning with errors.
Oracles with malicious errors. Let C be a representation class over a domain X, and let

c 6 C be the target representation with target distributions D+ and D-. For 0 </ < , we
define two oracles with malicious errors, 190SMAL and NEGa4AL, that behave as follows: When
oracle POSA (respectively, NEGA) is called, with probability -/3, a point x pos(c)
(respectively, x neg(c)) randomly chosen according to D+ (respectively, D-) is returned,

812 MICHAEL KEARNS AND MING LI

as in the error-free model, but with probability/3, a point x X about which absolutely
no assumptions can be made is returned. In particular, this point may be dynamically and
maliciously chosen by an adversary who has knowledge of c, D+, D-,/3, and the internal
state of the learning algorithm. This adversary also has unbounded computational resources.
For convenience we assume that the adversary does not have knowledge of the outcome of
future coin flips of the learning algorithm or the points to be returned in future calls to POSMAL
and NEGA (other than those that the adversary may decide to generate on future errors).
These assumptions may in fact be removed, as our results will show, resulting in a stronger
model where the adversary may choose to modify in any manner a fixed fraction/5 of the
sample to be given to the learning algorithm. Such a model realistically captures situations
such as "error bursts," which may occur when transmission equipment malfunctions repeatedly
for a short amount of time.

Learning from oracles with malicious errors. Let C and H be representation classes
over X. Then for 0 _</3 < , we say that C is learnable by H with malicious error rate 15 if

there is a (probabilistic) algorithm A with access to POSMAL and NEGMA, taking inputs 6, 6,
and/30, with the property that for any target representation c C, for any target distributions
D+ over pos(c) and D- over neg(c), and for any input values 0 < 6, 6 < and/3 _</30 < ,
algorithm A halts and outputs a representation hA H that with probability at least 6
satisfies e+ (h A) < and e+ (h A) < 6.

We will also say that A is a fl-tolerant learning algorithm for C. In this definition of
learning, polynomial-time means polynomial in 1/6, 1/6, and /(-/30), as well as polynomial
in n in the case of parameterized C.

The input fl0 is intended to provide an upper bound on the error rate for the learning
algorithm, since in practice we do not expect to have exact knowledge of the "true" error
rate/ (for instance, it is reasonable to expect the error rate to vary somewhat with time). The
dependence on / (1/2 -/30) for polynomial-time algorithms provides the learning algorithm with

renders learning impossiblemore time as the error rate approaches , since an error rate of
for any algorithm, polynomial-time or otherwise (this is because the labels are essentially the
outcomes of the flip of a fair coin). However, we will shortly see that the input/3o and the
dependence of the running time on / (1/2 -/30) are usually superfluous, since for learning under
arbitrary target distributions to be possible we must have/ < 6/(1 + 6) (under very weak
restrictions on C). This is Theorem 1. However, we include/3o in our definitions since these
dependencies may be meaningful for learning under restricted target distributions.

It is important to note that in this definition, we are not asking learning algorithms to "fit
the noise" in the sense of achieving accuracy in predicting the behavior of the tainted oracles

POSMAI and NEGMAL Rather, the conditions e+ (hA) < 6 and e+ (hA) < require that the
algorithm find a good predictive model of the true underlying target distributions D+ and D-,
as in the error-free model.

In general, we expect the achievable malicious error rate to depend upon the desired
accuracy e and confidence 6, as well as on the parameter n in the case of parameterized
representation classes. We now make definitions that will allow us to study the largest rate

/ /(, 6, n) that can be tolerated by any learning algorithm and by learning algorithms
restricted to run in polynomial time.

Optimal malicious error rates. Let A be a learning algorithm for C. We define

EMAL (C, A) to be the largest/3 such that A is a/3-tolerant learning algorithm for C; note
that EMAL (C, A) is actually a function of e and 6 (and n in the case of parameterized C). In
the case that the largest such/3 is not well defined (for example, A could tolerate progressively
larger rates if allowed more time), then EMAL (C, A) is the supremum over all malicious error
rates tolerated by A. Then we define the function EMAL (C) to be the pointwise (with respect to

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 813

e, 3 and n in the parameterized case) supremum of EMAL (C, A), taken over all learning algo-
rithms A for C. More formally, if we write EMAL (C, A) and EMAL (C) in functional form, then
EMAL (C)(_, 3, n) supA{EMAL (C, A)(i, 3, n)}. Notice that this supremum is taken over all

l:;, polylearning algorithms, regardless of computational complexity. We will use the notation tAL
tO denote these same quantities when the quantification is only over polynomial-time learning

17, polyalgorithms--thus, for instance, MAL (C, A) is the largest/3 such that A is a/-tolerant learning
17’ polypolynomial-time learning algorithm for C, and a4Ac (C) is the largest malicious error rate

tolerated by any polynomial-time learning algorithm for C.
EMAL,+ (C) will be used to denote EMAL with quantification only over positive-only learn-

ing algorithms for C. Similar definitions are made for the negative-only malicious error rate

EMAL,-, and polynomial-time positive-only and polynomial-time negative-only malicious
17’ply and/7’plyerror rates MAL,+ -MAL,-"

Oracles with classification noise. Some of our results will also apply to a more benign
model of errors defined by Angluin and Laird [1], which we will call the classification noise
model. Here we have oracles POScN and NEGcN that behave as follows: As before, with

probability -/3, POScN returns a point drawn randomly according to the target distribution

D+. However, with probability/3, POScN returns a point drawn randomly according to the

negative target distribution D-. Similarly, with probability -/, NEGcN draws from the
correct distribution D- and with probability/3 draws from D+. This model is easily seen to
be equivalent (modulo polynomial time) to a model in which a learning algorithm asks for
a labeled example without being allowed to specify whether this example will be positive or
negative; then the noisy oracle draws from the underlying target distributions (each with equal
probability), but with probability/ returns an incorrect classification with the example drawn.

These oracles are intended to model a situation in which the learning algorithm’s "teacher"
occasionally misclassifies a positive example as negative and vice versa. However, this mis-
classification is benign in the sense that the erroneous example is always drawn according
to the "natural" environment as represented by the target distributions; thus, only the classi-
fication label is subject to error. In contrast, errors in the malicious model may involve not
only misclassification, but alteration of the examples themselves, which may not be generated
according to any probability distribution at all. As an example, the adversary generating the
errors may choose to give significant probability to examples that have zero probability in the
true target distributions. We will see throughout the paper that these added capabilities of the
adversary have a crucial effect on the error rates that can be tolerated.

Learning from oracles with classification noise. Let C and H be representation classes
over X. Then for 0 </3 < , we say that C is learnable by H with classification noise rate 1
if there is a (probabilistic) algorithm A with access to POScN and NEGcN, taking inputs , 3,
and/0, with the property that for any target representation c 6 C, for any target distributions
D+ over pos(c) and D- over neg(c), and for any input values 0 < , 3 < 1, and/3 </0 < ,
algorithm A halts and outputs a representation hA 6 H that with probability at least 3
satisfies e+(hA) < and e+(hA) < .

Polynomial time here means polynomial in l/e, 1/3, and 1/(7 -/30), as well as the
polynomial in n in the case of parameterized C. As opposed to the malicious case, the
input/3o is relevant here, even in the case of arbitrary target distributions, since classification
noise rates approaching can be tolerated by polynomial-time algorithms for some nontrivial
representation classes].

Optimal classification noise rates. Analogous to the malicious model, we define clas-

sification noise rates ECN, ECN,+, and ECN,- for an algorithm A and representation class C,
ppoly 17’ply and -’plyas well as polynomial-time classification noise rates CN CN,+ CN,-"

814 MICHAEL KEARNS AND MING LI

2.4. Other definitions and notation.
Sample complexity. Let A be a learning algorithm for a representation class C. Then

we denote by SA (, 6) the number of calls to the oracles POS and NEG made by A on inputs
e, 6; this is a worst-case measure over all possible target representations in C and all target
distributions D+ and D-. In the case that C is a parameterized representation class, we also
allow SA to depend on the parameter n. We call the function SA the sample complexity or
sample size of A. We denote by SA+ and S the number of calls of A to POS and NEG,
respectively.

Chernoffbounds. We shall make extensive use of the following bounds on the area under
the tails of the binomial distribution. For 0 < p _< and rn a positive integer, let L E(p, m, r)
denote the probability of at most r successes in m independent trials of a Bernoulli variable with
probability of success p, and let G E(p, m, r) denote the probability of at least r successes.
Then for 0 < o < 1,

Fact CB1. LE(p, m, (1)mp) < e-2mp/2.

Fact CB2. GE(p, m, (1 + o)mp) <_ e-2mp/3.

These bounds in the form they are stated are from the paper of Angluin and Valiant [2]; see
also Chernoff [6]. Although we will make frequent use of Fact CB and Fact CB2, we will
do so in varying levels of detail, depending on the complexity of the calculation involved.
However, we are primarily interested in Chernoff bounds for the following consequence of
Fact CB and Fact CB2: Given an event E of probability p, we can obtain an estimate
of p by drawing m points from the distribution and letting/3 be the frequency with which E
occurs in this sample. Then for m polynomial in 1/p and 1/o,/3 satisfies p/2 </3 < 2p with
probability at least o. If we also allow m to depend polynomially on 1//5, we can obtain
an estimate/3 such that p -/3 </3 < p +/3 with probability at least

The Vapnik-Chervonenkis dimension. Let C be a representation class over X. Let
Y

X, and define

H(Y) {Z c__ Y Z Y (pos(c) for some c 6 C}.
c

If we have [-Ic(Y) 2v, then we say that Y is shattered by C. Then we define

VCD(C) max{[Y[Y shattered by C}.

If this maximum does not exist, then VCD(C) is infinite. The Vapnik-Chervonenkis was
originally introduced in the paper of Vapnik and Chervonenkis [25] and was first studied in
the context of the distribution-free model by Blumer et al. [5].

Notational conventions. Let E(x) be an event and !/t (x) a random variable that depend
on a parameter x that takes on values in a set X. Then for X’

X, we denote by Prxx,[E(x)]

the probability that E occurs when x is drawn uniformly at random from X’. Similarly,
Exx,[P(x)] is the expected value of !# when x is drawn uniformly at random from X’.
We also need to work with distributions other than the uniform distribution; thus if P is a
distribution over X we use Prx,[E(x)] and Ex,[1O(x)] to denote the probability of E and
the expected value of 7t, respectively, when x is drawn accordingly to the distribution P.
When E or 1/ depend on several parameters that are drawn from different distributions we use
multiple subscripts. For example, Prx,,,,x2p2,x3e[E(x, x2, x3)] denotes the probability of
event E when x is drawn from distribution P, x2 from P2, and x3 from P.

22;. Some representation classes. We now define the parametrized representation
classes whose error-tolerant learnability we will study. Here the domain X, is always {0, }
and the mapping o- simply maps each formula to its set of satisfying assignments. The classes

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 815

defined below are all parameterized; for each class we will define the subclasses Cn, and then
C is defined by C tOn>_C.

Monomials. The representation class Mn consists of all conjunctions of literals over the
Boolean variables x x,,.

kCNE For any constant k, the representation class kCNF, consists of all Boolean for-
mulae of the form C / .../ Cl, where each clause Ci is a disjunction of at most k literals
over the Boolean variables x x. Note that M 1CNFn.

kDNF. For any constant k, the representation class kDNF consists of all Boolean for-
mulae of the form T /-.. /T, where each term T/is a conjunction of at most k literals over
the Boolean variables X x.

Symmetric functions. A symmetricfunction over the Boolean variables x x is a
Boolean function whose output is invariant under all permutations of the input bits. Such a
function can be represented by a Boolean array of size n + 1, where the th entry indicates
whether the function is 0 or on all inputs with exactly bits set to 1. We denote by SFn the
class of all such representations.

Decision lists. A decision list [19] is a list L ((T, b) (T, bl)), where each T/.
is a monomial over the Boolean variables x,.. x, and each bi {0, 1} For v 6 {0,
we defineL(v) as follows" L(v) bj, where < j < is the least value such that v

satisfies the monomial Tj.; if there is no such j, then L(v 0. We denote the class of all
such representations by DL,. For any constant k, if each monomial T/has at most k literals,
then we have a k-decision list, and we denote the class of all such representations by kDL,.

3. Absolute limits on learning with errors. In this section we prove theorems bounding
the achievable error rate for both the malicious error and classification noise models. These
bounds are absolute in the sense that they apply to any learning algorithm, regardless of its
computational complexity, the number of examples it uses, the hypothesis space it uses, and
so on. Our first such result states that the malicious error rate must be smaller than the desired
accuracy e. This is in sharp contrast to the classification noise model, where Angluin and

lgpolyLaird [1] proved, for example, CN (kDNF) > co for all n and any constant co < .
Let us call a representation class C distinct if there exist representations c, c2 C and

points u, v, w, x 6 X satisfying u pos(c), u neg(c2), v pos(cl), v pos(c2), to

neg(cl), to pos(c2), and x neg(c), x neg(c2).
THEOREM 1. Let C be a distinct representation class. Then

EMAL (C) <
1+

Proof. We use a technique that we will call the method of induced distributions: We
choose > 2 representations {Ci}iE{1 l} c__ C, along with pairs of target distributions

{Dc+,.}iE{1 l} and {D}ie{ l/. These representations and target distributions are such that
for any =/= j, < i, j < l, cj is -bad with respect to the distributions D, D. Then
adversaries {ADVc}ie{ l} are constructed for generating any errors when ci is the target
representation such that the behavior of the oracle POSMAL is identical regardless of which ci

is the target representation; the same is true for the oracle NEGAL, thus making it impossible
for any learning algorithm to distinguish the true target representation, and essentially forcing
the algorithm to "guess" one of the ci.

In the case of Theorem 1, this technique is easily applied, with 2, as follows" Let
c, c2 6 C and u, v, to, x X be as in the definition of distinct. Define the following target
distributions for c"

816 MICHAEL KEARNS AND MING LI

and

For c2, the target distributions are

and

D(u) ,
Dc+,(v)= 1-,

D(w) =,

D(x)

D(v) ,
D+ (w)

Note that these distributions are such that any representation that disagrees with the target
representation on one of the points u, v, w, x is e-bad with respect to the target distributions.
Now if C is the target representation, then the adversary A DVc, behaves as follows" On
calls to POSMAL A DVc, always returns the point w whenever an error occurs; on calls to

NEGMAC, ADVc, always returns the point u whenever an error occurs. Under these defini-

tions, the oracle POSMAL draws a point from an induced distribution Ic+, that is determined by
the joint behavior of the distribution D and the adversary ADV, and is given by

I (u) (t),

I(v) (1- fl)(1-e),

I() ,
where/3 is the malicious error rate. Similarly, the oracle NEGMAL draws from an induced
distribution I:

Ic(U) =/,

Ic (w) (1

I(x) (1 fl)(1

For target representation 2, the adversary ADVc2 always returns the point u whenever a call

to POSMAL results in an error and always returns the point w whenever a call to NEGMAC
results in an error. Then the oracle POSMAC draws from the induced distribution

I+ (u) fl,C2

I+(v) (1- fl)(1-e)C2

I+(w) (1 fl)e

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 817

and the oracle NEGAL from the induced distribution

I (u) (1 -/3)6,

I(w) t,

I (x) (1)(1).

It is easily verified that if/3 e/ (1 +), then the distributions I and I are identical, and
that I and Ic are identical; if/3 > 6/(1 +e), the adversary may always choose to flip a biased
coin and be "honest" (i.e., draw from the correct target distribution) when the outcome is heads,
thus reducing the effective error rate. to exactly 6/(1 + 6). Thus, under these distributions and
adversaries, the behavior of the oracles POSA and NEGA is identical regardless of the
target representation. This implies that any algorithm that produces an e-good hypothesis for
target representations c with probability at least 6 under the distributions D and D
must fail to output an e-good hypothesis for target representation c2 with probability at least

c under the distributions D and D, thus proving the theorem.
An intuitive interpretation of the result is that if we desire 90 percent accuracy from the

hypothesis, there must be less than about 10 percent error.
We emphasize that Theorem bounds the achievable malicious error rate for any learning

algorithm, regardless of computational complexity, sample complexity, or the hypothesis
class. Thus, for distinct C, we always have EMAL (C) <_ 6/(1 + 6) 0(6). All of the
representation classes studied here are distinct. We shall see in Theorem 7 of 4 that any
hypothesis that nearly minimizes the number of disagreements with a large enough sample
from POSMAL and NEGMAL is e-good with high probability provided fl < 6/4. Thus, for the
finite representation classes we study here (such as all the classes over the Boolean domain
{0, }n), there is always a (possibly super-polynomial-time) exhaustive search algorithm A
achieving EMAL (C, A) (); combined with Theorem 1, this gives EMAL (C) ((6) for
these classes. However, we will primarily be concerned with achieving the largest possible
malicious error rate in polynomial time.

We now turn our attention to positive-only and negative-only learning in the presence of
errors, where we will see that for many representation classes, the absolute bounds on the
achievable error rate are even stronger than those given by Theorem 1.

Let C be a representation class. We will call C positive t-splittable if there exist repre-
sentations cl ct E C and points ul ut X and v 6 X satisfying all of the following
conditions:

U pOS(Cj), j, < i, j < t,

Uj neg(cj), <_ j <_ t,

v pos(ci), < <_ t.

Similarly, C is negative t-splittable if we have

V neg(cj), : j, < i, j < t,

uj pos(cj), j < t,

v neg(ci), < <_ t.

Note that if VCD(C) d, then C is both positive and negative d-splittable. The converse
does not necessarily hold.

818 MICHAEL KEARNS AND MING LI

THEOREM 2. Let C be positive t-splittable (respectively, negative t-splittable). Thenfor
<_ 1/t,

EMAL,+(C) <
t--1

(respectively, EMAL,-(C) < (fit- 1)).
Proof. The proof is by the method of induced distributions. We prove only the case that

C is positive t-splittable; the proof for C negative t-splittable is similar. Let cl ct C
and u ut, v 6 X be as in the definition of positive t-splittable. For target representation
cj, define the target distributions D over pos(cj) and D over neg(cj) as follows:

D(ui) t--l’

D(v) 1- ,
<i <t, i:/:j,

and

D (uj) 1.

For target representation cj, the errors on calls to POSfMAL are generated by an adversary
ADVcj who always returns the point uj whenever an error occurs. Then under these definitions,

POSfMAL draws a point from a distribution Ic induced by the distribution Df and the adversary
AD Vcj. This distribution is

, l<i<t, i=/:j,Ic+ (ui) (1 fl)

If(v) (1 fi)(1),

Ic+(uj) ft.

If fl (1 fl)(e/(t 1)), then the induced distributions Ic7 are all identical for < j < t.

Solving, we obtainfl (/(t- 1))/(1 +e/(t- 1)) < el(t- 1). Now letfi > el(t-
1), and assume A is a fl-tolerant positive-only learning algorithm for C. If cj is the target
representation, then with probability at least 3, ui pos(h A) for some j, otherwise
e+ (h A) > under the induced distribution I+ Let k be such that

Cj

Pr[uk 6 pos(hA)]- max{Pr[ui pos(hA)]},
l<i<t

where the probability is taken over all sequences ofexamples given to A by the oracle POSMAL
and the coin tosses of A. Then we must have

1-i
Pr[uk 6 pos(hA)] >

t--1

Choose 6 < 1/t. Then with probability at least 6, e-(h A) when ck is the target represen-
tation, with distributions D and D and adversary ADVck. This contradicts the assumption
that A is a fi-tolerant learning algorithm, and the theorem follows. [

Note that the restriction 6 < / in the proof of Theorem 2 is apparently necessary, since
a learning algorithm may always randomly choose a uj to be a positive example and make all
other u negative examples; the probability of failing to learn under the given distributions is
then only 1/t. It would be interesting to find a different proof that removed this restriction or

to prove that it is required.

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 819

As in the case ofTheorem 1, Theorem 2 is an upper bound on the achievable malicious error
rate for all learning algorithms, regardless of hypothesis representation, number of examples
used, or computation time. For any representation class C, by computing a value T such that
C is t-splittable, we can obtain upper bounds on the positive-only and negative-only error rates
for that class. As examples, we state such results as corollaries for a few of the representation
classes studied here. Even in cases where the representation class is known to be not learnable
from only positive or only negative examples in polynomial time (for example, it is shown in
Kearns et al. [13] that monomials are not polynomially learnable from negative examples),
the bounds on EMAL,+ and EMAL,- are relevant since they also hold for algorithms that do
not run in polynomial time.

COROLLARY 3. Let Mn be the class ofmonomials over x xn. Then

and

and

EMAL,+(Mn) <
n-1

EMAL-(mn) <
l_

COROLLARY 4. Let SFn be the class ofsymmetricfunctions over x x,. Then

EMAI,+(SFn) <
n-1

EMAL,-(SFn) <
n-1

Proofs of these corollaries follow from the Vapnik-Chervonenkis dimension of the repre-
sentation classes and Theorem 2. Note that the proof ofTheorem 2 shows that these corollaries
actually hold for any fixed and n.

We note that Theorem 2 and its corollaries also hold for the classification noise model.
To see this it suffices to notice that the adversaries ADVcj in the proof of Theorem 2 simulated
the classification noise model. Thus, for classification noise we see that the of using

lpol
Ower

both positive and negative examples may be dramatic: for kCNF we have --CN (kCNF,) > c0
for any co < 1/2 due to Angluin and Laird [1] but ECN,+(kCNFn) O(/nk) by Theorem 2.
(Kearns et al. 13] show that kCNF is not learnable in polynomial time from negative examples
even in the error-free model.) In fact, we can give a bound on ECN,+ and ECN,- that is weaker
but more general and applies to almost any representation class. Note that by exhaustive
search techniques, we have that for any small constant or, EcN(C) >_ 1/2 0t for any finite
representation class C. Thus the following result demonstrates that for representation classes
over finite domains in the classification noise model, the advantage of using both positive and
negative examples is almost always significant.

We will call a representation class C positive (respectively, negative) incomparable if
there are representations c, c2 6 C and points u, v, w 6 X satisfying u pos(c), u
neg(c2), v pos(c), v pos(c2) (respectively, v neg(cl), v neg(c2)), w neg(cl),
w pos(c2).

THEOREM 5. Let C be positive (respectively, negative) incomparable. Then

ECN,+ (C) <
l+e

(respectively, ECN,- (C) < 1-)"

820 MICHAEL KEARNS AND MING LI

Proof. By the method of induced distributions. We do the proof for the case that C is
positive incomparable; the proof when C is negative incomparable is similar. Let cl, c2 6 C
and u, v, w X be as in the definition of positive incomparable. For target representation c l,

we define distributions

and

D(w) 1.

Then in the classification noise model, the oracle POScN draws from the induced distribution

and

I(u) (1),

c+, () f,

D (w) 1.

Then in the classification noise model, the oracle POScN draws from the induced distribution

I(u) (1 fl),

Ic+, (v) (1 fl)(1),

Ig(w) .
For target representation C2, define distributions

and

D(v)= l-e,

D(w) e,

D(u) 1.

Then for target representation c2, oracle POScN draws from the induced distribution

I(u) ,
I(v) (1- fl)(1-e),

I(w) (1 fl)e.

For fl e/(1 +e), distributions I and I are identical. Any positive-only algorithm learning
1 under D and D with probability at least 6 must fail with probability at least 6
when learning C2 under D+2 and D. [3

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 821

Thus, for positive (respectively, negative) incomparable C, ECN,+(C) O() (respec-
tively, ECN,-(C) O()). All of the representation classes studied here are both positive
and negative incomparable. Note that the proof of Theorem 5 depends upon the assumption
that a learning algorithm has only an upper bound on the noise rate, not the exact value; thus,
the effective noise rate may be less than the given upper bound. This issue does not arise in
the malicious model, where the adversary may always choose to draw from the correct target
distribution with some fixed probability, thus reducing the effective error rate to any value less
than or equal to the given upper bound.

4. Efficient error-tolerant learning. Given the absolute upper bounds on the achievable
malicious error rate of 3, we now wish to find efficient algorithms tolerating a rate that comes
as close as possible to these bounds or give evidence for the computational difficulty of
approaching the optimal error rate. In this section we give efficient algorithms for several
representation classes and analyze their tolerance to malicious errors.

We begin by giving a generalization of Occam’s razor [4] for the case when errors are
present in the examples.

Let C and H be representation classes over X. Let A be an algorithm accessing POSMAL
and NEGMAI and taking inputs 0 < , 6 < 1. Suppose that for target representation c C
and 0 < /3 < e/4, A makes m calls to POSflMAL and receives points u Um X, and m
calls to NEGMAL and receives points v Vm X and outputs hA H satisfying with
probability at least 3:

(1) I{ui ui neg(hA)}l < -m,
2

(2) I{Vi’Vi pos(hA)}l < -m.
2

Thus, with high probability, hA is consistent with at least a fraction e/2 of the sample
received from the faulty oracles POSMAC and NEGMAL. We will call such an A a -tolerant
Occam algorithmfor C by H.

THEOREM 6. Let B < /4, and let A be a -tolerant Occam algorithm for C by H.
Then A is a t3-tolerant learning algorithm for C by H; the sample size required is m
O(1/ In 1/3 + 1/ In IHI). If A is such that only Condition respectively, Condition 2)
above holds, then e+ (h A) < respectively, e-(h A) <) with probability at least 3.

Proof. We prove the statement where A meets Condition 1; the case for Condition 2 is
similar. Let h 6 H be such that e+ (h) > . Then the probability that h agrees with a point
received from the oracle POSAc is bounded above by

(fi)(-) + _<
3E

for fl < /4. Thus the probability that h agrees with at least a fraction /2 of m examples
received from POSML is

) e_m/24LE --,m,-m <

by Fact CB 1. From this it follows that the probability that some h H with e+ (h) > agrees
with a fraction /2 of the m examples is at most]Hie-m/24. Solving]Hie-m/24 <_ (/2,
we obtain rn > 24/(ln]HI + ln2/8). This proves that any h meeting Condition is with
high probability E-good with respect to D+, completing the proof.

822 MICHAEL KEARNS AND MING LI

To demonstrate that the suggested approach of finding a nearly consistent hypothesis is
in fact a feasible one, we note that,if c is the target representation, then the probability that c
fails to agree with at least a fraction 6/2 of m examples received from POSAL is

GE m, -m -2<-
for fl _< 6/4 and rn as in the statement of Theorem 6 by Fact CB2.

Thus, in the presence of errors of any kind, finding an 6/2-good hypothesis is as good as
learning, provided that/3 < 6/4. This fact can be used to prove the correctness of the learning
algorithms of the following two theorems due to Valiant.

THEOREM 7 [24]. Let Mn be the class ofrnonornials over x xn. Then

MAL,+(Mn)

THEOREM 8 [24]. Forfixed k, let kDNF, be the class ofkDNFformulae over x x.
Then

(6)MAZ,,_(kDNF) f2 -Z
Similar results are obtained by duality for the class ofdisjunctions (learnable from negative

rPtY (1DNF,) f2(6/n)examples) and kCNF (learnable from positive examples); that is, tAC,-
l:? polyand a4AL,+ (kCNFn) f2 (6/nk). Note that the class of monomials (respectively, kDNF) is

not polynomially learnable even in the error-free case from negative (respectively, positive)
examples 13].

lcgply (Mn) (R)(6/n)Combining Corollaries 8 and 9 with Corollaries 3 and 4, we have tAC,+
lc;, polyand a4AL,_(kDNF.) (R)(6/nk), thus proving that the algorithms of Valiant [24] tolerate

the optimal malicious error rate with respect to positive-only and negative-only learning.
The algorithm given in the following theorem, similar to those of Valiant [24], proves an
analogous result for efficiently learning symmetric functions from only one type of examples
in the presence of errors.

THEOREM 9. Let SF. be the class ofsymmetricfunctions over x x.. Then

a4A,+(SF) f2

Proof. Let 3 < 6/8n. The positive-only algorithm A maintains an integer array P indexed
0 n and initialized to contain 0 at each location. A takes rn (calculated below) examples
from POS /, and for each vector v received, increments P[index(v)], where index(v is

the number of bits set to in -. The hypothesis h A is defined as follows: All vectors of index
are contained in pos(hA) if and only if P[i] > (6/4n)m; otherwise all vectors of index are

negative examples of h A.

Note that h A can disagree with at most a fraction (6/4n)(n + 1) < 6/2 of the rn vectors
received from POSA, so e+ (hA) < 6 with high probability by Theorem 7. To prove that
e-(h A) with high probability, suppose that all vectors of index are negative examples of the
target representation (call such an a negative index). Then the probability that a vector of
index is received on a call to POSA is at most fl < 6/8n, since this occurs only when there

is an error on a call to POSA. Thus the probability of receiving (6/4n)m vectors of index

in rn calls to POSMAL is

(_ 6) e_me/24nGE ,m,-nm <_

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 823

by Fact CB2. The probability that some negative index is classified as a positive index by h A
is thus at most

(n + 1)e-me/24n <
-2

for m O((n/e)(lnn + In 1,/6)). Thus with high probability, e-(hA) 0, completing the
proof.]

l,polyThus, with Corollary 5 we have a4AL,+ (SFn) tO(f/n). We can give a dual ofthe above

algorithm to prove Eplya4AL,-(SFn) tO(f/n) as well. The number of examples required by the
algorithm of Theorem 10 is a factor of n larger than the lower bound given by Ehrenfeucht et
al. [8] for the error-free case; whether this increase is necessary for positive-only algorithms
in the presence of malicious errors is an open problem.

The next theorem demonstrates that using both positive and negative examples can sig-
nificantly increase the tolerated error rate in the malicious model.

THEOREM 10. Let SF be the class ofsymmetric functions (SF) over x xn. Then

POlyMAL(SFIn) (e).

Proof. Algorithm A maintains two integer arrays P and N, each indexed 0 n and
initialized to contain 0 at each location. A first takes m (calculated below) examples from

POSmA and for each vector v received, increments P[index v], where index(v) is the

number of bits set to in -. A then takes m examples from NEGA and increments

N[index(-)] for each vector received. The hypothesis hA is computed as follows: all
vectors of index are contained in pos(hA) if and only if P[i] > N[i]; otherwise, all vectors
of index are contained in neg(h A).

We now show that for sufficiently large m, A is an e/8-tolerant Occam algorithm. For
0 < < n let di min(P[i] N[i]). Then d ni=0 di is the number of vectors in the
sample of size 2m with which hA disagrees. Now for each i, either P[i] or N[i] is a lower
bound on the number ei of malicious errors received that have index i; let e Yi=0 ei. Note
that e > d. Now the probability that e exceeds (e/4)(2m) in m calls POSMAL and m calls to

NEGA for/3 < e/8 is

)GE -,2m,-2m <_6

for m O(1/e In 1/6) by Fact CB2. Thus, with high probability the number ofdisagreements
d of hA on the examples received is less than (e/2)m. This shows that A is an e/8-tolerant
Occam algorithm for SF and thus is a learning algorithm for SF by Theorem 7 for m
O(1/e In 1/6 + n/f).

Thus by Theorems and 11 we have poty ,poty
"-’MAL (SFn) tO(f) incontrast with vtA,+(SFn)

lpolytO(f/n) and MAL,_(SFn) tO(f/n), a provable increase by using both types of examples.
This is also our first example of a nontrivial class for which the optimal error rate tO(f) of
Theorem can be achieved by an efficient algorithm. Furthermore, the sample complexity
of algorithm A above meets the lower bound (within a constant factor) for the error-free case
given by Ehrenfeucht et al. [8]; thus we have an algorithm with optimal sample complexity
that tolerates the largest possible malicious error rate. This also demonstrates that it may be
difficult to prove general theorems providing hard trade-offs between sample size and error
rate.

824 MICHAEL KEARNS AND MING LI

We note that the proof of Theorem 11 relies only on the fact that there is a small number
of equivalence classes of {0, }n (namely, the sets of vectors with an equal number of bits
set to 1) on which each symmetric function is constant. The same result thus holds for any
Boolean representation class with this property.

Now that we have given some simple and efficient error-tolerant algorithms, we turn to the
more abstract issue of general-purpose methods of making algorithms more tolerant to errors.
It is reasonable to ask whether for an arbitrary representation class C, polynomial learnability
of C implies polynomial learnability of C with malicious error rate/3, for some nontrivial
value of/ that depends on C, 6, and 6. The next theorem answers this in the affirmative
by giving an efficient technique for converting any learning algorithm into an error-tolerant
learning algorithm.

THEOREM 11. Let A be a polynomial-time learning algorithm for C with sample com-
plexity SA(, 6), and let s SA(/8, -). Thenfor < .

MAL (C) s

Proof. We describe a polynomial-time algorithm A’ that tolerates the desired error rate
and uses A as a subroutine. Note that SA (and, hence, s) may also depend upon n in the case
of parameterized C.

Algorithm A’ will run algorithm A many times with accuracy parameter 6/8 and confi-
dence parameter . The probability that no errors occur during a single such run is (1 -/)s.
For fl <_ lns/s we have

(1-fl)s>(1-1nsls >---_stl
(This lower bound can be improved to 1/s for any constant c > provided there is a
sufficiently small constant upper bound on 6.) Thus, on a single run of A there is probability
at least (1 6)1Is2 1/2s2 that no errors occur and A outputs an e/8-good hypothesis hA
(call a run of A when this occurs a successful run). A’ will run A r times. In r runs of A, the
probability that no successful run of A occurs is at most

for r > 2s2 In 3/6. Let hi h be the hypotheses output by A on these r runs. Suppose
h is an e-bad hypothesis with respect to the target distributions; without loss of generality,
suppose e+ (h) > 6. Then the probability that h agrees with an example returned by the
oracle POSMAL is then at most (1 -/)(1 6) +/3 < 36/4 for/3 < 6/8. Thus, the

probability that h agrees with at least a fraction e/2 of m examples returned by POSMAL
is

(3__ 6) e_m/24LE m, -m <

by Fact CB 1. Then it follows that the probability that some h iA with e+ (h) _> e agrees with
a fraction e/2 of the m examples returned by POSMAL is at most

F6. -m/24 <
3

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 825

for rn O(1/e In r/3). Using Fact CB2, it can be shown that for/3 < e/8 the probability of
an e/8-good h failing to agree with at least a fraction e/2 of the rn examples is smaller
than 3/3.

Thus, if A is run r times and the resulting hypotheses are tested against m examples from
both POSAL and NEGA, then with probability at least -3 the hypothesis with the fewest
disagreements is in fact an e-good hypothesis. Note that if A runs in polynomial time, A’ also
runs in polynomial time.

Note that the trick used in the proof of Theorem 12 to eliminate the dependence of the
tolerated error rate on 3 is general" We may always set 3 7 and run A repeatedly to get a
good hypothesis with high probability (provided we are willing to sacrifice a possible increase
in the number of examples used). This technique has also been noted in the error-free setting
by Haussler et al. 10].

It is shown by Ehrenfeucht et al. [8] that any learning algorithm A for a representation
class C must have sample complexity

SA(e, 3) f2 In +VCD(C)

Suppose that a learning algorithm A achieves this optimal sample complexity. Then applying
Theorem 12, we immediately obtain an algorithm for C that tolerates a malicious error rate of

e
In
VCD(C))a VCD(C

This rate is also the best that can be obtained by applying Theorem 12. By applying this
technique to the algorithm of Valiant [23] for the class of monomials in the error-free model,
we obtain the following corollary.

COROLLARY 12. Let Mn be the class ofmonomials over X xn. Then

(en)MAc(Mn)=S2 --In-

This improves the malicious error rate tolerated by the polynomial-time algorithm of
Valiant [24] in Theorem 8 by a logarithmic factor. Furthermore, since lgPlY

MAC,+(M) (R)(e/n)
this proves that, as in the case of symmetric functions, using both oracles improves the tolerable
error rate. Similarly, a slight improvement over the malicious error rate given in Theorem 9
for kDNF can also be shown. For decision lists, we can apply the algorithm of Rivest [19]
and the sample size bounds given by Ehrenfeucht et al. [8] to obtain the following corollary.

COROLLARY 13. Let kDLn be the class ofk-decision lists over x x,. Then

Oly

MAC (kDL) f2

Despite the small improvement in the tolerable error rate for monomials of Corollary 12,
there is still a significant gap between the absolute upper bound of e! (1 q- e) on the achievable
malicious error rate for monomials impliedby Theorem and the f2 (e/n Inn/e) polynomial-
time error rate of Corollary 12. We now describe further improvements that allow the error
rate to primarily depend only on the number of relevant variables. We describe an algorithm
tolerating a larger error rate for the class Mn of monomials with at most s literals, where s
may depend on n, the total number of variables. Our algorithm will tolerate a larger rate of
error when the number s of relevant attributes is considerably smaller than the total number
of variables n. Other improvements in the performance of learning algorithms in the presence
of many irrelevant attributes are investigated by Littlestone 16] and Blum [3].

826 MICHAEL KEARNS AND MING LI

We note that by applying Theorem 2 we can showthat even for M, the class ofmonomials
of length 1, the positive=only and negative-only malicious error rates are bounded by / (n 1).
This is again an absolute bound, holding regardless of the computational complexity of the
learning algorithm. Thus, the positive-only algorithm of Valiant [24] in Theorem 8 cannot
exhibit an improved error rate when restricted to the subclass M for any value of s.

Our error-tolerant learning algorithm for monomials is based on an approximation al-
gorithm for a generalization of the set cover problem that we call the partial cover problem,
which is defined below. This approximation algorithm is of independent interest and has found
application in other learning algorithms [14], [26]. Our analysis and notation rely heavily on
the work of Chvatal [7]; the reader may find it helpful to read his paper first.

The Partial Cover Problem

Input: Finite sets $1 Sn with positive real costs C Cn, and a positive fraction
0<p<l.

We assume without loss of generality that Ui=i Si {1,.. rn T and we define
J-{1 n}.

Output: J* c__ J such that

Sj > pm

(we call such a J* a p-cover of the Si) and such that costpc(J*) Y4J* cy is minimized.

Following Chvatal [7], for notational convenience we identify a partial cover Sy, Sy.,.
with. the index set {j js }.

The partial cover problem is NP-hard, since it contains the set cover problem as a special
case (p 1) [9]. We now give a greedy approximation algorithm G for the partial cover
problem.

Algorithm G

Step 1. Initialize J* 0.
Step 2. If [-.JjJ* Sj[pm, then halt and output J*, since J* is a p-cover.
Step 3. Set q pm Ujsj. Sj] (thus q is the number of still-uncovered elements that we
must cover in order to have a p-cover). For each j J*, if Syl > q, delete any [Sjl q
elements from S (delete excess elements from any remaining set that covers more than q
elements).
Step 4. Find a k minimizing the ration ck/I Sk I. Add k to J*, and replace each Sj by Sj Sk.
Return to Step 2.

Chvatal [7] shows that the greedy algorithm for the set cover problem cannot do better
than H(m) times the cost of an optimal cover, where H(m) i= 1/i (log m). By a
padding argument, this can also be shown to hold for algorithm G above, for any fixed p. We
now prove that G can always achieve this approximation bound within a constant factor.

THEOREM 14. Let I be an instance ofpartial cover and let optpc (I) denote the cost ofan
optimal p-coverfor i. Then the cost of the p-cover J* produced by algorithm G satisfies

costpc(J*) (2H(m) + 3)optpc(I).

Proof Let Jopt be an optimal p cover (i.e., costc (Jopt) optic (I)). Let

To ,=
jJopt

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 827

(these are the elements covered by Jopt) and

T*--USj

jEJ*

(these are the elements covered by J*), where J* is the p-cover output by algorithm G. Notice
that lToptl >_ pm since Jopt is a p-cover.

Let S] be set of elements remaining in the set Sj immediately before Step 3 in algorithm
G is executed for the rth time (i.e., at the start of the rth iteration of Steps 2-4). By appropriate
renaming of the Sj, we may assume without loss of generality that J* r} (recall that
J* is the set of indices of sets chosen by algorithm G) immediately after Step 4 is executed
for the rth time (i.e., at the end of the rth iteration of Steps 2-4). Let J* t} when
G halts, so there are a total of iterations.

Define T** T* S, where S is the union of all elements deleted from the set St on
all executions of Step 3. Intuitively, T** consists of those elements that algorithm G "credits"
itself with having covered during its execution (as opposed to those elements regarded as
"excess" that were covered because G may cover more than the required minimum fraction
p). We say that a set Sj is at capacity when in Step 3, Sjl > q. Note that once Sj reaches
capacity, it remains at capacity until it is chosen in Step 4 or until G halts. This is because
if elements are removed from Sj on an execution of Step 4, the value of q in Step 3 will
decrease by at least on the next iteration. Furthermore, since G halts the first time a set at

capacity is chosen, and by the above definitions St is the last set chosen by G, we have that
T** [,-J=l S. Thus, we have]S[IT*I- pm and IT**I pm.

The set S can be regarded as the set of previously uncovered elements that are added to
T** on the rth iteration. We wish to amortize the cost Cr over the elements covered. For each

T*, we define a number Yi, which is intuitively the cost we paid to put in T*"

cr/ISl if for somer, Srr,
yi

0 is not in T**.

Since for T* T**, yi O, we have

Z Yi Z Yi
iET** iT*

r=l iS

ZCr
r=l

jJ*

costec (J*).

Thus to bound costpc J*), we now bound ZiT** Yi in two parts, first bounding ZiET**-Top, Yi
and then bounding ier**Crop, Yi.

LEMMA 15.

Yi <_ (H(m) + 2)optpc(I).

828 MICHAEL KEARNS AND MING LI

Proof If T** ropt, then the lemma follows trivially. We therefore assume T** Top
Since [Topt[> pm and IT**] pm, this implies Top T** . Pick j Jopt such that

is minimized. Now

Thus

optec(I)
Topt T**I

ZiEJopt Ci

YiJop, ISi

optec (I) >_ ITopt T**I cj

ISj T**I
Let r0 be the first execution of Step 3 in which Sjl > q (i.e., Sj reaches capacity on the roth
iteration). We will analyze the behavior of G before and after the roth iteration separately.
Let To** denote the set of elements that were added to T** prior to the ro iteration. For each

T*- Topt, the cost Yi must satisfy

yi <
ISj- T**I

because otherwise G would have already added Sj to J*. Since ITopt T**I > IT** Topt[
we have

cj.Z Yi < Y]Sj- T**]T*- Topt T* Topt

<_ Topt T**I cj.

ISj- T**I

< optpc(I).

For iterations r > ro, whenever an element is added to T** T** To**, an element is
deleted from Sj in Step 3, since Sj is at capacity. We charge Yi to this element as follows"

T* Top Ti**

r=ro 6S

t-1

r=ro S

(because on iteration t, both Sj and St are at capacity, so Ct < Cj)
t-I

Cr S;+I<_ is;-- ls I+
r:ro

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 829

(because since Sj is at capacity, IS] S+I[Srrl)
t-1 c S+

(because otherwise G would have chosen Sj at time r)
t-1

r=ro

cjH(ISjI) + cj

cj(H(ISjI) + 1).

Combining the two parts, we have

E Yi E Yi + E Yi
GT**)pt G T* Topt G Tl** Topt

5 optec(I) + cj(H(m) + 1)

< (H(m) + 2)optl,c(I).

LEMMA 16.

Yi < (H(m) + 1)optlc(I).

Proof. We generalize the idea used by Chvatal [7]. For j Jopt and Sj N T** 0,

r=l i6SjnS
t--1

Cr S;+I<_ is;-- ls I+
r=l

(because the average cost of elements in St is lower than in Sj, and we are summing over at
most ISjl elements)

< -’ Cj s;+l
r:l j lsj "t- cj.

ProofofTheorem 14. Combining Lemmas 15 and 16, we have

jJ* iT*

Zy
iT**

T** Topt T**fqTopt

<_ (H(m) + 2)optec(I) + (H(m) + 1)optec(I)

(2H(m) + 3)optpc I).

This completes the proof of Theorem 14. El

830 MICHAEL KEARNS AND MING LI

POly
MAL (M f2

s log

We now use algorithm G as a subroutine in constructing our error-tolerant learning algo-
rithm for M.

THEOREM 17. Let M be the class of monomials over x Xn containing at most s
literals. Then

s log n

Proof. We construct an Occam algorithm A for Mn that tolerates the desired malicious
error rate and uses the algorithm G for the partial cover problem as a subroutine.

Let 0 < fl < e/8, and let c 6 M be the target monomial. A first takes mN points from the
oracle NEGMAL, where mN O(1/ In 1/3 + 1/ In IMI) as in the statement of Theorem

6. Let S denote the multiset of points received by A from NEGMAL. For < < n, define
the multisets

{v S" v-0}

and

{V S" vi

We now define a pairing between monomials and partial covers as follows: The literal Xi is
paired with the partial cover consisting of the single set S/ and the literal Y is paired with the
partial cover consisting of the single set S]. Then any monomial c is paired with the partial
cover obtained by including exactly those S/ and S/ that are paired with the literals appearing
in c. Note that the multiset neg(c) A S contains exactly those vectors that are covered by the
corresponding partial cover.

Now with high probability, there must be some collection of the S/. and S] that together
form a -e/2 cover of S; namely, if (without loss of generality) the target monomial c 6 M is

C X "’’Xrr+l "’’s

then with high probability the sets , S+ S.
We now define a pairing between monomials and partial covers of the set S as follows:

The literal xi is paired with the partial cover consisting of the single set Si and the literal i
is paired with the partial cover consisting of the single set S]. Then any monomial c is paired
with the partial cover obtained by including exactly those and S] that are paired with the
literals appearing in c. Note that the multiset neg(c) f3 S contains exactly those vectors that
are covered by the corresponding partial cover.

Now with high probability, there must be some collection of the Si and S] that together
form a -e/2 cover of S: Namely, if (without loss ofgenerality) the target monomial c M is

C--Xl’’’Xrr+l’’’s,

then with high probability the sets

form a /2 cover of S, since for/ < /8, the probability that the target monomial c

disagrees with a fraction larger than e/2 of a sample of size m N from NEGMAL can be shown
to be smaller than 3/2 by Fact CB2.

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 831

Thus, A will input the sets S S, S S and the value p /2 to algorithm
G. The costs for these sets input to G are defined below. However, note that regardless of these
costs, ifh is the monomial paired with the p-cover output by G, then since]neg(h) S] >_
-/2)mN (where neg(h)OS is interpreted as a multiset), e- (h) < with high probability

by Theorem 6. We now show that for/3 as in the statement of the theorem, we can choose the
costs input to G so as to force e+ (h) < as well.

For any monomial c, let p(c) denote the probability that c disagrees with a vector retumed
by POSAL,1 and let costpc(c) denote the cost of the partial cover that is paired with c. To
determine the costs of the sets input to G, A next samples POSAL enough times (determined
by application of Facts CB and CB2) to obtain an estimate for p(xi) and P(i) for _< _< n
that is accurate within a multiplicative factor of 2, that is, if f(xi) is the estimate computed by
A, then p(xi)/2 < 1(xi) < 2p(xi) with high probability for each i. The same bounds hold
for the estimate/3(i). Then the cost for set input to G by A is (xi) and the cost for set

S] is/3(.i).
Note that for any monomial c xl xYr+ Y, we have with high probability

p(c) < p(x) +... + p(xr) + p(r+) +... + P(s)

< 2/3(x) +... + 2/3(xr) + 2/3(.r+1) if-""-+- 2/3(s)

2cost,c(c).

By Theorem 17, the output h6 of G must satisfy

(3) cost,c(hG) < (H(mN) + 2)cost,c(Copt)

where Copt is the monomial paired with a p-cover ofminimum cost. But for the target monomial
c we have

(4) p(c) <_ fl,

(5) 2sp(c) > costpc(c),

where (4) holds absolutely and (5) holds with high probability, since c contains at most s

literals.
From Equations 3, 4, and 5, we obtain with high probability

p(h6) < 2costec(h6)

< 2(H(mN) q- 2)costpc(Copt)

< 2(H(mN) + 2)cost,c(c)

< 4sp(c)(H(m N) + 2)

< 4sfl(H(mN) + 2).

Note that technically this probability may not be well defined since the behavior of the oracle POSMAL may
depend on the entire history of the computation so far. If this is the case, however, we may use the following trick:

Rather than running the algorithm using POSMAL, we instead take a sufficiently large number of examples from

POSMAL and then run the algorithm using a uniform distribution over these examples (treated as a multiset, not a

set). The algorithm may need to be run more than once in order to find an appropriate setting of the error parameter
used; this technique is detailed and shown correctly in Theorem 20. For the rest of the proof, therefore, we assume
without loss of generality that p(c) is well defined.

832 MICHAEL KEARNS AND MING LI

Thus, if we set

4s(H(mN) + 2)
f2

s log rn U

then e+ (ha) < e with high probability by Theorem 6. We can remove the dependence of/3
on 6 by method used in the proof of Theorem 11, thus obtaining an error rate of

s log s..log, n

completing the proof. 3
As an example, if s /-ff, then Theorem 17 gives

MAL
log

n

as opposed to the bound of (e/n In e/n) of Theorem 12.
Littlestone 16] shows that the Vapnik-Chervonenkis dimension ofM is (R)(s ln(1 +n/s)).

Since the algorithm of Valiant [23] can be modified to have optimal sample complexity for
M, by applying Theorem 11 to this modified algorithm we obtain

eln
s n

MAL(M) nsln(1 + -)s
lg polyThis lower bound on 4AL (M) is incomparable to that of Theorem 17. We may decide at

tun time which algorithm will tolerate the larger error rate, thus giving

lg polyMAL(M:)-- min
(n’] slognsln +- slog

By using transformation techniques similar to those described Kearns et al. [13] it can
be shown that the algorithm of Theorem 17 (as well as that obtained from Theorem 11) can
be used to obtain an improvement in the error rate over the negative-only algorithm of Valiant
[24] for the class kDNFn, of kDNF formulae with at most s terms. Briefly, the appropriate
transformation regards a kDNF formulae as a 1DNF formulae in a space of (R) (nk) variables,
one variable for each of the possible terms (monomials) of length at most k.

5. Limits on efficient learning with errors. In 3, we saw that there was an absolute
bound of /(1 -4-) on the achievable malicious error rate for most interesting representa-
tion classes. It was also argued there that, at least for our finite representation classes over
{0, }n, this bound could always be achieved by a super-polynomial-time exhaustive search
learning algorithm. Then in 4 we gave polynomial-time learning algorithms that in some
cases achieved the optimal error rate O(), but in other cases fell short. These observations
raise the natural question of whether for some classes it is possible to prove bounds stronger
than / + e) on the malicious error rate for learning algorithms constrained to run in polyno-
mial time. In particular, for parameterized representation classes, under what conditions must

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 833

the error rate tolerated by a polynomial-time learning algorithm decrease as the number of
variables n increases? If we informally regard the problem of learning with malicious errors
as an optimization problem where the objective is to maximize the achievable error rate in
polynomial time, and e/(1 + E) is the optimal value, then we might expect such hardness
results to take the form of hardness results for the approximation of NP-hard optimization
problems. This is the approach we pursue in this section.

By reducing standard combinatorial optimization problems to learning problems, we state
theorems indicating that efficiently learning with an error rate approaching (R)(E) is eventually
as hard as approximations for NP-hard problems.

In 4 we gave an error-tolerant algorithm for learning monomials by monomials that was
based on an approximation algorithm for a generalization of set cover. Our next theorem
gives a reduction in the opposite direction: An algorithm learning monomials by monomials
and tolerating a malicious error rate approaching (R)(E) can be used to obtain an improved
approximation algorithm for set cover.

THEOREM 18. Let Mn be the class of monomials over X xn. Suppose there is a
polynomial-time learning algorithm A for Mn using hypothesis space M, such that

POly
tAL (Mn, A)

r(n)

Then there is a polynomial-time algorithm for the weighted set cover problem that outputs
(with high probability) a cover whose cost is at most 2r(n) times the optimal cost, where n is
the number of sets.

Proof. We describe an approximation algorithm A’ for set cover that uses the learning
algorithm A as a subroutine. Given an instance I of set cover with sets S S, and costs

c c,, let Jopt

_
{1 n} be an optimal cover of T tJj= Sj {1 m}, where

we identify a cover {Sj Sjs} with its index set {j js}. Let costsc(J) denote the
set cover cost of any cover J of T, and let optsc(I) costsc(Jopt). As in the proof of
Theorem 17, we pair a cover {j j of T with the monomial xj xj over the variables
x xn. Let Copt be the monomial paired with the optimal cover Jopt.

The goal of A’ is to simulate algorithm A with the intention that Copt is the target monomial,
and use the monomial h A output by A to obtain the desired cover of T. The examples given
to A on calls to NEGMAL during this simulation will be constructed so as to guarantee that
the collection of sets paired with h A is actually a cover of T, while the examples given to A
on calls to POSMAL guarantee that this cover has a cost within a multiplicative factor of 2r(n)
of the optimal cost.

We first describe the examples A’ generates for A on calls to NEGMAL. For each 6 T,
let u i6 {0, }n be the vector whose jth bit is 0 if and only if Sj, and let the multiset

U be U [...JiT{Ui}. Then {j j,} is a cover of T if and only if U c_C_ neg(xj...x,.).
In particular, we must have U c_ neg(Copt). Thus, define the target distribution D- for Copt
to be uniform over U. Note that this distribution can be generated in polynomial time by
A’. On calls of A to NEGAL, A’ will simply draw from D-; thus if we regard Copt as
the target monomial, there are no errors in the negative examples. A’ will simulate A with
accuracy parameter E < 1/IUI, thus forcing A to output an hypothesis monomial h A such that
U neg(h A); by the above argument, this implies that the collection of sets paired with the
monomial hA is a cover of T. Note that IUI (and therefore I/E) may be super-polynomial in
n, but it is polynomial in the size of the instance I.

We now describe the examples A’ generates for A on calls to POSAI. Instead of defining
the target distribution D+ for Copt, we define an induced distribution I+ from which the oracle

POSAI will draw. Thus, I+ will describe the joint behavior of the underlying distribution D+

834 MICHAEL KEARNS AND MING LI

on Copt and an adversary generating the malicious errors For each _< j < n let VjE {0,
be the vector whose jth bit is 0, and all other bits are 1. Let I+ (j) cj for each j, where cj is
the cost of the set Sj, and we assume without loss of generality that yj= cj <_ /r(n) (if not,
we can normalize the weights without changing the relative costs of covers). We complete
the definition of I+ by letting I+((1 1)) j= cj. Then the probability that a

monomial xi, ...xi. disagrees with a point drawn from POSMAL is exactly ci, + / ci,,., the
cost of the corresponding cover. Thus since optsc(I) < .= cj < /r(n) , I+ is an
induced distribution for Copt, with malicious error rate ft. Note that I+ can be generated by A’
in polynomial time. When A requests an example from POSAI, A’ will simply draw from
I+

A’ will run algorithm A many times with the oracles POSAz and NEGAL for Copt
described above, each time with a progressively smaller value for the accuracy parameter,
starting with

Now if optsc(I) < < /r(n), then algorithm A may output a monomial hA whose
corresponding cover has a cost much larger than 4r(n). optsc(I), since h A is only guaranteed
to satisfy e+(hA) < . We solve this]roblem by repeated scaling: A’ first runs algorithm
A with the oracles POSMAL and NEGMA as they have been described. After each run, A’
divides the accuracy parameter by 2, so that on some run /2r(n) < optsc(I) < /r(n).
On this run, we may regard I+ as an induced distribution on the positive examples of Copt,
with malicious error rate at most fl /r(n) < 2optsc(I). Then the error e+(hA) on the
underlying distribution D+ over pos(Copt) is at most < 2r(n)optsc(I). The desired cover
is thus the one paired with the monomial hA. Note that without knowing Copt, we have no
way of knowing what the underlying target distribution D+ is, but it is enough to know that
I+ is a "close" distribution. The only problem with the simulation described occurs when
optsc(I) < < _,=1 cj, in which case it may take a superpolynomial number of runs of A to

guarantee /2r(n) < optsc(I) < /r(n). We solve this by preprocessing: Before running
the described simulation, A’ runs the greedy approximation algorithm analyzed by Chvatal
[7] on the set cover instance I and removes any set whose cost is larger than the entire cost of
the greedy cover. Then for the new (smaller) instance I’, every cost is within a multiplicative
factor of log m of every other cost.

Thus, if r(n) < < log n, then Theorem 19 says that a polynomial time algorithm A for
lgpolyM,, (using hypothesis space Mn) tolerating a4AC (Mn, A) > /r(n) would imply a significant

breakthrough in approximation algorithms for set cover, since the best algorithm for this
problem remains the greedy method analyzed by Chvatal and others [7], [11], [17], [18].
Note that the proof of Theorem 18 in fact shows the result holds for the class of monotone
monomials.

Theorem 17 took an approximation algorithm for an optimization problem (the partial
cover problem), and used it as a subroutine in obtaining an error-tolerant learning algorithm
for M,. Theorem 18 proved that when learning algorithms are restricted to hypothesis class
M, any learning algorithm for M yields an algorithm for set cover with only a constant factor
blowup in the approximation. Thus, we see that there are strong ties between learning with
errors and approximating combinatorial optimization problems. Our goal now is to generalize
and strengthen these ideas. We show that for any representation class C, the problem of
learning C with errors is equivalent to a combinatorial optimization problem with only a
constant factor blowup in the approximation in each direction of the reduction.

For domain X, define a balanced sample of X to be a sample

S (x1, 1) (Xm, 1), (yl, 0) (Ym, O)

where Xi, Yi X, <_ < m. If C is a representation class over X and c 6 C, define

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 835

costarD(c, S) I{(xi, 1) S Xi neg(c)}l + I{(Yi, 0) 6 S Yi pos(c)}[+ 1.

Thus, costa4D(c, S) is simply one more than the number ofdisagreements between the balanced
sample S and the representation c. We now define the following optimization problem for C:

The Minimize Disagreements Problem for C (denoted MD(C))
Input: Balanced sample S of X.
Output: Representation c C such that costm(c, S) is minimized.

THEOREM 19. Let C be a representation class over X. If there exists a polynomial-time
algorithm A’ for MD(C) that outputs hA, C such that cOStMz(hA,, S) is at most r times
the optimal cost, then C is learnable by C by an algorithm A that runs in time polynomial in
1/6, 1/ and In CI, and satisfies

POly
MAL (C, A) >

8r

I:?polyConversely, is algorithm A learns C by C in polynomial time with error rate a4AL (C, A) >

e/r, then there exists a polynomial-time algorithm A’ for MD(C) that outputs (with high
probability) h A’ C such that costtzg(h A’, S) is at most 2r times the optimal cost.

Proof. Let S be a balanced sample of X, and let A’ be an approximation algorithm for
MD(C) such that the output hA, satisfies cOStMD(hA,, S) <_ r opta4(S), where

opttz min(costa4z(h, S)).
hC

Let/3 e/8r. To learn C by C in polynomial time with error rate/3, we take m random
examples x Xm from the oracle POSA and m random examples y Ym from the

oracle NEGA, where m is as in the statement of Theorem 6. Let S be the balanced sample
consisting of the xi and yj. Now with probability at least 6, the target representation
c 6 C disagrees with fewer than 4tim elements of S by Fact CB2, so opta4z)(S) <_ 4tim with
high probability. Thus, algorithm A’, when given S as input, will satisfy costa4z)(hA,, S) <_
r(4flm) (e/2)m. This implies that hA, can disagree with at most a fraction 6/2 of the xi
and at most a fraction 6/2 of the yi. By Theorem 6, hA, is an e-good hypothesis with high
probability.

For the other direction, we use an algorithm A for learning C by C with/3 e/r to
obtain an approximation algorithm for MD(C) as follows: Given the balanced sample S, let
hopt C be such that costMz(hopt, S) opta4z(S) and assume without loss of generality that
m/r >_ opt4D(S) (otherwise any hypothesis has cost at most 2r times the optimal). Define

co max{l{xi S xi neg(hopt)}l, I{Yi S: yi pos(hopt)}l}.

Note that opta4D(S) >_ co >_ opta4z(S)/2. Now let I+ be the uniform distribution over the Xi,

and let I- be the uniform distribution over the Yi. Then I+ and I- can be regarded as induced
distributions for hopt with error rate/3’ co/m. I+ is induced by the joint behavior of the
uniform distribution D+ over {xi S xi pos(hopt)}, and an adversary that draws a point
uniformly from {xi S xi neg(hopt)}; I- can be decomposed over the yi in a similar
fashion.

Algorithm A’ runs algorithm A many times, starting with accuracy parameter e 1, and
drawing from I+ on each call to POSA and from I- on each call to NEGA. Note that
if hA is an e-good hypothesis with respect to D+ and D-, then we have costa49(hA, S) <_
2em + opta4z(S). After each run, A’ divides e by 2. On some run of A, e/r <_ co/2m, and
for this run we have costa4o(h A, S) <_ (r + 1)opta49(S) < 2ropta4z(S), as desired. [2

836 MICHAEL KEARNS AND MING LI

The first direction of this equivalence is also given by Blumer et al. [5]. Note that this
equivalence as it is stated is representation based in the sense that it relies on the learning
algorithm representing its hypothesis as a monomial. With more technical definitions for the
problem MD(C, H), we can in fact give a straightforward generalization of Theorem 19 for
the problem of learning C by H in the presence of malicious errors, giving an equivalent
optimization problem. In addition to simplifying the analysis of learning with errors in the
distribution-free model--we only need to look at the equivalent optimization problem--these
results allow us to weaken our restrictions on the adversary generating the errors. In particular,
since there is no guarantee in the Minimize Disagreements problem on how the errors in the
input sample are generated, it can be shown that the adversary gains no power by being allowed
to see all coin flips of the learning algorithm, and all examples to be received by the learning
algorithm before he generates the errors. This allows our model to incorporate faults such as
error bursts, where all examples are in error for a short amount of time.

Tables and 2 summarize some of the results in this paper.

TABLE
Summary ofgeneral upper bounds on the optimal error ratesfor the malicious and noise models. We denote by

(C) the largest value of such that C is (positive or negative) t-splittable.

EMAL,+(C) ECN,+(C)
and EMA L (C) and

EMAL,-(C) ECN,-(C)
EcN(C)

Upper bound
on the optimal e/(t(C) 1) e/(1 + e) e/(1 + e), e/(t(C) 1) 1/2

error rate

TABLE 2
Summary of upper and lower bounds on the optimal polynomial time error rate (malicious and noise models)

for the classes of monomials Mn, monomials of length s MSn, and symmetricfunctions SFn.

Class C

POlyMAL,+(C)
POly

MAL,- (C)
and

CN,+(C)
POly

cx,- (C)

POly 1poly
MAL (C) "-’CN

Upper bound

mn
Lower bound

(R)(e/n)
[24]

o(e)
O(1)

f2 (ln(n /e)e/n) [1]

Upper bound

Lower bound
O(e/n)
[24]

O()
((e/s)ln((s/e)ln(1 +n/s))/ln(1 +n/s)) (R)(1)

Is)(11 log((s In n)/))) 1]

Upper bound

SFn
Lower bound

O(/n) 0() (R)(1)

LEARNING IN THE PRESENCE OF MALICIOUS ERRORS 837

REFERENCES

1] D. ANGLUIN AND P. LAIRD, Learningfrom noisy examples, Mach. Learning, 2 (1988), pp. 343-370.
[2] D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J.

Comput. System Sci., 18 (1979), pp. 155-193.
[3] A. BLUM, Learning in an infinite attribute space, Proceedings of the 22nd ACM Symposium on the Theory of

Computing, 1990, pp. 64-72.
[4] A. BLUMER, A. EHRENFEUCHT, D. HAUSSLER, AND M. WARMUTH, Occam’s razor, Inform. Process. Lett., 24

(1987), pp. 37"/-380.

[5] Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach., 36 (1989), pp. 929-
965.

[6] H. CHERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations,
Ann. of Math. Statist., 23 (1952), pp. 493-509.

[7] V. CHVATAL, A greedy heuristicfor the set covering problem, Math. Oper. Res., 4 (1979), pp. 233-235.
[8] A. EHRENFEUCHT, D. HAUSSLER, M. KEARNS, AND L. G. VALIANT, A general lower bound on the number of

examples neededfor learning, Inform. and Comput., 82 (1989), pp. 247-261.
[9] M. GAREY AND D. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-Completeness, Free-

man, San Francisco, 1979.
10] D. HAUSSLER, M. KEARNS, N. LITTLESTONE, AND M. WARMUTH, Equivalence ofmodelsfor polynomial learn-

ability, Proceedings of the 1988 Workshop on Computational Learning Theory, Morgan Kaufmann Pub-
lishers, San Mateo, CA, 1988, pp. 42-55, and University of California at Santa Cruz Information Sciences

Department, Tech. Report UCSC-CRL-88-06, 1988.
11] D. JOHNSON, Approximation algorithms for combinatorial problems, J. Comput. System Sci., 9 (1974), pp.

256-276.
12] M. KEARNS AND M. LI, Learning in the presence ofmalicious errors, Proceedings of the 20th ACM Symposium

on the Theory of Computing, 1988, pp. 267-280.
13] M. KEARNS, M. LI, L. PITT, AND L. G. VALIANT, On the learnability ofBooleanformulae, Proceedings of the

19th ACM Symposium on the Theory of Computing, 1987, pp. 285-295.
14] M. KEARNS AND L. PITT, Apolynomial-time algorithmfor learning k-variablepattern languagesfrom examples,

Proceedings of the 1989 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers,
San Mateo, CA, 1989, pp. 57-71.

15] E LAIRD, Learningfrom Good and Bad Data, Kluwer Academic Publishers, the Netherlands, 1988.
16] N. LITTLESTONE, Learning quickly when irrelevant attributes abound: A new linear threshold algorithm, Mach.

Learning, 2 (1988), pp. 245-318, and Proceedings of the 28th IEEE Symposium on the Foundations of
Computer Science, 1987, pp. 68-77.

[17] L. LOVASZ, On the ratio of optimal integral andfractional covers, Discrete Math, 13 (1975), pp. 383-390.
18] R. NIGMATULLIN, Thefastest descent methodfor covering problems, Proceedings of a Symposium on Questions

of Precision and Efficiency of Computer Algorithms, Kiev, 1969. [In Russian.]
19] R. RIVEST, Learning decision lists, Mach. Learning, 2 (1987), pp. 229-246.

[20] R. SCHAPIRE, On the strength ofweak learnability, Proceedings ofthe 30th IEEE Symposium on the Foundations
of Computer Science, 1989, pp. 28-33.

[21] G. SHACKELFORD AND O. VOLPER, Learning k-DNF with noise in the attributes, Proceedings of the 1988
Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, San Mateo, CA, 1988, pp.
97-105.

[22] R. SLOAN, Types of noise in datafor concept learning, Proceedings of the 1988 Workshop on Computational
Learning Theory, Morgan Kaufmann Publishers, San Mateo, CA, 1988, pp. 91-96.

[23] L.G. VALIANT, A theory ofthe learnable, Comm. ACM, 27 (1984), pp. 1134-1142.
[24] Learning disjunctions of conjunctions, Proceedings of the 9th International Joint Conference on

Artificial Intelligence, 1985, pp. 560-566.
[25] g.N. VAPNIK AND A. YA. CHERVONENKIS, On the uniform convergence ofrelativefrequencies ofevents to their

probabilities, Theory Probab. Appl., 16 (1971), pp. 264-280.
[26] K. VRBURGT, Learning DNF under the uniform distribution in quasi-polynomial time, Proceedings of the

1990 Workshop on Computational Learning Theory, Morgan Kaufmann Publishers, San Mateo, CA,
1990.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 838-856, August 1993

() 1993 Society for Industrial and Applied Mathematics
010

SMALL-BIAS PROBABILITY SPACES: EFFICIENT CONSTRUCTIONS AND
APPLICATIONS*

JOSEPH NAORt AND MONI NAOR

Abstract. It is shown how to efficiently construct a small probability space on n binary random variables such
that for every subset, its parity is either zero or one with "almost" equal probability. They are called e-biased random
variables. The number of random bits needed to generate the random variables is O (log n + log). Thus, if e is
polynolnially small, then the size of the sample space is also polynomial. Random variables that are e-biased can be
used to construct "almost" k-wise independent random variables where e is a function of k.

These probability spaces have various applications:
1. Derandomization of algorithms: Many randomized algorithms that require only k-wise independence of

their random bits (where k is bounded by O(logn)), can be derandomized by using e-biased random
variables.

2. Reducing the number ofrandom bits required by certain randomized algorithms, e.g., verification of matrix
multiplication.

3. Exhaustive testing of combinatorial circuits. The smallest known family for such testing is provided.
4. Communication complexity: Two parties can verify equality of strings with high probability exchanging

only a logarithmic number of bits.
5. Hash functions: A polynomial sized family of hash functions such that with high probability the sum of

a random function over two different sets is not equal can be constructed.

Key words, randomized algorithms, derandomization, VLSI circuit testing, discrepancy

AMS subject classifications. 60C05, 60E15, 94C12, 68Q25, 68Q22, 68R10

1. Introduction. Randomness plays a significant role in computer science. However, it
is often desirable to reduce the amount of randomness required. The purpose of this paper is
to construct small probability spaces that approximate larger ones. Let xl xn be {0, 1}
Bernoulli random variables and let f2 be the probability space associated with them. If the
random variables are independent, then f2 contains all 2 possible assignments. Our goal is to
construct a much smaller probability space that will behave similarly to f2 in certain respects.
Such small probability spaces have proved to be very useful.

One of the main approaches taken by previous researchers to reduce the size of the sample
space was to require only limited independence among the random variables (as opposed to
full independence). Our approach is different; it is based on the equivalence of the following
two conditions" (See [18] and [52].)

1. The random variables are independent and for all i, Prob[xi 0] Prob[xi].
2. For every subset S

_
n }, it is equally likely that the parity of the subset (i.e.,

the number of "ones") is either zero or one.
We are going to relax the second condition and construct a probability distribution such that
for every subset S

n }, it is "almost" equiprobable that the parity of the subset is

zero or one. To be more precise, we require that for every subset S,

Prb IZxiis --01 Prb Ixiis -11
*Received by the editors April 1, 1990; accepted for publication (in revised form) April 1, 1992. A preliminary

version of this paper appeared in the Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
Baltimore, Maryland, 1990, pp. 213-223.

-Computer Science Department, Technion, Haifa 32000, Israel. Most of this work was performed while the
author was at the Computer Science Department, Stanford University, Stanford, California and was supported by
Office of Naval Research contract N00014-88-K-0166.

Department of Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Most of this work
was performed while the author was at the IBM Almaden Research Center, 650 Harry Road, San Jose, California
95120.

838

SMALL-BIAS PROBABILITY SPACES 839

Vazirani [52] called this quantity the bias of the subset S. The cardinality of the sample space
we construct is 2O(lg +logn). Hence, if is typically polynomially small, then the size of the
sample space is also polynomial.

We also define random variables that are k-wise -biased. For them, only the bias of
subsets that are smaller than k is guaranteed to be bounded by . We present a more efficient
construction for such random variables: The logarithm of the cardinality of the sample space
is O(logk + loglogn + log 7)" In 5 we show how the kth moment of the sum of k-wise
-biased random variables can be bounded via the kth moment of the binomial distribution on
uniform independent Bernoulli variables. This is an important tool for analyzing the behavior
of the distribution of the sum.

We can use k-wise -biased random variables to construct k-wise 3-dependent random
variables, i.e., variables such that the variation distance between the distribution of any subset
of k variables and the uniform distribution (on k variables) is at most 3. Their construction is
described in 4.

The -biased random variables are constructed in three stages. In the first stage, we
construct a sample space U ofrandom variables such that the bias of every subset S is bounded
by some constant. Sampling from 9t" requires O (log n) random bits. In the second stage, .T" is
sampled times (not necessarily independently), where depends on . In the third stage, the
-biased random variables are generated by picking a linear combination of the assignments
sampled in the second stage. Constructing the probability space is described in 3.

Another interpretation of our result is via Fourier transforms. (See 2 for precise defini-
tions.) For the uniform distribution, all the coefficients of its Fourier transform are zero, except
for the free coefficient. For an -biased distribution, the absolute value of each coefficient is
at most 2-7.

Derandomizing algorithms has attracted much attention in recent years. For the purpose
of derandomization, our distribution can replace the uniform one in many cases, so as to allow
an exhaustive search for a good point in a polynomial-size sample space. We exemplify this
by providing a polynomial size sample space for the set balancing problem; this also yields
an NC algorithm. A previous approach to derandomizing the set balancing problem [13],
[39] was to first construct an n O(lgn) sample space and then conduct a binary search for a
good point. As a result, their time bounds are worse. Another problem we address is finding
a heavy codeword in a linear code. Using -biased random variables, we provide the first NC
algorithm to the problem.

Another application of our probability distribution is for reducing the number of random
bits required for several randomized algorithms. Karp and Pippenger [32] suggested that
random bits can be viewed as a resource Oust as time and space) which is best to use as little as
possible. One motivation to consider randomness as a resource is practical. Random bits are
hard to produce and devices that generate them, such as Geiger counters and Zener diodes, are
slow. Another reason is from the complexity theoretic point of view" To provide a full scale
of options between an algorithm that is completely deterministic, and a randomized algorithm
that consumes many bits.

Examples of previous work in reducing the number of random bits in randomized algo-
rithms are [2], [11], [20], [28], [32], [33], [43], [47], [49]. Karloff and Raghavan [33], for
example, studied several randomized algorithms for selection and sorting and showed that
they can be run successfully when only O(log n) random bits are available.

In 7 we describe how to reduce the number of random bits for three problems. The
first one is matrix multiplication verification. Given three n n matrices A, B, and C,
how can we verify that A B C without resorting to matrix multiplication? We show
how to do that in O(n2) time using O(logn) random bits, thus improving on a previous

840 JOSEPH NAOR AND MONI NAOR

algorithm of [26] that required O(n) random bits. We next show how Adi Shamir’s Boolean
matrix multiplication algorithm can be implemented by using O(log n) random bits without
an increase in the probability of error. The third problem is verifying n equalities of the form
ax;

yi mod p where p is a prime. We show how to do that using only O(log n) random
bits and n multiplications, instead of n log p multiplications needed for testing each equality
separately.

In 8 we show how to apply our construction to generate fault-diagnostic tests for com-
binatorial circuits. A well-known problem in that area is constructing a small collection of
assignments to inputs of a circuit such that, for any k inputs, all possible configurations appear.
Using k-wise 3-dependent probability spaces, we can get the best explicit constructions. These
are optimal up to the constant factor in the exponent.

Our techniques can be used to minimize the communication complexity of protocols for
testing equality of two strings, while achieving a very low probability of error. Similarly, the
techniques can be applied to construct a small family of hash functions with the property that
summing the hash function over different sets yields a different value with high probability.
These two applications are discussed in 9.

In 10 we briefly survey recent papers that have used the constructions described in this
paper since it appeared in [42].

Independent of our work, Peralta [44] considered e-bias probability spaces as well, and
showed some applications to number theoretic algorithms. His construction is based on
quadratic residues and Weil’s theorem.

2. Preliminaries and definitions. Let x x xn be {-1, random variables and
D their joint probability distribution.

DEFINITION 2.1. The bias of a subset S

n for a distribution D is defined to be,

biasD(S) PrbDIHxiiEs =--1]-ProbD[HXiiES -1]
DEFINITION 2.2. The variables Xl xn are e-biased if for all S, biasD (S) _< e. They

are said to be k-wise e-biased if for all subsets S such that [S] _< k, biasD(S) _< e.
Let U denote the uniform distribution and D(S) the distribution D restricted to the sub-

set S. The variation distance between two distributions D and D2 defined over the same
probability space S2 is

IID D211- ’ [Dl(W)- D2(co)[.

DEFINITION 2.3. The variables x, X2 Xn are defined to be k-wise 6-dependent if for
all subsets S such that]SI < k,

IIU(S) D(S)II a.
A similar definition was made by Ben-Nathan [12].
The set f {-1, }" --+ 8l of real functions on the n-dimensional cube forms a 2"-

dimensional real vector space. The inner product of two functions f and g is defined as

< f’g >= 2-7 Z f(x)g(x).
x{--1,1}

The basis of this vector space is given by the following family of functions, the characters
of Z,. Define for each subset S

_
{1 n},

Xs(x x) l-I x.
iS

SMALL-BIAS PROBABILITY SPACES 841

The above basis has the following properties:
1. For all S {1... n}, the family {Xs} forms an orthonormal basis: If S1 S2, then

< Xs,, Xs2 > 0, and for every S, < Xs, Xs > 1.
2. For every S1, $2" Xs, Xs2 Xs AS, where $1 AS2 is the symmetric difference of S1

and $2.
The Fourier transform of a function f is its expansion as a linear combination of the Xs’s.

Every function has a unique expression and the coefficients in this expression are called the
Fourier coefficients, denoted by f(S) (for S _c {1...n}). Hence, f Ys f(S)xs.

Since the family Xs forms an orthonormal basis, Fourier coefficients are found via:

f(S) =< f, xs >

For a probability distribution D, D s D(S)xs. The following theorem was proved by
Diaconis and Shahshahani (see [22, Lem. 1, p. 24]). We provide a proof for the sake of
completeness. (A slightly weaker bound was actually proved by Vazirani [52]; it motivated
us to consider e-biased probability spaces.)

THEOREM 2.1. Let X Xn be {-1, 1} random variables and let D be their joint
probability distribution. Then,

[ID-U[[<2". E /(S)2 E biaseD(S)
S_c{1...n} SC__{1...n}

Proof. We first evaluate/(0),

/(0) =< D, Xo >=

The square of the variation distance is,

lID- UII 2

By the Cauchy-Schwarz inequality,

D(x)E 217 2--2.
x{--1,1}

D(x)-

/5(0) -,Since

217. E E 25(S). Xs(x) -7
x{--1,1} S

xE{-,l}" S:O

217. E E/(S1)/($2) XSl(X)Xs2(x)--
Sl60 326 x{-1,1}"

22"" E E/5(S1)/5($2) < Xs,, Xs2 >.

s- sz-

842 JOSEPH NAOR AND MONI NAOR

If S -76 $2, then < Xs,, Xs2 >- 0; otherwise, < Xs,, Xs2 >-- 1. Hence,

22n" Z Z /5(S1)/)($2) < XS,, X& > 22n" Z/)(S)2’

which implies that,

)1/2IIz- uIl <_ 2" y.__ b(s)2

SC__{1...n}

To complete the proof, recall that the definition of the bias of a subset S is,

and hence,

biasz(S) IProbi)[Xs(x) 1] ProbD[xs(x) 1][

Z D(x)Xs(x) 2"1 < D, Xs > [--12"/5(S)1
xa{-l,1}

2n. sg{.., b(S)2 bias(S)
SC_{1...n}

COROLLARY 2.2. If the random variables x x are e-biased with respect to a dis-
tribution D, then they are also k-wise a-dependent, for a 2//2 e.

A binary linear code C is a linear subspace of {0, }m. If C has dimension n then C
is called an [m, n] code and it transforms words of length n into codewords of length m. A
generator matrix G for a linear code C is an n x m matrix for which the rows are a basis of
C. If G is a generator matrix for C, then the code can be defined as

C- {aG la E {0, 1}n}.

The distance between two codewords is defined as theirHamming distance. C[m, n,/3] denotes
an [m, n] code C for which the distance between any two codewords is at least/3 m. The
weight of a codeword is the number of nonzero symbols that it contains. For more details on
linear codes the reader is referred to [40].

3. Constructing the probability distribution. In this section we show how to construct
a probability space f2 of {0, 1} random variables x x xn which are e-biased. The

cardinality of the sample space will be 20(lg +logn). The joint probability distribution of the
variables is denoted by D. We define the function X’s(Xl x,) for {0, random variables
as follows. For each subset S

_
{1 n },

EXs(X x,) xi (mod 2).
iS

The construction consists of three stages:
1. A polynomial size family of {0, } vectors is generated with the following property.

Let r be a vector chosen from .)c uniformly at random. For all subsets S

_
n },

Prob[x)(r)- 1] > fl

where fl is some constant. Constructing such a family is discussed in 3.1.

SMALL-BIAS PROBABILITY SPACES 843

2. The vectors rl rl are sampled from U (not necessarily independently, but via a
Markov process) such that for all subsets S

_
{1 n},

Prob[For all i, < < l, Xs(0] < .
The value of will turn out to be O(log). Sampling the family .T" is discussed in

3.2.
3. The assignment to the random variables x xn is a combination of the vectors

sampled at the previous stage. Let (al at) be chosen uniformly at random
from {0, }t. Then,

X ZaiFi.
i=1

In 3.3 we discuss how to choose so that x is -biased.

3.1. Constructing the family ’. We will need a family " with the above properties for
constructing -biased probability spaces and also for other applications as well. (See 7.) For
the latter applications, we extend the requirements from to any ring: Given a vector v of
elements in the ring, a vector r such that < v r >5 0 is called a distinguisher with respect
to v. The goal is to find a small collection of vectors (the family) such that for any nonzero
vector v, if r is chosen at random, then Prob[< v r >- 0] > /. If the ring is GF[2], this
requirement is exactly the one mentioned above, where v is the characteristic vector of the
subset S. Henceforth, we describe the construction for GF[2]. It can easily be generalized for
any ring by substituting by some nonzero element of the ring.

We present two methods for constructing the family ’. The first method (3.1.1) can be
applied to any ring, whereas the second one (3.1.2) is applicable only to GF[2]. Another
advantage of the first method is that computing the value of a random variable xi x can
be done in O (1) operations on words of length log n. On the other hand, the second method
provides a general context, i.e., linear codes.

PROPOSITION 3.1. Suppose that r is a vector chosen uniformly at random from {0, }n.
Thenfor all vectors v {0, 1} v - 0, Prob[< v r >- 0] > .

Proof. Let j denote the number of nonzero entries in v. The number of different vectors
r such that v r 0 is at most 2j-1 2n-j 2n-l, whereas the number of distinct choices for
r is 2. Hence, the probability that v r 0 is at most . [3

Unfortunately, this method of generating a distinguisher requires n random bits. Hence,
our aim is to show that a distinguisher can be generated with probability at least/ using only
O (log n) random bits. This will guarantee that the size ofU is polynomial. Note that U must
contain at least n vectors (potential distinguishers). Otherwise, the rank of the matrix whose
columns are the distinguishers is less than n.

For our purposes, a collection f" of vectors has to be constructed such that:
1. The size of f" is "small."
2. It is "easy" to sample uniformly from ’.
3. Given any nonzero vector v, a constant fraction of the vectors in .T" are distinguishers

with respect to v.

3.1.1. Constructing a small set of distinguishers. A natural approach to the problem
of reducing the number of random bits in a randomized algorithm is to show that limited
independence of the random variables suffices to assure a high probability of success. (See,
e.g., [5], [36], [38].) However, in our case, it is not clear from the proof of Proposition 3.1
how many vectors r remain distinguishers with respect to the vector v when the entries of R

844 JOSEPH NAOR AND MONI NAOR

are not completely independent. Moreover, an example can be constructed in which, if the
entries of r are chosen pairwise independently, no distinguisher will be generated.

Though limited independence is not sufficient for our purposes, we make use of it in two
ways" One, suggested in 17], is that if we sample a universe looking for elements of some
fixed subset, and if the expected number of elements we hit is greater than 1, then by making
our choices only pairwise independent, we are not decreasing the chances ofhitting an element
of the subset by much. The other is that if the vector v has at most c nonzero entries, then
the elements of r can be chosen c-wise independent, and with probability at least g r is a
distinguisher.

We now describe how the above-mentioned difficulties for generating distinguishers can
be overcome. In what follows we will need n random variables such that:

1. Each random variable is uniformly distributed in n }.
2. Every subset of the random variables of cardinality at most c is independent.

There are known methods ofgenerating such random variables that use only O (c log n) random
bits. (See [38], [5], [17].)

We first assume that l, the precise number of nonzero elements in v, is known to be in the
range [k... 2k 1]. A two-step process is applied.

1. The vector v is replaced by a new vector v’ (v’ v’n) that contains only c (for
some constant) nonzero elements. (Any nonzero element of v’ is also nonzero in v.)

2. Now, the elements of the vector r can be chosen c-wise independent, yet Proposition
3.1 still holds.

As we do not have direct access to the elements of v, we show instead how to emulate
the above Step with high probability. Let u (u un) and w (Wl w,) be two
random vectors such that:

1. The entries of u are c-wise independent (c is a constant whose value will be specified
later) where for all < _< n, Prob[ui 0] Prob[ui 1] g.

2. The entries of w are pairwise independent where for all _< < n, Prob[wi 1]
2. (If k 1, then Prob[wi 1] 1.)

We can assume, without loss of generality, that kin. To generate the vector w we generate n
random variables z, z2 z that are pairwise independent, and each is uniformly distributed

2nin n }. We then set w to if zi < -.
Let us now define the random vector r (r rn) that will be used as a distinguisher.

For alll <i <n,

/ ifui-- landwi= 1,

0 otherwise.

for anyLEMMA 3.2. The above vector r is a distinguisher with probability at least -g
vector v for which l, the number ofnonzero elements, is in the range [k, 2k].

Proof. Let us define the vector v’ (from Step 1): For all < _< n,

[ifvi= landwi=l,

0 otherwise.

It is clear that the lemma will follow if we show that the vector u is a distinguisher with
respect to v’ with probability at least . To do that, it suffices to prove that v’ will contain at
least one nonzero element of v, and at most c nonzero elements of v with probability at least. As the elements of the vector u are c-wise independent, the proof of Proposition 3.1 still
holds when the number of nonzero elements is less than c.

SMALL-BIAS PROBABILITY SPACES 845

Generating the vector v’ can be thought of as a binomial random variable where each
nonzero entry of v decides with probability p (to be specified later) whether it remains nonzero
in v’. The random choices are pairwise independent. Let h be a random variable that denotes
the number ofnonzero elements in v’. It is well known that E[h pl and Var[h p(1 p)l.
We chose the value of p such that pk 2.

CLAIM. Prob[0 < h _< 7] >_ .
We prove the claim by Chebyshev.’s inequality [25] which states that

Prob[IX- E[X]I >)] <
Var[X]

)2

where X is a random variable. It is enough to verify the claim in the two extreme cases when
k and 2k. Thus, substituting 2 and ,k 3, we get that

Prob[Ih pkl > 2] _<
pk(1 p)

4 -2’

Prob[]h- 2pkl > 3] <
2pk(1 p) 4

9 -9

Hence, we can choose c 2kp / 3 7, and this is enough to insure success with probability
at least .

We conclude that if the approximate number of nonzero entries in v is known, then
O(log n) random bits suffice to insure high probability of success. What can we do if this is
not known? We follow the above algorithm and construct log n collections , -2 ogn,
where . is generated under the assumption that the number of nonzero entries in v is between

of the members of at least one collection will2i-I and 2 Lemma 3.1 implies that at least
be distinguishers.

The same random bits can be used to sample the log n collections, and we obtain a set of
log n vectors r re rlgn such that at least one of them is a distinguisher with probability at
least . Instead of testing each vector separately, we can generate from them a single vector

that is a distinguisher with probability at least .
Let S be a subset of {1 log n which is chosen uniformly at random and let r be

defined by

LEMMA 3.3. The vector r is a distinguisher with respect to v with probability at least -.
Proof. We need the following claim.
CLAIM. Let v be a vector such that the vector rl is a distinguisher and the vector r2 is not

a distinguisher with respect to v. Then the vector rl / r2 is a distinguisher with respect to v.

Proof. (r + re) v r v + rz v r v : O.
Let the number of nonzero entries in v be between 2j-1 and 2j and assume that rj is a

Ifi r is not a distinguisher,distinguisher. This will happen with probability at least . Es-{j}

then with probability 7, j 6 S, and according to the above claim, r will be a distinguisher.
Otherwise, again with probability , j ’ S, and according to the above claim, r will be a
distinguisher. F]

To summarize, we describe the algorithm to generate a random vector r. We assume that
n is a power of 2.

1. Generate the following random variables:

846 JOSEPH NAOR AND MONI NAOR

(a) zl, Z2 Zn" n random variables that are pairwise independent and uniformly
distributed in n }.

(b) u (ul un) a vector whose entries are seven-wise independent and uni-
formly distributed in {0, }.

(c) A random subset S

{1 log n }.

2. For each < < n, compute ji log n max{jl2j < zi }.
3. For < < log n, compute ct]S ("]{ /}1 1. (This is scalar multiplication

in the ring, e.g., in GF[2] it is IS ["1{ /}l rood 2.)
4. For each < < n, compute:

| cji ifui-- 1,
Fi [0 otherwise.

THEOREM 3.4. The algorithm described above uses 0 (log n) random bits and generates
a distinguisher with probability at least -g. For all i, < < n, the complexity of
computing the value ofthe random variable xi is 0(1) operations on words ofsize O(log n).

Proof. Steps (a), (b), and (c) require each O(log n) bits. (In fact, Steps (b) and (c)
can be implemented recursively using O(log log n) bits.) Given i, to compute ri, we need to
know the value of zi, cji, and ui; that requires a constant number of operations. In Step 3,
computing cj requires counting the number of ones in a word of length log n that describes
S. 1

3.1.2. A construction based on linear codes. Here we describe how to generate a family
,T" of size O(n) via linear codes due to Bruck (private communication). The construction works
for GF[2]. Let C be a linear code. The weight of a codeword is defined to be the number of
nonzero entries.

PROPOSITION 3.5. The minimum distance ofa linear code is equal to the minimum weight
ofa codeword.

Suppose we have a linear code C[n, m,/3], i.e., it maps {0, }n words into {0, }m code-
words and its minimum distance is/3 m. Linear codes for which m O(n) and/3 is some
constant exist and are constructible. (For example, Justesen codes [30], [40].) Let G be the
generator matrix of this code. For any nonzero {0, }n vector v, v G contains at least/m
nonzero entries (by the above proposition). Hence, if we choose a column in G uniformly at
random, Prob[< v. r >= 1] /3. The family U is the set of columns in G. The relation
with linear codes holds in the other direction as well. Given a family f’, consider its members
as columns of a generator matrix of a linear code. It follows from the proposition that the
minimum distance of this code is/3 If’l. Hence, the construction in 3.1.1 can be regarded as
a linear code.

Given that good codes exist, what advantages does the first method have? The first method
has the property that it works for more general cases where the function Xs is defined on any
group, notjust addition modulo 2. This will be used in 7.1. Another advantage is in computing
a single entry of the sampled vector r. This is very simple in the first method (Theorem 3.1)
whereas all known methods for using (traditional linear codes) are more complicated and
require exponentiation.

Using our techniques we can actually enhance the error-correction of a linear code without
decreasing the rate by much. This is further investigated in [6].

3.2. Sampling the family . The problem of obtaining the vectors rl rl in stage
2 with the desired property can be abstracted in the following way. Suppose that there is a
universe, and we wish to find a member in a certain subset $ of it. (In our case it is the set
of vectors for which Xs 1.) Suppose also that we have a sampling algorithm that uses k

SMALL-BIAS PROBABILITY SPACES 847

random bits and has probability fl of picking a member of the desired set. By sampling times
independently, a set of elements is generated, such that with probability greater than fl-z,
at least one of them is a member of the desired set. A straightforward implementation would
require kl random bits.

Several papers have addressed the question of achieving the probability error while re-
quiring fewer random bits [1], [20], [28], [32], [47], [49]. We consider the method of [1]
which is used by [20], [28]" For a graph G (V, E), consider any 1-1 correspondence
f V -- {0, }k, the different assignments to the random bits of the sampling algorithm. To
generate the samples, choose a random vertex of G and perform a random walk of length l.
Each vertex in the random walk corresponds to a sample point. The number of random bits
required is the sum of those needed for sampling one vertex, and those needed for performing
the random walk.

Let ,k0 be the largest eigenvalue of G and . be the eigenvalue of second largest value in
G. Let ot denote the percentage of vertices that are not members in S. Cohen and Wigderson
[21, Thm. 4.5] show that if G is a d-regular graph such that

then the probability that at least one of the samples is a member of S is at least

Constructions for regular graphs of constant degree such that the second eigenvalue is
bounded away from ,k0 are known [27], [29], [37]. For degree regular graphs of degree d,
)0 d and the value of f. can be almost 2/-d. For a given expander G, let

and let

log

In our case,/3, the precentage of good vectors, is too small to apply the method directly
and we need some initial amplification. To do that, each vertex would now correspond to a set
of assignments to the random bits, such that the probability that at least one element associated
with a randomly chosen vertex is a member of S is at least o. For the purposes of this
paper, this can be done by letting each vertex correspond to h independent samples where
h log_

To conclude, the number of random bits used is log I] + log d.

3.3. Combining the samples. We have to specify how to choose a linear combination
a of the vectors rl rl, given that for any subset S, Prob[for all i, Xs(ri) 0] _< e. The
simplest way to select is to choose it uniformly at random.

CLAIM 3.1. The random variables x,..., xn generated by choosing t uniformly at
randomfrom {0, } are e-biased.

848 JOSEPH NAOR AND MONI NAOR

Proof. Let S be any subset of {1...n}. If there exists a vector rj among the vectors

rl rk such that Xs(rj) 1, then by arguments similar to those of Lemma 3.2,

ProbD[Xs(Xl xn) 1] ProbD[X)(xl xn) 0].

Since the probability of this happening is at least , biaso(S) < .
The number of random bits required is 1. To conclude, we have the following theorem.
THEOREM 3.6. Generating n {0, random variables that are -biased can be done using

O(logn + log) random bits. Thus, the size of the sample space is 20gn+g Given the
random bits, computing the value ofa random variable can be done in time polylogarithmic
in n.

4. Generating k-wise A-dependent random variables. We are insured by Corollary
2.1 that if the random variables x Xn are -biased, then they are k-wise 3-dependent for
3 2 . However, there is a more efficient construction. This can be done by combining
our methods with those of [5] for generating k-wise independent variables.

Suppose we want to generate {0, uniform random variables y y that are k-wise
independent. Reference [5] suggests that this can be done by taking n vectors L L
of length h such that the vectors are k-wise linearly independent over GF[2]. If the vectors

k log n. Let R beL ,..., L are columns of the parity check matrix of BCH codes, then h is
a vector chosen uniformly at random from {0, }h., for all i, _< _< n, let Yi L R. The
number of random bits required for the construction is k log n.

In order to improve on Corollary 2.1, instead of choosing R uniformly at random, suppose
that the entries of R are -biased random variables.

LEMMA 4.1. Let Yl Yn be random variables generated by the above method, where
the entries of R are -biased random variables. Then, y y, are k-wise -biased.

Proof. Let S

n} be a subset of cardinality at most k. We bound bias(S). For

all S, yi Li. R. Hence,

Zyi ZLi R-- R. ZLi R. M.
iS iS iS

For S, the vectors L are linearly independent, and hence M - 0 and (S) _< e.
The improvement over Corollary 2.1 in the cardinality of the sample space is that now

we have decreased the number of e-biased random variables from n to k log n. Recall that
random variables that are k-wise e-biased, are also k-wise 2 e-dependent.

LEMMA 4.2. The logarithm ofthe cardinality ofthe sample space neededfor constructing
k-wise g-dependent random variables is O(k + log log n + log g).

5. A moment inequality. Basic tools in probabilistic analysis are moment inequalities
[25] that bound the deviation of a random variable from its expected value. More specifically,
let y be a random variable such that E[y] 0, then,

E[lYlk]
Prob[lyl > X] <).

Let b b, be random variables that have a binomial distribution, i.e., they are inde-
pendent and take their values from {-1, uniformly. The kth moment of their sum will be
denoted by Bk, that is Bk E[lb + + bn Ik].

We formulate a moment inequality for the sum of {- 1, random variables (x x,)
that are k-wise e-biased. We denote their sum by S -i= xi. This will be done by bounding
the kth moment of S via the kth moment of the binomial distribution on n uniform independent
Bernoulli variables, denoted by Bk. (We assume here, without loss of generality, that k is even.)

SMALL-BIAS PROBABILITY SPACES 849

The kth moment of S contains nk terms, where each term contains at most k variables. More
specifically,

E [xixi2... Xik].
ili2...ik

Each term in the above summation is of the form T/ xP’i, xp2i2 x.prr such that -=l Pj k.
If a term T/contains a variable whose power is odd, then in Bk its expectation is 0. However,
in our case, it follows from the definition of k-wise e-biased random variables (Definitions
2.2 and 2.3), that the expected value of T can be at most e. If all the powers in a term T/are
even, then the expected value in both cases is the same and equal to 1. Hence, we have the
following theorem.

THEOREM 5.1. Let S and Bk be as above, then

Prob[ISI >_ .1 <_ Bk + e n
)k

6. Derandomization. The probability distribution D constructed in 3 can be used for
derandomizing algorithms. A randomized algorithm ,A has a probability space (, P) associ-
ated with it, where f2 is the sample space and P is some probability measure. We call a point
to f2 a good point for some input instance I, if 4(I, w) computes the correct solution. A
derandomization of an algorithm means searching the associated sample space f2 for a good
point to with respect to a given input instance I. Given such a point w, the algorithm ,A(I, to)
is now a deterministic algorithm and it is guaranteed to find the correct solution. The problem
faced in searching the sample space is that it is generally exponential in size.

In [36], [38], [5] the following strategy was suggested: Show that the n probabilistic
choices of certain randomized algorithm are only required to be k-wise independent. Hence,
a sample space of size O(n) suffices. This sample space can be exhaustively searched for
a good point (even in parallel) when k is a constant. A similar strategy can be used with
e-biased random variables. First, show that a randomized algorithm has a nonzero probability
of success when the probabilistic choices are e-biased. Then, conduct a search of the sample
space associated with the variables to find a good point.

This scheme can in principle be applied to all the randomized algorithms for which
the limited independence approach was applied. However, we do not necessarily get better
algorithms. An attractive feature of our scheme is that random variables that are log n-wise
6-dependent, for which is polynomially small, can be constructed with a polynomial sample
space. Intuitively, this means that we can achieve "almost" log n-wise independence with a
polynomial sample space (as opposed to n(lgn)).

The k-wise e-biased random variables are especially useful when the proof that a random-
ized algorithm is successful involves any moment inequality. In that case, we should compute
what is the appropriate e such that the error incurred leaves the probability of success nonzero.
We exemplify this by showing how a RNC algorithm for the set balancing problem can be
converted into an NC algorithm.

The second problem we address is finding a heavy codeword in a linear code (6.1). Such
a codeword can be found by a simple randomized algorithm. We show how to derandomize
it in parallel. The importance of this problem is that it demonstrates that for certain problems
it is important to bound the bias of all subsets and not just those of small cardinality.

6.1. Set balancing. The set balancing problem is defined as follows. A collection of
subsets $ {SI, $2, Sn} defined over a base set B {b, b2,.., bn} is given such that

850 JOSEPH NAOR AND MONI NAOR

the cardinality of each subset is 6. The output is a {-1, coloring of B into two sets. Let
the two-coloring of B be denoted by x (x l, x2, x/7). The discrepancy of a subset Si,
A(Si, x), with respect to x, is defined as jesi xj. The discrepancy of the set family $ is
defined as,

A (,3, x) max A (Si, x).

Spencer [50], [9] showed that for each family $, there exists a two-coloring x such that
A (,9, x) < 6,v/-. This result is the best possible up to constant factors, but it has the drawback
ofbeing nonconstructive, i.e., does not even imply a probabilistic algorithm. Using the method
of conditional probabilities (sequentially), Spencer devised a polynomial-time deterministic
algorithm which guarantees a two-coloring x such that A($, x) O(v/n logn). This was

improved to 0(4/6 log n) by Raghavan [45]. For parallel algorithms we cannot guarantee as
small a discrepancy as in the sequential case. However, we can come arbitrarily close to the
sequential bounds by computing a r-good coloring.

DEFINITION 6.1. A two-coloring x is r-good for a set family ,3 if, for 0 < r < ,
A (S, x) 6’5+ v/log n.

There is a simple RNC algorithm to find a r-good coloring for any $. Pick a random x
uniformly at random from {0, }/7. It turns out that for any ,3, the two-coloring is r-good with
sufficiently high probability. (See, for example, [34].) This algorithm was derandomized by
[13], [39] by proving that log n-wise independence suffices, and then showing how to conduct
a binary search in a sample space of size ng/7 (the method of conditional probabilities).
We present a direct derandomization which can be implemented in NC

Assume that B is colored at random; [13], [39] prove the following lemma.
and let x be k-wise independentLEMMA 6.1. Let k a log n / log 6 be even, where a > -(,

uniform {-1, random variables. Then, for any input setfamily S, the probability that x is

r-good is nonzero.
We sketch very briefly the proof idea. Let T/denote the sum of the random variables in

the subset Si. The main tool used is the kth moment inequality. (See 5.) More specifically,
[13], [39] show that for a given subset Si,

I] E[Tik]
Prob T/- 8 > 65+Tv/lgn -< (60.5+Tv/1Og n)k

< < -’n
Summing over all subsets, we get that for any set family $, the probability that a random
k-wise coloring is r-good is nonzero.

What happens when the random variables in x are k-wise -biased? We want to choose
such that the probability.that the discrepancy in a subset is large, is smaller than +/-. Substituting
in Theorem 5.1, and k must be chosen such that

8k

8 (c0.5+ v/log n) n

log 2nWe choose k i, and the above inequality holds if

2n+-
Hence, the sample space will be at most ofcardinality n o() and iv is a constant, an exhaustive
search of the sample space can be conducted. Both the construction and the search can be
done in NC

SMALL-BIAS PROBABILITY SPACES 851

For the relationship between the set balancing problem and the lattice approximation
problem [45], the reader is referred to [39].

6.2. Finding heavy codewords. Let C[n, k, d] be a linear code. In this section we show
how to find a codeword whose weight is at least as heavy as the expected weight of a word
in C. We call such a codeword a heavy codeword. This problem is a natural generalization
of the following problem: Given a graph G, find a cut that contains at least half the edges. It
is well known that the set of cuts in a graph forms a linear subspace. Let G be the generator
matrix of the linear code C. It is easy to see that the expected weight of a codeword in C is "If x is chosen uniformly at random, then E[weight of Gx] .

The latter observation implies a straightforward randomized algorithm for finding a heavy
codeword. This algorithm can be made deterministic via the method of conditional probabil-
ities [50], [9] where the entries of x are determined one at a time. How can a heavy codeword
be found in parallel? One possible approach for reducing the sample space is by choosing the
entries of x to be only k-wise independent (for some k < n) and not mutually independent.
The difficulty is that the probability of getting a heavy codeword may vanish.

If x is chosen from an -biased probability space, then E[weight of Gx] > n(L). If
< , then there must be a codeword x in the -biased probability space whose weight

is at least . This places the problem in NC for the first time. More important, it exhibits
that -biased random variables are also needed as opposed to just k-wise -biased random
variables.

7. Reducing the number of random bits. In this section we present two algorithms for
which the number of random bits required can be reduced from linear to logarithmic.

7.1. Matrix multiplication verification. Suppose that three n n matrices A, B, and
C over an arbitrary ring are given; what is the complexity of verifying whether A B C?
Can this be done by avoiding matrix multiplication? This problem was first considered by
Freivalds [26] who suggested a randomized algorithm of complexity O(n2), but it required n
random bits. In this section we show how to implement it using only O(log n) random bits
with no time penalty. Our results can readily be generalized to nonsquare matrices as well.

Let us first review Freivalds’s algorithm [26]. Choose a random vector 7 such that each
entry in r is picked uniformly at random to be zero or some fixed nonzero element of the ring.
Test whether r A B r C 0. The complexity of applying this procedure is that of
multiplying a matrix by a vector which is obviously O (n2). For the sake of completeness, we
present a proof of his algorithm.

THEOREM 7.1. Suppose that r is a vector chosen in the manner described above. Then
with probability at least , if A B =/: C, then also r A B r C.

Proof. Let v be a nonzero column vector of A B C and let j denote the number
of its nonzero entries. The number of different vectors r such that v r 0 is at most
2j-1 2n-j 2n-1 whereas the number of distinct choices for r is 2n. Hence, the probability
that v r 0 is at most . [3

It follows from the above proof that we can restrict ourselves to the following problem:
Given a vector v, check whether it is identically zero, where the only operation permitted on
the vector is taking its inner product with another vector. Recall from 3.1 that a vector r
that verifies that a particular vector v is nonzero is called a distinguisher (with respect to v).
Hence, reducing the number of random bits for the above problem is equivalent to generating
a small collection of vectors .T’, such that the inner product of a constant fraction of them with
any nonzero vector is not zero.

The family .T" that is constructed in 3.1 has this property: With probability at least/3, a
vector r sampled uniformly will be a distinguisher. The number of random bits needed for
sampling .T" is O(log n) and the complexity of the algorithm remains O(n2).

852 JOSEPH NAOR AND MONI NAOR

Notice that if the matrices are over an arbitrary ring, then the construction presented in

3.1.2 cannot be used. We can only use the one presented in 3.1.1.
7.2. Boolean matrix multiplication. In this section we show how Shamir’s Boolean

matrix multiplication algorithm (see 19, pp. 772-773]) can be implemented with few random
bits without increasing the probability of error.

Let A (aij) and B (bij) be n n Boolean matrices and suppose we would like
to multiply them in the quasi ring Q ({0, }, /,/, 0, 1) by using the algorithms for fast
matrix multiplications, e.g., Strassen’s method. The difficulty is that these methods require
that the matrix multiplication be carried out in a ring. This can be handled by working over a
large field, but makes multiplication more expensive. Instead, Shamir suggested a randomized
algorithm that takes advantage of the fact that the fast methods for matrix multiplication can
be carried out in the ring R ({0, }, @,/, 0, 1).

We briefly summarize Shamir’s algorithm. Let C (cij) AB in the quasi ring Q.
Generate A’ (ai) from A using the following randomized procedure:

If aij 0, then let aij O.
If aij |, then let aij with probability 1/2 and let aij 0 with probability 1/2.
The random choices for each entry are independent.

Let C’ A’B in the ring R. The following lemma is immediate.
LEMMA 7.2. If cij O, then cij O. If cij 1, then Prob[clj > 1/2.
As in the algorithm for verifying matrix multiplication, make the random choices to be

e-bias and get that the probability of error is at most 1/2 + e.
To decrease the probability of failure, we will run the algorithm for log(n2/3) choices of

the matrix A’. Since the matrix C’ has n2 entries, the total probability of error is bounded from
above by 3.

7.3. Simultaneous verification of exponentiation. Suppose that for some prime p and
integer a we are given n pairs (x l, y), (x2, y2) (xn, yn) and we want to verify whether the
equality ax Yi mod p is true for all < < n. Fiat and Naor (personal communication)
have suggested the following randomized algorithm:

1. Pick a random vector r (r r,,) where each ri is chosen uniformly and ran-
domly from {0, }.

2. Compute -in_._l r .X mod (p 1) and m HiEs Yi ri mod p.
3. Test whether a rn mod p.

As in Freivalds’s algorithm, if for any < < n, ax’ :/: Yi, then the above algorithm
The complexity of this algorithm is n multiplications,will detect it with probability at least .

instead of n log p for checking each equality separately.
We can actually phrase the problem as that of finding a distinguisher with respect to a

nonzero vector in the integer ring modulo p 1. Let zi be such that azi Yi. Then, a
distinguisher with respect to the vector w must be found, where wi xi zi mod (p 1).
For that we can use the construction of 3.1 in a similar way to 7.1.

Note that the expected size of each entry in step 4 of the algorithm in 3.1.1 is O(1) and,
therefore, the expected number of multiplications remains O (n).

Suppose that a and N are integers such that (N, a) 1. The above procedure can be
applied to verify n equalities of the type xi

a
Yi mod N. This may be used for instance to

check n given RSA equations [46] and thus amortize the cost of verifying signatures.

8. Vector sets for exhaustive testing. A problem that has received much attention in the
fault diagnostic literature is that of generating a small set of vectors, T C {0, }", such that
for any k-subset of indices S {il, i2 ik}, the projection of T on the indices S contains all

SMALL-BIAS PROBABILITY SPACES 853

possible 2k configurations. See [51 for a bibliography on the problem. Such a set of vectors is
called (n, k) universal. The motivation for this problem is that such a test set allows exhaustive
testing of a circuit where each component relies on at most k inputs. Alternatively, we can
phrase the problem as searching for a collection of n subsets of a ground set which is as small
as possible such that the intersection of any k subsets or their complement is nonempty. This
was called k-independent by Kleitman and Spencer [35].

The best known bounds for constructing (n, k) universal sets are given in [51] and [3].
The connection between k-wise g-dependent probability spaces and small (n, k)-universal sets
is made in the next proposition.

PROPOSITION 8.1. If f2 is a k-wise g-dependent probability spacefor <_ 2-, then f2 is
also a (n, k)-universal set.

Proof. If for a k-subset il, i2 ik, there is a {0, 1}k configuration which has prob-
ability 0 in f2, then the distance from the uniform distribution of xi, xi2 xik is at least
2-(k-l) > 3.

Combining the construction suggested in 3.1.2 with Lemma 4.2, we can construct a
probability spacef2 which is k-wise 2-k-dependent such that the cardinality of f2 is log n .2(k).
Thus, our construction for a (n, k)-universal set can be phrased in coding theory terminology.
Let G be the generating matrix of a binary In’, k’, d] linear code for which

d

n’ 2 22k

and let H be the parity check matrix of a binary In, n’, k] linear code. The (n, k)-universal
set consists of the rows of the matrix G H. This is better than the best explicit construction
given in [51 for k < < n, and matches the lower bound given there up to constant factors.
Alon [3] showed an explicit construction of size log n 2k2) which is optimal for constant k.
No such constructions were known for larger values of k. For k which is (R) (log n), this is the
first explicit construction of an (n, k)-universal set of polynomial size.

9. Cornlnunieation complexity. Suppose player A has a string x 6 {0, }n and player
B has a string y 6 {0, }n, and they wish to decide whether x y while exchanging as few
bits as possible. It is well known that this can be done by exchanging O(log n) bits and the
probability of the protocol arriving at the correct result is at least a constant. We can show
how to achieve probability of success which is any while maintaining the logarithmicpoly(n)’
communication complexity.

The algorithm will use the first two stages in constructing the small biased probability
spaces. To achieve probability of error :

1. Player A chooses O(log n + log +/-) random bits that define vectors r r2 rl. She
sends the random bits to player B and also sends < rl, x >, < r2, x >, < r, x >.

2. B computes < rl, y >, < r2, y > < rn, y >. If for any i, < ri, y >< ri, x >
he announces it. Otherwise, he concludes that x y.

If x - y, then with probability at least , for at least one i, < ri, x y >- 0 and hence
< ri,x >5< ri, y >.

Once a distinguisher has been found, detecting an index of an entry on which players A
and B differ is easy by exchanging log n bits.

Another application is for the problem of determining set equality. Suppose that A, B Q

n and we wish to decide whether A B. We would like a single pass on the elements
of A and B and the amount of memory should be O (log n). Here again a method that achieves
constant probability error is known (see Blum and Kannan 16] for a description).

We will show that it is possible to achieve any error while using only O(log n + log +/-)
bits of memory. Let vA and v denote the incidence vectors of A and B. We can think of

854 JOSEPH NAOR AND MONI NAOR

the problem as deciding whether VA vB 0. Again, we can use the first two stages of the
construction of small bias probability spaces.

1. Pick O (log n + log) random bits that define rl, r2 rl. (They are not computed
explicitly at this point.) Let ri(a) denote the ath coordinate of ri.

2. Initialize bits dl, d2 d to 0.
3. For each element a 6 A and for each < < l, di +-- di ri(a).
4. For each element b 6 B and for each < < l, di +-- di @ ri(b).
5. If all the d;s are 0, decide that A B; otherwise A - B.

As before, if for at least one i, < ri, VA (VB > 7 0, we will detect the inequality of the sets.
The probability that this happens is at least e. For this application, the first method of
constructing small bias probability spaces should be used, since we are not interested in the
full vector ri, but in selected locations of it.

This can be looked upon as a family of hash functions with the following property. Let
h 6 7-{, where h {1... n} -- {1... rn}. The family is accessible with O(log n + log m)
bits and for any subsets A and B of n }, the probability that YaEA h (a) -bEB h (b) is

for/ constant, where addition is bitwise XoR.smaller than -III. Further results. Since the preliminary version of this paper appeared in [42], sev-
eral new applications of small bias probability spaces have been discovered. Alon [4] used
them to obtain an NC algorithm for the parallel version of Beck’s algorithm for the Lovasz
local lemma. Feder, Kushilevitz, and Naor [24] applied them to amortize the communication
complexity of equality. Blum et al. 15] used the hash function construction to authenticate
memories. Kushilevitz and Mansour [31] used small bias probability spaces to derandomize
their decision tree learning algorithm. Alon et al. [7] used the polylogarithmic size construc-
tion of log log n-wise / log n-bias probablity space in order to derandomize an algorithm
for all pairs shortest path whose running time is almost that of matrix multiplication. Blum
and Rudich [14] have used the construction of (n, k)-universal sets of 8 to derandomize a
k-term DNF polynomial time learning algorithm, for k which is logarithmic in the number of
variables.

Azar, Motwani, and Naor [10] defined and constructed small bias probability spaces for
nonbinary random variables. Even et al. [23] constructed 6-dependent nonuniform proba-
bility spaces based on small bias probability spaces. Alon et al. [8] provided simple and
different constructions for small bias probability spaces. Their constructions are based on
quadratic characters and linear feedback shift registers. Schulman [48] constructed efficiently
probability spaces with known dependencies.

Acknowledgment. We would like to thank Shuki Bruck for his contribution to 3.1.2.
We would also like to thank Noga Alon, Yishay Mansour, and Avi Wigderson for helpful dis-
cussions. We thank Steven Ponzio and the referees for their careful reading of the manuscript,
and we thank Robert Beals for pointing out [22].

REFERENCES

[1] M. AJTAI, J. KOMtOS, AND E. SZEMERFII, Deterministic simulation in LOGSPACE, in Proceedings of the 19th
ACM Annual Symposium on Theory of Computing, 1987, pp. 132-140.

[2] M. AJTAI AND A. WIGDERSON, Deterministic simulation ofprobabilistic constant depth circuits, in Proceedings
of the 26th IEEE Symposium on Foundations of Computer Science, 1985, pp. 11-19.

[3] N. ALON, Explicit constructions ofexponential sizedfamilies ofk-independent sets, Discrete Math, 58 (1986),
pp. 191-193.

[4] A parallel algorithmic version of the local lemma, in Random Structures and Algorithms, 2 (1991),
pp. 367-378.

SMALL-BIAS PROBABILITY SPACES 855

[5] N. ALON, L. BABAI, AND A. ITAI, Afast and simple randomizedparallel algorithmfor the maximal independent
set problem, J. Algorithms, 7 (1986), pp. 567-583.

[6] N. ALON, J. BRUCK, J. NAOR, M. NAOR, AND R. ROTH, Construction of asymptotically good low-rate error-

correcting codes through pseudo-random graphs, IEEE Trans. Inform. Theory, 38 (1992), pp. 509-516.
[7] N. ALON, Z. GALIL, O. MARGALIT, AND M. NAOR, Witnessesfor matrix multiplication andfor shortest paths,

in Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science, 1992, pp. 417-426.
[8] N. ALON, O. GOLDREICH, J. HASTAD, AND R. PERALTA, Simple constructions for almost k-wise independent

random variables, in Random Structures and Algorithms, 3 (1992), pp. 289-304.
[9] N. ALON AND J. SPENCER, The Probabilistic Method, John Wiley & Sons, Inc., New York, 1992.

[10] Y. AZAR, R. MOTWANI, AND J. NAOR, Approximating arbitrary distributions using small sample spaces, 1990,
manuscript.

11] E. BACH, Realistic analysis ofsome randomized algorithms, in Proceedings of the 19th Annual ACM Sympo-
sium on Theory of Computing, 1987, pp. 453-461.

12] R. BEN-NATHAN, M.Sc. Thesis, Hebrew University, 1990.
13 B. BERGER AND J. ROMPEL, Simulating (log n)-wise independence in NC, J. Assoc. Comput. Mach., 38 (1991),

pp. 1026-1046.
14] A. BLUM AND S. RUDICH, Fast learning k-term DNFformulas with queries, in Proceedings of the 24th Annual

ACM Symposium on Theory of Computing, 1992, to appear.
[15] M. BLUM, W. EVANS, P. GEMMELL, S. KANNAN, AND M. NAOR, Checking the correctness of memories, in

Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science, 1991, pp. 90-99.
[16] M. BLUM AND R. KANNAN, Designing programs that check their work, in Proceedings of the 21 st Annual ACM

Symposium on Theory of Computing, 1987, pp. 86-97.
17] B. CHOR AND O. GOt.DREICH, On the power oftwo-point based sampling, J. Complexity, 5 (1989), pp. 96-106.
18] B. CHOR, O. GOLDREICH, J. HASTAD, J. FRIEDMAN, S. RUDICH, AND R. SMOLENSKY, The bit extraction problem or

t-resilientfunctions, in Proceedings of the 26th IEEE Symposium on Foundations of Computer Science,
1985, pp. 396-407.

19] T.H. COMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, MA,
1991.

[20] A. COHEN AND A. WIGDESON, Dispersers, deterministic amplification and weak random sources, in Proceed-
ings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 14-19.

[21 Multigraph amplification, survey, 1989.
[22] E DIACONIS, Group Representations in Probability and Statistics, IMS Lecture Notes, Monograph Series,

Volume 11, Hayward, CA, 1988.
[23] G. EVEN, O. GOLDEICH, M. LUB, N. NISAN, AND B. VELICKOVIC, Approximation of general independent

distributions, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, 1992, pp.
10-16.

[24] T. FEDER, E. KUSHILEVITZ, AND M. NAOR, Amortized communication complexity, in Proceedings of the 32nd
IEEE Symposium on Foundations of Computer Science, 1991, pp. 239-248.

[25] W. FELLER, An Introduction to Probability Theory and Its Applications, John Wiley, New York, 1968.
[26] R. FREIVALDS, Fast probabilistic algorithms, Lecture Notes in Computer Science, Volume 74, Mathematical

Foundations of Computer Science, Springer-Verlag, Berlin, New York, 1979, pp. 57-69.
[27] O. GABER AND Z. GALIL, Explicit construction of linear size superconcentrators, J. Comput. Systems Sci., 22

1981), pp. 407-420.
[28] R. IMPAGLIAZZO AND O. ZUCKERMAN, Recycling random bits, in Proceedings of the 30th IEEE Symposium on

Foundations of Computer Science, 1989, pp. 248-253.
[29] S. JIMBO AND A. MAROUKA, Expanders obtainedfvm affine transformations, in Proceedings of the 17th Annual

ACM Symposium on Theory of Computing, 1985, pp. 88-97.
[30] J. JUSTESEN, A class of asymptotically good algebraic codes, IEEE Trans. Inform. Theory, 18 (1972), pp.

652-656.
[31 E. KUSHILEWTZ AND Y. MANSOU, Learning decision trees using the Fourier spectrum, in Proceedings of the

23rd Annual ACM Symposium on Theory ofComputing, 1991, pp. 455-464; SIAM J. Comput., to appear.
[32] R. KARP AND N. PIPPENGER, A time randomness tradeoff, AMS Conference on Probabilistic Computation and

Complexity, Durham, NC, 1983.
[33] H. KARLOFF AND P. RAGHAVAN, Randomized algorithms and pseudorandom numbers, in Proceedings of the

20th Annual ACM Symposium on Theory of Computing, 1988, pp. 310-321.
[34] H. KARLOFF AND O. SHMOYS, Efficient parallel algorithmsfor edge coloring problems, J. Algorithms, 8 (1987),

pp. 39-52.
[35] O.J. KLEITMAN AND J. SPENCER, Families ofk-independent sets, Discrete Math., 6 (1973), pp. 255-262.

856 JOSEPH NAOR AND MONI NAOR

[36] R.M. KARP AND A. WIGDERSON, Afast parallel algorithmfor the maximal independent set problem, J. Assoc.
Comput. Mach., 32 (1985), pp. 762-773.

[37] A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Explicit expanders and the Ramanujan conjecture, in Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, 1986, pp. 240-246.

[38] M. LUBY, A simple parallel algorithmfor the maximal independent set problem, SIAM J. Comput., 15 (1986),
pp. 1036-1053.

[39] R. MOTWANI, J. NAOR, AND M. NAOR, The probabilistic method yields deterministic parallel algorithms, in
Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, 1989, pp. 8-13.

[40] F.J. MACWILLIAMS AND N. J. A. SLOANE, The Theory ofError Correcting Codes, North-Holland, Amsterdam,
1977.

[41] M. NAOR, Constructing Ramsey graphsfrom small probability spaces, IBM Res. Report RJ 8810, 1992.
[42] J. NAOR AND M. NAOR, Small-bias probability spaces: Efficient constructions and applications, in Proceedings

of the 22nd Annual ACM Symposium on Theory of Computing, 1990, pp. 213-223.
[43] N. NISAN AND A. WIGDERSON, Hardness vs. randomness, in Proceedings of the 29th IEEE Symposium on

Foundations of Computer Science, 1988, pp. 2-11.
[44] R. PERALTA, On the randomness complexity ofalgorithms, CS Res. Report TR 90-1, University of Wisconsin,

Milwaukee, WI.
[45] P. RAGHAVAN, Probabilistic construction ofdeterministic algorithms: Approximatingpacking integerprograms,

J. Comput. Systems Sci., 37 (1988), pp. 130-143.
[46] R. RIVEST, A. SHAMIR, AND L. ADELMAN,A methodfor obtaining digital signatures andpublic key cryptosystems,

Comm. ACM, 21 (1978), pp. 120-126.
[47] M. SANTHA, On using deterministic functions to reduce randomness in probabilistic algorithms, Inform. and

Comput., 74 (1987), pp. 241-249.
[48] L. SCHULMAN, Sample spaces uniform on neighborhoods, in Proceedings of the 24th Annual ACM Symposium

on Theory of Computing, 1992, pp. 17-25.
[49] M. SIPSER, Expanders, randomness, or time versus space, J. Comput. Systems Sci., 36 (1988), pp. 379-383.
[50] J. SPENCER, Ten Lectures on the Probabilistic Method, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 1987.
[51] G. SEROUSSI AND N. BSHOUTI, Vector setsfor exhaustive testing of logic circuits, IEEE Trans. Inform. Theory,

34 (1988), pp. 513-522.
[52] U. VAZIRANI, Randomness, adversaries and computation, Ph.D. Thesis, University of Califomia, Berkeley,

CA, 1986.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 857-874, August 1993

() 1993 Society for Industrial and Applied Mathematics
011

DECIDING PROPERTIES OF NONREGULAR PROGRAMS*
DAVID HARELtt AriD DANNY RAZ

Abstract. Extensions of propositional dynamic logic (PDL) with nonregular programs are considered. Three
classes of nonregular languages are defined, and for each of them it is shown that for any language L in the class,
PDL, with L added to the set of regular programs as a new program, is decidable. The first class consists of the
languages accepted by pushdown automata that act only on the basis of their input symbol, except when determining
whether they reject or continue. The second class (which contains even noncontext-free languages) consists of the
languages accepted by deterministic stack machines, but which have a unique new symbol prefixing each word. The
third class represents a certain delicate combination of these, and, in particular, it serves to prove the 1983 conjecture
that PDL with the addition of the language {aibic li >_ 0} is decidable.

Key words, propositional dynamic logic (PDL), decidability, stack automata, context-free languages

AMS subject classifications. 03B70, 03D05, 68Q60, 68Q68

1. Introduction. Propositionaldynamic logic (PDL) was introduced by Fischer and Lad-
ner [FL], based upon the first-order version of Pratt [P1]. It is a direct extension of the proposi-
tional calculus, in which programs can appear in the formulas. Thus, for example, P --> (or) Q
asserts that whenever P holds it is possible to carry out some computation of or, leading to a
state in which Q holds, and (or) P _= (/3) P asserts a certain kind of equivalence of programs
ot and/3. Formulas in PDL can involve many programs and are able to express a wide variety
of properties pertaining to their input/output behavior. See [H], [KT] for detailed surveys.

In most versions of PDL, the programs are taken to be regular sets of sequences of basic
programs and tests. Whether these are represented by regular expressions or by automata,
the validity/satisfiability problem for formulas in the logic has been shown to be logspace
complete for exponential time [P2], [FL], [HS]. (It is thus interesting that, as far as we know,
the validity problem for this much richer logic might be no worse than that of its fragment,
the propositional calculus.)

In the early 1980s the problem of extending PDL with nonregular programs was raised.
In terms of programming languages, moving from regular programs to, say, context-free ones
is tantamount to moving from iterative programs to (parameterless) recursive procedures.
It would be nice if we could decide the truth of propositional-level properties of recursive
programs, too. Ladner observed in 1977 that PDL with context-free programs must be unde-
cidable, since it is not too difficult to see that the formula (or) P (fl) P is valid if and only if
the languages represented by the programs ot and/3 are equal. (Here, P is a basic propositional
letter.) However, it remained to investigate (a) the level of undecidability of context-free PDL,
and (b) the point at which the problem starts becoming undecidable.

The first results were strikingly negative. Denote by PDLL the logic obtained by allowing
the language L as a single new program, in addition to the regular ones. In [HPS] it was shown
that the validity problem for both PDLL and PDLL2,L3 (in the second case there are two new
programs) is highly undecidable, that is, FI l-complete. Here,

L a zx ba zx {a ba > 0},

*Received by the editors September 25, 1991; accepted for publication (in revised form) April 9, 1992. A
preliminary version of this paper appeared in Proc. 31 st IEEE Symposium on Foundations of Computer Science,
IEEE Press, New York, 1990. This work was supported in part by grants from the Gutwirth Foundation and the Israel
Ministry of Science and Technology.

tThis author holds the William Sussman chair in mathematics.
tDepartment of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot,

Israel (harel@wisdom. weizmann, ac. il and danny@wisdom, weizmann, ac. il).

857

858 DAVID HAREL AND DANNY RAZ

L2 "-aXb/ {aib >_ 0},

L3 bXa zx {b a >_ 0}.

This settled issue (a) above since context-free PDL in its entirety can be easily shown to be
in l-I I. It was also shown in [HPS] that there exists a primitive recursive nonregular one-
letter language (which must be noncontext free, by Parikh’s theorem [P]) that exhibits the
same disastrous behavior. Later, in [HP], it was shown that the specific logic PDLL4 is also
1-I l-complete, where

L4 {a(2;) > 0}.

In contrast to these negative results, a rather surprising positive result was proved in [KP],
to the effect that adding L2 or L3 alone does not result in undecidability. Thus, PDLL2, for
example, is decidable, which is rather curious, given the similarity of L1 and L 2. The proof in
[KP] shows that PDLc2, which does not enjoy the usual finite model property of [FL], does,
in fact, enjoy a finite pushdown model property. More specifically, each satisfiable formula
has a model of bounded size, along the edges of which appear not only program letters but
also various push and pop instructions. The details of the construction are quite complicated,
and strongly depend on the idiosyncrasies of the language L2.

The feeling we get when studying these results is that the borderline between the classes
of languages for which extended PDLs are decidable and those for which they are not has to
do with the behavior of accepting pushdown machines. For example, one important difference
between L and L2 is that in accepting the former language a pushdown automaton reading
an a may carry out a push or a pop depending upon its location in the input word, whereas in
the latter language the a’s can be safely pushed and the b’s popped, regardless of where we
are in the word. When dealing with acceptance in PDL models, a machine seeing an a out of
context will not "know" what to do in the first case, but will in the second. If anything like
this distinction is the "right" one, it would be particularly interesting to know the answer to a
question raised in [H, p. 533]: Is PDLL5 decidable, where

L5 aZXbZXczx {aibici > O} ?

Harel conjectured in 1983 that the answer is yes. Note that L5 is not context-free, and thus
cannot be accepted with a single pushdown. However, if a machine with two pushdowns is
employed, or a stack machine, it enjoys a similar "obliviousness" property; its operations on
the stack are determined by the input symbol alone.

In this paper we provide the first results in this area that do not deal with isolated languages,
but apply to broad classes of languages in a general way. The approach we use is to deal
directly with the automata that accept the languages under consideration. Our first result
takes a step towards confirming the intuition outlined above. Specifically, call a pushdown
automaton simple-minded (an SM-PDA for short) if its behavior is uniquely determined by
the input symbol alone, and the internal state and stack symbol may only help determine
whether the machine aborts or carries out this (unique) next step. It is noteworthy that SM-
PDAs accept a large fragment of the context-free languages, including L2 and L3, as well as
all manner of parenthesis languages (semi-Dyck sets), and many of their intersections with
regular languages. Here we have the following theorem.

1A stack machine is a one-way pushdown automaton whose head can travel up and down the stack but in which
changes can be made only at its top [Ka].

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 859

THEOREM 1. If L is accepted by an SM-PDA, then PDLL is decidable.
Our second result considers a different class of languages, based on a richer kind of ma-

chine, namely, deterministic stack automata (DSA). These accept many kinds of noncontext-
free languages, such as L5 and its generalizations aa..,a for any n, as well as many
variants thereof. Here we have our next theorem.

THEOREM 2. if L is a language over E accepted by a DSA, then PDLL, is decidable,
where L’ g w to L} and g is a new symbol, g fg E.

Finally, combining the constructions used in the proofs of both theorems we are able to

resolve the L5 problem with the following theorem.
THEOREM 3. PDLL5 is decidable.
The proofs of Theorems and 2 follow the widely applicable ideas of Vardi and Wolper

[VW], in which decidability of a satisfiability problem in a logic of programs is established by
defining special classes of automata on infinite trees and showing that their emptiness problem
is decidable. This construction is typically preceded by proving that every satisfiable formula
has a satisfying tree model of an appropriate form.

In our case, we had to go beyond the various kinds of finite-state tree automata considered
in [VW] and its follow ups, and consider pushdown and stack automata on infinite trees. The
emptiness problem for such automata was not known to be decidable, and the proof that it is
turned out to be quite involved and possibly of independent interest. Consequently, we have
devoted a separate paper to it [HR]. In 3 of the present paper we describe this result briefly.

In 2 we show that for any language L, a satisfiable formula in PDLL has a special kind of
Hintikka tree model, labeled with elements of an appropriate subformula-like closure. Such a
model has bounded branching, and is constructed so that the paths satisfying any two "diamond
promises" are edge distinct.

We then turn to the main constructions, leading, respectively, to Theorems and 2. Given a
formula f in PDLc, where L is accepted by some SM-PDA, we construct in 4 a tree pushdown
automaton Af that accepts precisely the aforementioned Hintikka models of f. Thus, testing

AU for emptiness amounts to determining the satisfiability of f. The construction and its
justification appear to be considerably more complicated than similar kinds of results in the
literature. We should add that a naive implementation of the entire decision procedure yields
triple-exponential time.

In 5 we carry out a similar construction of a tree stack automaton for the case where L is
accepted by a DSA M, but here we must require the presence of the new symbol preceding
tle words of the language, due to the richer possibilities in the behavior of M.

In 6 we show how the combination of both constructions (the one of4 and the one of 5)
can be used to prove decidability of an even more general family of languages. In this family,
we are able to replace the requirement for the special symbol of Theorem 2 with a new
category of the stack machines. In addition to some technical requirement on the accepting
machines, we require that all words accepted can be partitioned into two parts, coming one
after the other, and defined over two disjoint alphabets. In particular, since L is accepted by
such a machine, we get a proof for Theorem 3. Section 7 contains a discussion of remaining
open problems.

2. The existence of"nice" models. We will use a variant of PDL called APDL in [HS].
In APDL, regular programs are described by finite automata rather than regular expressions.
Notice that in terms of decidability there is no difference between PDL and APDL. We use
APDL because dealing with automata is a little more convenient here.. Let Prop be a set of
atomic propositions and let Prog be a set of atomic programs. Let L denote a fixed language
over Prog. APDLc is defined as follows:

860 DAVID HAREL AND DANNY RAZ

Every proposition p Prop is a formula.
If j] and J are formulas, then so are --,fi and j-’] /x j.
If f is a formula, then f? is a test.
If ot is a program and f is a formula, then (or) f is a formula.
If c is a finite automaton over alphabet E, where E is a finite set of atomic programs
from Prog, tests (each of which is considered a single symbol of E), and the special
letter L, then o is a program.

Note that in the syntax L is treated as an atomic program, while in the semantics it will be
interpreted as the set of sequences of atomic programs it denotes.

APDLc formulas are interpreted over structures M (W, R, zr), where W is a set of
states, R Prog 2ww is a transition relation, and zr W ---> 2Prp assigns truth values to
the propositions in Prop for each state in W. We now, inductively, extend R to all programs
and define satisfaction of a formula F in a state u of a structure M, denoted M, u f:

R(f?)= {(u, u)lM, u f}.
R(L) {(u, v)l there exists a word w wl... wt in the language L, and states
u0, Ul ut of W such that u u0, v Ul, and for all <_ < l, (ui_, ui)
R(wi) }.
R(ot) {(u, v)[there exists a word w w... w accepted by or, and states
uo, u Ul of W such that u uo, v Ul, and for all < < l, (ui-, ui)
R(wi) }.
For a proposition p prop, M, u p if and only if p 7(u).
M,u J] / f2 if and only if M, u fiandM, uJ.
M, u --,fi if and only if not M, u ft.
M, u (c)f if and only if there exists a state v such that (u, v) 6 R(o) and
M,vf.

A formula f is satisfiable if there is a structure M and a state u such that M, u f. The
satisfiability problem is to determine, given a formula f, whether f is satisfiable.

Before describing the decision procedure for the satisfiability problem of APDLc, where
L is in some special families of languages, we define the closure of APDLL formulas, similar
to that defined by Fisher and Ladner in [FL]. From now on, we will identify a formula g with
--,--,g. The closure of a formula f, denoted el(f), is defined as the smallest set satisfying:

feel(f).
If g/ g2 el(f) then g, gz el(f).
If--,g el(f) then g el(f).
If g el(f) then --,g e el(f).
If (u)g el(f) then g e el(f).
If (c)g e el(f), where o is the finite state automaton ($], S, p, s0, F), thenh 6

el(f) for all h ? 6 .
If (c)g el(f), where o is the finite state automaton (, S, p, s0, F), then
(Ots)g el(f) for all s 6 S, where os is the automaton ot in which the state s

replaces s0 as the initial state.
The size of cl(f) can be shown to be linear in the length of f (cf. [FL], [HS]). We first prove
that APDLc has the tree model property. Let f be a formula of APDLc, containing n distinct
atomic programs including those used in L. A tree structure for f in APDL is a structure
M (W, R, r) such that:

1. W

_
[k]*, where k nl for some integer l, and W =/: 0.

2. Ifxi6 Wthenx6 W.
3. If (x, y) 6 R(a) for an atomic program a, then x is the predecessor of y in W, and

(x, y) q R(b) whenever b - a.

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 861

A tree structure M (W, R, zr) is a tree model for f if M,) f. We now show that for any
L, if an APDLL formula f is satisfiable, then it has a tree model. To do this we unravel any
model of f into a tree, and then use a subset-like argument to create a structure in which every
state has a finite number of successors. More formally we have the following proposition.

PROPOSITION 2.1. Aformula f in APDLL is satisfiable ifand only if it has a tree model.

Proof. The only if part is immediate from the fact that a tree structure is a structure.
Suppose that M, u f, for some structure M (W, R, zr) and some state u E W, and let
C C2c./ be an enumeration of the subsets of cl (f) and let k nr for some integer r.
To show that f has a tree model, we first define a partial mapping 4 [k]* --+ 2w by induction
on the length of words in [k]*. First, let 4(;) {u}. Suppose now that 4 is known for every
x [k]m, and let xl [k]m+l. If 4(x) is the empty set then so is dp(xl). If 4(x) S c_C_ W is
not empty, then for all _< < n and < j < 2Icl(f)l, we have:

ck(x(i + nj)) {t W l3s Sj(s, t) R(ai) and Cj {g cl(f) M, g}}

We now define a structure M’ (W’, R’, zr’) as follows. W’ {x 4(x) is not empty},
R’(aj) {(x, xi) j + nj for all < j <_ 2le/(/)l, and xi W’}, and zr’(x) zr(t) for
some 6 4(x). (Note that r’ is well defined by the definitions of 4 and zr.) It is not difficult
to show that M’ is a tree structure, and that if x 6 W’ and g cl(f), then M’, x g if and
only if M, q (x) g. In particular, M’, ,k f. [3

We would now like to associate a natural infinite k-arT tree over 2cl(f)U{-t-} with the tree
model M’ (W’, R’, zr’) constructed above: Every node in W’ will be labeled by the formulas
in cl(f) that are satisfied therein, and all the nodes not in W’ are labeled by the special symbol
2-. These trees satisfy some special properties, as we will now see.

DEFINITION 2.2. A Hintikka tree for an APDLL formula f with atomic programs
a an is a k-ary tree T [k]* -+ 2cl(f)U{-l-}, such that f E T(), k > n, and for all
elements x of [k]*"

1. Either T (x) 2_ or 2_’ T (x), and g 6 T (x) if and only ifg ’ T(x);
2. g / g2 T(x) if and only if g T(x) and g2 6 T(x);
3. If (ot)g E T(x), where o is the finite state automaton (E,, S,, p, s0, F), then

there exists a word w w...Wm over E, states s Sl Sm of S, and
u uo, Um of [k]* such that uo x, g T(um), Sm F, and, for all < < m"

(a) S /9ot(Si_l, LUi);
(b) If wi is h?, then h T(ui-1) and ui ui-1;

(c) If wi is aj Prog, then ui Ui-lr, where r j + nl < k for some l;
(d) If wi is L, then there exists > 0, a word aj aj L and < r rt < k,

such that ui Ui-lrl rt, and for all < m < we have rm jm + nlm for
some lm.

4. If "-,(o)g T(x), where ot is the finite state automaton (E, S, p, s0, F), then

so 6 F implies --,g 6 T (x), and for all s E S and w 6 E, such that s 6 p (so, w),
we have:
(a) If w is h?, then either -h T(x) or --,(ot)g 6 T(x);
(b) If w is aj Prog, then for each r j + nl < k we have --,(ot)g 6 T(xr) or

T(xr)- {2_};
(c) If w is L, then for all aj aj L and for every rm jm + nlm < k, we have

-(Ots)g T(xr ...r) or T(xr ...r) {2_}.
PROPOSITION 2.3. A formula f in APDLc has a Hintikka tree ifand only if it has a tree

model.
Proof. Let f be an APDLc formula with atomic programs a a,.
(if) Let M (W, R, 7r) be a tree model of f. We define the Hintikka tree T for f as

follows: For an element x 6 [k]* W take T(x) {2_}, and for an element x E W, take

862 DAVID HAREL AND DANNY RAZ

T(x) {g e cl(f) M, x g}. We now must show that T is indeed a ttintikka tree for f.
By the definition of a tree model, M, . f, which implies condition 1. That conditions 2,
3, 4, and 5 hold follows immediately from the definition of satisfaction in APDLc.

(only if) Let T be a Hintikka tree for f. We construct a tree model for f as follows. The
structure is M (m, R, zr), where W {x [k]* T(x) {2-}}, R(ai) {(x, xj) j
+ nl [k] and xj W}, and for all x 6 W, 7r(x) {p 6 prop lp T(x)}. It now

remains to show that M, X f. To that end, we show by induction on the structure of the
formula that for all g cl(f) and x 6 [k]*, g 6 T (x) if and only if M, x g. For the base
case of g Prop, this is immediate by the construction. The inductive step for formulas of
the form g/ g2, -’g, (ot)g, and ---(ot)g follows directly from the Hintikka conditions 2, 3,
4, and 5, respectively.

One more property of models is needed to be able to carry out the construction of the
appropriate automata in the next section.

DEFINITION 2.4. A unique diamond path Hintikka tree for a formula f, or a UDH for
short, is a Hintikka tree for f that satisfies the following additional condition: There exists a
mapping [k]* -- cl(f) U {2_}, such that for all u [k]*"

1. (u) is either a single diamond formula or the special symbol 2_.

2. If ()g T(u) then in clause 3 of the definition of a Hintikka tree the nodes
u urn, guaranteed to exist, must have the property that for all < j < m,
(I)(b/j) (ot)g. (Notice that (uj) does not have to be in T(uj).)

The intuition behind this definition is that at each node u, (u) singles out a (unique)
diamond formula, in such a way that each path is associated with at most one such formula.

We now prove that for any given formula f, we can construct a UDH from any Hintikka
tree for f. This is done simply by increasing the number of descendants of each node, so
that there is a separate branch for each formula when needed. More formally we have the
following proposition.

PROPOSITION 2.5. Aformula f in APDLc has a Hintikka tree ifand only if it has a UDH.
Proof. Given a Hintikka tree T [k]* --+ 2cl(f)vl-t-} for f, we must show that f has a

UDH. Let p = Icl(f)l + 1, k’ p. k, and fl, f2 fp-1 be a fixed ordering of cl(f).
Define p [k’]* [k]* by induction on the length of words in [k’]*. First, let
Suppose that 7t is known for every x 6 [kit; if xj [k]r+, where j + p for some
< < n and < < p, then let (xj) xi. We now define T’ [k’]* + 2C{f)Ul+/-l by

T’(u) (t(u)).
To conclude the construction of the UDH, define [k’]* cl(f) U {2_} by induction

on the length of words in [k’]*. Let (,k) =2_. Suppose that is known for every x 6 [k]r;
if xj [k]r+, then let (xj) f whenever k j and f is a diamond formula, and 2_

otherwise.
T’ can be seen to be a Hintikka tree. Furthermore, straightforward induction on the length

of u u0, u U shows that satisfies the conditions for a UDH.
As in [VW], we now seek a procedure which, for a formula f, will construct an automaton

accepting exactly the special tree models whose existence was established above, namely the
UDHs for f. The automata used must be sufficiently powerful to be able to run through the
trees, making sure that things are as they should be, but sufficiently weak to have a decidable
emptiness problem.

3. Deciding emptiness for stack automata on infinite trees. In this section we provide
a full definition of stack automata on infinite trees. This definition is needed later on when we
prove that such an automaton accepts precisely the UDHs of some formula.

Let [k] 1, 2 k}. A k-ary tree over a set S is a labeling of the set [k]* by.members
of S. The empty word) denotes the root of the tree.

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 863

A stack k-ary co-tree automaton (or an STA for short) is a structure

M-(Q,Z,,F, qo, zo, 6, F),

where Q is a (finite) set of states, is the (finite) input alphabet, I-" is the (finite) stack alphabet,
q0 E Q is the initial state, z0 E 1-" is the initial stack symbol, and F

Q is the set of designated

accepting states.
The transition function 6 is defined as

6 Q x (I to {e}) x (F U {A}) --+ (2(Qg)* tO 2Qg),

where B {pop, md, mu, sp} tO {push(w) w F+}. Here, md, mu, and sp stand for
"move down," "move up," and "stay put," respectively. The transition function reflects the
fact that M works on trees with outdegree k that are labeled by E. The number of rules in 6 is
denoted by 181. We will use A as the empty symbol of the stack, describing the stack positions
beyond the top of the stack. This is useful when we want to determine if the head is at the top
of the stack.

A good (informal) way of viewing STAs is to consider a stack machine that travels on an
infinite tree of outdegree k. At each node n of the tree, the machine splits into k copies, each
copy continuing to travel the tree from the corresponding successor of n. The way the machine
splits, and the configurations of the new copies, are determined by the transition function 6
and the label of n.

The set of stack configurations is S z0F*’F* tO z0F*A "1", and the initial stack configu-
ration so is z0]’. For a stack configuration s zo?’l J’V2, the depth of s is d(s) [9/11 + 19/21
and the head position is h (s) 17’11. A node configuration N is a pair (q, s) Q x S, and
the initial node configuration no is (q0, so). The depth of a node configuration is the depth of
its stack.

Let 7-g S --, F tO {A} be given by 7-[(zoyZ ")/2) Z, where z 6 F tO {A} and
7-/(z0]" },) z0. This describes the letter read by the stack head.

In order to capture the effect of 6 on stack configurations, we now define the partial
function/3 (S B) --+ S, providing the new contents of the stack:

B(zoVz’, pop) zo?’ ".
B(zo?’ ?, push(w)) zo’W ?.
B(zo gl z " g2, md) zo gl " zg2.

B(zo?q z?’2, mu) zo?qz ?’2.
15(zog ", mu) zoga ".
B(zogA ", md) zo ?’ ".
13(s, sp) s.

An e-path from (ql, Sl) to (qt, st) is a sequence ((ql, s) (qt, st)), such that for all
< < l, we have (qi, bi) 6(q,._l, e, (Si_l)) and B(Si_l, bi) sl. Let Ne be the set of

e-paths. An e-path signals F if there is < j < such that qj F and d(sj) h (sj).
A computation of M on the infinite tree over E is an extension of t, defined as C

[k]* --+ (E x N,), such that, in addition to a symbol from E, each node is labeled by an

e-path. The tree C must satisfy the following condition:
If N is some e-path to (q, s), then for all u in [k]* such that C(u) (a, N), there
exists ((ql, b) (qk, bk)) 6 6(q, a, 7-[(s)), such that for all <_ j < k, C(uj)
(aj., Nj), where aj E and N2 is some e-path from (q2, B(bj, s)).

Informally, a computation is really an infinite tree labeled both by letters of E and by the
configurations of the machine. The label of a node in the computation is its label from E
together with the configuration of the stack machine that visited it.

864 DAVID HAREL AND DANNY RAZ

A computation C is said to be Biichi accepting, or just accepting for short, if C(,k)
(a, N), where a 6 E and N is an e-path from (q0, so), and every path in C contains infinitely
many e-paths that signal F. A tree is accepted by M if there exists an accepting computation
ofMon t.

The emptiness problem is, given an automaton M, to determine if M accepts some tree.
An STA that uses only the symbol sp from B is simply a Btichi k-ary co-tree automaton,

as defined in [VW]. An STA that uses only the symbols sp, push(w), and pop from B is a
pushdown k-ary co-tree automaton (PTA for short). This definition is similar to that appearing
in [S]. Clearly, if k 1, the infinite trees become infinite sequences. The main result needed
in the sequel is the following theorem.

THEOREM [HR]. The emptiness problemfor STAs is decidable.
The proof in [HR] establishes decidability in four-fold exponential time for STAs and in

triple-exponential time for PTAs.

4. Simpleminded context-free languages. Let M (Q, , F, qo, zo, 3) be a finite state
pushdown automaton that accepts by empty stack. We say that M is simple minded, or an SM-
PDA for short, if, whenever 3(q, r, V) (P, b), then for each q’ and V’ either 3(q’, or, V’)
(p, b) or 6(q’, or, 9/’) is undefined. In other words, the automaton’s action is determined
uniquely by the input symbol; the state and stack symbol are only used to help determine
whether the machine halts (rejecting the input) or continues. Note that such an automaton is
necessarily deterministic. A language L is said to be simpleminded context-free (or an sm-cfl,
for short) if there exists an SM-PDA that accepts it.

To make this definition clear, accepting by empty stack here means that whenever z0 is
at the top of the stack the machine accepts its input. This way of acceptness is much more
convenient when dealing with deterministic machines. In [WW, p. 219] a subclass of CFLs,
called input driven, is mentioned. This class is accepted by DPDAs in which moves of the
pushdown head depend only on the input symbol. Input driven languages can be recognized
in logarithmic space [BV]. In our case (sm-cfl), we require that the new state also depends
only on the input symbol, hence, sm-cfls can be recognized in logarithmic space, too.

Example 4.1. Let M ({q0, q }, E, F, q0, z0, 3) be a PDA, where E {a, b}, F
{z, z0}, and the transition function 3 is given by:

6(qo, a, zo) (qo, push(z))

3(qo, a, z) (qo, push(z))

(qo, b, z) (q, pop)

6 (q, b, z) (q, pop).

Here 6 is undefined for all other possibilities. Since M accepts by empty stack, the language
accepted is precisely L2 {aib > 0}. The automaton M is an SM-PDA since it always
performs push(z) when the input is a, and pop when the input is b.

Example4.2. LetM ({q}, tOE’, 1-’, q, z0,) beaPDA, where E {[,]}, 1-" {[, z0},
and the transition function 3 is given by:

3(q, [, z) (q, push([))

3(q, r, [) (q, sp), for any cr ’ {[,]}

6(q,], [) (q, pop).

Here r 6 E’ and 3 is undefined for all other possibilities. Since the automaton only accepts
by empty stack, the language accepted by M is precisely the set of balanced parentheses

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 865

expressions over E’. The automaton M is an SM-PDA since it always performs push([)
when the input is "[", pop when the input is "]", and sp when the input is a letter from E’.

It is easy to see that all semi-Dyck sets [Ha], are sm-cfl, as are many others. Since
throughout this chapter we are dealing with pushdown automata, we will assume that they are
given in a normal form, in which the automaton never push more than one symbol per move.
We use the following notation:

3(q, a, z) (p, e)

6(q, a, z) (p, z)

6(q, a, z) (p, zz’)

instead of

instead of

instead of

6 (q, a, z) (p, pop)

(q, a, z) (p, sp)

3(q, a, z) (p, push(z’)).

Let us define 92 E x 1-’ --+ F* by: 92(a,z) w if there exists p,q 6 Q such that
6(p, a, z) (q, w). Notice that for SM-PDAs 92 is a partial function.

Given an sm-cfl L, we now describe the construction, for each f in APDLL, of an STA
Af. This STA will be shown to accept precisely the UDH trees of the formula f. Af is an
appropriate parallel composition of three machines. The first, called At, is a tree automaton

(with no pushdown) that tests the input tree for standard local consistency properties. The
second component of Af, called A o, is a tree PDA that deals with the diamond formulas of
cl(f), and the third component, called A[], is a tree PDA that deals with the negations of
diamond formulas, i.e., with box formulas. Thus, for the rest of this section, A.f is actually a
PTA, and not a full-fledged STA.

Let ML Q, E, 1-’, q0, z0, p) be an SM-PDA that accepts the language L, and let f be
a formula in APDLc.

The local automaton for f is

At (2ct+(f), 2ct+(f), Nf 3, 2ct+(f))

where"
cl+ (f) cl(f) {+/-};
The starting set NU consists of all sets s such that f 6 s;
(sl sk) 6 6(s, a) if and only if s a and:

either s {l}, or It’ s,
g 6 s if and only if--,g ’ s,
gl/ g2 6 s if and only if g 6 s and g2 6 s,
if --,(c)g 6 s, where ot is the finite state automaton (Ed, Sd, Pd, Sod, Fd), then

sod 6 Fd implies --,g 6 s, and for all q 6 Sd and w 6 Ed such that q 6

p s0, w)"
1. If w is h ?, then either --,h 6 s or --,(Otq)g s, and
2. If w is aj Prog, then for each j + nl < k we have -(q g si or

S {._[_}.
PROPOSITION 4.3. The automaton At accepts precisely the trees that satisfy Hintikka

conditions 1, 2, 4(a), and 4(b).
Proof. A computation of an automaton M on an infinite tree T [k]* -- E is an infinite

tree C [k]* --+ Q’,where Q’ is the set of internal states of M. Clearly if T satisfies Hintikka
conditions 1, 2, 4(a), and 4(b) then T is also an accepting computation of At on T. On the
other hand, if C is an accepting computation of At on some tree T, then C itself as an infinite
tree over 2ct+(f) that satisfies the desired conditions. By the first rule of At, for every node a
we have a s, hence T C, and T satisfies Hintikka conditions 1, 2, 4(a), and 4(b).

The aim of the the next component of Af is to check satisfaction of Hintikka condition
4(c), which is the condition that deals with box formulas containing the symbol L. Informally

866 DAVID HAREL AND DANNY RAZ

(and somewhat imprecisely), the job of this part of the machine is to make sure that if [L]p
is written in some node n of the tree, then p is written in every node n’, such that n’ nw
for some word w in L. The way this automaton works is as follows: At each node it puts all
the subformulas that should be checked (i.e., all these p’s) on the stack. It then simulates the
behavior of M on its path. If at a certain node M would enter an accepting state, An makes
sure that all the subformulas written on the stack are also written at this node. Notice that for
this simulation to be carried out it is essential that M is an SM-PDA.

The box automaton for f is

A[] <Qn, 2cl+f, F x 2Cl+(/, q0, (z0., 0), 8, Q[]>

where Q[] Q, and is given by:
((ql, wl) (qk, wk)) 6 6(q, a, (z, s)) if and only if

1. Either a =l or s _c a, and
2. For alll_<j<nandforalli-j+nl<_kwehave:

(a) If p(q, aj, z) (q’) then qi q’ and wi
(b) if p(q, aj, z) (q’, z), then qi q’ and wi (z, s U s’),
(c) if p(q, aj, z) (q’, zz’), then qi q’ and wi (z, s U s’), (z’, 0), and
(d) if p (q, aj, z) is undefined, then:

i. If P(qo, aj, zo) is undefined, then qi qo and wi (zo, 0);
ii. if P(qo, aj, zo) (q’, zo), then qi q’ and wi (Zo, s’); and

iii. if P(qo, aj, zo) (q’, zoz), then qi q’ and wi (zo, s’), (z’, 0).
Here, if P(qo, a), zo) is defined, then for all -,(ot)g a, where ot is the finite
state automaton (Es, Ss, p, so, F), and for all s’ p, (sos, L), we have
--,(ots,)g 6 s’. If P(qo, aj, zo) is undefined, then s’ 0.

In Clause we check whether old box promises that involve the language L are kept,
while in Clause 2 we put new such box promises on the stack to be checked later on. (This
idea is also present in a somewhat different form in the proo.f in [KP].) Notice that the stack
behavior of Ae depends only upon the path in the tree and does not depend at all upon the
values of the tree nodes.

LEMMA 4.4. Let x [k]*, T [k]* 2cl+(f), and C(x) (q, (zo, So) (Zm, Sm)),
where Cn is a computation of An over T. Then, for each w ajl aji L and rm
jm + nlm < k, thefollowing two conditions hold:

C=(xr rl) (q’ (zo, So) (Zm-, Sm-1), (Zm Sm)).’
contains all formulas of the form --,(ors)g, for which --,(ot)g T(x) and s 6Sm

Ps (sos, L).
Proof. Define Pm Q x (1-’ x 2cl+(f)+ -+ Q -’+ by p(q, (z0, So)... (Zm, Sin)
(Z, S)) (q, Zm Z). Let (q0, V0) (ql, ?’l) be a computation of M that accepts w.

Since w is in L, for all r j + nl < k, we have that 3(q0, aj, zo) is defined; hence, by
the definition of s’ in An we have C(xr) (q’, (zo, so) (Zm, Sm), "), where may

contains, all (c,)g for s" 6 Ps (s0, L). We proceed by induction on i, andbe empty and sm
prove that rn(Cra(xrl ri)) (qi, ’i) for all < < l. The base case has just been proven,
and the general case follows immediately from the definition of An. This, for l, proves
the lemma. [3.

PROPOSITION 4.5. The box automaton A= acceptsprecisely the trees that satisfy Hintikka
condition 4(c).

Proof. We must show that A= has an accepting computation over some tree T if and only
if for all x 6 [k]* we have:

If -(ot)g 6 T(x), where ot is the finite state automaton (E, Ss, Ps, sos, Fs), then for
all s p(so, L), for all aj, aj L and for all rm jm + nlm <_ k we have
--,(a)g T(xr rl) or T(xr rl) {l}.

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 867

(only if) Suppose, by way of contradiction, that there exist x0 E [k]*, -(ot)g T(xo),
s’ p(so, L), and w aj, aj L, such that T(xrl...r) {_1_} and--,(ot’s)g ’T(Xrl... r), for some rm jm q- nlm <_ k. Let C be any computation of An. By Lemma

However this4.4 we know that C(xrl... r) (q’, (zo, s)... (Zm, Sm)), and --,(ots)g 6 sm.
yields a contradiction to our assumption, since Clause in the definition of An requires that
s

a, which implies --,(ot)g T(Xrl...r).
(if) If T satisfies the above condition and at each stage of the computation we add to s’ ex-

actly all --,(ot’)g formulas when 6(q0, aj, zo) is defined, and add 0 otherwise, we get an infinite
computation of A[] over T. This computation is accepted because
F[] Q[].

The third component of Af deals with diamond formulas. Notice that unlike the box
case, all diamond formulas are nonlocal in nature, and thus cannot be handled by the local
automaton. The special condition of UDHs is the key for the following construction, since it
assures us that each diamond formula is satisfied along a unique path. Hence, all Ao has to
do is guess nondeterministically which successor lies on the appropriate path, and to check
that indeed there is a finite path through that successor satisfying the diamond formula.

The diamond automaton for f is

A- (Q,2c+y, {0, 1}, (1 ,2_, ,1_), (z0, 0), 3, F)

where:
Q {0, 1} cl+ (f) (Q u {2_}). The first component is used to indicate accep-
tance. The second one contains the diamond formula that is being verified, or 2_ if
no such formula exists. The third component is used to simulate the computation of
ML, and to detect words in the language L;
F all triples in Q containing in the first component or ,1, in the second;
define

if (aj, z)

M(aj, z) (z, 0) if f2 (aj, z) z

(z, 0)(z’, 1) if (aj, z)--zz’

and

if f2(aj, z)

l[tN(aj, Z) (Z, 1) if f2 (aj, z) z

(z, 1)(z’, 1) if (aj, z)=zz’

((q, w) (q,, w,)) E 6((c, {or}g, q), a, (z, b)) if and only if the following three
conditions hold"

1. For all (/3}h 6 a there exist j + nl < k, and a word v 3q ?... fm ? such
that {j] fm

_
a, and one of the following holds:

(a) qi (Ci, {t)h, 2_), p(so, ray), and LO rN(aj, Z);
(b) qi (ci, {lt)h, p), p p(qo, aj, zo), p(so, v), and wi

7ta4(aj, z);
(c) p(so, v), F and h 6 a.

2. There exists a word v j] ?... fm ? such that {j] fm c_ a, and one of the
following holds"
(a) g 6 a, and for all < j < n and j + nl < k we have that the first

component ofqi is 1, LO N(aj, z), andif p(s0, v) ’ F then b 0,
q -2-, and p(so, Lv) F;

868 DAVID HAREL AND DANNY RAZ

(b) for all _< rn < k, we have qm (0, qm), and there exist j + nl < k
such that the following two clauses hold:

i. If q-5- then either qi (ci (ot g, p) p p (q aj z) and
wi PN(aj, z), or .b 0 and either qi (ci, (at)g,,1_) where

pd(so, Lvaj) and Wi lrN(aj, Z), or qi (Ci, (at)g, p), where
pd(so, Lv) and p P(qo, aj, z0);

ii. if q =,1, then either qi (ci, (ct)g, p), where p(sod, v), p
P(qo, zo) and wi Pt(aj, z), or qi (ci, (at)g, _1_), where
p(so, vaj) and wi Ou(aj, z).

3. For all < j < n and j + nl < k, we have wi Ou(aj, z) or toi

4(a, z).
Here again, the idea is much simpler than it appears from looking at the detailed construc-

tion. Condition takes care of new diamond formulas. Each such formula is either satisfied
in a or is written in the machine to be satisfied later. Condition 2 takes care of old promises
which are either fulfilled or remain as promises in the machine. Condition 3 deals with the
stack. We make sure that all stack operations coincide with those of ML, and use the extra bit
on the stack to indicate the beginning of new simulations of ML.

LEMMA 4.6. Let f be an APDL formula with atomic programs al at, and let
T [k]* --+ 2cl(f)U{-l-} be a k-arT tree. Then T satisfies Hintikka condition 3 if and only iffor
all x [k]* if (ot)g T(x), where ot is the finite state automaton (Zd, Sd, p, sou, F), then
there are nodes uo ut of [k]*, states so, to st, tt of Sc, atomic programs aj,, aj
and numbers rim Jim + nli,, <_ k, such that thefollowing conditions hold:

1. uo x, So=Sod, tt
2. either S U=. Pd(ti-1, aji and bl Ui_lri,,

or si p(ti-1, L) and ui Ui-lji, Jiti, where ar ...a% L;
3. for 0 < < l, there exists a word w g ?... gm ?, m > O, such that {g gm

T(ui) and ti pd(si, w);
4. g T(uk).

Proof. The new condition is nothing but a rephrasing of condition 3 of the definition of a
Hintikka tree, where we have separated the tests from the programs in the automaton o. The
details of the proof are straightforward and are left to the reader.

LEMMA 4.7. Let C be an accepting computation ofA over some tree T, such that C(x)
(Cx, (c)g, 5-), (zo, co) (zt, ct), and C(xi) (c),, (oct)g, p), (zo, co)
(zt, ct, F), where p 7-1. and F’ may be empty. Then there exists a word w aj, aj aj,, L
and numbers ri ji + nli < k, such that C(xirl ...rm) (c’, (oft)g, q’), (zo, co)
(z, o).

Proof. The lemma actually states that A simulates the computation of M. The proof is
obtained by straightforward induction on the length of w, using the definition of A o, and is
left to the reader.

PROPOSITION 4.8. The automaton A acceptsprecisely the trees that satisfy both Hintikka
condition 3 and the special condition ofa UDH.

Pvof. Let C be an accepting computation of A over some tree T. We must show that
T follows condition 3 of Definition 2.2 together with conditions and 2 of Definition 2.4. Let
x [k]* and (ot)g T(x), where ot is the finite state automaton (Ed, Sd, Pd, Sod, Fd). We
must show the existence of appropriate nodes u0... ut of [k]* and states so, to st, tt of Sd.

Denoteby w,a, t,, i,a, and jx,a the appropriate w, t, /,and j thatexistfora T(x)
and d (ot)g by the definition of A. Let u0 x, so sod, to p(so, w,), and Ul, and

s depend upon in the definition of A in the following way" If (a) holds, then U xi,

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 869

and Sl p,(t0, ajx,a). If l(b) holds, then ul xw, where w is the word guaranteed to exist
by Lemma 4.7, and sl p (to, L). If (c) holds, then 0 and no u or s exist.

For the general case, assume that (csi)g d is in the state in C(ui) and define ti
IOc(Si, tOx,d). Both Ui+l and si+l depend upon 2 in the definition ofA in the following way:
If 2(a) holds then and no ui+ or si+ exist. Otherwise, if 2(b) holds then Ui+l xi,i,d
and Si+l p(ti, aj,i,a); if 2(c) holds then ui+ xw, where w is the word that exists by
Lemma 4.7, and si+ p(ti, L).

Clearly, these u0 ut, so, to st, tt satisfy conditions 1-3 ofLemma 4.6. For 0,
the requirement h E a of l(c) in the definition ofA yields g T(ut), and for > the fact
that ut satisfies condition 4 of lemma 4.6 is obtained from the requirement g 6 a of 2(c) in
that definition.

It remains to exhibit the existence of an appropriate @. Let us define, for x 6 [k]*,

if the state in C(x) is (ot)g for some state

if the state in C(x) is _L.

This @ satisfies the special condition of a UDH, since, for _< _< l, all the U defined above
have the same diamond formula in the state of C(ui).

For the other direction, suppose T follows condition 3 of the definition of a Hintikka
tree, as well as the special condition of a UDH. We must show that there exists an accept-
ing computation C of A over T. We construct C(x) by induction on [k]*" If C(x)
(a, (cx, (or)g, p), ((z0, co) (zt, ct))), then we apply 6((cx, (o)g, p), a, (Ze, ce))
((q, w) (qk, wk)), where, for all <_ < k, qi is set by the value of (xi), and
wi follows 3 in the definition of

Clearly C is indeed a computation of A over T. Now, if C were not accepting, by
K6nig’s infinity lemma there should exist an infinite path containing no accepting state, which
contradicts our assumption on T.

LEMMA 4.9. There is a pushdown k-ary tree automaton AU, such that L(Au) L(At)
L(A) fq L(A),and the size of Af is atmost IAtl IAI" IAI.

Proof. Define AU (Qf 2ct+f), FU, qof, zof, 6f Ff) as follows:
Qf= Qtx Qc x Q
qof Nf x q0= x q0o;

Ff-- Qt x Q= x

Ff= F x F;
Zof Z0rq X ZOO;

6f is the Cartesian product of the appropriate 6 functions.
Since all the states of both the local automaton and the box automaton are accepting states,
and since we have taken the third component of Af to be Fo, the accepted language is as
required. Also, the size bound is immediate. Hence we only have to show that this definition
indeed describes a tree pushdown automaton; in other words, we must show that the transition
function 6f is well defined. This is due to the "simple minded" characterization of the language
L. More formally, for each x a [k]*, and for each im jm + nlm <_ k, the stack operations
of Ao are the same as the stack operations of A u, since they both depend only upon the letter
ajm. I-]

The above lemma, together with the preceding results, yields the following proposition.
PROPOSITION 4.10. Given aformula f in APDLc, where L is an sm-cfl, we can construct

a PTA Af such that f has a model ifand only if there is some tree T accepted by Af.
Theorem now follows.
Simplemindedness can be applied to stack automata, not just to pushdown automata.

These generalized simpleminded languages contain

870 DAVID HAREL AND DANNY RAZ

L5 {aib C > 0 }.

However, they do not yield to the construction just given. The main difficulty is in the
construction of the box automaton, and is due to the fact that some of the simulation of M
could start when the stack of the STA is not empty.

For the stack automata case, we have had to resort to a different kind of construction, as
we now show.

5. Unique prefix stack languages. In this section we define a subfamily ofthe languages
accepted by stack automata, called unique prefix. Given a formula f in APDLL, where L is a
unique prefix language, we will exhibit a construction similar to that of the previous section
to define an STA Af that accepts precisely the trees that are UDH of the formula f.

Let L’ be a language accepted by a deterministic finite-state one way stack automaton
over some alphabet E, and let ’ E. Then L d;L’ {w w e L’} is a deterministic
unique-prefix stack language (a dup-sl, for short), and the special letter is denoted by L. We
again refer the reader to [Ka] for a description of stack automata. A more formal definition
appears in [WW, pp. 31-33]. Our stack automata accept by final state, but we require that in
an accepting state the automaton is at the top of the stack.

EXAMPLE 5.1. Let M (Q, E, F, qo, zo, 3, {q0, qc}) be a deterministic stack automaton,
where Q {q0, qa, qb, qc}, E {a, b, c}, 1-" {z, z0}, and the transition function 3 is given
by:

3(qo, a, zo) (qa, push(z))

3(qa, a, z) (qa, push(z))

(q,, b, z) (qb, md)

3(q, b, z) (q, md)

(q, c, zo) (qc, mu)

3(qc, c, z) (qc, mu).

3 is undefined elsewhere. Since the automaton only accepts when its head is at the top of the
stack, the language accepted by M is L5 {a b c > 0}. Hence, L :L5 {Ca b c >

0} is a dup-sl.
Many noncontext-free languages are dup-sl s, such as {ala2... a >_ 0} for any fixed

kand{wcwlw * and c, g C E }.
Our goal now is to prove the following result, which implies Theorem 2.
PROPOSITION 5.2. Given aformula f in APDLL, where L is a dup-sl, one can construct

an STA Ay such that f has a model ifand only if there is some tree T accepted by AT.
Let ML (Q, E, F, q0L, z0, p, Fc) be the deterministic stack automaton that accepts the

dup-sl L, and let f be a formula in APDLc.
The local automaton for f is At of the previous section.
PROPOSITION 5.3. The automaton At accepts precisely the trees that satisfy Hintikka

conditions 1, 2, 4(a), and 4(b).
Proof. The proof is similar to the proof of Proposition 4.3.
The box automaton in this case is much simpler than the one defined in the previous

section for sm-cfl, since the unique prefix property guarantees that at any node at most one
word of L should be checked. Thus, in this case, the automaton need not keep the formulas
to be checked in it stack, and it can store them as part of its internal state.

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 871

The box automaton for f is

A[] (Q U {2_} x 2Cl<f), 2cl+(f), I-’, 2_, z0, 3, Q U {2_} x 2cl(f))

where 6 is given by:
(((ql, sl), hi) ((qk, sk), bk)) E 6((q, s), a, z) if and only if for all < j < n
the following conditions hold:

1. if q E FL, then s

_
a or a {2_}, and

2. ifaj :, then for all g 6 s and for all j + nl < k, we have g 6 si, if
q -2_, then (qi, bi) p(q, aj, z), and if q =2_, then qi :2_ and bi sp;

3. if aj L, then for all j -+- nl < k the following hold:
(a) For all --,(o)g 6 a, where ot is the finite state automaton

(E, S, p, sou, F), and for all s’ 6 p(s0, L), we have -(os,)g E si;

(b) either bi push(zoz) and (qi, push(z)) P(qo, :, zo), or bi
push(zo) and (qi, sp) P(qo, L, ZO). (Note that, since aj c, these
are the only valid possibilities.)

In condition we check whether old box promises that involve the language L are kept.
In condition 2 we "store" such old box promises in the machine’s internal state, to be checked
later on. In condition 3 we deal with new promises. Notice that when a new promise appears,
we forget about all old promises. This is a crucial point, and is made possible by the unique
prefix characteristic of L. Another point that arises here is that this automaton may be required
to perform a push when its head is not at the top of the stack. By convention, this instruction
is taken to abbreviate a sequence of instructions to get to the top of the stack and then perform
a push.

PROPOSITION 5.4. The automaton A accepts precisely the trees that satisfy Hintikka
condition 4(c).

Proof. First note that from Clause 2 in the definition of the 6 function of A[] we have" If
u0 ul are nodes in [k]* such that for < < 1, ui Ui-lri for some ri ji + nli < k,
and aji aj :, then for any computation C ofA and for any formula g, if g C(uo)
then g C(ul). We now show that for similar u0 ul with aj,.., aj L, if q is the
state of Mc after the ith input symbol, then for any computation C of A, C(ui) (q, s
for some s 6 21+f). This is proved by induction on 1. For the base case, 0, the result
follows from Clause 3(b) in the definition of 6. (Recall that L is a deterministic unique prefix
language, hence aj, ;c.) The inductive step follows from Clause 2 in the definition of
The above, together with Clauses 3 and 1, guarantees that any computation C of A [] on a tree
T is accepted if and only if T satisfies Hintikka condition 4(c).

The third component in this case is very similar to A of the previous section. The
differences are merely technical.

The diamond automaton for f is

A (Q, 2l+/’1-’, (1, 2_, 2-, 0), z0, 6, F)

where"
Q {0, 1} cl+(f) (QU {2-}) {0, 1}. The first component is used to indicate
acceptance. The second one contains the diamond formula that is being verified, or
2_ if no such formula exists. The third component is used to simulate the computation
of Me, and to detect words in the language L. The last component indicates whether
the automaton is verifying a formula that involves L.
F all quadruples in Q containing in the first component or 2_ in the second;
((q, b) (qk, bk)) E 6((c, (or)g, q, d), a, z) if and only if the following three
conditions hold:

872 DAVID HAREL AND DANNY RAZ

1. For all (fl)h E a there exist j + nl < k, and a word v j] ?... fm? such
that {J] fm _C a, and one of the following holds"
(a) p(so, v), F and h a;
(b) qi (ci, (t)h, p, 0), p(so, vaj) and p p(q, aj, z);
(c) aj eL, qi (Ci, (t)h, p, 1), p P(qo, aj, zo) and p(so, v);

2. There exists a word v Ji ?... fm ?, such that {j] fm} % a, and one of
the following holds"
(a) g 6 a, for all < < k, we have qi (1, q), and either

and d 0 or q FL, d 1, and pd (sod, L v)
(b) for all _< m < k, we have qm (0, q’m) and there exist j + nl <_ k

such that the following two clauses hold:
i. if d then one of the following holds"
A. qi (ci, (a)g, p, 1), p p(q, aj, z), or qi (ci, (at)g, p, 0),

where Pd (sod, L vaj) and q FL;
B. qi (ci, (at)g, p, 1), where Pd (SOd, L v), p p (qo, aj, z) and

as =L;
ii. if d 0 then one of the following holds:
A. qi (ci, (at)g, p, 1), where 6 Pd(S0d, V), p P(q0, aj, Zo) and

aj
B. q; (c;, (at)g, p, 0), where 6 Pd(S0d, vaj) and p p(q, aj, z).

3. For alll <j<nand/-j+nl<k, wehave:
(a) if aj - eL, then if p(q, aj, z) (p, b) then bi b, and if p(q, aj, z) is

undefined then b; sp;
(b) if aj Ct, then if P(q0, aj, z0) (p, sp) then b; push(zo), and if

P(q0, as, z0) (p, push(z)) then bi push(zzo).
In this definition, p p (q, a, z) is short for:

p’ if q -CA- and p(q, a, z) (p’, b) for some b
P A- otherwise.

Condition takes care of new diamond formulas. Each such formula is either satisfied in a or
is written in the machine to be satisfied later. Condition 2 takes care of old promises which
are either fulfilled or remain as promises in the machine. Condition 3 deals with the stack.
We make sure that all stack operations coincide with those of Mr. This will allow us to use
Ao as a part of Af. Notice that the same problem of performing a push when the head is not
on top of the stack exists here; it is treated in the same way as for Am.

LEMMA 5.5. Let C be an accepting computation of Ao over some tree T. Let C(x)
((cx, (a)g, p, d), z0, zt), and C(xi) ((cs, (at)g, p, 1), z0 zt,), where p A-,
may be empty, j + nl <_ k, and aj . Then there exists a word w ajajz ajm L,
and numbers ri ji + nli <_ k, such that C(xir rm) ((c’, (at)g, q’, d’), zo zt, "),
where q’ F.

Proof. This lemma actually states that Ao simulates the computation for Mr. The proof
is obtained using the definition of Ao by straightforward induction on the length of w, and is
left to the reader.

PROPOSITION 5.6. The automaton A acceptsprecisely the trees that satisfy both Hintikka
condition 3, and the special condition ofa UDH.

Proof. Since in this case the automaton A is almost identical to that defined for the
simple minded languages of the previous section, the proof here follows the proof of Propo-
sition 4.8.

DECIDING PROPERTIES OF NONREGULAR PROGRAMS 873

LEMMA 5.7. There is a stack k-ary tree automaton Af, such that L(Af) L(At)
L (A o) fq L (A []), and the size of AU is at most Atl Ao A [] I.

Proof. Define Af Qf 2ct+ (f) [’f qof zof 6f Ff exactly as in the proof of Lemma
4.9. Here, too, we only have to show that the transition function 6f is well defined. Since both
Ao and AD simulate the behavior of ME, they both perform the same operation on the stack.
More formally, we show by induction on x E [k]* that the state of Q and the stack in C[] (x)
are identical to those of Co(x). Here, C[](x) and Co(x) stand for computations of A[] and
A o, respectively. This proof is straightforward and shows that the transition function is well
defined.

The above lemma, together with the preceding results, yields Proposition 5.2, from which
Theorem 2 follows.

The construction depends strongly upon the special prefix d;c. Without it, the definition
of the box automaton cannot be used.

6. A delicate combination. We now combine the two families of automata, con-
structed in the proofs of Theorems and 2, in order to prove the decidability of PDLEs.
However, rather than deal directly with the language Ls, we prove decidability for a some-
what more general family of languages.

Let L be a language accepted by a deterministic stack automaton M over some alphabet
E. Assume there exists a partition E ’}-]1 I,_) Y]2, 121 ("l 122 , such that for every word
w E L, we have w wl w2, with wi 6 12i* for 1, 2. Let C be an accepting computation
of M on w. We call the part of C working on w part of the computation, and the rest of C
is called part 2.

PROPOSITION 6.1. If part of all accepting computations of M has no mu (move up)
moves, follows the rules ofsimpleminded machines, and always ends up with the head of the
stack at the bottom position, and if, in addition, part 2 ofthe computation has only mu (move
up) or sp (stay put) moves, then PDLE is decidable.

Sketch ofproof. The automaton we use here has two modes of operation: The first one
works like the automaton Af from 4 (cf. Lemma 4.9), and the second mode is similar to the
automaton Af from 5 (cf. Lemma 5.7). It starts in the first mode and changes modes when
it starts seeing tree symbols from I22. Since at this point M is guaranteed to be in the bottom
position, the tree automaton "knows" what promises have to be kept, and can transpose them
to its internal state when switching modes. The fact that in part of all accepting computations
of M there are no mu moves, and that it is simple minded, guarantees that indeed the right
promises are checked. On the other hand, the fact that part 2 of the computation of M has
only mu or sp moves guarantees that the second mode will operate correctly and will not get
into forbidden parts of the stack. A careful and tedious construction, similar the those of4
and 5, proves that this automaton, which is indeed a TSA, has an accepting computation if and
only if the given formula in PDLc has a model. We omit the details which can be obtained
from those provided in the proofs of Theorems and 2.

In order to complete the proof of Theorem 3, we prove the following.
PROPOSITION 6.2. There exists a stack automaton thatfollows the conditions ofProposi-

tion 6.1 and recognizes the language Ls.
Proof. Let E1 {a, b}, and 122 {c}. M operates as follows: When seeing an "a"

in the input it pushes it onto the stack; when seeing a "b" it performs "move down"; when
seeing a "c" it performs "move up," and accepts if it is at the top of the stack. Clearly M is
a simpleminded stack automaton, that has no "move up" moves in part of the computation,
and has only "move up" moves in part 2 of the computation. Furthermore, it is easy to verify
thatM accepts precisely the language Ls.

874 DAVID HAREL AND DANNY RAZ

7. Discussion. Decidability ofthe validity problem for PDLL, where L is in some class C
of languages, may be viewed as a general problem about C, like the equivalence or emptiness
problems. Just as it is of prime interest to characterize those classes C for which these latter
problems are decidable, so is it of interest to characterize those for which the PDL problem,
as we may call it, is decidable. Apart from its interest as a problem concerning reasoning
about propositional programs, when phrased in this manner it becomes a decision problem for
formal languages. While we feel that the present paper provides a significant step forward,
we are far from having a complete solution.

Two specific aspects are still open. First, we do not know enough about the borderline. It
would be nice to be able to provide general negative results, stating that for any language L not

accepted by machines of some special form, PDLL is undecidable. Second, our techniques
provide no new information regarding one-letter alphabets; Theorem does not help, since
PDAs do not accept any nonregular one-letter languages, and our proof of Theorem 2 requires
the prefix symbols. In this arena there are only negative results, specifically, that of [HP]
about {a (2’)]i > 0} and its extension to {a (’) li >_ 0} for any fixed k. Is there any nonregular
(and therefore noncontext-free) one-letter language L for which PDLL is decidable? Is there
any one-letter language L exhibiting polynomial growth in the lengths of its words, for which
PDLL is undecidable?

Acknowledgment. We would like to thank the anonymous referees for several very help-
ful comments which helped to improve the presentation.

[BV]

[FL]

[HI

[Ha]
[HP]

[HPS]

[HR]

[HS]

[Ka]
[KP]

[KT]

[P]
[Pll

[P2]
IS]

[St]

[VW]

[WW]

REFERENCES

B. VON BRAUNMOHL AND R. VERBEEK, Input driven languages are recognized in log n ,space, preprint, Bonn,
Germany, 1984.

M. J. FISCHER AND R. E. LADNER, Propositional dynamic logic of regular programs, J. Comput. System
Sci., 18 (1979), pp. 194-211.

D. HAREL, Dynamic Logic, in Handbook of Philosophical Logic Vol. II, D. Gabbay and F. Gunthner, eds.,
Reidel, Dordrecht, the Netherlands, 1983, pp. 497-603.

M.A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
D. HAREL AND M. S. PATERSON, Undecidability of PDL with L {a2i]i > 0}, J. Comput. System Sci., 29

(1984), pp. 359-365.
D. HAREL, A. PNUELI, AND J. STAVI, Propositional dynamic logic ofnonregularprograms, J. Comput. System

Sci., 26 (1983), pp. 222-243.
D. HAREL AND D. RAZ, Deciding emptiness for stack automata on infinite trees, Inform. and Comput., to

appear.
D. HAREL AND R. SHERMAN, Propositional dynamic logic offlowcharts, Inform. Control, 64 (1985), pp. 119-

135.
R. Y. KAIN, Automata Theory: Machines and Languages, McGraw-Hill, New York, 1972.
T. KOREN AND A. PNUELI, There exist decidable context-freepropositional dynamic logics, Proc. Symposium

on Logics of Programs, Lecture Notes in Computer Science, Vol. 164, Springer-Verlag, New York,
1983, pp. 290-312.

D. KOZEN AND J. TIURYN, Logics ofprograms, in Handbook of Theoretical Computer Science, Vol. B, J.
van Leeuwen, ed., Elsevier, Amsterdam, 1990, pp. 789-840.

R. J. PARIKH, On context-.fi’ee languages, J. Assoc. Comput. Mach., 13 (1966), pp. 570-581.
V. R. PRATT, Semantical considerations on Floyd-Hoare logic, 17th IEEE Symposium on Foundation

Comput. Sci., 1976, pp. 109-121.
A near optimal methodfor reasoning about action, J. Comput. System Sci., 20 (1980), pp. 231-254.

A. SAUDI, Pushdown automata on infinite trees and omega-Kleene closure of context-free tree sets, Proc.
Math. Found. of Comput. Sci., Lecture Notes in Computer Science, Vol. 379, Springer-Verlag, New
York, 1989, pp. 445-457.

R. S. STREETT, Propositional dynamic logic of looping and converse is elementarily decidable, Inform.
Control, 54 (1982), pp. 121-141.

M. VARDI AND P. WOLPER, Automata-theoretic techniquesfor modal logics ofprograms, J. Comput. System
Sci., 32 (1986), pp. 183-221.

K. WAGMER AND G. WECHSUNG, Computational Complexity, D. Reidel, Dordrecht, the Netherlands, 1986.

SIAM J. COMPUT.
Vol. 22, No. 4, pp. 875-887, August 1993

() 1993 Society for Industrial and Applied Mathematics
012

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS*
REUVEN BAR-YEHUDAt, AMOS ISRAELI, AND ALON ITAI

Abstract. Two tasks of communication in a multihop synchronous radio network are considered: Point-to-point
communication and broadcast (sending a message to all nodes of a network). Efficient protocols for both problems are

presented. Even though the protocols are probabilistic, it is shown how to acknowledge messages deterministically.
Let n, D, and A be the number of nodes, the diameter and the maximum degree of our network, respectively.

Both protocols require a setup phase in which a BFS tree is constructed. This phase takes O((n + D logn)log A)
time.

After the setup, k point-to-point transmissions require O((k + D)log A) time on the average. Therefore the
network allows a new transmission every O(log A) time slots. Also, k broadcasts require an average of O((k +
D) log A log n) time. Hence the average throughput of the network is a broadcast every O(log A log n) time slots.
Both protocols pipeline the messages along the BFS tree. They are always successful on the graph spanned by the
BFS tree. Their probabilistic behavior refers only to the running time.

Using the above protocols the ranking problem is solved in O(n log n log A) time. The performance analysis of
both protocols constitutes a new application of queueing theory.

Key words, radio networks, broadcast, point-to-point routing, distributed algorithms, average case analysis,
queueing theory, randomized algorithms

AMS subject classifications. 05C85, 60K25, 68M10, 68Q22

1. Introduction. A radio network is a network of processors which communicates using
radio. An important feature of radio communication is that if a receiver is in the range of two
or more transmitting stations, then, due to interferences, some messages might not be received.
A radio communication network is single-hop if all nodes are in transmission range of each
other. Otherwise it is multihop. Thus, sending a message between two stations in a multihop
network might involve transmissions through intermediate stations.

Most real life radio networks for data communication are quite limited. In fact, most such
networks are single-hop and most existing multihop networks resort to the tree topology. This
situation looks rather odd considering the ease with which radio networks can be initiated and
the flexibility and modularity of their operation.

A new approach for controlling the activity in multihop radio networks was presented in
the work of [3], where an efficient broadcast protocol is presented. Their method gives a new

way of looking at radio networks. However, they do not provide protocols for many important
network tasks.

In the present work we use some of the ideas presented in [3], together with some new

ideas to get very efficient protocols for two important and practical tasks. The tasks are k point-
to-point transmission and k-broadcast. Point-to-point transmission is the task of sending a

message from one station to another. Broadcast is a task initiated by a single station called the
source, which transmits a message to all stations in the network. A k-point-to-point transmis-
sion (k-broadcast) is a task which consists of k point-to-point transmissions (k-broadcasts).

*Received by the editors February 21, 1989; accepted for publication (in revised form) May 15, 1992. A
preliminary version of this paper was presented in the Symposium on Principles of Distributed Computing, Edmonton,
Canada, 1989.

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This author
was partially supported by Technion V.ER. Fund-Albert Einstein Research Fund.

tDepartment of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This
author was partially supported by the Technion V.ER. Fund, New York Metropolitan Fund, and the Japanese TS
Research Fund.

Department of Computer Science, Technion-Israel Institute of Technology, Haifa, 32000, Israel. This author
was partially supported by Technion V.ER. Fund.

875

876 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

Besides the theoretical interest, these tasks constitute a major part of real life multihop radio
network.

1.1. Model description. Our model consists of an undirected graph whose nodes rep-
resent stations (i.e., processors) and whose edges indicate possible communication, (i.e., an
edge between two nodes implies that the corresponding processors are within range and within
line of sight of each other). The processors have distinct IDs. Initially, each processor knows
its local neighborhood (i.e., the identity of its neighbors), the size of the network, n, and an
upper bound, A, on the maximum degree of the network. It need not have any additional
information of the topology of the network.

The processors may transmit and receive messages of length O (log n) and communicate
in synchronous time slots subject to the following rules. In each time slot, each processor acts
either as a transmitter or as a receiver. A processor acting as a receiver is said to receive a
message in time slot if exactly one of its neighbors transmits in time slot t. The message
received is the one sent. Since communication is synchronous the only difficulty in routing
messages, in this model, is the possibility of conflicts; that is, situations when several neighbors
of a processor transmit simultaneously and it receives nothing. More specifically, we assume
that there is no conflict detection (see [4]).

Throughout the paper, n denotes the actual number of processors, A the maximum degree
and D the diameter of the network.

1.2. Main results. Efficient protocols for k-point-to-point communication and k-broad-
cast are presented. Even though the protocols are randomized, it is shown how to acknowledge
messages deterministically. Both protocols require a setup phase in which a BFS tree is
constructed. This phase takes O ((n + D log n) log A) time.

After the setup, k point-to-point transmissions require O((k + D)log A) time on the
average. Therefore the network allows a new transmission every sequence of O (log A) time
slots. Also, k broadcasts require an average of O((k+ D) log A log n) time. Hence the average
throughput of the network is a broadcast every sequence of O (log A log n) time slots.

Both protocols pipeline the messages along the edges of a BFS tree. They are always
successful on the graph spanned by this tree. Their probabilistic behavior refers only to the
running time. The performance analysis of both protocols constitutes a new application of
queueing theory.

1.3. Previous work. Chlamtac and Kutten [7] showed that, given a network and a des-
ignated source, finding an optimal broadcast schedule (i.e., broadcasting schedule that uses
the minimum number of time slots) is NP-hard. They also routed messages through a (not
necessarily BFS) tree, and discussed "implicit acknowledgments." Their acknowledgments
are conducted in the absence of conflicts, and are achieved at the cost of increasing the time
of a single point-to-point communication to O(DA).

Chlamtac and Weinstein [8] presented a polynomial-time (centralized) algorithm for con-
structing a broadcast schedule which uses O(D log2 n) time slots. This centralized algorithm
can be implemented in a distributed system assuming the availability of special control chan-
nels, but the number of control messages sent may be quadratic in the number of nodes of the
network 16].

In a different context, Birk [2] independently discovered an acknowledgment mechanism
similar to ours.

Bar-Yehuda, Goldreich, and Itai [3] described a randomized single-source broadcast pro-
tocol. To ensure that with probability e all nodes receive the message, the protocol requires
O((D + log(n/e)) log A) time slots. For D 2, they also showed an f(n) lower bound for
deterministic protocols. Thus, for this problem there exist randomized protocols that are much

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 877

more efficient than any deterministic one. For D 2, Alon et al. [1] showed an f2 (log2 n)
lower bound, which matches the upper bound of [8] and [3].

In [4] Bar-Yehuda, Goldreich, and Itai discuss several models of radio communication
and show how to detect conflicts and simulate a single-hop network. Thus they show how to
use protocols designed for the ETHERNET in a multihop network [6], [1].

1.4. Protocol outline. Both protocols depend on the existence of a BFS tree of the graph
which is constructed in a setup phase. In the beginning of the setup part, a leader is chosen.
Once the leader is chosen, it initiates the construction of a BFS tree whose root is the leader.
For this purpose the protocols of [3] and [4] are used. The setup phase is conducted only once,
after which any series of point-to-point transmissions or broadcasts might be performed.

The broadcast process is reactive (continuous); it is invoked whenever a source originates
a message to broadcast. It consists of two subprotocols: Collection--sending the messages
from the sources to the root of the BFS tree and distribution--sending the messages from the
root to all the processors of the network.

The point-to-point transmission is also reactive. It is invoked whenever a processor wishes
to send a message. A message from node u to v travels first up the tree. Once the message
reaches a common ancestor of u and v it continues downwards towards v. The protocols for
both directions are very similar to the collection protocol and are fully described in 5.

Since both protocols are reactive, it is not possible to wait until all the messages have
finished traveling upwards, and only then start their journey downwards. Therefore, in both
protocols the collection and distribution subprotocols are conducted concurrently, either by
using separate channels or by multiplexing: The odd time slots are dedicated to the upward
traffic (collection) and the even ones to the downward traffic. We shall not elaborate further
and assume separate channels.

All our protocols make use of a basic protocol, Decay [3], for passing messages from one
layer to the next. In the sequel we use the term send whenever Decay is used.

procedure Decay (m);
repeat at most 2 log A times

transmit rn to all neighbors;
flip coin R{0, 1}

until coin O.

Decay is a probabilistic protocol, with the following properties:
(1) It lasts 2 log A time slots.
(2) If several neighbors of a node v use Decay to send messages then with probability

greater than the node v receives one of the messages.
Several of our protocols require that all successfully sent messages be acknowledged.

We show that, although there is positive probability that a message is not received, every
message that has actually been received is acknowledged with certainty. The overhead of the
acknowledgment mechanism is minimalmit slows down the protocol by a factor of 2. As a
result the point-to-point transmission is always successful on the graph spanned by the BFS
tree.

1.5. Organization. Section 2 describes the setup phase. Since it relies on previous work
we only show how to modify it for our needs. All the other results are entirely new. Section 3
describes the acknowledgment mechanism, 4 the collection protocol and its analysis, 5 the
point-to-point transmission protocol and 6 the distribution protocol. An application, ranking,
is described in 7. Concluding remarks appear in 8.

878 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

2. The setup phase. Our protocols require the existence of a basic communication sub-
network. This network consists of a leader which is a root of a BFS tree. Bar-Yehuda,
Goldreich, and Itai [4] described how to find a leader in O((log log n). (D + log(n/e)) log A)
time.

In [3] Bar-Yehuda, Goldreich, and Itai describe how to find a BFS tree. Their algorithm
assumes that all nodes wake up at time 0. It requires O(D log A log(n/e)) time slots and
succeeds with probability e. Since we have assumed that all the IDs are distinct and n
is known to all the nodes, the leader election and BFS can be modified so that they always
succeed; only the running time is random.

First, choose e 1/n, thus with probability > n -1 the leader election and the BFS
protocol succeed. To ensure that the protocol always succeeds, when joining the tree each
node sends a message to the root using the collection protocol of 4. This protocol only
uses already constructed edges of the BFS tree, always succeeds, and requires an average of
O (n log A) time slots to send all these messages. If the root does not receive all the messages
by twice the expected time, the algorithm is aborted and the entire setup phase is reinvoked.
Note that since all nodes know when the invocation should terminate, different invocations by
the same processor cannot exist concurrently.

Since the probability of reinvocation is less than , the entire modified setup protocol
lasts O ((n + D log n) log A) time slots on the average.

2.1. Preventing collisions from different levels. An advantage of the BFS tree is that a
collision at a node v at level can occur only by messages sent from levels 1, i, and + 1.
Collisions of messages sent from different levels are prevented by using time multiplexing:
We require that a mode at level transmits a message at time slot only if _-- mod 3. This
increases the duration of our protocols by a factor of three. Henceforth, we assume that this
mechanism has been built into all our protocols.

3. The acknowledgment protocol. The protocols of4 and 5 use messages which are
each destinated to a single processor. These protocols require that every message be acknowl-
edged. We now show how to conduct acknowledgments deterministically. The odd time slots
are dedicated to the original protocol and the even ones to acknowledgments. Namely, every
node that receives a message sends an acknowledgment on the next time slot.

The next theorem shows the correctness of this protocol. The theorem depends on the
fact that each message has a unique destination and that the destinations of different messages
successfully received at the same time slot are distinct.

THEOREM 3.1. Let v be a node that received a message from node u using the above
protocol, then u receives an acknowledgment.

Proof. Suppose that v received the message from u at time slot and that u did not
receive the acknowledgment. According to the protocol, v sent an acknowledgment at time
slot + 1. Since u did not receive the acknowledgment there must have been a conflict at
u, i.e., at time slot + another node, v’, connected to u also sent an acknowledgment (see
Fig. 1). According to the protocol, v would not send an acknowledgment unless it received a
message destinated to it at time slot t.

However, since the message sent by u was destinated to v :/: v and v’ acknowledges only
messages destinated to it, v’ received its message from a node u’ -#: u. Therefore, at time slot
both u and u’ sent messages, and since v’ is connected to both of them, a conflict occurred

at v’ (at time slot t) and v did not successfully receive any message. This contradicts the
assumption that v successfully received a message at time slot t. 71

4. Collection. The purpose of the collection protocol is to send messages from the
sources to the root of the BFS tree. Since no source knows the number of IDs of the other
sources, this is done concurrently and independently by all of them.

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 879

FIG.

Messages are sent, using Decay, via the BFS tree from BFS children to their parents. To
each message we append the ID of the node v which sent the message and the ID of v’s BFS
parent. This information enables a node to figure out whether the message was sent by its BFS
child, by its BFS parent, or by another node. The nodes will make use of this information and
we shall omit the details of this.

4.1. The collection protocol. Every node has a buffer of unacknowledged messages.
Initially, all buffers except those of the sources are empty. The protocol proceeds in phases.
In the odd time slots of each phase every node whose buffer in not empty executes Decay
to send a message from its buffer to its BFS parent. The even time slots are dedicated to
acknowledgments as explained in 3. Every such message is re-sent until an acknowledgment
is received. Thereupon it is removed from the sender’s buffer. When a message is received it
is put on its receiver’s buffer. Since the acknowledgment occurs immediately after sending,
messages exist in exactly one buffer and proceed from child to parent.

4.2. Analysis of the collection protocol.

4.2.1. Transmission between adjacent levels. We first estimate how fast messages move
from level to level.

THEOREM 4.1. Let >_ be a level containing messages at the beginning of a phase.
def

There is probability > # e- (1 e- 0.2325 that during the phase a message from
level is successfully received by its BFS parent.

Before sketching the proof, note the difference between this theorem and property (2) of
Decay. Suppose node u is sending a message to its neighbor v and node u’ to its neighbor
v’. If u’ is connected also to v and u’ to v, then property (2) is satisfied even when v gets the
message of u’ or v’ gets that of u. In contrast, here we insist that each message arrive at its
correct destination.

Proof sketch. A phase consists of a single invocation of Decay. At any given time, the
nodes which still want to transmit are called live. At each time slot each live processor first

dies. Therefore, on the average, half of the live nodestransmits and then with probability
die at each time slot.

Let TRYi be the set of nodes of level who are live at time 0. Consider two cases.
Case 1.]TRYil < A" The analysis of Decay [3] implies that with probability > there

exists a time slot with exactly one live processor u of TRYi. Hence, the BFS parent of u
receives u’s message.

Case 2. ITRYil > A" The probability that a node v TRYi is live at time to ae_f log A
is 1/A. The probability that TRYi contains a live node at time to is (1 (l/A)) IrRYil >

1-(1--(I/A))A > 1-e-1.
Let u be the first such node in some fixed arbitrary order, w its BFS parent, and S

{v TRYi[(v, w) E}\{u} (the transmitting neighbors of w not including u). If at time

880 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

to, S contains no live nodes, then w receives u’s message. The existence of a live node in S is
independent of the behavior of u. The probability that at time to, S contains no live node is at
least

Since]S] _< A the above probability is > e-. Therefore, the probability of a
successful transmission is greater than or equal to

Prob(TRYi contains a live mode at time to) Prob (at time to all nodes in S dead)
> (1-e-1) xe-.]

4.2.2. Outline of the analysis. In the remainder of the section we shall show an upper
bound on the expected completion time of the collection protocol. We shall go through a series
of models and show that when moving from one model to the next the expected completion
time can only increase. In this subsection we describe the models; a formal proof follows in
subsequent subsections.

The first model is the previously discussed radio network which contains a BFS tree of
depth D and k messages arbitrarily placed on the nodes of the tree. In Theorem 4.1 we showed
that there is probability > # e- (1 e-) that among all the messages placed in the nodes
of level at least one moves to level 1.

The second model consists of a path of D + nodes. All the messages in the ith level of
the previous model reside in node of the path. The root of the tree is now node 0. We also
stipulate that in a single step at most one message can move from node to node and
that the probability that such a move actually took place is exactly #.

In the third model the messages are not already present in the system at time 0, but their
arrival is a Bernoulli event with parameter) < #, i.e.., for every time there is probability
that a new message appears at node D.

The last model we introduce (model 4) is identical to the third, but we assume that it is
already in steady state in the sense of Queueing Theory (see 14]) and we define the expected
completion time to be the expected time for k additional messages to arrive at node D and
then proceed to the root (node 0).

4.2.3. A tandem queue of Bernoulli servers. We now use Queueing Theory to analyze
the performance of model 4: The model consists of D servers connected in series, with the
output of the ith server being the input to the st. We first analyze the behavior of a single
level.

A Bernoulli server with parameter # is a discrete server (i.e., it operates in discrete time
steps) such that if at any time step the queue of incoming customers is nonempty, then with
probability # during that time step exactly one customer is served (removed from the incoming
queue and placed on the outgoing queue). The arrival rate) is the probability that a new
customer (i.e., message) appears in the incoming queue during a phase. The departure process
is the process by which customers are served by the server. Following Burke [5], Hsu and
Burke 12] analyzed the behavior of the departure process when ,k < #.

THEOREM 4.2 [12]. Consider the departure process ofthe above server (with) < IX), i.e.,
let (t) ifat time a customer was processed, and (t) 0 otherwise. Then converges
to a Bernoulli process with parameter

Hsu and Burke also showed that the probability that at time the length of the queue is j
approaches a limit pj and

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 881

]j))
j--1

(*) Po --, Pl --Po, Pj Pl.
/x (1 -))# tz(1 --.)

Thus the expected queue length is N Y.j>_o JPJ ()(1 ,k)// ,k). By Little’s result

[14], in steady state the average time in the queue is, E(T) (/X) (1))/(# X).
We now return to model 4, a steady-state network of D Bernoulli processors connected

in series each with parameter #, and the arrival rate to the Dth server is ,k < /z. The major
observation is that since the output of the ith server is the input to the st, the input to all
servers is Bernoulli with parameter .. Using this observation we get the following theorem.

THEOREM 4.3. The expected completion time ofmodel 4 is (k/) + (1)/(/)D.
Proof. Suppose that at time to the queueing system is in steady state and a message mo

arrives. Let T denote the time the message spends in the queues. Consider the k messages
m mk preceding message too. Let Xi denote the interarrival time between message m
and the next message, mi_ 1. Define

Qk T -+- XI -k- X2-f- + XI,.

Qk is the time for k messages to pass through the queueing system of model 4. The expected
time is

E(Q,) E(r) + E(X) + E(X2) +... + E(X,).

The theorem follows from the fact that E(Xi) (1/)) and from the previous discussion which
showed that

E(T) D. 71

In Theorem 4.15 we shall show the expected completion time of model is less than or
equal to that of model 4. Thus the performance of model 4 constitutes an upper bound for
the radio network. Substituting X /1 -/x satisfies X </x and yields that the expected
number ofphases required for k messages to reach the root is at most 2(1 +/1 #)#-1 (k+D).
Since each phase lasts twice the time of Decay and # e-l(1 e-), we get the following
theorem.

THEOREM 4.4. The expected number of time slots for k messages to reach the root is
bounded by 32.27(k + D) log A.

This constant can be improved using the techniques of 11].

4.2.4. The expected completion time of model 3 is not greater than model 4. The
difference between model 3 and 4 is that model 3 stipulates that initially all queues are empty,
whereas in model 4 the queue in each node has reached steady state; in particular there
is nonnegative probability that the queues are not empty. In this subsection we prove the
intuitively clear point that adding messages to the queues can only increase the expected
completion time.

Consider partitions of messages between the levels, i.e., (D + 1)-vectors a (al
aD+l) such that ai >_ 0. A move vector is a (D + 1)-vector of nonnegative integers, m
(m m D+). Partition a’ Move(a, m) is obtained by moving m messages from level
to level (if m > ai then only ai messages are moved). Formally, the number of

messages moved from level is i min(ai, mi), D, 3+1 mz+l. Therefore,
a ai i At- i+1.

882 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

A move sequence is an infinite series M (rn m2, ...) of move vectors. Move* (a, M, t)
is the result of making moves according to M, i.e.,

Move* (a, M, 0) a

Move*(a, M, + 1) Move(Move*(a, M, t), rnt+l).

Define a partial order < between partitions, such that a < b if and only if there exists a move
sequence M and an integer such that a Move* (b, M, t). (Also, a < b if a < b and a b.)

A move vector rn is a singleton if exactly one of its components is and all the other
components are zero; the singleton whose th component is is denoted ei. The following
lemma shows that we can simulate any move vector by a move sequence of lexicographically
nonincreasing singletons.

LEMMA 4.5. For every move vector m there is a singleton move sequence Em such that

for every partition a, Move(a, m) move*(a, Ern, -?=1 mi).
2Proof. Let Em (.elm, em, .) such that etm ej, where j is the first nonzero component

-I I-Iof rn -I-’, em
COROLLARY 4.6. a < b if and only if there exist an integer and a move sequence E

consisting only ofsingletons such that a Move*(b, E, t).
LEMMA 4.7. Ifa < b thenfor any move vector m, Move(a, m) < Move(b, m).
Proof. Lemma 4.5 and Corollary 4.6 imply that it suffices to prove the lemma for

rn ej and a Move(b, ei). If j + then Move(a, ej) Move(Move(b, el), ej)
Move((b, ej), el), implying Move(a, ej) < Move(b, ej).

Also, if bi 0 then a b. Thus we assume that j + and Di > 0. If bj 0
then b Move(b, ej), and Move(a, ej) Move(Move(b, ej+), ej). From the definition
of <, Move(Move(b, ej+), ej) < b Move(b, ej). Otherwise (bj - 0), Move(a, ej)
Move(Move(b, ej+l), ej) Move(Move(b, ej), ej+l) _< Move(b, ej).

The completion time of a partition a with respect to a move sequence M is T (a, M)
min{t Move(a, M, t) (0, 0 0) }. (For some M’s the completion time may be infinite.)

LEMMA 4.8. If a < b thenfor all M, T (a, M) < T (b, M).
Proof. Let b be the least partition for which there exists a move sequence M and a partition

a such that a < b while T (a, M) > T (b, M). Let M’ satisfy

T (b, M’) Min(T (b, M) T (b, M) < T (b, M) }.

Let M’ (m m2, .). The minimality of M’ implies that Move(b, rn1) < b. Define
M" (m m2, .). By Lemma 4.7 Move(a, rn) <_ Move(b, rn), thus by the minimality
of b, T(Move(a, m), M") < T(Move(b, rn), M"). Hence,

T(a, M’) < + T(Move(a, ml), M") < + T(Move(b, m), M")- T(bM’).

Consider an arbitrary probability distribution on the move sequences. In a tandem queue
t_ 1)- #,i D, andof Bernoulli servers with parameter # and arrival rate L, P(m

P(m 1)D+I
Let Pt (a) be the probability that T (a, M) t. The average completion time is E(T (a))
tp, aS t= j--t
LEMMA 4.9. a _< b implies that E(T(a)) _< E(T(b)).
Proof. Leta_<b. Thus byLemma.4.8, {M" T(a,M) _< t}

_
{M" T(b,M) _<

t}. Taking probabilities, P({M T(a,M) _< t}) > P({M T(b,M) _< t}). In other
words, Y=0 pj(a) > ’=0 pj(b). The last condition defines that T(a) is stochastically

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 883

greater than T(b) [15]. In this case, E(T(a)) --tl -jct PT(a) < t Yj=, PT(b)
E(T(b)). q

LEMMA 4.10. The expected completion time of model 3 is less than or equal to that of
model 4.

Proof. In model 4 the expected completion time depends both on the distribution of the
initial partition and on the move sequences.

Let a (al a9, aD+l) be an initial partition, a a9 are the lengths of the
queues at the nodes, while ao+ k since the completion time of model 4 is the time k
additional messages appear at node D and reach the root.

in model 3 the initial partition is k (0, 0 0, k). k < a since for M ((a az,
0), (a2 a/9, 0, 0) (a9, 0 0), (0 0)), k Move*(a, M, D). By
Lemma 4.9, E(T (k)) < E(T (a)). Our result follows since this holds for every initial partition
of model 4. [3

4.2.5. The expected completion time of model 2 is not greater than model 3.
LEMMA 4.1 1. The expected completion time of model 2 is less than or equal to that of

model 3.

Proof. In model 3 the initial partition is k (0, 0 0, k), while in model 2 it is
b (bl b9, 0), such that k Y bi. Obviously, b < k, so the result follows as before
from Lemma 4.9. [3

4.2.6. The expected completion time of model 2 is not smaller than model 1. The
difference between models and 2 is in the move vectors. In model 2, m {0, 1} and

P(mit 0) #,. while in model 1, m can assume any nonnegative integer value and
P(m 0) # The actual movements of the messages depend on the topology. To
prove that the expected completion time of model 2 is not greater than that of model we need
to consider the effect of changing the move vectors.

A move vector m (m 1, m 2 m z+ dominates the move vector l (rh 1, th 2,

th 9+) if for all i, m ? i.

LEMMA 4.12. Ifm dominates r and a < b then Move(a, rn) < Move(b, ff).
Proof Let Em and Ea, be the singleton move sequences corresponding to m and ff

(Lemma 4.5). Let and/" be the respective lengths. Since E, is a subsequence of Em, by
repeated use of Lemma 4.7 we can show that Move*(a, Em, t) < Move*(a, E,, {). Thus,
by Lemma 4.5,

Move(a, m) Move* (a, Em, t) < Move* (a, Ea,, {).

By Lemma 4.7,

<_ Move* (b, E, ?) Move(b, r). 3

A move sequence M(m m2, .) dominates li(ff r2, .) if for all j, mJ dominates

LEMMA 4.1 3. IfM dominates and a < b then T (a, M) < T(b, 171).
Proof. The proof is by induction on T (a, M) and using Lemma 4.1 2.]

LEMMA 4.14. The expected completion time of model is less than or equal to that of
model 2.

Proof. Consider an instance a, a2 aT of model 1,. i.e., the completion time is T
and a is the number of messages at level at time < T. Define the move sequence

is the number of messages that moved from ievel to levelM (m, m2, .) as follows: m
t-- 0at time t. When a > 0 then by Theorem 4.1, P(m _> 1) > #. However, when a

> 1) 0, violating the probabilistic assumptions of modelthen mit 0, SO obviously, P(m

884 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

2. We therefore define the move sequence (r 1, 12, .): if a > 0 then h m i,

By Theorem 4.1 and the construction P(rh > 1) >/z Since Motherwise (a[0), rh
0, for every < T Move* (a, M t) Move* (a, M, t). Thusand differ only when a

the completion times T (a,) T(a, M) T.
Construct a move sequence M (lli,’", Ilr," ")" (/’i E {0, 1}). If rh > then

h with probability ((P(m > 1) #)/P(m > 1)); otherwise rh 0. Since 11
dominates 171, by Lemma 4.1 3, the completion time of ll is less than or equal to that of 1I.

By the construction of M,

P(rhti 0) P(th 0) + P(rh > 0 and rh 0)
P(th > O) #o +I o

P(rh > O)

(1 P(th > 0)) -1- (P(rh > O) lz) #.

Thus, the distribution of 37/is identical to the distribution of the move sequences of model 2.
The required result follows by taking expectations. [3

We summarize the above reductions with the following theorem.
THEOREM 4.15. The expected completion time ofmodel is less than or equal to that of

model 4.

5. Point-to-point transmission. As mentioned before, this protocol consists of two sub-
protocols: The upward direction subprotocol from the initiator of the message u to a common
ancestor w of u and the destination v and the downward direction subprotocol from w to v.
However, in order to conduct these protocols the network should first execute a preparation
protocol. This protocol is executed only once.

5.1. Preparation. This protocol is executed during the set-up phase (2) before starting
any point-to-point transmission. In 2 we described how the BFS tree is constructed; here we
describe how additional information the BFS parent, and the BFS descendants (and on which
subtree each descendant belongs), are conveyed to each node.

The BFS protocol of 2 enables each node to know the ID of its BFS parent and its
depth (distance from the root). The descendant information can be found once the BFS tree
is constructed: As soon as a node joins the BFS tree, it sends its ID to the root via its parent.
During the BFS protocol, each node can record its parent; thus, to send a message to the root
it is sufficient to send it to that parent and ask it to send the message further. Whenever a
node receives such a message from one of its children, it adds the ID of the originator of the
message to the list of IDs of descendants. Conveying all the descendant information requires
the collection of n messages, i.e., O((n + + D) log A) O(n log n) time. To record
all this information each node must have sufficient storage to keep O (n) IDs.

To save space (and time) we propose the following scheme [13]: After the BFS tree is
completed, a depth first search (DFS) is conducted on the BFS tree. Henceforth, each node
uses its DFS number as its address. Since the DFS numbers of the descendants of a node
constitute a consecutive range, it suffices that each node remember the DFS number of each
of its children and the maximum DFS number of all the descendants. Thus, each node v needs
only O(deg(v) log n) bits of local memory.

Using a token, DFS can be implemented in O(n) time: First the token conducts a DFS of
the graph, each node sends the token to the largest neighbor not yet in the DFS tree, and when
all the neighbors are exhausted it is sent to the parent. Whenever a node sends the token, it
broadcasts its own ID together with the ID of its BFS parent. Thus all the neighbors of a node
know when the node joins the DFS tree, and the token is not sent to nodes already in the tree

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 885

(except when the DFS backtracks from a child to its parent). There are no conflicts, since only
the node holding the token can transmit; also the entire traversal requires 2n 2 time, since
the token traverses once in each direction of each tree edge.

After the first DFS is completed, each node knows the parents of all its neighbors; in
particular it knows which of its neighbors are its BFS children. Thus we can conduct a second
DFS traversal this time on the BFS tree. This traversal also costs O(n) and after it is completed
each node knows the DFS number of all its BFS children and its maximum descendant. Note
that we required that each node knows the IDs of all its neighbors only in order to conduct the
first DFS traversal.

5.2. The upward subprotocol. This protocol is essentially identical to the collection
protocol, except that messages do not go all the way to the root but only to the least common
ancestor of the originator and the destination which are included in the message. When the
message reaches a BFS tree ancestor of the destination, the downward protocol is invoked.

5.3. The downward subprotocol. This protocol is also very similar to the collection
protocol. The messages are prepended with the ID of their final destination. Every node sends
messages destinated to its BFS children and keeps a buffer of unacknowledged downgoing
messages. Here we also use Decay. On each phase a message is sent, according to that
protocol. Messages are resent until an acknowledgment is received. A node w receiving a
message destinated to u processes it only if u is a BFS-tree descendant of w. To process a
message, w acknowledges it, and if w u it is put on w’s downgoing buffer.

5.4. Performance analysis. The setup phase requires O (n + D log A) time after which
passing k messages requires an average of O ((k + D) log A time. When k -+ x the average
time per message is O (log A).

6. Broadcast. To broadcast a message a node first sends the message to the root using
the collection subprotocol of 4. Then the message is sent to all the nodes of the network
using the distribution subprotocol to be described.

In the distribution protocol every message has several destinations, therefore, the ac-
knowledgment mechanism of 3 can no longer be used. In principle the message can be sent
using the BFS protocol. However, each message would require 2D log A log n time to reach
all the nodes with probability e. A better idea is to use pipelining: Send the + st message
before the th one reaches its destination.

The protocol consists of superphases each consisting of 4 log A log n time slots (we allow
an error of e l/n2). At superphase the root sends the tth message and all the nodes of
level repeatedly send the t-ith message (using the Decay protocol 2 log n times).

Let v be a node. of level and a superphase in which the nodes of level send the
message m. By property (2) of Decay, in each invocation of Decay, there is probability >
that v receives a message. Since there can be no interference by messages sent from different
levels (2.2), if v receives any message it must be from level and since all the nodes
of that level send the same message, with probability > v receives the message m. Since
a superphase consists of 2 log n invocations of Decay there is probability >_ 1/n2 that
v receives m during the superphase. The probability that rn is passed successfully to all the
nodes of the network is > 1/n.

For each message the above protocol may fail with finite probability. If the number of
messages is unbounded then eventually the protocol will fail. This failure can be prevented
by changing the protocol as follows:

The root appends consecutive numbers to the messages. Every node v
examines these numbers and when v encounters a gap it realizes that it did

886 REUVEN BAR-YEHUDA, AMOS ISRAELI, AND ALON ITAI

not receive a message. Thereupon, v sends a message to the root requesting
it to resend the missing message.

Since, on the average, no more than 1In of the messages will be resent, the extra
load on the network is a factor -i=o(1/n i) n/(n 1). Moreover, the time spent in
each layer is O(log A log n); thus the effective rate in which messages leave the root is
O ((n / (n 1)) log A log n) O (log A log n). Also, each message requires an average of
O(D log A log n) time slots to reach all the nodes.

The previous change causes another problem: The message numbers are unbounded. An
additional change can correct this problem. The messages are numbered mod 3n2. After
message number n2 is received each node sends an acknowledgment to the root. The expected
time that all these messages reach the root is O((n 4- D)log A). Thus the expected time
that all the acknowledgments reach the root is O((D log n 4- n) log A). Let c be the implied
constant in the above expression. If the root does not receive acknowledgments from all the
nodes by 2c((D log n 4- n) log A) time slots after it sent the nZth message it resends the last
n 2 messages. It can be shown that the probability that the nZth message has to be resent is less
than g, thus this last correction increases the load of the system by at most a factor of 2.

7. Ranking. Our protocols can be used for additional problems, such as ranking in ex-
pected time O (n log n log A):

The problem:
Given n processors with distinct IDs idl idn, renumber the processors,
id’ id’ such that < id; < n and id; < idj if and only if idi < idj.

The protocol:
Use point-to-point communication to send all the IDs to the root. It calcu-
lates the destination of each of the new IDs and sends them to the nodes.

There is a total of 2n 2 messages, which require O (n log A) time (not including the setup
costs of 2).

8. Remarks and open problems. (1) If n is not known but only an upper bound N, we
can still find a BFS tree with probability e in expected time O(D log(N/e) log A). This

setup time is sufficient for k-broadcast. However, point-to-point transmissions still require
O(n + D log(N/e) log A) time to acquire the descendant information.

(2) If there are no IDs then the processors can randomly choose sufficiently long IDs such
that with probability t all the IDs are distinct.

(3) Suppose that we change the model such that in case of a conflict the receiver may
get one of the messages. In this model our deterministic acknowledgment mechanism is no

longer valid. A more complicated, less reliable and slower protocol also exists for this case.
(4) In some "real life" situations processors can detect that a conflict occurred. We have

not postulated this ability since we do not know how to use it,

(5) Our protocols route messages through a spanning tree causing congestion at the root.
Are there efficient communication protocols that avoid this problem?

Acknowledgments. it is a pleasure to thank Shay Kutten and Moshe Sidi for helpful
discussions and an anonymous referee for suggesting using DFS numbers to improve the
memory requirements.

REFERENCES

N. ALON, A. BAR-NOY, N. LINIAL, AND D. PELEG, A lower boundfor radio broadcast, J. Comput. System Sci.,
43 (1991), pp. 188-210; also in STOC 1989.

MULTIPLE COMMUNICATION IN MULTIHOP RADIO NETWORKS 887

[2] Y. BIRK, Concurrent communication among multi-transceiver stations over shared media, Ph.D. thesis, Tech.
Report CSL-TR-87-321, Stanford University, Stanford, CA.

[3] R. BAR-YEHUDA, O. GOLDREICH, AND A. ITAI, On the time-complexity of broadcast in radio networks: An
exponential gap between determinism and randomization, J. Comput. System Sci., 45 (1992), pp. 104-
126; also in PODC 1987.

[4] ,Efficient emulation of single-hop radio network with collision detection on multi-hop radio network
with no collision detection, Distributed Computing, 5 (1991), pp. 67-71.

[5] E J. BURKE, The output ofa queuing system, Oper. Res., 4 (1956), pp. 699-704.
[6] J. CAPETANAKIS, GeneralizedTDMA: The multi-accessing tree protocol, IEEE Trans. Comm., COM-27 (1979),

pp. 1479-1484.
[7] I. CHLAMTAC AND S. KUTTEN, On broadcasting in radio networks-problem analysis andprotocol design, IEEE

Trans. Comm., COM-33 (1985).
[8] L. CHLAMTAC AND O. WEINSTEIN, The wave expansion approach to broadcasting in multi-hop radio networks,

INFOROM (1987), pp. 874-881.
[9] DIGITAL--INTEL--XEROX, The Ethernet data link layer and physical layer specification 1.0, Sept., 1980.
10] R. GALLAGER, A perspective on multiaccess channels, IEEE Trans. Inform. Theory, IT-31 (1985), pp. 124-142.
11 M. HOFRI, A feedback-less distributed broadcast algorithm for multihop radio networks with time-varying

structure, 2nd ACM Intr. MCPR Workshop, Rome, May, 1987. Also available as TR-451, Computer
Science Dept., Technion, Haifa, Israel, March, 1987.

12] Hsu AND P. J. BURKE, Behavior of tandem buffers with geometric input and Markovian output, IEEE Trans.
Comm., COM-24 (1976), pp. 359-361.

13] A. ITAI AND M. RODEH, The multi-tree approach to reliability in distributed systems, Proc. 25 Symposium on

Foundations of Computer Science, Oct. 1984, pp. 137-147. Also in Inform. Comput., 79 (1988), pp.
43-59.

[14] L. KLEINROCK, Queueing Systems, Volume 1: Theory, John Wiley & Sons, New York, 1975.
15] D. STOYAN, Comparison Method for Queues and Other Stochastic Models, John Wiley & Sons, Inc., New

York, 1983.
[16] O. WEINSTEIN, The wave expansion approach to broadcasting in multihop radio networks, M. Sc. thesis,

Computer Science Dept., Technion, Haifa, Israel, 1987.
17] D.E. WILLARD, Log-logarithmic selection resolution protocols in a multiple access channel, SIAM J. Comput.,

15 (1986), pp. 468-477.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 889-912, October 1993

() 1993 Society for Industrial and Applied Mathematics
001

FINDING A SMALLEST AUGMENTATION TO BICONNECT A GRAPH*
TSAN-SHENG HSU AriD VIJAYA RAMACHANDRANt

Abstract. The problem of finding a minimum number of edges whose addition biconnects an undirected graph
is considered. This problem has been studied by several other researchers, two of whom presented a linear-time
algorithm for this problem in an earlier volume of this journal. However, that algorithm contains an error that
is exposed in this paper. A corrected linear-time algorithm for this problem, as well as a new efficient parallel
algorithm, are presented. The parallel algorithm runs in O (log n) time with a linear number of processors on an
EREW PRAM, where n is the number of vertices in the input graph.

Key words, algorithm, linear time, graph augmentation, biconnected graph, parallel computation, poly-log time,
EREW PRAM

AMS subject classifications. 68Q20, 68R10, 94C15, 05C40

1. Introduction. The problem of augmenting a graph to reach a certain connectivity
requirement by adding edges has important applications in network reliability [6], [12], [21]
and in fault-tolerant computing. One version of the augmentation problem is to augment the
input graph to reach a given connectivity requirement by adding a smallest set of edges. We
refer to this problem as the smallest augmentation problem.

The following results on solving the smallest augmentation problem on an undirected
graph are known to satisfy a vertex connectivity requirement. Eswaran and Tarjan [4] gave
a lower bound on the smallest number of edges for biconnectivity augmentation and proved
that the lower bound can be achieved. Rosenthal and Goldner 18] developed a linear-time
sequential algorithm for finding a smallest augmentation to biconnect a graph. Watanabe and
Nakamura [26], [28] gave an O(n(n + m)2)-time sequential algorithm for finding a smallest
augmentation to triconnect a graph with n vertices and m edges. Hsu and Ramachandran 11
developed a linear-time algorithm for this problem. There is no polynomial-time algorithm
known for finding a smallest augmentation to k-vertex-connect a general graph for k > 3.
There is also no efficient parallel algorithm known to find a smallest augmentation to k-vertex-
connect a graph for k > 2.

For the problem of finding a smallest augmentation for a graph to reach a given edge con-
nectivity property, several polynomial-time algorithms on undirected graphs, directed graphs,
and mixed graphs are known. These results can be found in Cai and Sun 1], Eswaran and Tar-
jan [4], Frank [5], Gusfield [8], Kajitani and Ueno 13], Naor, Gusfield, and Martel 15], Ueno,
Kajitani, and Wada [24], Watanabe [25], and Watanabe and Nakamura [27]. Efficient parallel
algorithms for finding smallest augmentations for 2-edge connectivity, strong connectivity,
and making a mixed graph strongly orientable can be found in Soroker [20].

Another version of the problem is to augment a graph, with a weight assigned to each
edge, to meet a connectivity requirement by using a set of edges with a minimum total cost.
Several related problems have been proved to be NP-complete. These results can be found
in Eswaran and Tarjan [4], Frank [5], Frederickson and Ja’Ja’ [7], Watanabe and Nakamura
[26], and Watanabe, Narita, and Nakamura [29].

In this paper we present an efficient parallel algorithm for finding a smallest augmentation
to biconnect an undirected graph. In addition, we have discovered an error in the sequential

*Received by the editors March 4, 1991; accepted for publication (in revised form) April 15, 1992. This work
was supported in part by National Science Foundation grant CCR-89-10707. A preliminary version of thi.s paper
appears in Proceedings of the Second Annual International Symposium on Algorithms, Lecture Notes in Computer
Science 557, Springer-Verlag, Berlin, 1991, pp. 326-335.

Department of Computer Sciences, University of Texas, Austin, Texas 78712.

889

890 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

algorithm of Rosenthal and Goldner [18]. We first give a corrected linear-time sequential
algorithm for the problem. Our efficient parallel algorithm is based on this corrected sequential
algorithm. However, we have to use several insights into the problem in order to derive the
parallel algorithm. The algorithm runs in O (log2 n) time with a linear number of processors
on an EREW PRAM, where n is the number of vertices in the input graph. (For more on
PRAM models and PRAM algorithms see Karp and Ramachandran [14].)

The algorithmic notation used is from Tarjan [22] and Ramachandran [17]. We enclose
comments between "{," and ",}." We use the following pfor statement for executing a loop
in parallel,

pfor iterator --+ statement list rofp

The effect of this statement is to perform the statement list in parallel for each value of the
iterator. We use the following form for an if statement.

if conditionl --+ statement list1

condition2 -- statement list2

conditionn -- statement listn

fi
The effect of this statement is to perform the first statement list whose corresponding condition
is true. If no condition is true, none of the statement lists is evaluated. Parameters are called
by value unless they are declared with the key word modifies, in which case they are called
by value and result.

2. Definitions. Let G (V, E) be an undirected graph with vertex set V and edge set
E. Let {Ei]l < <_ k} be a partition of E into a set of k disjoint subsets such that two edges el
and e2 are in the same partition if and only if there is a simple cycle in G containing el and
or el is equal to e2. A vertex is called an isolated vertex if it is not adjacent to any other vertex.
Let q be the number of isolated vertices in G. Let V/ll _< < k + q be a collection of sets
of vertices, where V/is the set of vertices in Ei for each i, _< _< k, and Vi+ contains only
the ith isolated vertex for each i, _< _< q. A vertex v is a cutpoint of a graph G if v appears
in more than one vertex set Vi. G is biconnected if it has at least three vertices and contains
no cutpoint or isolated vertex. The subgraph Gi (Vi, Ei) Vi, <_ <_ k, is a biconnected
component of G if V/contains more than two vertices. Note that Ei) ti, k < <_ k + q,
since V/contains anisolated vertex. The subgraph Gi (Vi, Ei) i, < <_ k + q, is called
a block of G. Given an undirected graph G, we can define its block graph blk(G) as follows.
Each block and each cutpoint of G is represented by a vertex of blk(G). The vertices of
blk(G) that represent blocks are called b-vertices and those representing cutpoints are called
c-vertices. Two vertices u and v of blk(G) are adjacent if and only if u is a c-vertex, v is a
b-vertex, and the corresponding cutpoint of u is contained in the corresponding block of v or
vice versa. It is well known that blk(G) is a forest and that if G is connected, blk(G) is a tree.
If blk(G) is a tree, it is also called a block tree.

Let nc be the number of c-vertices in blk(G). A vertex vi represents a c-vertex of blk(G)
and di is the degree of Vi. We assume that di >_ di+l i, < < nc, throughout the discussion.
For convenience we define ai di 1. If blk(G) is a tree, let T be the rooted tree obtained
from blk(G) by rooting blk(G) at the b-vertex that connects to Vl and is on the path from Vl
to v2. We use T/ to represent the subtree of T rooted at vi for each i, < <_ nc, and we
use T to represent the subtree of T after deleting T1. Let li be the number of leaves of T/

BICONNECTIVITY AUGMENTATION 891

i, <_ < nc. We also use To to represent the subtree rooted at a vertex v of blk(G). The
subgraph of T induced by deleting the vertex v is denoted by T v.

In a forest a vertex with degree is a leaf. Let be the number of leaves in blk(G). For
a graph G’ we use l’ to denote the number of degree-1 vertices in blk(G’). Let d(v) be the
degree of the vertex v in blk(G), and let d be the largest degree of all c-vertices in blk(G).

In figures we use a rectangle to represent a b-vertex and a circle to represent a c-vertex.
A line denotes an edge. A path in the block graph is represented by a thick dashed line, and a
collection of subtrees is represented by a polygon. These notations are shown in Fig. 1.

C-vertex

/ b-vertex
and the root of the tree

ab
and

collections of subtrees

FIG. 1. Notationsforfigures.

We also need the following definitions. Part of Definition 2.4 is from [18].
DEFINITION 2.1. A vertex v of blk(G) is called massive if and only if v is a c-vertex

with d(v) > [//2]. A vertex v of blk(G) is critical if and only if v is a c-vertex with
d(v) [//2]. The graph blk(G) is critical if and only if there exists a critical c-vertex in
blk(G).

DEFINITION 2.2. A block graph blk(G) is balanced if and only if G is connected and
without any massive c-vertex. (Note that blk(G) could have a critical c-vertex.) A graph G is
balanced if and only if blk(G) is balanced.

DEFINITION 2.3. (leaf-connecting condition). Two leaves ul and u2 of blk(G) satisfy the
leaf-connecting condition if and only if u and u2 are in the same tree of blk(G) and the path
P from u to u2 in blk(G) contains either (1) two vertices of degree more than 2 or (2) one
b-vertex of degree more than 3.

DEFINITION 2.4. Let v be a c-vertex of blk(G). We call those components of blk(G) v
that contain only one vertex of degree in blk(G) v-chains [18]. A degree-1 vertex ofblk(G)
in a v-chain is called a v-chain leaf.

3. Main lemmas. In this section we present results that will be crucial in the development
of our efficient parallel algorithm.

LEMMA 3.1. lfblk(G) has more than two c-vertices, then a / a2 -+- a3 < 1.

Proof. Note that v is a c-vertex with the largest degree. Vertex v2 is a c-vertex with
the largest degree among all c-vertices other than v. Vertex v3 is a c-vertex with the largest
degree among all c-vertices other than vl and v2. Recall that if blk(G) is a tree, we root blk(G)
at the b-vertex b that connects to v and is on the path from v to v2. Let the rooted tree be
T. Recall that T/is the subtree of T rooted at vi and li is the number of leaves in T/. T’ is the
subtree obtained from T by removing T. Let lx be the number of leaves in T’.

892 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

Case 1. If v3 is in T1, then > al- + a3 and lx >_ a2. This implies -k-Ix >_
al +a2-+-a3- 1.

Case 2. If v3 is in T’ but not in T2, then 11 > al and lx > a2 -k- a3. Thus ll + lx >
al + a2 + a3.

Case 3. If v3 is in T2, then 11 > al and lx > 12 > a2- + a3. This implies --11 + lx >_
al d-a2 +a3- 1.

Suppose that blk(G) is a forest and Vl, v2, and v3 are in different trees T1, T2, and T3,
respectively. If vi is the only c-vertex in T/, then ai li 1. Otherwise, ai <_ li. Thus

al + a2 -+- a3 _< 11 + 12 q-- 13 _< I. It is easy to prove the lemma for the case in which blk(G) is
a forest and any two of Vl, 1)2, and 1) are in the same tree. fq

COROLLARY 3.2. Ifblk(G) has more than two c-vertices, then a3 <_ /+l

/+1Proof. From the definition we know that a >_ a2 >_ a3. If a3 > -5-, then a >_
lq-1 l+l

a2 >_ a3 > -3-, which implies a + a2 + a3 > -- * 3 + 1. This is a contradiction to
Lemma 3.1. [3

COROLLARY 3.3. There can be at most one massive vertex in blk(G).
Proof The corollary is obviously true if there are fewer than two c-vertices in blk(G).

If blk(G) has only two c-vertices, 1)1 and 1)2, there is a b-vertex b* in blk(G) that connects to
both vl and v. We root blk(G) at b*. Since there are only two c-vertices, the children of vl
and v2 are all leaves. We know that al and a2 are equal to the number of children of vl and v2,

If blk(G)respectively; thus al + a2 I. Suppose Vl is massive; then al > . Thus a2 < 7.
has more than two c-vertices and 1)1 and 1)2 are massive, then al + a2 > 1. Since a3 > 1, we
have derived a contradiction to Lemma 3.1. [3

COROLLARY 3.4. If there is a massive vertex in blk(G), then there is no critical vertex in
blk(G).

Proof. The proof of Corollary 3.3 also applies here. [3

COROLLARY 3.5. There can be at most two critical vertices in blk(G) if > 2.

Proof. The corollary is obviously true if blk(G) has only one or two c-vertices. Assume
/+1that blk(G) has more than two c-vertices. From Corollary 3.2, we know that a3 < -3-" Since

l+l if > 2, we know that v3 cannot be critical if > 2.F-l >_ >
Before introducing the next lemma, we have to study properties for updating the block tree.

The following fact for obtaining blk(G’) from blk(G) is given in Rosenthal and
Goldner 18].

FACT 3.6. Given a graph G and its block tree blk(G), adding an edge between two leaves
u and v of blk(G) creates a cycle C. Let G’ be the graph obtained by adding an edge between
u’ and v’ in G, where u and v are non-cutpoint vertices in the blocks represented by u and
v, respectively. Thefollowing relations hold between blk(G) and blk(G’).

(1) Vertices and edges of blk(G) that are not in the cycle C remain the same in blk(G’).
(2) All b-vertices in blk(G) that are in the cycle C contract to a single b-vertexb’ in

blk(G’).
(3) Any c-vertex in C with degree equal to 2 is eliminated.
(4) A c-vertex x in C with degree greater than 2 remains in blk(G’) with edges incident

on vertices not in the cycle. The vertex x also attaches to the b-vertex,.b’ in blk(G).
An example of forming blk(G’) from blk(G) is illustrated in Fig. 2.
LEMMA 3.7. Let U andu be two leaves of blk(G) satisfying the leaf-connecting condition

(Definition 2.3). Let and be noncutpoint vertices in blocks ofG represented by U and u2,

respectively. Let G’ be the graph obtainedfrom G by adding an edge between ot and , and
let P represent the path between u and u2 in blk(G). Thefollowing three conditions are true.

(1)/’ =/-2.

BICONNECTIVITY AUGMENTATION 893

The graph G.

The graph G’ obtained from G

by adding edge between vertices and 10.

btk(G) blidG’

FIG. 2. An example ofobtaining blk(G’)from blk(G). Vertices ofG and G’ circled with a dotted line are in the
same block. For example, vertices 1, 2, and 3 of G are in block A. A vertex that appears in more than one block is

a cutpoint. For example, vertex 3 appears in block A and B, and thus it is a cutpoint. Vertices B, C, D, and E in

blk(G) are in a cycle ifwe add an edge between C and D. The cycle contracts into a new b-vertex X in blk(G’). The
degree ofa c-vertex in the cycle decreases by in blk(GI) if the original degree is more than 2. A degree-2 c-vertex

in the cycle is eliminated in blk(G1).

(2) If v is a cutpoint in P with degree greater than 2 in blk(G), then the degree of v
decreases by in blk(G’).

(3) If v is a cutpoint in P with degree equal t’o 2, then v is eliminated in blk(G’).
Proof. Parts (2) and (3) of the lemma follow from parts (3) and (4) of Fact 3.6. We now

prove part (1) of the lemma.
From part (2) ofFact 3.6 we know that every vertex ofG that is in a component represented

by a b-vertex in P is in a biconnected component Q of G’. Let Q be represented by a b-vertex
b in blk(G’).

Case 1. Suppose that part (1) of the leaf-connecting condition (Definition 2.3) holds. Let
w and y be two vertices of blk(G) having degree more than 2 in blk(G), and let blk(G’) be
rooted at b. In blk(G) let w’ be a vertex adjacent to w and let y’ be a vertex adjacent to y,
with neither w’ nor y’ in P. The vertex b has at least two children, w’ and y’, in blk(G’) and
hence cannot be a leaf. Since leaves ul and u2 are eliminated in blk(G’) and no new leaf is
created, l’ 2.

Case 2. Suppose that part (2) of the leaf-connecting condition (Definition 2.3) holds. Let
w be a b-vertex of degree more than 3. We can find at least two c-vertices, y’ and z’, that are
connected to w but that are not in P. The same reasoning used in case can be followed to

prove this case. [3

4. The algorithm. The original linear-time sequential algorithm in Rosenthal and Gold-
ner [18] consists of three stages. However, we have discovered an error in stage 3 of the
algorithm in [18]. We present a corrected version of that stage of the algorithm. Our parallel
algorithm follows the structure of the corrected sequential algorithm. The first two stages
are easy to parallelize, and we describe them in 4.1 and 4.2. However, stage 3 is highly
sequential. Most of our discussion is on a corrected algorithm for stage 3 and its parallelization
(4.3).

894 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

We first state a lower bound on the number of edges needed to augment a graph to reach
biconnectivity.

THEOREM 4.1 (Lower bound onthe augmentation number (Eswaran and Tarjan [4])). Let
G be an undirected graph with h connected components, and let q be the number of isolated
vertices in blk(G). Then at least max{d + h 2, + q} edges are needed to biconnect G
ifq+l > l.

4.1. Stage 1.
THEOREM 4.2 (Rosenthal and Goldner [18]). Let G be an undirected graph with h

connected components. We can connect G by adding h edges, which we may choose
to be incident on noncutpoint vertices in blocks corresponding to leaves or isolated vertices
in blk(G).

Given blk(G), stage is easy to optimally parallelize in time O(logn) on an EREW
PRAM by using the Euler tour technique described in Tarjan and Vishkin [23]. The block
graph can be updated by creating a new b-vertex b and two new c-vertices co and cw for each
new edge (v, w). We create edges from b to co and b to cw. Let bo and b be the two b-vertices
in the block graph whose corresponding blocks contain v and w, respectively. We create edges
from co to bo and from cw to bw.

4.2. Stage 2.
THEOREM 4.3 (Rosenthal and Goldner [18]). Let G be connected and let v* be a massive

vertex in G. Let d . Then we can find at least 26 + 2 v*-chains. Let Q be the
set of v-chain leaves. By adding 2k, k < 6, edges to connect 2k + vertices of Q, we can
reduce both the degree ofthe massive vertex and the number of leaves in the block tree by k.

COROLLARY 4.4 (Rosenthal and Goldner 18]). Let G be connectedand let v* be a massive
vertex in G. Let d], and let Q be the set of v*-chain leaves. By adding 26 edges
to connect 26 + vertices of Q, we can obtain a balanced block tree.

In stage 2, v*-chain leaves can be found by first finding the number of leaves in each
subtree rooted at a child of v*. A leaf is in a v*-chain if and only if it is in a one-leaf subtree
rooted at a child of v*. Let Q be the set of vertices (excluding v*) on cycles created by adding
edges. The new block graph can be updated by merging vertices in Q into a single b-vertex
b. Vertices b and v* are connected by a new edge. These procedures can be done optimally
in time O (log n) on an EREW PRAM.

4.3. Stage 3. In this stage we have to deal with a graph G for which blk(G) is balanced.
The idea is to add an edge between two leaves y and z under the conditions that the path P
between y and z passes through all critical vertices and the new block tree has two fewer leaves
if blk(G) has more than three leaves. Thus the degree of any critical vertex decreases by 1,
and the tree remains balanced.

In Rosenthal and Goldner 18] blk(G) is rooted at a b-vertex b*. A path P is found that
contains two leaves y and z such that if blk(G) contains two critical vertices v and w, P
contains both of them. If blk(G) contains fewer than two critical vertices, P contains b* and
a c-vertex with degree d (recall that d is the maximum degree of any c-vertex). It is possible
that in the case in which blk(G) is balanced with more than three leaves and less than two
critical vertices, P contains only one vertex of degree more than 2. If we add an edge between
the two end points of P, it is possible that the new block tree has only one fewer leaf. An
example of this is shown in Fig. 3. Thus the lower bound cannot be achieved by this method.

We now give a corrected version of stage 3 that runs in linear time. Our method is based
on the proof of the tight bound given in Eswaran and Tarjan [4], but we add an additional step
to handle the case d 2 (that is, al 1); the analysis of this case is omitted in [4]. We
present our revised version of stage 3 below.

BICONNECTIVITY AUGMENTATION 895

FIG. 3. A counterexample for the linear-time sequential algorithm given by Rosenthal and Goldner 18]. The

left tree is blk(G) rooted at B. Vertex A is the c-vertex with the largest degree. The middle tree is the new block tree

after two noncutpoint vertices ofG in the corresponding blocks represented by C and D are connected. The number

ofleaves decreases by 1. The right tree is the new block tree after two noncutpoint vertices ofG in the corresponding
blocks represented by C and E are connected. The number ofleaves decreases by 2. The pair C and D can be chosen
by the algorithm given by 18], and the pair C and E can be chosen to reduce the number of leaves by 2.

graph function seq_bca(graph G);
{, G has at least three vertices, and blk(G) is balanced; is the number of degree-1 vertices
in blk(G); al + is the largest degree of all c-vertices in blk(G). ,}

tree T; vertex v, w, y, z, o,/3;
let T be blk(G) rooted at an arbitrary b-vertex;
dol>2 --+

if al --+ if 2 --+ let v be any c-vertex in T; w := v
> 2---

1. let v be a b-vertex with degree greater than 2; {, Such a vertex
must exist if > 2 and a 1. ,}
w := v; {, This is the default value for w. ,}
if a b-vertex in T v with degree greater than 2

2. let w be a b-vertex in T v with degree greater than 2
fi

let v be a c-vertex with the largest degree in T;
if the largest degree for c-vertices in T v is greater than 2 --+

4. let w be a c-vertex in T v with the largest degree
the largest degree for c-vertices in T v is less than 3

or there is no c-vertex in T v --+
w := v; {, This is the default value for w. ,}
if 3 a b-vertex in T with degree greater than 2 --+

5. let w be a b-vertex in T with degree greater than 2
fi

fi
fi;

6. find two leaves y and z such that the path between them passes through v and w;
find a noncutpoint vertex ot in the corresponding block of G represented by y;
find a noncutpoint vertex/3 in the corresponding block of G represented by z;
add an edge between ot and/; update the block graph T

896 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

od;
return G

end seq_bca;

CLAIM 4.5. If blk(G) is balanced, we can biconnect G by adding [] edges by using
algorithm seq_bca.

Proof. We first discuss the case for which blk(G) has more than three leaves. In this case
a critical vertex must have degree more than 2.

Case 1. If blk(G) has two critical vertices v and w, then algorithm seq_bca finds them in
steps and 2 or in steps 3 and 4, respectively.

Case 2. If blk(G) has only one critical vertex v, algorithm seq_bca finds it in step or
step 3. Because blk(G) is balanced and > 3, there must exist another vertex w with degree
more than 2. Otherwise, v is massive. Algorithm seq_bca finds w in one of the steps 1, 2, 4,
or 5.

Case 3. If blk(G) has no critical vertex, then either there is only one vertex (which must
be a b-vertex) with degree more than 3 or there are two vertices with degree more than 2.
If there is only one vertex v with degree more than 3, algorithm seq_bca finds v in step 1.
Suppose there are two vertices v and w with degree more than 2 in the block tree. If v and w
are both c-vertices, algorithm seq_bca finds them in steps 3 and 4, respectively. If v and w are
both b-vertices, algorithm seq_bca finds them in steps and 2, respectively. If one of v and
w is a c-vertex and the other one is a b-vertex, algorithm seq_bca finds the c-vertex in step 3
and the b-vertex in step 5.

In all three cases we can find two vertices of degree more than 2 or a b-vertex of degree
more than 3. Thus by Lemma 3.7 the number of leaves in the new block tree reduces by two.
Because v and w are the possible critical vertices, we reduce the value of d by 1. Thus the
block tree remains balanced. Hence we can achieve the lower bound in Eswaran and Tarjan
[4] by the algorithm.

For the case of 3 we can reduce blk(G) to a new block tree with two leaves by picking
any pair of leaves in blk(G) and connecting them. We know that we can reduce a block tree
of two leaves into a single vertex by connecting the two leaves. Thus the claim is true. [3

CLAIM 4.6. Algorithm seq_bca runs in O(n + m) time.

Proof. The block tree can be built in O (n / m) time. The total number of vertices in
the block tree is O (n). A linear-time bucket-sort routine is used to sort degrees of c-vertices
and b-vertices. The data structure in Rosenthal and Goldner 18] can be used to keep track
of current degrees of vertices in blk(G). Vertices in blk(G) with the same degree are kept in
a linked list. An array is used to store the first element of each linked list. A vertex of the
largest degree can be found in constant time, and the position, in the array of the linked list, of
a vertex in the path found in step 6 can also be updated in constant time. To implement step
6, algorithms in Harel and Tarjan 10] and Schieber and Vishkin 19] are used to find the path
P between two vertices v and w in O(1P l) time. By Fact 3.6 the number of times a vertex
is visited is no more than its degree. Since the summation of degrees of all vertices in a tree
with n vertices is O (n), the claim is true. D

In the rest of this section we describe an efficient parallel algorithm for stage 3. Recall
that the sequential algorithm adds one edge at a time and keeps adding edges until the block
tree becomes a single vertex. In our parallel algorithm, however, we will find several pairs of
leaves such that the path between any such pair of leaves passes through all critical c-vertices,
if any. Thus the degrees of critical vertices in the new block tree decrease by the number of
edges added to the original block tree. These pairs also satisfy the leaf-connecting condition
(Definition 2.3), which guarantees that the number of leaves in the new block tree decreases

BICONNECTIVITY AUGMENTATION 897

by twice the number of edges added. The following lemma tells us that the addition of several
edges in parallel as outlined above is a valid strategy.

LEMMA 4.7. Let G be a graph whose block graph is balanced, and let G’ be the graph
obtainedfrom G by adding a set of k edges Jt {(s, q), (s2, t2) (s/, t)}. For each i,
0 < < k, let Gi be the graph obtainedfrom G by adding the set ofedges (Sl, t) (si, ti) }.

andLet s 0 <_ < k, be the b-vertices in blk(Gi) whose corresponding blocks contain si
and i <i <k inblk(Gi)passesthroughand ti, respectively. Ifthe path between Si+ ti+

and satisfy the leaf-connecting condition in Gi,all critical vertices in blk(Gi) and ifsi+ ti+
then blk(G’) remains balanced and the value ofthe lower bound given in Theorem 4.1 applied
to G is k less than the same lower bound applied to G.

Proof. We always obtain the same block graph for G, no matter, in what sequence we
choose to add these k edges, since there is a unique block graph for each graph G. Thus
blk(G’) blk(G). Since blk(Gi) ’v’i, < < k, is balanced, blk(G’) is balanced. We know
that the value of the lower bound given in Theorem 4.1 applied to G is less than the value
of the same lower bound applied to Gi-1 i, < < k, where Go G. Hence the value of
the lower bound given in Theorem 4.1 applied to G’ is k less than the value of the same lower
bound applied to G. [q

From Theorem 4.1 and Claim 4.5 we know that exactly edges must be added to bicon-
nect G if blk(G) is balanced. That is, we have to eliminate leaves during the computation.
Our parallel algorithm runs in stages with at least of the current leaves eliminated in parallel
time O (log n) with a linear number of processors during each stage. We call this subroutine
O (log n) times to complete the augmentation.

TRecall that ai -+- is equal to the degree of the th c-vertex vi and ai >_ ai+l. is the
subtree obtained from T by deleting the subtree rooted at v. Let Ui {u u is the leftmost
leaf of Ty, where y is a child of vi }. For example, the leaves in U are illustrated as shaded
rectangles in Fig. 4.

FIG. 4. Each shaded rectangle represents the leftmost leaf in a subtree rooted at a child of vl. Leaves in UI
consist of leftmost leaves in every subtree rooted at a child of v.

Depending on the degree distribution of vertices in the block tree, the parallel algorithm
for stage 3 is divided into two cases. In case 1, a > . We have a c-vertex with a high
degree. We pick the first min{a 1, [a3} leaves in U1 and call them W. Leaves in Wl
are matched with the first min{lW 1, [Uzl 1} leaves in U2. Unmatched leaves in W, if any,
are matched with all remaining leaves but one in T’ and, finally, are properly matched within
themselves, if necessary. In case 2, a < X. There is no c-vertex with a large degree. We show
that we can find a vertex u* with approximately the same number of leaves in each subtree

898 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

rooted at a child of u*. If u* is a b-vertex, a suitable number of leaves between subtrees rooted
at children of u* are matched. Otherwise, u* is a c-vertex and a suitable number of subtrees
rooted at children of u* are first merged into a single subtree rooted at u*. Then leaves in the
merged subtree are matched with leaves outside.

The algorithm first finds the matched pairs of leaves in each case. Then we add edges
between matched pairs of leaves and update the block tree at the end of each case. The block
tree and the sequence of cutpoints Vl vnc will not be changed during the execution of
each case.

We now describe the two cases in detail.

4.3.1. Case 1 (al > 1/4). We root the block tree at the b-vertex b*, which is adjacent to vl
and is on the path from vl to v2. Let v be the leftmost child of b*. We permute the children
of vl in nonincreasing order (from left to right) of the number of leaves in subtrees rooted at

them. We call this procedure tree normalization, and we call the resulting tree T. Figure 5
illustrates a normalized tree.

FIG. 5. A normalized tree. Vertex vl is a c-vertex with the largest degree. Vertex 1)2 is a c-vertex with a degree
greater than or equal to any other c-vertices in T Vl. We permute the children of Vl in nonincreasing order (from
left to right) of the number of leaves in subtrees rooted at them.

Recall that U1 is the set of leftmost leaves in subtrees rooted at children of v. We select
the first (from left to right) min{a 1, [a3} leaves from U and call the set W1. The
order of the leaves as specified in the original tree is preserved. There are four phases for this
case. In phases and 2, leaves in W are matched with leaves not in T. In phase 3, leaves
in W1 are matched with leaves in T excluding those in W1. In phase 4, the remaining leaves
in W1 are matched between themselves. The algorithm executes each phase in turn once until
there is no leaf in W1 left to be matched.

We now describe the four phases in detail. After the description we give the overall
parallel algorithm for case and prove that it eliminates a constant fraction of the leaves while

maintaining the lower bound described in Theorem 4.1.
Phase 1. All leaves but the rightmost one in U2 are matched with the rightmost a2

leaves of W1. The matched leaves are removed from W1. An example of the pairs of leaves
matched in phase is given in Fig. 6.

set of pairs of vertices function phase (modifies set of vertices W, U2);
set of pairs of vertices L; vertex u, v;
L := {}; {, L is the set of matched pairs. ,}
number leaves in W from right to left starting from 1;

BICONNECTIVITY AUGMENTATION 899

FIG. 6. Pairs of matched leaves found in phase of case are connected by dotted lines. W1 consists of the

leftmost leaves from the first min{al 1, -] a3} subtrees rooted at children of Vl. All of the leftmost leaves in
subtrees rooted at children of v2 are in the set U2, and all except the rightmost leaf in U2 are matched (ifpossible).

number leaves in U2 from left to right starting from 1;
k := min{IU21 1, IWll};
pfori k --+

u := the th leaf in W1; remove u from W1;
v := the ith leaf in U2; remove v from U2;
L := L U {(u, v)}

rofp;
return L

end phase 1;

Phase 2. All remaining leaves except one in T’ are matched with the rightmost leaves of
W1, and matched leaves are removed from W1. An example of the pairs of leaves matched in
phase 2 is given in Fig. 7.

set of pairs of vertices function phase2(modifies set of vertices W, tree T’);
set of pairs of vertices L; vertex u, v;
L := {}; {, L is the set of matched pairs. ,}
number leaves in W from right to left starting from 1;
number leaves in T’ from left to right starting from 1;
k := min{the number of leaves in T’ minus 1, IWll};
pfor k --+

u := the ith leaf in W1; remove u from W1; v := the ith leaf in T’;
L := L t3 {(u, v)}

rofp;
return L

end phase2;

900 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

FIG. 7. Pairs ofmatched leavesfound in phase 2 of case are connected by dotted lines. Recall that T1 is the
subtree ofT rooted at vl. T is the subtree ofT obtained by deleting T. W consists ofthe leftmost leaves in thefirst
min{a 1, a3}-a2 + subtrees rooted at children ofv Leaves in WI are matched with all but the rightmost
leaf in T’.

Phase 3. Recall that T is the original block tree before phase 1, is the number of leaves in
T, vl is a c-vertex with the largest degree in T, T1 is the subtree of T rooted at Vl, 11 is the number
of leaves in T1, T’ is the tree obtained from T by removing T1, and U1 {u u is the leftmost
leaf of Ty, where y is a child of vl }. Note that there are min{al 1, a3} (l 11 1)
leaves remaining in W1. Leaves in W1 come from the first]Wll members (from left to right)
of U1. Let the set of vl-chain leaves in W1 be Q1. We denote by Q2 the set of leaves other
than the rightmost one of each subtree rooted at a child of Vl. (Note that Q1 N Q2 0.) In
this phase we match all leaves in Q1 (i.e., all vl-chain leaves in W1) with an equal number of
leaves in Q2. Leaves in W1 that are matched in phase 3 (Q1 and W1 fq Q2) are removed from
W1.

Claim 4.8 below shows that we can always find enough leaves in Q2 to match all leaves
in

CLAIM 4.8. Q21 >_ Qll ifl > 3.
Proof. If IQll 0, the claim is true. Let Qll > 0. Recall that there is only one

unmatched leaf s left in T after phase 2. Let T* be the block tree obtained from T by adding
edges between matched pairs of leaves found in phase and phase 2. We root T* at the
b-vertex b* that is adjacent to vl and is on the path from vl to s. Let r be the number of
subtrees rooted at a child of vl in T* with more than one leaf. Let y be the number of Vl-chain
leaves not in Q1. The notations used in this proof are shown in Fig. 8.

The total number of leaves in T* is equal to Qll / Q2I -k- r + y + if IQll > 0. The
degree of vl in T* is equal to Qll + r + y + 1. Since T* is balanced (for a proof, see Claim
4.10 at the end of this section), vl is not massive and hence

IQII + r + y < [IQII + IQ21+ r + Y -k-1]2

Thus

21Qll-+-2r+2y< IQll+lQ2l+r+y+2=lQll-+-r+y-2< IQ21.

We know that r > 1; otherwise 131 is massive if > 3. It is also true that y > if IQll > 0.
Thus 1011 < 1021. [3

The procedure for phase 3 is described below.

BICONNECTIVITY AUGMENTATION 901

FIG. 8. Notations used in the proofofa claim used in phase 3 ofcase 1. The tree shown is T*, the updated block
tree obtained by adding edges between pairs ofmatched leavesfound in phase and phase 2. Q2 consists ofall but
the rightmost leaf in each subtree rooted at a child of Vl. Q1 consists of vl-chain leaves in W1 after phase 2. The
number ofsubtrees rooted at a child ofVl with more than one leaf is r. The number of vl-chain leaves not in Q1 is y.

set of pairs of vertices function phase3(modifies set of vertices Q, Q2);
set of pairs of vertices L; vertex u, v;
L := }; {, L is the set of matched pairs. ,}
number leaves in Q2 from right to left starting from 1;
number leaves in Q from to Qll in arbitrary order;
k := IQI;
pfor k

u := the ith leaf in Q2; remove u from Q2;
v := the th leaf in Q1; remove v from Q1;
L := L U {(u, v)}

rofp;
return L

end phase3;

Phase 4. The remaining leaves of W1 that are not matched during phase 3 are matched
within themselves. If the number of remaining leaves in W is odd, we match one of them
with the rightmost leaf in the subtree rooted at v. An example of the pairs of leaves matched
in phase 4 is given in Fig. 9.

set of pairs of vertices function phase4(modifies set of vertices W, tree T);
set of pairs of vertices L; vertex u, v;
L := }; {, L is the set of matched pairs. ,}
number leaves in W in arbitrary order from to W l;
k := Fl’----l;
pfor k --u := the (2 1)th leaf in W1; remove u from W1;

902 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

FIG. 9. Illustration ofphase 4 of case 1. The remaining leaves in W1 are matched within themselves.

if2 < [Wll --+ v := the (2 i)th leaf in W1; remove v from W1
2 > Wll --+ v := the rightmost leaf in the subtree rooted at v

fi;
L := L tO {(u, v)}

rofp;
return L

end phase4;

We now describe our algorithm for case 1.

set of pairs of vertices function case (tree T);
set of pairs of vertices L; set of vertices W, Q, Qe; vertex b*; tree T’;
root T at the b-vertex b* that is adjacent to v and is on the path from v to re;
let v be the leftmost child of b* in T;
permute the children of vl in nonincreasing order (from left to right)
of the number of leaves in subtrees rooted at them;
W1 := the first (from left to right) min{a 1, a3} leaves of U;
L := phasel(W1, Ue); {, L is the set of matched pairs. ,}
if W1 {} -- L "= L tO phase2(W1, T’) fi;

T’ := the subtree of T1 with the first WII subtrees rooted at children of v;
Q := the set of vl-chain leaves in Tv;
Qe := {ulu is a nonleftmost leaf of Ty, where Ty has more than leaf
and y is a child of vl in T’};
if W {} -- L := L to phase3(Q1, Qe) fi; W := W1 A Qe;
if W = {} -+ L := L tO phase4(W1, T) fi;
return L

end casel;

ifl>3.CLAIM 4.9. The number ofmatchedpairs k in case satisfies a3 > k > -Proof. Let z min{al 1, a3 }. If the procedure does not execute phases 3 and 4,
and a33 > for > 3 (Corollary 3.2), wewe match z pairs. Because a 1 >

BICONNECTIVITY AUGMENTATION 903

know that z > g if > 3. Otherwise, in the worst case we match only a2 pairs during
phase and phase 2. A pair of vertices matched during phase 3 or 4 might both be members
of W1. Thus

k > a2_ + Iz-a2 +] z+a2+l>-
2 2

if > 3 and k is an integer.If z a3, then k _> 1-2 which is greater than or equal to

[’’1 k >If z a 1, then k > Because a >
CLAIM 4.10. (1) Each pair of matched vertices found in function casel satisfies the

leaf-connecting condition (Definition 2.3).
(2) Let us place an edge between each matched pairfound infunction case sequentially

and update the block graph each time we add an edge. Critical vertices, if any, of the block
graph are on the path between the endpoints ofeach edge placed.

Proof. From part (4) of Fact 3.6, degrees of v and v2 decrease only by if an edge is
added between a pair of vertices matched. Let us consider paths between pairs of vertices
matched in each phase. We show that we can find at least two vertices with degree more than
2 in each path.

Phase 1. The path between each pair of matched vertices passes through v and v2, whose
degrees are at least 3.

Phase 2. The path between each pair of matched vertices passes through v and the root

b*, whose degrees are at least 3.
Phases 3 and 4. The path P between each pair of matched vertices passes through vl,

whose degree is at least 3. P also passes through a child u of v, where the subtree rooted at
u has more than one leaf. Thus the degree of u is greater than 2.
Thus the leaf-connecting condition (Definition 2.3) holds for each pair of matched vertices.

Because we add only min{a 1, [-] a3} edges during case 1, v3 and thus l) Vi such
that > 4, do not become critical. From the previous discussion, the path between each pair
of matched vertices passes through v and v2, the only two possible critical vertices, during
phase 1. We reduce degrees of possible critical vertices by by adding one new edge between
each pair of matched vertices. If we match any pair of vertices after phase 1, the degree of v2
is at most 2 and the degree of vl is at least 3. Thus Vl is the only possible critical vertex. The
path between each pair of matched vertices passes through Vl after phase 1. We reduce the
degree of the possible critical vertex v by one by adding one new edge between any pair of
matched vertices. Thus the claim is true.

COROLLARY 4.11. Let k be the number ofmatched pairsfound in function case 1. Let G’
be the resulting graph obtainedfrom the current graph G by adding a new edge between each
matchedpair ofleaves. The value ofthe lower bound given in Theorem 4.1 applied to G’ is k
less than the value ofthe same lower bound applied to G, and blk(G’) remains balanced. Let

31be the number of leaves in blk(G). The number ofleaves in blk(G’) is at most - ifl > 3.

Proof. From part (1) in Claim 4.10, the number of leaves in blk(G’) is 2k fewer than the
if/> 3 (Claim 4.9), the number of leaves in blk(G’)number of leaves in blk(G). Since k > g

31 if > 3 From part (2) in Claim 4.10, the block graph of each intermediate graphis at most -4-
remains balanced even if we place a new edge between each matched pair of leaves found in
function case sequentially. By Lemma 4.7 we know that the value of the lower bound given
in Theorem 4.1 applied to G’ is k less than the value of the same lower bound applied to G,
and blk(G’) remains balanced.

4.3.2. Case 2 (al < 1/4). In this case we take advantage of the fact that no c-vertex has a

large degree. Because there is no critical c-vertex, the algorithm can add at least 1/2 -al edges

904 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

between leaves that satisfy the leaf-connecting condition (Definition 2.3) without regard to
whether the path between them passes through a critical c-vertex. This gives a certain degree
of freedom for us to choose the matched pairs. We first root the block tree such that no subtree
other than the one rooted at the root has more than half of the total number of leaves.

Given any rooted tree T, we use lv to denote the number of leaves in the subtree rooted
at a vertex v. The following lemma shows that we can reroot T at a vertex u* such that no
subtree rooted at a child of u* has more than half of the total number of leaves.

butLEMMA 4.12. Given a rooted tree T, there exists a vertex u* in T such that lu, > ,
none of the subtrees rooted at children ofu* has more than leaves.

Proof. We permute children of each nonleaf vertex v from left to right in nonincreasing
order of the number of leaves in the subtrees rooted at them. Let us consider the leftmost path
P of the tree T. It is obvious that there exists such a vertex u* in P. [3

We root the block tree at u* and permute children of u* from left to right in nonincreasing
order of the number of leaves in subtrees rooted at them. Let the rooted tree be T. Let u i,
1 < < r, be the children (from left to right) of u*, and let xi be the number of leaves in
the subtree rooted at ui. Note that xi < for each i. There are two subcases, depending on
whether u* is a b-vertex or a c-vertex. We describe the two subcases in detail in the following
paragraphs.

Subcase 2.1 (u* is a b-vertex). We show that we can partition subtrees rooted at children
of the root into two sets evenly such that we can match leaves between the. two partitions. We
first give a claim to show how to perform the partition.

CLAIM 4.13. There exists p such that < p < r and > =1Xi > -.
ti < < r. ThusProof. We know that xi > xi+l i, < < r, and that xi <

3p, < p < r, such that

P p+l

xi and xi>.
i=1 i=I

Because Xi Xi+l Vi, 1 < r, we know that =1 xi > ().
The notations used for this subcase are illustrated in Fig. 10.

FIG. 10. Notations used in subcase 2.1. The number ofleaves in the subtree rootedat bl is X Wefind the largest
p such that the total number of leaves in the first p subtrees rooted at children of the root is greater than 1/4 but less
than or equal to . Leaves in the first p subtrees rooted at children of b* are in Z1. Z: consists of the rest of the
leaves in the tree.

COROLLARY 4.14. ;’-/P---1 xi <__ YL1 xi.

BICONNECTIVITY AUGMENTATION 905

We match min{(YiP=l Xi) 1, [] --al} leaves in subtrees Tui i, < < p, with leaves
outside them. From Claim 4.13 and Corollary 4.14 we know that the matching can be done.

COROLLARY 4.15. The number of matched pairs k in subcase 2.1 satisfies a >

k>1/4ifl>3.
set of pairs of vertices function case2_l(tree T);
{. is the number of leaves in T.

integer p; set of pairs of vertices L; set of vertices Z1, Z2; vertex u, v;
let ui be the ith (from left to right) child of the root;
let xi be the number of leaves in the subtree rooted at ui;

find the largest integer p such that Y=l xi < but +11.=
L := }; {* L is the set of matched pairs.
Z := the set of leaves in the subtrees rooted at ui i, < < p;
Z2 := the set of leaves in the subtrees rooted at ui, > p;
number leaves in Z in arbitrary order from to Z I;
number leaves in Z2 in arbitrary order from to Z21;
k := min{(y’= xi) l, [] al};
pfor k

u, v "= the th vertex in Z and Z2, respectively;
L := L t_J {(u, v)}

rofp;
return L

end case2_l;

CLAIM 4.16. Any matched pair found in function case2_l satisfies the leaf-connecting
condition (Definition 2.3) ill > 3.

Proof. Consider the path P between a pair of matched leaves u and v. Let u be a leaf in
a subtree rooted at a U <_ x <_ p, and let v be a leaf in a subtree rooted at a Uy, p < y <_ r.

Since we match min{IZ11 1, a leaves in Z with an equal number of leaves in Z and

Izl _< Izl (Corollary 4.14), there is at least one leaf in a subtree rooted at a ui, 1 <_ <_ p,
that is not matched and there is also another leaf in a subtree rooted at a uj, p < j <_ r,
that is not matched if > 3. The path P contains the root. If the degree of the root is at
least 4, u and v satisfy the leaf-connecting condition (Definition 2.3). If the degree of the
root is 3, P contains either ui or uj, whose degree is at least 3. Otherwise, P contains both
u and uj, whose degrees are at least 3. Thus u and v satisfy the leaf-connecting condition
(Definition 2.3).

COROLLARY 4.17. Let k be the number ofmatched pairs found in function case2_l. Let
G’ be the resulting graph obtainedfrom the current graph G by adding a new edge between
each matchedpair ofleaves. The value ofthe lower bound given in Theorem 4.1 applied to G’
is k less than the value ofthe same lower bound applied to G, and blk(G’) remains balanced.
Let be the number ofleaves in blk(G). The number ofleaves in blk(G’) is at most ifl > 3.

Proof. From Claim 4.16 the number of leaves in blk(G’) is 2k less than the number of
leaves in blk(G). Since k > 1/4 if > 3 (Corollary 4.15), the number of leaves in blk(G’) is

From Corollary 4.15 we add at most [] a edges; thus no c-vertex in blk(G’)at most .
becomes massive. By Lemma 4.7 we know that the value ofthe lower bound given in Theorem
4.1 applied to G’ is k less than the value of the same lower bound applied to G, and blk(G’)
remains balanced.

Subcase 2.2 (u* is a c-vertex). Recall that the ui i, < < r, are the children (from
left to right) of u* (the root). Let xi be the number of leaves in the subtree rooted at ui. We
know that > xi i, < < r, and thatxi > xi+ i, < < r.

906 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

We partition the set of subtrees rooted at children of the root into two sets such that we
can match leaves between two sets. We first give a claim to show how to partition the set of
subtrees.

CLAIM 4.18. Let q be the largest integer with Xq >_ 2. There exists an integer p such that
<_ p <_ q and > -f=l Xi " -JI- (p 1).

Proof. If xl > ,thenp 1. IfXl <_ we can find an integer p such that 7 >

,= xi > by using an argument similar to the one given in the proof of Claim 4.13. By
definition we know that Xp >_ 2 because otherwise the root (a c-vertex) is massive. Thus
p < . Hence (Y/P=I xi) (p 1) > .

Let Tui be the subtree rooted at ui. We define the merge operation for the collection of
subtrees Tui i, < < p, as follows. We first connect the rightmost leaf of Tu and the
leftmost leaf of Ti+ i, <_ < p. This can be done by the fact that each T i, < < p,
has at least two leaves.

CLAIM 4.19. Let T* be the block tree obtainedfrom T by collapsing b-vertices that are
in the samefundamental cycle created by the addition ofnew edges introduced by the merge
operation.

(1) The merge operation creates only one b-vertex b*.
(2) Vertex b* is a child of the root, and b* is the root of the subtree that contains the

updated portion of the block tree.

Proof. Let Ci i, < < p, be the fundamental cycle created by connecting the rightmost
leaf of Tui and the leftmost leaf of Ti+ The cycles C and Ci+l Vi, _< < p 1, share the
b-vertex ui. From part (2) in Fact 3.6 we know that all b-vertices in cycles Ci Vi, 1 < < p,
shrink into a single b-vertex in the new block tree. Let this new b-vertex be b*. Thus part (1)
of the claim is true. Part (2) of the claim follows from part (4) in Fact 3.6.

Note that if we root the updated block tree T* given in Claim 4.19 at the b-vertex b*, the
situation is similar to that in case 2.1. Thus we can match an additional min{(iP=l xi) 1,

[] a} (p 1) pairs of vertices by pairing up unmatched leaves in subtrees T i,
_< _< p, and leaves in subtrees in subtrees Tu i, p < < r. This procedure is given

below in case2_2. The notations used are shown in Fig. 11.

FiG. 11. Notations used in subcase 2.2. The number ofleaves in the subtree rooted at U is Xi Wefind the largest
p such that the total number ofleaves in thefirst p subtrees rooted at children ofthe root is greater than + (p 1)
but at most . We first merge subtrees rooted at ui i, < < p, by connecting the rightmost leaf in the subtree
rooted at ui and the leftmost leaf in the subtree rooted at Ui+l i, <_ < p. Leaves in the first p subtrees rooted at

children of u* are in Y1. Y2 consists of the rest of leaves in the tree. We then match min{(yf=l Xi 1, [] aa}
(p 1) leaves in Y1 with leaves in Y2.

BICONNECTIVITY AUGMENTATION 907

COROLLARY 4.20. The number ofmatched pairs k in subcase 2.2 satisfies a > k

ifl>3
set of pairs of vertices function case2_2(tree T);

vertex u, v; integer p; set of vertices Y1, Y2; set of pairs of vertices L;
let u i, < < r, be the children of the root u*;
let Tug be the subtree rooted at ui; let xi be the number of leaves in T,i;
find the largest integer p such that 7 > Y-f=l xi > - + (p 1);
Y1 "= the set of leaves in the subtrees rooted at ui i, < < p;
Y2 "= the set of leaves in the subtrees rooted at ui, > p;
L := {}; {, L is the set of matched pairs. ,}
pfori=l., p-l--+

let u be the leftmost leaf of T,i; let v be the rightmost leaf of T,;+,
L := L t3 {(u, v)}; remove u and v from Y

rofp;
number the leaves in Y in arbitrary order from to Y I;
number the leaves in Ye in arbitrary order from to lY I;
k := min{-=l xi, a} (p 1);
pfor k --u, v "= the th vertex in Y and Ye, respectively;

:= z {(u, v)}
rofp;
return L

end case2_2;

CLAIM 4.21. Eachpair ofvertices matched infunction case2_2 satisfies the leaf-connecting
condition (Definition 2.3) if > 3.

Proof. The proof is by Claim 4.19 and similar arguments given in the proof of
Claim 4.16.

COROLLARY 4.22. Let k be the number of matched pairs found in function case2_2. Let
G’ be the resulting graph obtainedfrom the current graph G by adding a new edge between
each matchedpair ofleaves. The value ofthe lower bound given in Theorem 4.1 applied to G’
is k less than the value ofthe same lower bound applied to G, and blk(G’) remains balanced.

3 if1> 3Let be the number ofleaves in blk(G). The number ofleaves in blk(G’) is at most -Z
Proof. From Claim 4.21 the number of leaves in blk(G’) is 2k less than the number of

leaves in blk(G). Since k > if > 3 (Corollary 4.20), the number of leaves in blk(G’) is
3t From Corollary 4.20 we add at most [a edges; thus no c-vertex in blk(G’)at most

becomes massive. By Lemma 4.7 we know that the value of the lower bound given in Theorem
4.1 applied to G’ is k less than the value of the same lower bound applied to G, and blk(G’)
remains balanced.

The complete procedure for case 2 is shown below.

set of pairs of vertices function case2(tree T);
{, is the number of leaves in T; a + is the largest degree of all c-vertices in T. ,}

vertex u*;
root T at an arbitrary vertex;
find a vertex u* such that there are more than leaves in the subtree rooted at

u* but none of the subtrees rooted at a child of u* has more than leaves;
root T at u*;
permute children of u* (from left to right) in nonincreasing order of
the number of leaves in subtrees rooted at them;

908 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

if u* is a b-vertex return case2_l(T) u* is a c-vertex return case2_2(T)
fi
end case2;

The correctness of this algorithm was shown earlier in the two subcases (Corollary 4.17
and Corollary 4.22).

5. The complete parallel algorithm and its implementation. We first describe the
overall parallel algorithm and then an efficient parallel implementation on an EREW PRAM.

5.1. The complete parallel algorithm. We are ready to present the complete parallel
algorithm for the biconnectivity augmentation problem.

graph function par_bca(graph G);
{. The input graph G has at least three vertices; is the number of leaves in the block graph
T.*}

set of pairs of vertices L; tree T; vertex u, v, or,/; set of edges S;
T := blk(G);
if T is a forest - perform the procedure specified in Section 4.1 fi;
if T is not balanced -- perform the procedure specified in Section 4.2 fi;
dol > 2--

if/ > 3-- if al > -- L "= case l(T) al _< --> L "= case2(T)fi
_< 3 -- let u and v be two leaves in T; L := {(u,

fi;
S:={};
pfor each (u, v) E L

find a noncutpoint vertex c in the corresponding block of G represented by u;
find a noncutpoint vertex/ in the corresponding block of G represented by v;
add an edge between ot and/; S := S t_J {(u, v)}

rofp;
1. T := par_update(T, S) {, The procedure par_update returns the updated block

tree after adding the set of edges in S. ,}
od;
return G

end par_bca;

The correctness of algorithm par_bca follows from the correctness of the various cases
(Corollary 4.11, Corollary 4.17, and Corollary 4.22) we established earlier.

In the previous sections we showed details of each step in algorithm par_bca except step
1. We now describe an algorithm for updating the block tree, given the original block tree T
and the set of edges S added to it (step in algorithm par_bca).

To describe the parallel algorithm for updating the block graph T after adding a set of
edges S, we define the following equivalence relation on the set of b-vertices B, where
B {v v is a b-vertex in T and v is in a cycle created by adding the edges in S}. A pair (x,
y) is in if and only if x E B, y B and vertices in blocks represented by x and y are in the
same block after the edges in S are added. It is obvious that is reflexive, symmetric, and
transitive. Since 7 is an equivalence relation, we can partition B into k disjoint subsets Bi,
< < k, such that for each i, x, y Bi implies (x, y) and for any (x, y) , x and y

both belong to the same Bi.
The following claim can easily be verified by using Fact 3.6 and the above definition for

the equivalence relation on the set of b-vertices.

BICONNECTIVITY AUGMENTATION 909

CLAIM 5.1. Two b-vertices bl and b2 are in the same equivalence class ifand only ifthere
exists a set offundamental cycles {Co Cq such that bl Co, b2 Cq, and Ci and Ci+
share a common b-vertexfor 0 < < q. [3

Notice that fundamental cycles in the block tree created by adding edges between pairs
of leaves found in phase and phase 2 of case and subcase 2.1 share a common b-vertex
(the root). Any pair of fundamental cycles created by adding edges between pairs of leaves
found in phase 3 of case either share a child of Vl (a b-vertex) or do not share any b-vertex at
all. Fundamental cycles created by adding edges between pairs of leaves found in phase 4 of
case do not share any b-vertex with any other fundamental cycle. Any pair of fundamental
cycles created by adding edges between pairs of leaves found in subcase 2.2 share either the
root (a b-vertex) or a b-vertex created by the merge operation (Claim 4.19).

From the above discussion we know that b-vertices in fundamental cycles formed by
adding edges due to phase and phase 2 of case shrink into a single b-vertex in the new
block tree. The b-vertices in fundamental cycles formed by adding edges due to phase 3
of case that share a common child of v shrink into a single b-vertex. The b-vertices in
a fundamental cycle formed by adding edges due to phase 4 of case shrink into a single
b-vertex. The b-vertices in all fundamental cycles formed by adding edges due to subcase 2.1
or subcase 2.2 shrink into a single b-vertex. Thus we know how to compute the equivalence
classes of 7.

We now describe the algorithm for updating the block tree given the original block tree
T and the set of edges S added to it.

tree function par_update(tree T, set of edges S);
vertex w; integer k; set of edges S, Se, $3, $4;
let B be the set of b-vertices in a cycle in T U S;
{, The partition Bill < < k} of B is computed such that two b-vertices bl and
be are in the same set if and only if there exists a set of fundamental cycles
{Co Cq in T U S with b Co, be c= Cq, and Ci and Ci+l share a common b-vertex
i,O<i <q.,}
if S is constructed from pairs found in case

let Si i, < < 4, be the edges in S corresponding to the pairs found in phase i;
let B be the set of b-vertices in fundamental cycles in T t_J $1 t_J Se;
pfor the ith child zi of v

let Bi+l be the set of b-vertices in fundamental cycles in T $3 that contain zi
rofp;
k := + the number of children of v in T;
pfor the th edge ei in $4 --+

let Bi+k be the set of b-vertices in the fundamental cycle in T {ei
rofp;
k :=k + lS41

S is constructed from the pairs found in case 2 --B := B; k :=
fi;
pfor k

collapse all b-vertices in Bi into a single b-vertex
rofp;
eliminate parallel edges created by collapsing b-vertices;
let T’ be this graph;
pfor each c-vertex w in T’ -+ if degree(w) -- eliminate w fi rofp;

910 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

return T’
end par_update;

CLAIM 5.2. Function par_update returns the updated block tree.

Proof. The proof is from Claim 5.1 and parts (3) and (4) in Fact 3.6. 71

Note that we can get the updated block tree by using an algorithm for finding biconnected
components. We will, however, show in 5.2 that the time needed on an EREW PRAM
for updating the block tree by using function par_update is less than that needed to compute
connected components using with a linear number of processors. Hence we do not want to
use the straightforward algorithm for finding connected components to implement function
par_update.

5.2. The parallel implementation. We now describe an efficient parallel implementa-
tion for algorithm par_bca.

Given an undirected graph, we can find its block graph in time O (log2 n) with a linear
number of processors on an EREW PRAM by using the parallel algorithm in Tarjan and
Vishkin [23] for finding biconnected components and by using some procedures in Nath and
Maheshwari 16].

The parallel versions of stage 1 and stage 2 are described in 4.1 and 4.2, respectively.
In stage 3 the children-permutation procedure can be accomplished in time O (log n) with a
linear number of processors on an EREW PRAM by calling the parallel merge sort routine in
Cole [2] and by using the Euler tour technique in Tarjan and Vishkin [23] to restructure and
normalize the tree. To perform functions case 1, case2, and par_update we need the following
procedures.

A procedure that numbers leaves in the tree from left to right or from right to left.
For each vertex v in a tree, a procedure that finds the number and the set of leaves in
the subtree rooted at v.
For a vertex v in a tree, a procedure that finds the leftmost leaf of each subtree rooted
at a child of v.
For a tree T with a set of edges S added between leaves in T, a procedure that
computes

the number of cycles that pass through a vertex in T U S,
the set of vertices in a cycle in T t2 S.

All of these procedures can be done in O (log n) time using a linear number of processors on
an EREW PRAM by using the Euler technique in Tarjan and Vishkin [23] and procedures in
Schieber and Vishkin 19].

From Corollary 4.11, Corollary 4.17, and Corollary 4.22 we know that algorithm par_bca
removes at least a quarter of the leaves in the current block graph during each execution of
the do loop. Initially, the number of leaves is at most n. Hence the main do loop in algorithm
par_bca is executed O (log n) times. Each iteration takes O (log n) time with a linear number of
processors since the parallel sorting routine used in permuting children needs O (n) processors.
This establishes the following claim.

CLAIM 5.3. The biconnectivity augmentation problem on an undirected graph can be
solved in time 0 (log2 n) with a linear number ofprocessors on an EREW PRAM, where n is
the number vertices in the input graph.

6. Conclusion. In this paper we have presented a linear time sequential algorithm and
an efficient parallel algorithm to find a smallest augmentation to biconnect a graph. Our
sequential algorithm corrects an error in an earlier algorithm proposed for this problem in
Rosenthal and Goldner 18]. Our parallel algorithm is new, and it runs in O (log2 n) time by
using a linear number of processors on an EREW PRAM. Although the parallel algorithm

BICONNECTIVITY AUGMENTATION 911

follows the overall structure of our sequential algorithm, the parallelization of some of the
steps required new insights into the problem. Our parallel algorithm can be made to run
within the same time bound by using a sublinear number of processors through the use of the
algorithm for finding connected components in [3] and the algorithm for integer sorting in [9].

REFERENCES

1] G.-R. CAI AND Y.-G. SUN, The minimum augmentation ofany graph to a k-edge-connected graph, Networks,
19 (1989), pp. 151-172.

[2] R. COLE, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770-785.
[3] R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree and graph

problems, in Proc. 27th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, 1986, pp. 478-491.

[4] K.P. ESWARAN AND R. E. TARJAN, Augmentation problems, SIAM J. Comput., 5 (1976), pp. 653-665.
[5] A. FRANK, Augmenting graphs to meet edge-connectivity requirements, in Proc. 3 lth Annual IEEE Symposium

on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1990, pp. 708-718.
[6] H. FRANK AND W. CHOU, Connectivity considerations in the design ofsurvivable networks, IEEE Trans. Circuit

Theory, CT-17 (1970), pp. 486-490.
[7] G.N. FREDERICKSONAND J. JA’JA’,Approximation algorithmsfor several graph augmentationproblems, SIAM

J. Comput., 10 (1981), pp. 270-283.
[8] D. GUSFIELD, Optimal mixed graph augmentation, SIAM J. Comput., 16 (1987), pp. 599-612.
[9] T. HAERtP, Towards optimal parallel bucket sorting, Inform. and Comput., 75 (1987), pp. 39-51.
10] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J. Comput., 13

(1984), pp. 338-355.
11] T.-S. Hst AND V. RAMACHANDRAN, A linear time algorithm for triconnectivity augmentation, in Proc. 32th

Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, 1991, pp. 548-559.

12] S.P. JAIN AND K. GOPAL, On network augmentation, IEEE Trans. Reliability, R-35 (1986), pp. 541-543.

13] Y. KAJITAN AND S. UENO, The minimum augmentation ofa directed tree to a k-edge-connected directed graph,
Networks, 16 (1986), pp. 181-197.

14] R.M. KARP AND V. RAMACHANDRAN, Parallel algorithmsfor shared-memory machines, in Handbook of The-
oretical Computer Science, J. van Leeuwen, ed., North-Holland, Amsterdam, 1990, pp. 869-941.

[15] D. NAOR, D. GUSFIELD, AND C. MARTEL, A fast algorithm for optimally increasing the edge-connectivity, in
Proc. 31th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1990, pp. 698-707.

16] D. NATH AND N. MAHESHWARI, Parallel algorithmsfor the connected components and minimal spanning tree

problems, Inform. Process. Lett., 14 (1982), pp. 7-11.
17] V. RAMACHANDRAN, Parallel open ear decomposition with applications to graph biconnectivity and triconnec-

tivity, in Synthesis of Parallel Algorithms, J. H. Reif, ed., Morgan-Kaufmann, San Mateo, CA, 1993, pp.
275-340.

18] A. ROSENTHAL AND A. GOLDNER, Smallest augmentations to biconnect a graph, SIAM J. Comput., 6 (1977),
pp. 55-66.

19] B. SCHIEBER AND U. VISHKIN, Onfinding lowest common ancestors: Simplification andparallelization, in Proc.
3rd Aegean Workshop on Computing, Lecture Notes in Computer Science 319, Springer-Verlag, Berlin,
1988, pp. 111-123.

[20] D. SOROKER, Fast parallel strong orientation of mixed graphs and related augmentation problems, J. Algo-
rithms, 9 (1988), pp. 205-223.

[21] K. STEIGLITZ, P. WEINER, AND D. J. KLEITMAN, The design ofminimum-cost survivable networks, IEEE Trans.
Circuit Theory, CT-16 (1969), pp. 455-460.

[22] R.E. TARJAN, Data Structures and Network Algorithms, SIAM, Philadelphia, PA, 1983.

[23] R. E. TARJAN AND U. VISHKIN, An efficient parallel biconnectivity algorithm, SIAM J. Comput., 14 (1985),
pp. 862-874.

[24] S. UENO, Y. KAJITANI, AND n. WADA, Minimum augmentation ofa tree to a k-edge-connected graph, Networks,
18 (1988), pp. 19-25.

[25] Z. WATANABE, An efficient way for edge-connectivity augmentation, Tech. Report ACT-76-UILU-ENG-87-
2221, Coordinated Science Laboratory, University of Illinois, Urbana, IL, 1987.

912 TSAN-SHENG HSU AND VIJAYA RAMACHANDRAN

[26] T. WATANABE AND A. NAKAMURA, On a smallest augmentation to triconnect a graph, Tech. Report C-18,
Department of Applied Mathematics, Faculty of Engineering, Hiroshima University, Higashi-Hiroshima,
Japan, 1983; revised 1987.

[27] Edge-connectivity augmentation problems, J. Comput. System Sci., 35 (1987), pp. 96-144.
[28] ,3-connectivity augmentation problems, in Proc. 1988 IEEE International Symposium on Circuits and

Systems, Institute of Electrical and Electronics Engineers, New York, 1988, pp. 1847-1850.
[29] T. WATANABE, T. NARITA, AND A. NAKAMURA, 3-edge-connectivity augmentation problems, in Proc. 1989 IEEE

International Symposium on Circuits and Systems, Institute of Electrical and Electronics Engineers, New
York, 1989, pp. 335-338.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 913-934, October 1993

() 1993 Society for Industrial and Applied Mathematics
002

DIFFERENT MODES OF COMMUNICATION*
BERND HALSTENBERG AND RODIGER REISCHUK

Abstract. This paper compares the communication complexity of discrete functions under different modes of
computation, unifying and extending several known models. Protocols can be deterministic, nondeterministic, or

probabilistic. Furthermore, in the last case the error probability may vary. On the other hand, communication can be
one-way, two-way, or as an intermediate stage can consist of a fixed number k > of rounds.

The following main results are obtained. A square gap between deterministic and nondeterministic communi-
cation complexity is shown for a specific function, which is the maximum possible. This improves the results of K.
Mehlhorn and E. M. Schmidt in [Proc. 14th Annual ACM Symposium on Theory ofComputing, 1982, pp. 330-337]
and of A. V. Aho, J. D. Ullman, and M. Yannakakis in [Proc. 15th AnnualACM Symposium on Theory ofComputing,
1983, pp. 133-139]. For probabilistic one-way and two-way protocols linear lower bounds are proved for functions
that satisfy certain independence conditions, extending the results of A. C. Yao in [Proc. 11 th Annual ACM Sympo-
sium on Theory of Computing, 1979, pp. 209-213], and in [Proc. 24th Annual IEEE Symposium on Foundations of
Computer Science, 1983, pp. 420-428]. Further, with more technical effort an exponential gap between deterministic
k-round and probabilistic (k 1)-round communication with fixed error probability is obtained. This generalizes
the main result of P. Duris, Z. Galil, and G. Schnitger [Inform. and Comput., 73 (1987), pp. 1-22]. In contrast, for
arbitrary error probabilities less than 1/2 there is no difference between the complexity of one-way and two-way pro-
tocols, which extends the results ofR. Paturi and J. Simon [J. Comput. System Sci., 33 (1986), pp. 106-123]. Finally,
communication with fixed message length and uniform probability distributions is considered, and simulations of
arbitrary protocols by such uniform distributions with little overhead are provided.

Key words, communication complexity, k-round protocols, probabilistic protocols

AMS subject classifications. 68Q10, 68Q15, 68Q22, 68Q30, 94A05

1. Introduction. In this paper we compare different ways in which a discrete function

f X0 X1 --+ Y can be computed in a distributive way. The model was originally defined
by Yao [Y79]. Two processors, P0 and P1, get inputs x0 6 X0 and xl 6 X1, respectively. In
order to compute f, they alternate in exchanging messages according to some (determinis-
tic, nondeterministic, or probabilistic) algorithm A; finally, one of them computes the result
depending only on its input and the messages that have been exchanged.

Without loss of generality we require the messages exchanged during a computation of
A to be strings ml mr {0, }*, where r is the number of rounds of that computation.
The messages mi with odd (even) are those sent by P0 (P1). We require the algorithm
A to generate self-delimiting messages, i.e., for any two computations (ml mr) and
(m’ m’r) (possibly padded with empty strings to have the same number of rounds) and
every 6 {1 r}, the concatenation ml ...mi must not be a proper prefix of m ...mi.

A deterministic algorithm, also called a protocol, can be specified by two transmission

functions)i’Xi {0, 1}* {0, 1} and the partial outputfunctions ai’Xi {0, 1}* --+ Y,
6 {0, 1}. For/ "= k mod 2, q(x, wl... wk) is the message sent by processor P if the

messages Wl wk have already been exchanged. If, for some k > O, af,(xf,, Wl w) is
defined, then this value specifies the result of the computation. To guarantee prefix freeness,
in some cases one additional round may be needed to inform P’i about termination.

For a deterministic protocol A let (A) denote its length, or communication complexity,
that is, the maximal number ofbits exchanged during a computation ofA for any pair of inputs.
A computes the function f if for all (x0,371) X0 X1 the computation of A on (x0, X1) is

*Received by the editors November 28, 1988; accepted for publication (in revised form) May 27, 1992. A
preliminary version of these results was presented at the 20th Annual ACM Symposium on Theory of Computing
(see [HR 88]). This research was supported by Deutsche Forschungsgemeinschaft grant RE 672/1-1.

lnstitut ftir Theoretische Informatik, Technische Hochschule Darmstadt, AlexanderstrafSe 10, 6100 Darmstadt,
Germany (reischukiti. inormatik. th-darmstadt. de).

913

914 BERND HALSTENBERG AND RDIGER REISCHUK

finite and the result equals f (x0, X1). Then the deterministic communication complexity of f
is defined as

Cdet(f) :’-" min{l(A) lA computes f}.

To define probabilistic protocols Yao used transmission functions i Xi {0, 1}*
{0, 1}* --+ [0, 1] and output functions ai Xi {0, 1}* Y --+ [0, 1] denoting probability
distributions on the set of possible messages, resp., the set of possible decision values [Y79],
[Y83]. 4(x, wl w, w) is the probability that message w will be sent by P ifthe messages
Wl, ..., w have already been exchanged, ai,(x,, wl w,, y) (if defined) is the probability
that the computation will stop with result y after exchanging messages wl w. Then the
probability that the result on input (x0, xl) equals y is

k-1

,N wl w E {0, 1}* j=O

af (xf, ...Wk, y) is defined

Note that, unlike the usual assumption for probabilistic computations in the sequential
case, the alternatives for continuing a protocol are not necessarily given by a uniform distribu-
tion. In this model a powerful random source is added for free. We will discuss this property
in more detail in 6.

For a probabilistic algorithm A let l(A) and [(A) denote the maximal (respectively,
expected) length of the computations of A on input (x0, x 1), maximized over all inputs
(x0, xl) E X0 X1. (A, f) (or (A) if f is fixed) denotes the error probability of A
with respect to f for the worst input, that is,

(A, f) "= max Pr [A on (x0, xl) yields some y # f(xo, xl)].
(xo,x)

Then, for 0 < < 1/2 we call

C(f) := min{l(A)lA is a probabilistic algorithm with (A, f) < },

((f) :-- inf {[(A)IA is a probabilistic algorithm with (A, f) < }

the worst case, respectively, expected probabilistic communication complexity of f for error
probability less than .

Nondeterministic protocols for f also may have different alternatives for continuing a
computation. A computation path does not have to generate a result, but for any input (x0,
at least one computation path must exist that ends with a result. If this happens, the result must
equal f(xo, xl). For a nondeterministic algorithm A let l’(A) be the minimum length of all
computations with output maximized over all inputs (x0, xl) 6 X0 X1. The nondeterministic
communication complexity of f is defined as

Cndet(f) :-- min{l’(A)lA is a nondeterministic algorithm for f}.

For Boolean-valued functions f we also consider nondeterministic algorithms A accepting
the language defined by f, L(f) := f-1 ({ 1 }). There exists an accepting computation (output
1) of A on input (x0, Xl) if and only if (xo, xl) L(f). Let/"(A) denote the minimum length
of such an accepting computation, maximized over all inputs (x0, Xl) 6 L(f). We call

CLndet(f) :-- min{l"(A)lA accepts L(f)}

DIFFERENT MODES OF COMMUNICATION 915

the nondeterministic communication complexity ofthe language defined by f The complexity
of its complement is denoted by

CcoL ndet (f) :-- CLndet (/),

where fi := f is the complement function of f.
For all the models defined above we also consider the k-round communication complex-

ities, i.e., the complexity of algorithms that use at most k rounds of communication. In this
case the notation Ck,det, Ck,e, etc., will be used

As for ordinary sequential computations with probabilistic choices, one can show that for
fixed error e < g worst-case and expected communication complexities are of the same order.
Therefore, we restrict the discussion to the worst-case probabilistic complexity.

LEMMA 1. For all k N andfixed (0,), Ck,(f) (R)((k,(f)).
Proof. Clearly, C, (f) < C, (f). On the other hand, let A be a k-round algorithm that

computes f with error probability less than e. Construct an algorithm A’ by executing three
independent computations of A in parallel and by deciding on a most frequent result. Then

Let a "= 1/(’).[(A’) < 3. ([(A) + [log IYI]) and e(A’) < 3e2 2e3 =: e’ < e if e < 7.
Obtain algorithm A" by simulating A’ for some bounded number of communication steps.
Computations exchanging more than a [(A) bits are ceased; this happens with probability at

6 and1 Hence the error probability of A" is less than ’ + Smost a"

3. (l(A) + [log IYI])
l(A") <_

e 32 + 2e

2. Deterministic and nondeterministic communication complexity. For our purposes
a function f X0 x X1 -- Y may be regarded as a X0l x Xll matrix F with entries from Y.
Both processors know F, and on input (x0, xl) they have to look up the entry in row x0 and
column Xl. For y Y, a y-rectangle is defined to be a subset A B c_ X0 X such that
f(A B) {y} (including the trivial case A x B- 0). By 6y(F)we denote the minimum
number of y-rectangles needed to cover f-1 ({y}), and by dy(F) we denote the minimum size
of a set of disjoint y-rectangles that cover f-l({y}). The sums of these quantities over all
y Y are denoted by 6(F) and d(F), respectively.

It is not hard to see [Y79], [AUY83] that for any y Y

Cdet (f) > [log dy (F)].

For Boolean-valued functions, Mehlhorn and Schmidt [MS82] showed an equivalent lower
bound based on the rank of the matrix over the natural numbers N, rankr(F) d (F). Since
rankr(F) > rankr(F) for any field K, the deterministic two-way complexity of a Boolean-
valued function is bounded from below by [log rankr (F)] for any field K.

The nondeterministic complexity of a function f is quite well determined by

[log 6(F)] >_ Cndet(f) >_ [log

Moreover, for Y {0, 1 we have

[log(61 (F) + 1)] >_ CLndet(f) >_ [log 61(F)].

Aho, Ullman, and Yannakakis [AUY83] showed that Cdet(f) _< O(1og2 6(F)); hence
Cdet(f) _< O(1og2 d(F)). On the other hand, no function with deterministic complexity
greater than O (log d(F)) seems to be known. Thus there is a quadratic gap between the lower

916 BERND HALSTENBERG AND RDIGER REISCHUK

and upper bounds. For Boolean-valued functions, the following theorem improves the upper
bound shown in [AUY83].

THEOREM 1. Let F be the matrix corresponding to f Xo X1 {0, }. Then

Cdet(f) < [log 60(F)] ([log(31(F) -+- 1)] -Jr- 2) + 1,

that is,

Cdet(f) _< CLndet(f)" CcoLndet(f)" (1 -+- O(1)).
Proof. Since 0-rectangles do not intersect with 1-rectangles, for any 1-rectangle u there

exist at most 76o(F) 0-rectangles that have a row in common with u or there exist at most

1/230(F) 0-rectangles that have a column in common with u. Therefore, one of the two pro-
cessors can halve the number of 0-rectangles that have still to be considered by specifying an
appropriate u that occurs in its row (respectively, column). The computation stops with result
1 if u also occurs in the column (respectively, row) of the other processor or if no 0-rectangles
are left. In the remaining case there is no appropriate u for either of the two processors, and
the result must be 0.

Although for some functions this bound is smaller than the one given in [AUY83] (e.g., the
identification function has 31 (I2n) 2 and 30 (I2n) . 2n), a square difference between Cdet (f)
and log 30(F) log 31(F) is still possible (e.g., for the n-bit ordering function f(x, y)
if and only if x < y, which has 31 (F) 2 and 30(F) 2 1). On the other hand, the
upper-bound log 30(F). log 3 (F) , CLndet(f)" CcoLndet (f) cannot be improved by more than
some constant factor.

Ftirer showed in [F87] an O (/-n--) upper bound on the Las Vegas communication com-
plexity of some function f with deterministic complexity Cdet(f) n. (The Las Vegas
communication complexity of f is the expected number of bits exchanged for the worst-input
computation of an optimal error-free probabilistic algorithm computing f.) Since the Las
Vegas complexity of f is an upper bound on both CLndet(f) and CcoLndet(f), the bound of
the above theorem may be tight up to a constant factor. The following theorem shows this
property also for functions f that do not satisfy CLndet(f) "’ CcoLndet(f).

THEOREM 2. Let a, b N, and let lz := log a/ log(ab). There exists a function f
{0, l} {0, l} -----> {0, l} with

(i) CLndet(f) _< O(ntz) and CcoLndet(f) _< O(nl-tz),
(ii) Cdet(f) n.

Proof. Forany sequenceoffunctions gi Xi,o Xi,1 ---> {0, 1} thefunctions gil lgj, giTlgj
(Xi,0 x Xj,o) x (Xi,1 Xj,1) --> {0, 1} are defined by

(gi gj)((Xo, X)), (Xl, Xl)) := gi(Xo, Xl) / gj(x, Xl),

(gi 71 gj)((Xo, Xto), (Xl, Xl)) :’- gi(Xo, Xl) A gj(x, Xl).

For fixed g gi and m 6 N let gum and gram be defined, respectively, by

gUl :__ g, gUi+l :._. gUi II g,

gral :_ g, gni+l :__ gni 71 g.

For n a Lt/2j b Ft/2] let qt {0, 1} {0, 1} -- {0, 1} be defined by

Ilaqo(x, y) := (x A y) V (Y A 37), q2s+l :-- q2sb, q2s+2 q2s+l"

DIFFERENT MODES OF COMMUNICATION 917

Then, for any even it is easy to see that

Hence

CLndet(qt) _< a. ([log b] + CLndet(qt-2)),

CcoLndet(qt) _< [log a] + b. CcoLndet(qt-2).

CLndet(qt) _< O(at/2) <_ O(nZ),

CcoLndet(qt) _< O(bt/2) <_ O(nl-x). [-]

For the lower bound on Cdet(f) we need the following lemma (see [T87, Thm. 13]).
LEMMA 2. Let f and g be two Boolean-valuedfunctions with corresponding matrices F

and G, respectively. Let F n G and F G be the matrices corresponding to f n g and f u g,
respectively. Then

rankF(2 (F G) > rankF(2) (F) rankF(2) (G),

rankaF(2(F o G) > (rank6F(2(F)- 1). (rankF(2(G)- 1)- 1.

For the matrix Qt corresponding to qt, Lemma 2 implies

rankGF(2)(Q2s+2) > (rankGF(z) (Q2s+l))a,
rankGF(2)(Q2s+l) >_ (rankGF(2)(Q2s)- 1)b- 1.

This would suffice for showing that Cdet(qt) 2 (n). For the exact bound we have to show
that Qt and)t have the same rank over GF(2). It can be easily seen that the number of ’s and
the number of O’s in any column of Qt is odd for every t. So, if we add the last 2 rows
to the first row, it will contain only l’s. Now, adding the first row to all other rows changes
l’s into O’s and vice versa.)t can then be obtained by adding again the last 2 rows to
the first row (since 2 is odd). Therefore, Qt and)t have the same rank over GF(2) and
it follows that

rankGF(2) (Q2s+l) rankGF(2)(02s+l)
nb)rankm(:

(rankal(2) ()2s))b

(rankGe(2)(Q2s))b

Hence, for even t, rankF(2)(Qt) 2(ab)’/ and the lower bound in [MS82] implies that

Cdet(qt) >_ logrankGF(2)(Qt) (ab)t/2-- n.

For (ab)t/2-1 < n < (ab)t/2, define f by its corresponding matrix F, which can be chosen
as an arbitrary 2 x 2 submatrix of Qt of maximal rank.

COROLLARY 1. For f" Xo x X1 --+ Y and p N define fP Xg x Xf --+ YP by

fP((xo,1 X0,p), (Xl,1 Xl,p)) 1-- (f (xo, l,Xl,1) f (Xo,p, Xl,p)).

Then,for almost allfunctions f’{0, 1} x {0, 1}n --+ {0, 1}

Cdet(fp) P (Cdet(f) O(1)).

918 BERND HALSTENBERG AND RDDIGER REISCHUK

Proof. Clearly, Cdet(fp) _< p. Cdet(f). Since for any > 0, rankGF(2)(F) > 2n- en for
almost all 2n x 2 matrices F over {0, 1} (see [T87]), it follows from Lemma 2 that

Cdet(fP) > Cdet(f N... N f)

> log rankGr(2)(F rq... F)

> p. log(2n n)

p. (n + log(1 n 2-n))

_> P" (Cdet(f) o(1))

for almost all f {0, }n x {0, }n _.+ {0, }. [3

3. Probabilistic communication complexity. For any two functions f, g X0 x X1 --Y let

A(f, g):--I[(xO, Xl) (xO, X1) E XO x X1, f (xo, x1) 7 g(xo, x1)}

be the number of arguments for which f and g differ and

Dk,e(f) := min{Ck,det(g)lA(f, g) < IX0 x Xll}.

D,e (f) is called the distributional e-error complexity [Y83]. The following relation between
random and distributional complexity follows easily"

LEMMA 3. C, (f) > D, (f).
On the basis of Lemma 3 we get the following analogue to the bound on deterministic

one-way complexity in the probabilistic case.
THEOREM 3. For anyfunction f" X0 x X1 --+ {0, 1} with corresponding matrix F and

all with 0 < <_ -g, the one-way complexity of f for error probability less than can be
bounded by

e
Cl,(f) > lognrow(F) [4e ncol(F)] log log[4e ncol(F)] 2.

COROLLARY 2. If ncol(F) < c. log nrow(F) (and hence c > 1), then, Cl,e(f) >_
0.95 lognrow(F) 3for e (1024clo(2c))"

}n {0, 1}n {0, 1}, defined byCOROLLARY 3. The disjointness]unction dn {0, x --dn((X1 Xn), (Yl Yn)) =0 iff Xi Yi forsomei {1 n},

has probabilistic one-way complexity C1, (an) (R)(n).
We prove Theorem 3 with the help of two lemmata.
DEFINITION. Let dl4(U, v) denote the Hamming distance between vectors u and v. For

any m x n matrix F over {0, and e > 0 define

Re(F) := max{r 3 r distinct rows b/1 b/r in F and v 6 {0, 1}n dH(ui, v) < ern}.

LEMMA 4. For anyfunction f X0 x X1 {0, 1 and all e’ > > 0

IXol (1)
Dl,(f) > log 1.

R,(F)

DIFFERENT MODES OF COMMUNICATION 919

Proof. Consider a deterministic one-way algorithm A. Without loss of generality we
assume that for each input processor P1 computes the result. This can be achieved at the
expense of at most one additional bit of communication. The messages of A induce a partition
of X0 x X1 into disjoint rectangles Z1 X1 Zm x X1. Within such a rectangle, all rows
of the computed matrix are identical.

SupposethatAcomputessomefunctiong:XoxX1 --+ {0, 1}withA(f, g) < 6 IX0Xl.
Let 6 be the fraction ofdifferences between f and g in rectangle Zi x X1. Let I := {il6i
and let Z Ui6l Zi. Then

6 IX0l >_ 6i IZi] 6’ (IX01- IZl),

which implies

(IZl IX01.

Because Zgl R,(F) for all I, it follows that

m > III IzI

and hence

IXol (1
Dl,(f)+ _> log

R,(F)

LEMMA 5. Let F be a O-l-matrix of distinct rows such that each column of F has
multiplicity at least o and at most . Then, for 0 < 6 <_ 4-

R(F) < [y ncol(F)] 2I ncol(F)]log(e/y) 263where y :- <

Proof. Let c "= ncol(F). Determine a, b > 0 by the equation

with maximal a. Then the number of differences between any R, (F) Xll submatrix of F
and an arbitrary matrix of the same size consisting of identical rows is at least

ot.(-i.(:)+(a+l).b).i=o
From the definition of R (F) it follows that

or. (i.(:)---(a--l).b)i=o ot
i.(:)-q-(a-+-l).bi=o

6 > >

i=0

ao

23c

920 BERND HALSTENBERG AND RODIGER REISCHUK

Therefore, a + _< [2eflc/al [Ycl < [c/21 and

R(F) < < [ycl
c

< [gcl 2[cl log(e/g)

.= Fycl

ProofofTheorem 3. Without loss of generality we may assume that IX01 nrow(F) and

IXll ncol(F). Because Cl,(f) > Dl,(f), the theorem follows immediately from the two
lemmata above with ’ 2 and ot =/3 1. Fl

For the probabilistic two-way complexity, lower bounds can be obtained by the following
mended and extended version of a theorem in [Y83]. Yao’s claim would imply that the function

f {1 2m} x {1 2m} --+ {0, 1}, f(i, j) if and only if < m, had probabilistic
complexity C(f) (R)(n).

THEOREM 4. Let A C Y, 0 < lz < lZ’ < 1, c > O, and O <) < 1. Let
f Xo x X1 --+ Y be a function, and let SA(xO) {xl e Xlf(xo, xl) a}. If, for every
G c_ Xo with GI > IX0[a-z, f satisfies

(i) If-l(A)l >_ z. IX0 x Xll,
(ii) If-l(A) A G x Sll < (1 -/z’). IG x Xll,
(iii)

+ c. IXl -z

IXll

’ the following inequality holds."then for any with 0 < e <

C(f)>).logmin IX01, IXI oq3+/3. IXIz -1/z

"o’
+log / e e?

Here ’ satisfying < ’ < lz’ may be chosen arbitrarily, ot "= 4c(1 -/,)2 and fl
9
16 (/z’-’)3"

We omit the proof since it is similar to the proof in [Y83]. What Yao really proved there
is the following:

COROLLARY 4. Let tz, lz’, c,), and as above be fixed constants, let IX0l Ixll =: N,
and let n := [log N]. If for f Xo X1 -- Y andfor some A C Y

(i) If-l(a)l >_/zN2,
(ii) SA (x0)l < (1 --/z’). N Yx0 e X0,
(iii) ISA(xo) q SA(X)I < ISa(xo)l ISa(x6)l l/cN- xo Xo, thenN Xo

.n- 0(1) < C(f) < n,

C(f) (R)(n).

This leads to the following simple result solving a problem raised in [Y83] (see also
[KS92] and the references cited there).

the set intersection function hn {0, }n {0, }n __+COROLLARY 5. For any < -6
{0 n} defined by

hn((Xl Xn), (Yl Yn)) XlYl +’’"-]- XnYn

DIFFERENT MODES OF COMMUNICATION 921

has probabilistic complexity C(hn) >_ n- O(1).
Proof. The last bit of hn((Xl Xn), (Yl Yn)) is the inner product mod 2 of

(Xl xn) and (yl, Yn). It is easy to see that the inner product mod 2 satisfies the
conditions of Theorem 4 with) 1. [3

4. k-Round communication complexity. Duris, Galil, and Schnitger exhibited a hierar-
chy between k-round, k 1, 2 protocols [DGS87]. For each k they showed the existence
of functions with an exponential difference between their (k + 1)- and k-round complexity.
An open problem mentioned in [DGS87] is to prove a similar result in the probabilistic case.
The following theorem shows that such exponential gaps exist even between deterministic
(k + 1)-round and probabilistic k-round complexity.

For any function f let f denote the function derived from f by interchanging the argu-
ments, that is,

f(xl, xo) f (xo,

For the corresponding matrix, f is just the transposition of F..
family offunctions fTHEOREM 5. For all k > 2 and 0 < < there exists a

{0, 1}n x {0, 1} --+ {0, 1} such that
(i) Ck,det(f) < O(k. logn),
(ii) min{Ck_l,,(f), Ck-l,,(f)} > S2(n/k).
This theorem follows from the following.
LEMMA 6. For every odd k there exists a family offunctions fn Xo x X1 --+ {0, },

[X0[, XI[< 2 with
(i) Ck,det(fn) < 5k log n,

where ’- 23 98304-<k-1)/2 > 2-o)(ii) D,,, (f) >_ , 622080

Proof of Theorem 5. From Lemma 6 it follows that for odd k there exists a function
f,n {0, } x {0, }n _+ {0, 1} (by padding the corresponding matrix with O’s up to size
2 2n) such that

and

where

Ck,det(fk,n 5k. log n

log(/)] < 1) < O(k)a log(4e(1-e)) O(log -The first inequality is due to the fact that by performing 2a + repetitions the error probability
can be reduced by a factor exp(-a) (see [H86]). Hence

Ck,e(fk,n) > > S2

V 118 log(4(1-e)) -- 9Since C,(f,) C_,(f,) and C,(f,) N C_,(f,), this proves the theorem
for odd k. For even k let F-,n- be the matrix coesponding to f-,-l. Define f,
{0, 1} x {0, 1}n {0, 1} by its matrix

F, F_,_

922 BERND HALSTENBERG AND R(IDIGER REISCHUK

Now it is easy to see that

Ck,det(fk,n <_ 2 + Ck_l,det(fk_l,n_l) O(k. log n),

and

(n)Ck-l,e(fk,n) Ck-l,(fk,n) >_ Ck-l,e(fk-l,n-1) >_ -COROLLARY 6. For all k > 2 there exists a family offunctions fn {0, }n {0, }n __+

{0, 1} with
(i) Ck,det(fn) <-- 5k" log n + 2,
(ii) min{Ck-l,det(fn) Ck-1 det(f-n)} > n-1

9

Proof. The corollary can be proved analogously to Theorem 5 by observing that Ck,de (fn) >--
Dk,(fn) for any e > 0. [3

ProofofLemma 6. It suffices to consider only n with > k Let n > no (no will be
20 tog

specified implicitely later), let k 2t + < 201g n, and choose 6 N maximal such that

log] l<_n,

is SUfficient for our purpose here. Definewhere , is a suitable constant less than . ,
b := 2 Flg//?’] and m :-- bl.

Then m < 2n and tO). Furthermore, let

rs "= bl-t+s for 0 < s < t,

=|2 fors=0,s I b forl <s<t,

=|(1-t) lgb fors=O,as I (l-t+s) forl <s<t,

Lbl-t/aoj for s -1gs :=
as "gs-i for 0 < s < t.

Then

< _< be and gt <_ bl-t (l + s) < 2[lgl/eqlb-tlt <_ 2n.
s--1

For s 0 we define rs x as matrices As and rs x gs matrices Gs. For < < r
the th row of As is the/3s-adic representation of 1, i.e., the binary representation for
s 0 and the b-adic representation for s > 1. The matrices Gs are constructed recursively as
follows. We obtain Go from A0 by replacing each column j by the r0 x g-1 matrix consisting
of g-1 copies of column j. The set of these columns of Go is called the jth column block of

For 0 < s < t, Gs+l is built from A-__I and Gs. For any column j, 1 < j < as+l, of

As+l and each digit d 6 {0 b the d-entries in that column form a rs submatrix
(see Fig. 1). Replace each such submatrix by the rs gs matrix rcd,s(Gs), where rd,s is a
random column permutation, which will be specified later. Doing this for all columns j of

DIFFERENT MODES OF COMMUNICATION 923

FIG. 1. Inserting Gs into As+l.

As+l, one obtains Gs+. The set of the gs columns of Gs+ resulting from column j of
is the jth column block of Gs+l. If Bj is the jth column block of Gs, then the jth column
block of zra,s (Gs) is given by the permuted columns in Bj.

Let f be the function corresponding to (t. Then the first part of Lemma 6 can be seen
as follows. For s t} the computation of s in 2s + rounds can be reduced to
the computation of s- in 2s rounds: Processor P0 sends the number j (< as < l)
of the column block of G to which its input belongs, and P, in reply, sends the number
d (< b) of the permutation red,s-1 belonging to its input in this column block. Then only
red,s- (Gs-) remains to be computed, which is equivalent to computing Gs_ because P0
knows the permutation red,s-1. Finally, after 2t rounds, Go is left. But this is equivalent to

computing A0. P0 sends the number j of the column of its input and P can determine the
result. For ?, and n large enough such that [log 1/y > 2 we have

logl _< log n/ < logn 1,

log a0 log((/- t) log b) < log log rn < log n.

Therefore, the communication for f can be bounded by

Ck,det(f) < (log + log b) + log a0 < log + + log n < 5k log n.
2

For the lower-bound proof we need the following two lemmata and a corollary extending
the arguments in [DGS87].

924 BERND HALSTENBERG AND RDIGER REISCHUK

LEMMA 7. Let the parameters or, Ix, v R+ and b,), r N satisfy
(1)0 < ot < Ix < 1,

/z-or(2) v
1+- 4’

(3) b1- > 2,
(4)) < be,
(5) bz < r.
Let A (ai,j) be an r x) matrix over {0 b 1} with distinct rows. Then there

are at least) columns A(j of A such that, for arbitrary sets Uj C {0 b 1} of size

Ifjl <_ b, there exist sets Dj(Uj) {0 b- 1}-Uj with thefollowing properties:
(i) {i < < r, ai,j d}[> Yd Dj(Uj),
(ii) {i < < r, ai,j Dj(Uj) >_ r.

Proof. Assume first that A contains at least) columns A(j) with the following property:
(*) for an arbitrary set Uj of size at most b A(j) has at least r entries ai,j - Uj.

Given sets Uj, let Dj(Uj) consist of all values d Uj that occur at least r times in A(j)

to satisfy property (i). Since the average frequency of elements in {0 b Uj in A (J)

is larger than r, at least half of the elements of A(j) not contained in Uj belong to Dj(Uj).
By assumption this number is at least r and thus proves (ii).

If (*) does not hold for at least) columns of A, then for each A (j) choose a set Uj C
{0 b 1} of size IUjl IbJ such that A(j) contains a minimal number of elements not
in Uj. The total number of entries ai,j - Uj of A---call this number wmcan then be bounded
by

v(v)vvw<)r+)-) r < 2)r.
We will show that this inequality cannot be satisfied. Define u, v 6 N by

r ()b(z-q)(b-b)q-t-l)
q=0

with v >_ 0 and maximal u. This expression corresponds to a matrix of r distinct rows
such that the number of entries ai,j with ai,j Uj is maximized. There can be at most

()b(z-q (b b)q different sequences of length) containing q elements that do not belong
to the corresponding Uj. Then from the expression above one deduces easily that

to > q" ()ba(z-q)(b-bC)qq-(u--l)’v.
q=0

" (u)l. HenceNow let q < g. Condition (3) implies b b > b and clearly g q > I q
one can conclude

))ba(z-(u-q)) (b- ba)u-qba)q <
u-q

This implies

blI(tbt(’-q) () bOt()-(u-q))(b-bOt)u-q]> (b b)q
nt-

-2 u-q

DIFFERENT MODES OF COMMUNICATION 925

and

w> -r.
-2

On the other hand,

r < ()ba(z-q)(b-ba)q <_ xu+lba.b(1-a)(u+l)
q=O

or, by solving this for u with (4) and (5),

log r log b (/z or) ;k log b /z ot
u> -1 > -1 .)-1

log b1- nt- log L (1 + ?’ or) log b + V ot

Hence w > 7)r, which contradicts the bound on w from above.
LEMMA 8. Let ;, v, c N, and let a set B be partitioned into) subsets B1 0 @ B,

each ofsize v. Let p(u) denote theprobability that u randomly chosenpermutations1 u
of B do not have the following property:
(.) ’v’ C c__ B, ICI >_ c permutation red {rrl, rru}

ICl ICI<_ Izrd(Bj) C4 CI < 3--’1 <j <,k
12 ;k

Then

u logOkv)) + log(Xv) + u. (3 + logp(u) _< exp (-c (-.
Proof. The proof is similar to that ofLemma 4 in [DGS87]. For our purpose here we need

a somewhat better estimate and also an upper bound on the size of rcd(Bj) C) C. For C

B,

[CI c, let nc,j(a) be the number of permutations rr of B with Irr(Bj) f3 CI a. Then

nc,j(a) "\v-a/
and hence the probability to choose such a permutation is given by

Pc,j(A)= (2). (W2)/
Since Pc,j([J) _< 1, for all a _< kJ the following inequality holds:

Pc,j (a) <
Pc,j(a)

Pc,(LJ)
LJ (c LJ) (LJ) (c + tJ)

a!. (c- a)!. (v a)!. ()v c- v + a)!

LcJC/_ LJ-LJ
3)v-c-v+

(Zv-c-v+

< 2-(LJ-.)

926 BERND HALSTENBERG AND RODIGER REISCHUK

3Analogously, for all a > -Pc,j(a) < (a-[+l
Hence the probability of choosing some permutation zr that does not satisfy

c c
> IrrR:nCl >3X "-J’"’- 12X

is at most

< 2-(a-rclxq)

rl-
Pc,j <_ Z 2a 2-LJ q- 2-a 2rl

a=O

< 2-+1-+1 +2-+1++1 < 2+3

Hence the probability that u randomly chosen permutations 1 u of B do not satisfy (.)
is

for u _> 4X log0v). For u < 4) log(Xv) the claim is trivial U
2COROLLARY 7. Let s e {0 }, c > a ot > 2y, and m be sufficiently large. Then

there exist b column permutations rCO,s zCb-l,s ofG such thatfor any set C ofat least c
columns ofthe matrix

yro,s(Gs))m,-,(G)

there are at most b digits d e {0 b 1}for which not every column block of zra,s(Gs)
has at least [C]/as and at most 3[C]/as columns in common with C.

Proof. Let B be the set of columns of Gs, and let Bj, < j < as, be the set of columns
of the jth column block of Gs. Lemma 8 implies that for a random choice of zr0,s zrb_ 1,s

the probability that there exists a set U C {0 b 1} of size b and a set C c__ B
of size at least c such that for each d 6 U there exists a j 6 as not satisfying
llCl/as < Izra,s(nj) f3 CI < 3lC[/as is bounded by

(p < p(b) < exp b’ log b as 2 loggs)+loggs+b.(3+ logas)).
Now, by assumption

log gs < log b < be log b < o and bc log b < o(b as).

Therefore, p < exp(-f2(b as)), that is, p < for sufficiently large m.
We further need the following technical lemma.

DIFFERENT MODES OF COMMUNICATION 927

LEMMA 9. Let a set B be partitioned into B BI(C)... OBN, and let to each Bi be
assigned a binary string wi such that the set {wl Wu} is prefix-free. Then the union of
subsets Bi satisfying IBil 2Iwil _> IBI/2 covers at least halfofall elements in B.

Proof. Define I "= {i 6 {1 N}[IBi[2Iwil >_ [B[/2}. Then we can conclude

E Ini] Inl E]nil In]- E T" 2-lwit >
iEl if[l i_I

2

by Kraft’s inequality.
A submatrix M of Gt is called i-unseparated (with regard to a deterministic algorithm)

if for all inputs corresponding to M the same first messages are exchanged. A submatrix M
of G is called afragment of Gs for 0 _< s < if some column permutation of M results in a
submatrix of Gs. If this submatrix has at least col(M)/as and at most 3col(M)/as columns
in each column block of Gs, where col(M) denotes the number of columns of M, then M is
called a column-moderate fragment of G. Let row(M) be the number of rows.- Consider aLEMMA 10. Let 6 > lZ > ot > 2t/ and let v "= +_l-t l-t
deterministic algorithm that computes G (with few errors) by exchanging at most 6n bits.

2)t elements of Gt that lie in (2t)-Then, for sufficiently large n there are at least m gt 5-U
unseparated column-moderatefragments of Go with at least (_)t rows each.

Proof. If M is an/-unseparated submatrix of Gt, let Leni,0(M), Leni, (M) be the total
length of the messages that are sent, respectively, by P0 and P in the first rounds for inputs
in M. By assumption, Leni,0(M) < an and Leni,1 (M) _< 3n. Since any computation is started
by P0, we have Lenzs+z,0(M) Lenzs+,0(M) and Lenzs+l, (M) Lenzs, (M).

sBy induction we will prove that for 0 < s _< at least m gt (5-J elements of
Gt lie in (2s)-unseparated column-moderate fragments M of Gt- satisfying the following:
(.) row(M). 2Lenzs0(m) > m.)s and col(M). 2Ie"2s, (/) > gt-s

1- 24
which for s yields the lemma.

For s 0 the claim obviously holds. Now assume that the claim holds for s 6 {0
1 }, and let M be a (2s)-unseparated column-moderate fragment of Gt-s that satisfies (.).

Assume that, for inputs in M, P0 may send to different messages in round 2s + and may
partition the rows of M according to these messages. Let M1 Mw be the corresponding
submatrices of M. Then, by Lemma 9 at least half of the rows of M belong to submatrices
Mi with

row(M/). 2Len2s+l,O(Mi) > row(M). 2Len2s,0(M)
-2

Consider now such a submatrix Mi. Then

m (l_b)row(M/) > 2a---
.bl-s-6(l+o(l)) (v)s-2 -1.b(1-,-s/(l-s))’at-s-6"o(1) (1))-2

>_ btzat-s for sufficiently large n.

column blocks Sj of Gt-s with the followingHence, by Lemma 7 there are at least g at-s
property: For arbitrary sets Uj C {0 b 1} of size Ifjl <_ b there exist sets Dj(Uj)
{0 b 1} Uj such that for all d Dj(Uj)the matrix zr,t-_l(Gt_s_), which lies in

928 BERND HALSTENBERG AND RODIGER REISCHUK

row(M/) rows of MiSj, has at least v. row(Mi)/b rows in common with Mi, and at least
fall into such inserted matrices red,t-s-1 (Gt-s-1) with d Dj(Uj). Now consider a submatrix
nj of Mi generated by such a column block Sj. Since M is a column-moderate fragment of
Gt-, we have

col(M) col(M)
< col(Bj) <3

12 at-s at-s

Partition the columns of Bj according to the w’ messages that P1 sends in round 2s + 2, and
let C1 Cw, be the corresponding submatrices of Bj. By applying Lemma 9 once again it
follows that at least half of the columns of Bj belong to submatrices Cp with

col(Cp)- 2Len2s+2, I(C’) > col(nj). 2Len2s+l, I(Bj) >
2 24s" 24at-s

gt-s-1

24s+1

For these submatrices Cp

gt-s-1 bl-t-3"(l+(1))
col(Cp) >_

2n. 24+
>

24s+
-o(1) >_ at-s-1 for sufficiently large n.

By Corollary 7 there are at most b digits d e {0 b for which the submatrix Cp,d of
Cp, generated by the inserted matrix red,t-s-1 (Gt-s-1), is not a column-moderate fragment of
Gt--l. Let U C {0 b- 1} be the set of these d’s. Then, for d 6 {0 b- 1}- U,
Cp,d is a (2s + 2)-unseparated column-moderate fragment of Gt-s-1 with

col(Cp d) 2Len2s+2’l (Cp,d) >
gt--s--1

24s+

Because of the choice of Bj, there exists a set D(U) {0 b 1} U such that for all
d D(U)

v row(M/)
row(Cp d) >

Hence

v row(Mi)
row(Cp,d). 2Len2s+2,0(Cp’d) > 2Len2s+l,0(Mi)

--8 b

> row(M/)2Len2s,0(M)
16b

p]s+l> m\-]
and at least -row(M/) rows of Mi belong to some Cp,d with d D(U). Calling the
entries of the matrix that belong to some Cp,d with d D(U) suitable, we have at least

row(M/) col(Cp) suitable entries in Cp. Hence the number of suitable entries in Bj is at
least row(M/) col(Bj)/2, and, consequently, the number of suitable entries in Mi is at
least

1 col(M) v v2
row(M/). . lZat_ -" at- row(M/), col(M).

3.28"

Thus the portion of suitable entries in M is at least v2! (3.29), and, by the induction hypothesis,
the number of suitable entries in Gt is at least rn gt (v2/3 29)s+l. [-]

DIFFERENT MODES OF COMMUNICATION 929

vLEMMA 11. Let M be a column-moderatefragment of Go with at least r (T-) rows.

Then,for (7" < 3/4-8
17280

Proof. From < 1/4 < o(n)it follows that

row(M) > -.m (6b)t _2n_o(n)_,n.b_l/4> (P)t >
Since M is column-moderate and therefore has at least one column in each column block of
Go, all rows of M are pairwise different. So we get as bounds for the number of different
columns of M, ncol(M),

n >_ ncol(M) >_ (,) n o(n).

Now, by definition there exists a row(M) x c’ submatrix B of M, where

c’ > ncol(M)
col(M) 6

> col(M). 4 o(col(M))
12a0 12

such that each column of B has multiplicity at least col(M)/ao and at most 3col(M)/ao.
For(7(n)_ 1/12_ Lemma5 implies20.3 720

[-01 [n/lO].log(lOe)R B < 2

(7(4) Lemma 4 impliesand for (7(3)

row(M)
DI,(3(B) > log

2R(4(B)

> 6 n log(lOe) o(n)

> (-6).n-o(n).
Now for (7" < (7(3). 3/4-8 3/4-,,,.8,, it follows that12 17280

DI,,,(M) > 6 n o(n). I-I

4 Then,Finally, to finish the proof of Lemma 6, let g,/x g, ot g, and v g.- Suppose that there exists a deterministicfor sufficiently large n we have v
l+v- l-t

algorithm that computes f with a portion of error less than

3/4 .
3.2 "98304-t

17280 622080

with at most g bits of communication. Then, by Lemma 10 there are at least m gt , 3.2 ,]
entries of G in (2t)-unseparated column-moderate fragments of Go that have at least 2--")t

930 BERND HALSTENBERG AND RDIGER REISCHUK

rows each. At least one of these fragments has to be computed with a portion of error less than
e" 3/4,1/917280 in the last round. But this, by Lemma 11, requires at least (-).n o(n)
bits, contradicting the assumption that only bits will be exchanged. [3

Whereas for fixed error e 6 (0,) Theorem 5 gives exponential gaps between probabilistic
k- and (k 1)-round complexity, the following theorem shows that if Boolean-valued functions
are assumed, there is no such significant gap ifthe error probability does not have to be bounded
away from .1 This generalizes a result of Paturi and Simon [PS86], who showed that the one-
way and two-way complexities of Boolean-valued functions for unbounded error probability
less than differ by at most 1.

THEOREM 6. For anyfunction f Xo X1 --+ {0, 1}

C1,, (f) < C (f) + 1, where (1) 2-(c(f)+1)

The idea of the proof is simply that in a one-way protocol processor P0 may guess the
whole computation and the resulting output of an optimal two-way protocol. The guess will
be correct with probability 2-(c’(f)+l). In this case the guessed output will be chosen as the
result of the computation; otherwise, it will be a random bit.

5. Arbitrary partitions of input bits. Theorem 5 solves the problem given in [DGS87],
although the original problem was formulated slightly differently. Duris, Galil, and Schnitger
studied the following model: A partition of n} into two disjoint sets A and B can
be described by a permutation rr of n} and an integer a 6 {0 n such that A

2n{zr(1) 7r(a)}. A partition (zr, a) is called permissible if < a _< 7"
Given a function f {0, 1}n

__
y and a partition (zr, a), define the function f,a

{0, 1}a x {0, 1} -+ Y by

frc,a((Xzr(1) Xzr(a)), (Xzr(a+l) Xrc(n))) "= f (xl, Xn).

Now, if CM denotes the communication complexity for fixed partition as considered here
(e.g., M det or M k, e), then the corresponding communication complexity for variable
partition VCM is defined by

VCM(f) :-- min {CM(fir,a) l(zr, a) is a permissible partition of {1 n}}.
Although this definition of communication complexity looks, quite different (and really is

for several functions), it can be related to the communication model for fixed partition of the
input bits. Let us call M a standard model if for all two-argument functions f X0 X1 Y,
respectively, all corresponding matrices, the following holds:

(1) C(A) _< CM(B) if A is a submatrix of B.
(2) CM(A) CM(B) if A is obtained from B by permuting rows and columns.
(3) CM(A) C(B) if A is obtained from B by duplicating rows or columns.
Then one can prove the following extended version of Theorem 3 in [DGS87].
THEOREM 7. For anyfunction f Xo X1 Y with no := [log IX01q >_ 5 and nl :=

3n0Flog IXlq >_ 5, there exists a function f’’ {0, 1}6n Y, where n max {no + nl, 2]
-7-] such thatfor any standard model M

VCM(f’) min{CM(f), CM(j)}.

Proof. Without loss of generality we may assume that no > and n > and hence
n no + n 1. (Otherwise, increase no or n by duplicating, respectively, rows or columns of
the matrix corresponding to f.)

DIFFERENT MODES OF COMMUNICATION 931

Let 7r0 be the identity permutation on 6n}. The function f’ is defined by the
26n 26n matrix F’. (F’ corresponds to f’0,6n0") To obtain matrix F’ from F duplicate
each row of F at least 25n times and each column of F at least 25n times to get the correct
dimensions and then apply random permutations r and r (defined later) to the rows and
columns, respectively, of this matrix.

Because of properties (2) and (3) of standard models we have CM(F’) CM(F) and
hence, since (rr0, 6n0) is a permissible partition of {1 6n}, VCM(f’) < min{CM(f),
CM(f)}, For the lower bound we will show that there exists a choice of cr and r such
that, for any permissible partition (7r, a) of 1,..., 6n}, the matrix corresponding to f,a
contains F or/ as a permuted submatrix and hence, by property (3) of standard models,
VCM(f’) >_ min{CM(f), CM(f)}. f-]

LEMMA 12. Let A be a set of cardinality IA] 26m, m >_ 5, partitioned into A
A1 (C) (C) Ap, where [log p] m and]Ai _> 25m. Let B1 Bq be q (:) subsets of
A of size [By 22m Then there exists a permutation p of A such thatfor all e p}
and all j q thefollowing holds."

(o) p(Ai) g Bj =/= 0.

Proof. Let Ni,j be the number of permutations p violating (o) for some fixed and j.
Then

Ni,j (26m 25m) (22m (26m 22m<
22m]

)!.)!"
(26m)!(26m)

(26m 25m)! (26m 22m)] 22m--1 26m 25m
(26m 25m 22m)I (26m)I H 26m

i=0

< (1 2-m)22m _< e-2m

Therefore, the fraction of permutations p violating (o) for any and j is at most

(6m)"2m’e-2m<e2m’(l+ln3)+m’ln2-2m<12m
form > 5.

Now let (re, a) be a permissible partition of 1 6n into two sets A re 1 rr (a)
nand B {rr(a + 1) r(n)}. Since !-41, IBI > 2n and 5 _< no _< either

{1 6n0}OA>_2n0 and {6n0+l 6n}fqB >2nl

hold or the same relations hold with A and B interchanged. We show that for the first case
we can find F as a permuted submatrix in the matrix Fr,a corresponding to f,a, and in the

second case we can find/ in the same way. So let us restrict our attention to the first case.
For each processor Pi there are at least 2ni bits that it owns in both cases, for the partition

(zr, a) as well as for the natural partition (Tr0, 6n0). Now consider the common submatrix of

Fr,a and F’ that results when only these bits are varied while the other bits are fixed (e.g., all
other bits are set to 0).

Let R {0 26n 1 be the set of row numbers of F’, and for xo X0 let r (Rx0) be
the numbers of rows of F’ that have been obtained from row x0 of F, where r (to be defined)
is the permutation of rows. By construction, a(Rxo) > 25n. For a subset I C {1 6n0} of
size 2no let S(1) := {_,iiai 2i-lai {0, 1}}. S(I) is the set of row numbers with all bits
in 6no} I set to 0. Since A > 2no, there exists such a set I

_
A.

932 BERND HALSTENBERG AND RODIGER REISCHUK

From Lemma 12 it follows that we can choose the permutationcr of rows such that for
any such set I and any xo Xo, S(1) N r (Rxo) 0, that is, for any row x0 of F one can
find a representative in the common submatrix of F,a and F’. The same argument applies to
the columns of the submatrix of Fr,a induced by these rows, and it shows the existence of an
appropriate permutation r of columns such that F is some permuted submatrix of F’zr,a"

6. Uniform probabilistic protocols. We now come back to the question of a suitable
probabilistic model. Are probabilistic protocols with arbitrary probability distributions more
powerful than those with uniform distributions? We will show that the increase in commu-
nication complexity cannot be too large if the error probability does not converge to very
quickly.

A related issue is the uniformity of message length. The protocols considered so far may
be of varying length. In some rounds long messages can be transmitted, whereas in others
only a few bits might be sent. Such a discrepancy in message length may happen not only
with respect to different rounds but also for a fixed round if the communication for all possible
input pairs is considered.

Obviously, protocols in which the length of each message is fixed regardless of the input
and the specific round are preferable. Let us call such protocols fixed-length protocols. Each
protocol can easily be converted to one with message length such that the total information
exchange is at most doubled. But in general the price one has to pay for this is a huge increase
in the number of rounds. The following construction gives a better balance.

THEOREM 8. Let f be computed by a k-round protocol with communication T. Then
there exists a (3k 2)-round protocolfor f withfixed length T/k with the same error
probabilities.

Proof. The processors cut their messages into blocks of length l, filling up with zeroes
if necessary. As long as the transmission of all blocks of a message is not finished, the other
processor, in its rounds simply answers with a block of zeroes. Because of prefix freeness
this condition can easily be checked. If the original protocol is probabilistic, one also has to
assign probabilities to each block. It is easy to see how this can be done by taking the sum of
the probabilities of messages with identical blocks and by using conditional probabilities for
the following blocks.

It remains to estimate the number of rounds required. Let 11 lj with j < k be the
lengths of a complete sequence of messages exchanged in the original protocol. Then the
message of length li is split into li/lq blocks. The transmission of these blocks requires
21i/l 21(li 1)//J + rounds. Thus the number of rounds necessary is at most

-. (1 + 2 1i- 1])[i(li--1)J T-lJ< j+2 < k+2 < 3k-2.
i--1 T/k

THEOREM 9. Let e #, and let 4 be a probabilisticfixed-length k-round algorithm
that computes afunction f Xo x X1 --+ Y with error probability less than e and T kl bits

of communication. Then there exists a probabilistic fixed-length k-round algorithm fit’ that
2kcomputes f with errorprobability less than ’ and message length I’ 21 + [log 72 2

For all (xo, xl) Xo x X1 the messages in each round of the computations of 4’ on input
(x0, xl) have either probability 0 or p m-1, where rn := 2r-l.

Proof. Let gt be given by the transmission functions 4i Xi x {{0, 1}/} x {0, 1} --+

[0, 1] and the output functions ai Xi x {0, 1}gt x Y --+ [0, 1]. For a computation ot

(Wl Wk) {0, 1 }lk, a,(x, or, y) is the probability that its result will be y. By assump-
tion, for any input (x0, Xl)

DIFFERENT MODES OF COMMUNICATION 933

k-1

yTf(xo,xl) c=(Wl ...W/) j--0

If only the messages that are exchanged are considered, 4 may be regarded as a determin-
istic algorithm with an additional input of independently and uniformly distributed random
numbers r0 rk-1 6 [0, 1), where rj is owned by P]. If on input (x0, xl) the messages
wl wj have been exchanged, the next message will be the string Wj+l {0, }l for which
the integer q [wj+l] represented by Wj+l is the least one such that

(](X], Wl’’’Wj, W) > rj.
[w]<q

For any sequence of messages to toj and input x] choose N(x], to w;, toj_t_
N, toj+l {0, }l, as an integer approximation of the corresponding](...) as follows:

Nj(x], Wl Wj, Wj+I) -1
t. m](x], toj+t)

[wl<__[Wj+I]- + rn el(x], tol’"toj, Wj+I)
[wl<[wj+]-I

Then

[N](x], tol Wj, Wj+I) m](x], Wl toj, Wj+I) <

and

wj+e{O, 1}
N](x], wl wj, wj+) m.

For algorithm .A’ the transmission functions Pi" Xi x {{0, 1}/’} * {0, 1}/’ ---- {0, p} are now
defined by

pi(xi, Wl Pl WjPj, Wj+l Pj+I) P iff [vj+l] < Ni(xi, tol wj, Wj+l).

The output functions of A’ are the same as the output functions of A on equivalent computa-
tions. (Two messages wj of ,4 and wj uj of A’ are called equivalent if wj w}.) For formal
correctness we define t more detailed in terms of additional random inputs as above: If on
input (x0, Xl) the messages w Vl wj vj have been exchanged, the next message will be
the string toj+ vj+ for which q [wj+ vj+ is the least integer such that

p](x], w vl wjvj, wv) > rj.
[wv]<_q

Now consider computations of.A and .A on the same input (x0, xl) and the same random
numbers r0 rk_l. Assume that the first j rounds are equivalent. Then, for any Wj+l
{0, 1} the probability that A sends Wj+l and 4’ sends some equivalent message Wj+lVj+l
differs by at most p from the probability that A sends Wj+l. So the messages of round j -t-
are equivalent with probability at least 1 p. 21 and the computations of t and 4 are
equivalent with probability at least (1 p 21)k > 1 pk 2I. Because the output functions
are the same on equivalent computations, the error probability of A’ is less than

+pk.21 <q-

934 BERND HALSTENBERG AND RDIGER REISCHUK

COROLLARY 8. Let UC(f and UCk, f), respectively, denote the probabilistic commu-
nication complexity restricted to protocols with uniform distributions. Then for fixed
the uniform complexity can be bounded by

UC3_2,e(f)< O (C,e(f) (1 -k- klogk))C,(f)
UC (f) _< O (C (f) log C (f)).

As an application of Theorems 6 and 9 we obtain Yao’s lower bound on the probabilistic
two-way complexity of Boolean-valued functions, which can easily be extended to general
functions.

COROLLARY 9. For any Boolean-valuedfunction f and anyfixed E (0,

C(f) >_ 2(loglogmax{nrow(F), ncol(F)}).

Proof Any uniform probabilistic one-way algorithm with arbitrary error probability less
than 7 may be simulated by a deterministic one-way algorithm with at most an exponential
increase of communication. (For each message, one bit suffices to specify its probability; the
most probable result is correct.) Now let , =_(1) 2-(C(/)+l). Then

log(nrow(F) 1) < Cl,det(f) _< 2UCl’’(f) <_ 22Cl’’(f)+C’(f)+O(1) <_ 23C‘(/)+O(1).

Hence C (f) > f2 (log log nrow(F)), and clearly

C (f) C (f) _> f2 (log log ncot(F)).

[AUY83]

[DGS87]

[F87]

[H86]

[HR88]

[KS92]

[MS82]

[PS86]

[T87]

[Y79]

[Y83]

REFERENCES

A. V. AHO, J. D. ULLMAN, AND M. YANNAKAKIS, On notions of information transfer in VLSI circuits,
in Proc. 15th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1983, pp. 133-139.

P. DURIS, Z. GALIL, AND G. SCHNITGER, Lower bounds on communication complexity, Inform. and
Comput., 73 (1987), pp. 1-22.

M. FORER, The power ofrandomnessfor communication complexity, in Proc. 19th Annual ACM Sym-
posium of Theory of Computing, Association for Computing Machinery, New York, 1987, pp.
178-181.

B. HALSTENBERG, Zweiprozessor-Kommunikationskomplexitiit, Diplomarbeit Fakultit ftir Mathematik
Universitit Bielefeld, Bielefeld, Germany, 1986.

B. HALSTENBERG AND R. REISCHUK, On different modes of communication, in Proc. 20th Annual Sym-
posium on Theory of Computing, Association for Computing Machinery, New York, 1988, pp.
162-172.

B. KALYANASUNDARAM AND G. SCHNITGER, The probabilistic communication complexity ofset intersec-
tion, SIAM J. Disc. Math., 5 (1992), pp. 545-557.

K. MEHLHORN AND E. M. SCHMIDT, Las Vegas is better than determinism in VLSI and distributed
computing, in Proc. 14th Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1982, pp. 330-337.

R. PATURI AND J. SIMON, Probabilistic communication complexity, J. Comput. System Sci., 33 (1986),
pp. 106-123.

P. TIWARI, Lower bounds on communication complexity in distributed computer networks, J. Assoc.
Comput. Mach., 34 (1987), pp. 921-938.

A. C. YAO, Some complexity questions related to distributed computing, in Proc. lth Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York, 1979,
pp. 209-213.
,Lower bounds by probabilistic arguments, in Proc. 24th Annual IEEE Symposium on Founda-

tions of Computer Science, IEEE Computer Society, Washington, DC, 1983, pp. 420-428.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 935-948, October 1993

() 1993 Society for Industrial and Applied Mathematics
003

SUFFIX ARRAYS: A NEW METHOD FOR ON-LINE STRING SEARCHES*
UDI MANBERtt Argo GENE MYERSt

Abstract. A new and conceptually simple data structure, called a suffix array, for on-line string searches is
introduced in this paper. Constructing and querying suffix arrays is reduced to a sort and search paradigm that
employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space. From a complexity standpoint, suffix arrays permit on-line string searches of the type, "Is
W a substring of A?" to be answered in time O(P + log N), where P is the length of W and N is the length of A,
which is competitive with (and in some cases slightly better than) suffix trees. The only drawback is that in those
instances where the underlying alphabet is finite and small, suffix trees can be constructed in O (N) time in the worst
case, versus O (N log N) time for suffix arrays. However, an augmented algorithm is given that, regardless of the
alphabet size, constructs suffix arrays in O (N) expected time, albeit with lesser .space efficiency. It is believed that
suffix arrays will prove to be better in practice than suffix trees for many applications.

Key words, string searching, string matching, pattern matching, suffix trees, algorithms, text indexing, inverted
indices

AMS subject classifications. 68P10, 68P20, 68Q25, 68U15

1. Introduction. Finding all instances of a string W in a large text A is an important
pattern matching problem. There are many applications in which a fixed text is queried many
times. In these cases, it is worthwhile to construct a data structure to allow fast queries. The

Suffix tree is a data structure that admits efficient on-line string searches. A suffix tree for a
text A of length N over an alphabet E can be built in O(N log IEI) time and O(N) space
[Wei73], [McC76]. Suffix trees permit on-line string searches of the type, "Is W a substring
of A?" to be answered in O(P log E l) time, where P is the length of W. We explicitly
consider the dependence of the complexity of the algorithms on I; I, rather than assume that
it is a fixed constant, because E can be quite large for many applications. Suffix trees can also
be constructed in time O(N) with O(P) time for a query, but this requires O(NIEI) space,
which renders this method impractical in many applications.

Suffix trees have been studied and used extensively. A survey paper by Apostolico
[Apo85] cites over forty references. Suffix trees have been refined from tries to minimum
state finite automaton for the text and its reverse [BBE85], generalized to on-line construction
[MR80], [BB86], real-time construction of some features is possible [Sli80], and suffix trees
have been parallelized [AIL88]. Suffix trees have been applied to fundamental string problems
such as finding the longest repeated substring [Wei73], finding all squares or repetitions in a
string [AP83], computing substring statistics [AP85], approximate string matching [Mye86],
[LV89], [CL90], and string comparison [EH88]. They have also been used to address other
types of problems such as text compression [RPE81], compressing assembly code [FWM84],
inverted indices [Car75], and analyzing genetic sequences [CHM86]. Galil [Ga185] lists a
number of open problems concerning suffix trees and on-line string searching.

In this paper, we present a new data structure, called the suffix array [MM90], that is
basically a sorted list of all the suffixes of A. When a Suffix array is coupled with information
about the longest commonprefixes (lcps) ofadjacent elements in the suffix array, string searches
can be answered in O (P + log N) time with a simple augmentation to a classic binary search.

*Received by the editors May 5, 1989; accepted for publication (in revised form) June 3, 1992.
Department of Computer Science, University of Arizona, Tucson, Arizona 85721.

t.Supported in part by National Science Foundation Presidential Young Investigator Award grant DCR-8451397,
with matching funds from AT&T, and by National Science Foundation grant CCR-9002351.

Supported in part by National Institute of Health grant R01 LM04960-01, and by National Science Foundation
grant CCR-9002351.

935

936 UDI MANBER AND GENE MYERS

The suffix array and associated lcp information occupy a mere 2N integers, and searches are
shown to require at most P + [log2(N 1)] single-symbol comparisons. To build a suffix
array (but not its Icp information) one could simply apply any string-sorting algorithm such as
the O (N log N) expected-time algorithm of Baer and Lin [BL89]. But such an approach fails
to take advantage of the fact that we are sorting a collection of related suffixes. We present
an algorithm for constructing a suffix array and its lcp information with 3N integers and
O (N log N) time in the worst case. Time could be saved by constructing a suffix tree first,
and then building the array with a traversal of the tree [Ro82] and the lcp information with
constant-time nearest ancestor queries [SV88] on the tree. But this will require more space.
Moreover, the algorithms for direct construction are interesting in their own right.

Our approach distills the nature of a suffix tree to its barest essence: A sorted array
coupled with another to accelerate the search. Suffix arrays may be used in lieu of suffix trees
in many (but not all) applications of this ubiquitous structure. Our search and sort approach is
distinctly different and, in theory, provides superior querying time at the expense of somewhat
slower construction. Galil [Ga185, Prob. 9] poses the problem of designing algorithms that are
not dependent on EI and our algorithms meet this criterion, i.e., O(P + log N) search time
with an O(N) space structure, independent of E. With a few additional and simple O(N)
data structures, we show that suffix arrays can be constructed in O(N) expected time, also
independent of E. This claim is true under the assumption that all strings of length N are
equally likely and exploits the fact that for such strings, the expected length of the longest
repeated substring is O(log N/log IEI) [KGO83].

In practice, an implementation based on a blend of the ideas in this paper compares
favorably with an implementation based on suffix trees. Our suffix array structure requires
only 5N bytes on a VAX, which is three to five times more space efficient than any reasonable
suffix tree encoding. Search times are competitive, but suffix arrays do require three to ten
times longer to build. For these reasons, we believe that suffix arrays will become the data
structure of choice for the many applications where the text is very large. In fact, we recently
found that the basic concept of suffix arrays (sans the lcp and a provable efficient algorithm)
has been used in the Oxford English Dictionary (OED) project at the University of Waterloo
[GBS92]. Suffix arrays have also been used as a basis for a sublinear approximate matching
algorithm [My93] and for performing all pairwise comparisons between sequences in a protein
sequence database [BG90].

The paper is organized as follows. In 2, we present the search algorithm under the
assumption that the suffix array and the lcp information have been computed. In 3, we show
how to construct the sorted suffix array. In 4, we give the algorithm for computing the lcp
information. In 5, we modify the algorithms to achieve better expected running times. We
end with empirical results and comments about practice in 6.

2. Searching. Let A aoa...av-1 be a large text of length N. Denote by Ai
aiai+l...aN- the suffix of A that starts at position i. The basis of our data structure is a

lexicographically sorted array, Pos, of the suffixes of A; namely, Pos[k] is the start position
of the kth smallest suffix in the set {A0, A AN_ }. The sort that produces the array Pos
is described in 3. For now, we assume that Pos is given; namely, APosO < APo.l < <
Apos[iv-], where "<" denotes the lexicographical order.

For a string u, let up be the prefix consisting of the first p symbols of u if u contains more
than p symbols, and u otherwise. We define the relation <p to be the lexicographical order
of p-symbol prefixes; that is, u <p v if and only if up < vp. We define the relations <p, =p,

1While the suffix array and lcp information occupy 2N integers, other N integers are needed during their
construction. All the integers contain values in the range [-N, N].

SUFFIX ARRAYS 937

p, and _>p in a similar way. Note that, for any choice of p, the Pos array is also ordered
according to <p, because u < v implies u _<p v. All suffixes that have equal p-prefixes, for
some p < N, must appear in consecutive positions in the Pos array, because the Pos array
is sorted lexicographically. These facts are central to our search algorithm.

Suppose that we wish to find all instances of a string W WoWl...wp_l of length
P < N in A. Let Lw min(k W <p Apostk] or k N) and Rw max(k Apos[k] <_p W
or k -1). Since Pos is in <p-order, it follows that W matches aiai+l.. "ai+P-1 if and
only if Pos[k] for some k [Lw, Rw]. Thus, if Lw and Rw can be found quickly,
then the number of matches is Rw Lw + and their left endpoints are given by Pos[Lw],
Pos[Lw + 1] Pos[Rw]. But Pos is in _<p-order; hence, a simple binary search can find

Lw and Rw using O(log N) comparisons of strings of size at most P; each such comparison
requires O (P) single-symbol comparisons. Thus, the Pos array allows us to find all instances
of a string in A in time O (P log N). The algorithm is given in Fig. 1.

if W <p Apos[0] then
Lw--O

else if W >p Apos[N-1] then
Lw+-N

else
(L,R) +-- (O,N- 1)
whileR-L > ldo

M +- (L + R)/2
if W <_p Apos[M] then

R+-M
else

L+-M

Lw+-R

FIG. 1. An O(P log N) searchfor Lw.

The algorithm in Fig. 1 is very simple, but its running time can be improved. We show next
that the <p-comparisons involved in the binary search need not be started from scratch in each
iteration of the while loop. We can use information obtained from one comparison to speed up
the ensuing comparisons. When this strategy is coupled with some additional precomputed
information, the search is improved to P + [log2(N 1)] single-symbol comparisons in the
worst case, which is a substantial improvement.

Let lcp(v, w) be the length of the longest common prefix of v and w. When we lexico-
graphically compare v and w in a left-to-right scan that ends at the first unequal symbol, we
obtain lcp(v, w) as a by-product. We can modify the binary search in Fig. by maintaining
two variables, and r, such that Icp(Apos[L], W), and r lcp(W, Apos[R]). Initially,
is set by the comparison of W and ApostO in line 1, and r is set in the comparison against
AposN-ll in line 3. Thereafter, each comparison of W against ApostMI in line 9 permits
or r to be appropriately updated in line 10 or 12, respectively. By so maintaining and r,
h min(/, r) single-symbol comparisons can be saved when comparing ApotMI to W, be-
cause Apos[L] =l W "--r Apos[R] implies Apos[k] =h W for all k in [L, R] including M. While
this reduces the number of single-symbol comparisons needed to determine the <p-order of a
midpoint with respect to W, it turns out that the worst-case running time is still 0 (P log N)
(e.g., searching acN_2b for cP-1 b).

938 UDI MANBER AND GENE MYERS

To reduce the number of single-symbol comparisons to P + [log2 (N 1)] in the worst
case, we use precomputed information about the Icps of ApoIM] with .each of Apos[Ll and
Apo[R]. Consider the set of all triples (L, M, R) that can arise in ,the inner loop of the
binary search of Fig. 1. There are exactly N 2 such triples, each with a unique midpoint
M 6 [1, N 2], and for each triple 0 < L < M < R < N 1. Suppose that (LM, M, RM)
is the unique triple containing midpoint M. Let Llcp be an array of size N 2 such that
Llcp[M] lcp(APos[LM], APos[M]) and let Rlcp be another array of size N 2 such that
Rlcp[M] lcp(Apos[M], Apos[RM]). The construction of the two (N 2)-element arrays,
Llcp and Rlcp, can be interwoven with the sort producing Pos and will be shown in 4. For
now, we assume that the Llcp and Rlcp arrays have been precomputed.

Consider an iteration of the search loop for triple (L, M, R). Let h max(l, r) and let
Ah be the difference between the value of h at the beginning and at the end of the iteration.
Assuming, without loss of generality, that r _< h, there are three cases to consider,2 based
on whether Llcp[M] is greater than, equal to, or less than h. The cases are illustrated in Fig.
2(a), 2(b), and 2(c), respectively. The vertical bars denote the lcps between W and the suffixes
in the Pos array (except for and r, these lcps are not known at the time we consider M).
The shaded areas illustrate Llcp[M]. For each case, we must determine whether Lw is in the
right half or the left half (the binary search step) and we must update the value of either or
r. It turns out that both these steps are easy to make:
Case Llcp[M] > (Fig. 2(a)).

In this case, Apos[M] --/+1 Apos[L] /+1 W, and so W must be in the right half and
is unchanged.

Case 2 Llcp[M] (Fig. 2(b)).
In this case, we know that the first symbols of Pos[M] and W are equal; thus, we
need to compare only the + st symbol, + 2nd symbol, and so on, until we find one,
say, + j, such that W t+j Pos[M]. The + jth symbol determines whether Lw
is in the right or left side. In either case, we also know the new value of r or/wit is
4- j. Since h at the beginning of the loop, this step takes Ah 4- single-symbol

comparisons.
Case 3 Llcp[M] < (Fig. 2(c)).

in this case, since W matched symbols of L and < symbols of M, it is clear that
Lw is in the left side and that the new value of r is Llcp[M].

Hence, the use ofthe arrays Llcp and Rlcp (the Rlcp array is used when < r) reduces the
number ofsingle-symbol comparisons to no more than Ah4-1 for each iteration. Summing over
all iterations and observing that Ah _< P, the total number of single-symbol comparisons
made in an on-line string search is at most P + [log2(N 1)], and O(P + log N) time is
taken in the worst-case. The precise search algorithm is given in Fig. 3.

3. Sorting. The sorting is done in [log2 (N 4-1) stages. In the first stage, the suffixes are
put in buckets according to their first symbol. Then, inductively, each stage further partitions
the buckets by sorting according to twice the number of symbols. For simplicity of notation,
we number the stages 1, 2, 4, 8, etc., to indicate the number of affected symbols. Thus, in
the Hth stage, the suffixes are sorted according to the <H-order. For simplicity, we pad the
suffixes by adding blank symbols, such that the lengths of all of them become N 4- 1. This
padding is not necessary, but it simplifies the discussion; the version of the algorithm detailed
in Fig. 4 does not make this assumption. The first stage consists of a bucket sort according to
the first symbol of each suffix. The result of this sort is stored in the Pos array and in another
array BH of Boolean values which demarcates the partitioning of the suffixes into rn buckets

2The first two cases can be combined in the program. We use three cases only for description purposes.

SUFFIX ARRAYS 939

L M R

FIo. 2. The three cases of the 0 (P + log N) search.

<-- lcp(Apos[O], W)
r <-- lcp(Apos[N_l], W)
if P or wl <_ apos[O]+l then

Lw<--O
else if r < P or Wr < apos[N-1]+r then

Lw+-N
else

(L, R) <-- (0, N 1)
whileR-L > ldo

M +-- (L + R)/2
if > r then

if Lcp[M] >_ then
rn <-- + lcp(A Pos[M]+l, W)

else
rn +- Lcp[M]

else
ifRcp[M] >_ r then

rn +-- r + lcp(Apos[M]+r, Wr)
else

rn +-- Rcp[M]
if rn P or Wm <_ apos[m]+m then

(R, r) +-- (M, m)
else

(L, l) +- (M, m)

Lw+--R

FIG. 3. An 0 (P + log N) searchfor L w.

(ml _< [E 1); each bucket holds the suffixes with the same first symbol. The array Pos will
become progressively sorted as the algorithm proceeds. Assume that after the Hthstage the
suffixes are partitioned into m/4 buckets, each holding suffixes with the same H first symbols,

940 UDI MANBER AND GENE MYERS

and that these buckets are sorted according to the <H-relation. We will show how to sort the
elements in each H-bucket to produce the <2H-order in O(N) time. Our sorting algorithm
uses similar ideas to those in [KMR72].

Let Ai and Aj be two suffixes belonging to the same bucket after the Hth step; that is,

Ai --H Aj. We need to compare Ai and Aj according to the next H symbols. But, the next H
symbols of Ai (Aj) are exactly the first H symbols of Ai+H(Aj+H). By the assumption, we
already know the relative order, according to the <H-relation, of Ai+H and Aj+H. It remains
to see how we can use that knowledge to complete the stage efficiently. We first describe the
main idea, and we then show how to implement it efficiently.

We start with the first bucket, which must contain the smallest suffixes according to the

<H-relation. Let Ai be the first suffix in the first bucket (i.e., Pos[O] i), and consider Ai-H
(if H < 0, then we ignore Ai and take the suffix of Pos[], and so on). Since Ai starts
with the smallest H-symbol string, Ai-H should be the first in its 2H-bucket. Thus, we move

Ai-H to the beginning of its bucket and mark this fact. For every bucket, we need to know the
number of suffixes in that bucket that have already been moved and thus placed in <2H-order.
The algorithm basically scans the suffixes as they appear in the <H-order, and for each Ai it
moves Ai-H (if it exists) to the next available place in its H-bucket. While this basic idea
is simple, its efficient implementation (in terms of both space and time) is not trivial. We
describe it below.

We maintain three integer arrays, Pos, Prm, and Count, and two Boolean arrays, BH
and B2H, all with N elements.3 At the start of stage H, Pos[i] contains the start position
of the ith smallest suffix (according to the first H symbols), Prm[i] is the inverse of Pos,
namely, Prm[Pos[i]] i, and BH[i] is if and only if Pos[i] contains the leftmost suffix
of an H-bucket (i.e., Apos[i] H Apos[i_l]). Count and B2H are temporary arrays; their use
will become apparent in the description of a stage of the sort. A radix sort on the first symbol
of each suffix is easily tailored to produce Pos, Prrn, and BH for stage in O(N) time.
Assume that Pos, Prm, and BH have the correct values after stage H, and consider stage
2H.

We first reset Prm[i] to point to the leftmost cell of the H-bucket containing the ith suffix
rather than to the suffix’s precise place in the bucket. We also initialize Count[i] to 0 for all
i. All operations above can be done in O(N) time. We then scan the Pos array in increasing
order, one bucket at a time. Let and r (l < r) mark the left and right boundary of the H-bucket
currently being scanned. Let T/(the H left extension of i) denote Pos[i] H. For every i,
< < r, we increment Count[Prm[Ti]], set Prrn[Ti] Prrn[Ti] + Count[Prm[Ti]] 1,

and set B2H[Prm[Ti]] to 1. In effect, all the suffixes whose H + 1st through 2Hth symbols
equal the unique H-prefix of the current H-bucket are moved to the top of their H-buckets
with respect to the Prrn array (Pos is updated momentarily). The B2H field is used to mark

3We present a conceptually simpler but more space-expensive algorithm above in order to clearly expound the
idea behind the sort. In fact, two N-element integer arrays are sufficient, and since the integers are always positive,
we can use their sign bit for the Boolean values. Thus, the space requirement is only two integers per symbol. The
trick is to remove the Count array by temporarily using the Prm value of the leftmost suffix in a bucket to hold the
count for the bucket. Instead of initializing Count to 0 in the first step, we turn off the BH field of every bucket so
that we can tell when a Prm value is the first reference to a particular bucket. The second step again consists of a
scan of the Pos array. If BH[Prm[Ti]] is off, then 7) is to be the first suffix in the <2H order of its H-bucket. We
search the bucket for it and actually place it at the head of its bucket (as opposed to just modifying Prm to reflect
where it will go in the simpler algorithm). This allows us to then use Prm[7 as the counter for the bucket because
we can restore it later knowing that the Prm-value of the first suffix in each bucket is being so used. We thus set the
BH field back on and set Prm[Ti to 1. For later references to this bucket, which we know because BH[Prm[Ti]]
is now on, we simply adjust Prm[Ti] with the count in Prm[Pos[Prm[7]]] and bump the count. At the end of this
step, the Prm fields used as counters are reset to the position of their suffix. The B2H fields could not be set in the
preceding steps because the BH values were being used as counter flags. In a separate pass, the B2H values are

updated to identify 2H buckets as in the simple algorithm.

SUFFIX ARRAYS 941

those prefixes that were moved. Before the next H-bucket is considered, we make another
pass through this one, find all the moved suffixes, and reset the B2H fields such that only the
leftmost of them in each 2H-bucket is set to 1, and the rest are reset to 0. This way, the B2H
fields correctly mark the beginning of the 2H-buckets. Thus the scan updates Prm and sets
B2H so that they are consistent with the <2/-/-order of the suffixes. In the final step, we update
the Pos array (which is the inverse of Prm) and set BH to B2H. All the steps above can
clearly be done in O(N) time, and, since there are at most [log2(N + 1)] Stages, the sorting
requires O (N log N) time in the worst case. A pseudocode implementation is given in Fig. 4.
Average-case analysis is presented in 5.

Sorting with 3N positive integers and
2N Booleans. "Count" can be eliminated
and Booleans folded into sign bits, to

produce a 2N integer sort. #

var Pos, Prm, Count: array [0..N of int;
BH, B2H: array [0..N] of boolean;

First phase bucket sort, Bucket and
Link overlay Pos and Prm, respectively #

for a E do
Bucket [a]

for/ -- 0, 1, 2,..., N do
(Bucket[ai], Link[i]) -- (i, Bucket[ai])

c+-O
for a in order do

+- Bucket[a]
while do

j -- Link[i]
Prm[i] +-- c

if Bucket[a] then
BH[c] true
Set (c, 0) # lcp info call #

else
B H[c] +- false

c+--c+l
i+--j

BH[N +-- true
fori[0, N-1]do

Pos[Prm[i]] +--

Inductive sorting stage (with lcp info calls)

for H +- 1, 2, 4, 8,... while H < N do
for each =H bucket [l, r] do

Count[l] - 0
for c s [l, r] do

Prm[Pos[c]] +--

d+--N-H
e +-- Prm[d]
Prm[d] -- e + Count[e]
Count[el +-- Count[el +
B2H[Prm[d]] true
for each =n bucket [l, r] in <n-order do

ford{Pos[c]-H:c[l,r]}N[0, N-1]do
e +-- Prm[d]
Prm[d] +-- e + Count[el
Count[e] +-- Count[e] +
B2H[Prm[d]] +-- true

forde {Pos[c]- H c [l,r]}f3[O,N- 1]do
if B2H[Prm[d]] then

e +--min(j j > Prm[d] and
(BH[j] ornot B2H[j]))

for f [Prm[d] + 1, e- 1] do
B2H[f] -- false

fori [0, N-1]do
Pos[Prm[i]] +--

for [0, N- 1] do
if B2H[i] and not B H[i] then

Set(i, H + Min_Height(Prm[Pos[i 1] + HI,
Prm[Pos[i] + H]))

BH[i] -- B2n[i]

FIG. 4. The O(N log N) suffix sorting algorithm.

4. Finding longest common prefixes. The O(P + log N) search algorithm requires
precomputed information about the lcps between the suffixes starting at each midpoint M and
its left and right boundaries Lt and Rt. Computing a suffix array requires 2N integers, and
we will see here that computing and recording the associated lcp information requires an extra
N integers. We first show how to compute the lcps between suffixes that are consecutive in the

942 UDI MANBER AND GENE MYERS

sorted Pos array during the sort. We will see later how to compute all necessary lcps. The key
idea is the following. Assume that after stage H of the sort we know the lcps between suffixes
in adjacent buckets (after the first stage, the lcps between suffixes in adjacent buckets are 0).
At stage 2H the buckets are partitioned according to 2H symbols. Thus, the cps between
suffixes in newly adjacent buckets must be at least H and at most 2H 1. Furthermore, if Ap
and Aq are in the same H-bucket but are in distinct 2H-buckets, then

lcp(Ap, Aq) H 4- lcp(Ap+H, Aq+H).

Moreover, we know that lcp(Ap+H, Aq+H) < H. The problem is that we only have the lcps
between suffixes in adjacent buckets, and Ap+H and Aq+H may not be in adjacent buckets.
However, if Apos[i] and Apos[j], where < j have an lcp less than H and Pos is in <H order,
then their lcp is the minimum of the Icps of every adjacent pair of suffixes between Pos[i]
and Pos[j]. That is,

(4.2) min (lcp(Apos[:], Apos[k+l])).lcp(A Pos[i], A Pos[j])
k[i,j-1]

Using (4.2) directly would require too much time, and maintaining the Icp of every pair of
suffixes too much space. By using an O (N)-space height balanced tree structure that records
the minimum pairwise lcp over a collection of intervals of the suffix array, we will be able
to determine the lcp between any two suffixes in O (log N) time. We will describe this data
structure, which we call an interval tree, after we firmly establish our basic approach (interval
trees are similar to the Cartesian trees of Vuillemin [Vui80]).

We define height(i) lcp(Apos[i-1], Apos[i]), < < N- 1, where Pos is the final
sorted order of the suffixes. These N height values are computed in an array Hgt[i]. The
computation is performed inductively, together with the sort, such that Hgt[i] achieves its
correct value at stage H if and only if height(i) < H, and it is undefined (specifically, N + 1)
otherwise. Formally, if height(i) < H then Hgt[i]--height(i); otherwise, Hgt[i] N+ I.
Notice that, if height(i) < H, then Apos[i-1] and Apos[i] must be in different H-buckets since
H-buckets contain suffixes with the same H-symbol prefix. Further observe that a Hgt value
is initially N 4- 1, it is set to its height value during the appropriate stage of the sort, and it
retains this value thereafter.

Let PosH, HgtH, and PrmH be the values of the given arrays at the end of stage H. In
stage 2H of the sort, the <2H-ordered list Pos2H is produced by sorting the suffixes in each
H-bucket of the <h-ordered list PosH. The following lemma captures the essence of how we
compute Hgt2H from HgtH given Pos2H and Prm2H.

LEMMA 1. IfH < height(i) < 2H then

height(i) H 4- min(HgtH[k] k E [min(a, b) 4- 1, max(a, b)]),

where a Prm2H[Pos2H[i 1] 4- H], and b Prm2H[Pos2H[i] 4- H].
Proof. Let p PosZH[i 1] and q PosZH[i]. As we have observed, height(i) <

2H implies height(i) H 4- lcp(Ap+H, Aq+H). Next observe that PosZH[a] p 4- H
and PosZH[b] q 4- H by the choice of a and b. Without loss of generality, assume
that a < b. We now know that height(i) H 4- lcp(u, v), where u Apos2H[a], v
A pos2I-l[b], lcp(u, v) < H, and u <H v. Observe that x <H Z and x _<H Y --<H Z imply
lcp(x, z) min(Icp(x, y), lcp(y, z)). It follows, by induction, that if x0 </4 Xn and x0 _</4

Xl <_14 <_14 Xn, then lcp(xo, Xn) min(lcp(xk_l, Xk) k [1, n]). Thus, lcp(u, v)
min(lcp(Aeos,[k-ll, Aeo"[kl) k 6 [a + 1, b]). Now lcp(u, v) < H implies that at least one
term in the minimum is less than H. For those terms less than H, lcp(A Pos24[k_l], A Postal[k])

SUFFIX ARRAYS 943

height(k) Hgtl-I[k]. This, combined with the fact that Hgtl-I[k] N + >_ H for all
other terms, gives the result. [-1

We are now ready to describe the algorithm. In the first stage, we set Hgt[i] to 0 if

aeosl[i-1] 7 apos[i], and to N + otherwise. This correctly establishes Hgt 1. At the end of
stage 2H > 1, we have computed PosTM, PrmeII, and BHen (which marks the 2H-buckets).
Thus, by Lemma 1, the following code correctly establishes HgtTM from Hgt I-I when placed
at the end of a sorting stage. Essential to its correctness is the fact that HgtTM is Hgt i-I except
for the elements whose height values are in the range [H, 2H 1]; their Hgt values are
changed from N + to their correct value.

for [1, N 1] such that BH[i] and Hgt[i] > N do
a +-- Prm[Pos[i 1] + H]
b +-- Prm[Pos[i] + H]
Set (i, H + Min_Height(min(a, b) + 1, max(a, b))) these routines are defined below

The routine Set(i, h) sets Hgt[i] from N + to h in our interval tree, and Min_Height(i, j)
determines min(Hgt[k] k [i, j]) using the interval tree. We now show how to implement
each routine in time O (log N) in the worst case. Consider a balanced and full binary tree
with N leaves, which, in left-to-right order, correspond to the elements of the array Hgt.
The tree has height O(log N) and N 2 interior vertices. Assume that a value Hgt[v] is also
kept at each interior vertex v. We say that the tree is current if for every interior vertex v,
Hgt[v] min(Hgt[left(v)], Hgt[right(v)]), where left(v) and right(v) are the left and
right children of v.

Let T be a current tree. We need to perform two operations on the tree, a query
Min_Height(i,j), and a dynamic operation Set(i,h). The query operation
Min_Height(i, j) computes min(Hgt[k] k [i, j]). It can be answered in O(log N)
time as follows. Let nca(i, j) be the nearest common ancestor of leaves and j. The nca of
leaves and j can be found in O (log N) time by simply walking from the leaves to the root of
the tree (it can be done in constant time using a more complicated data structure [SV88], but
it is not necessary here). Let P be the set of vertices on the path from to nca(i, j) excluding
nca(i, j), and let Q be the similar path for leaf j. Min_Height(i, j) is the minimum of
the following values: (1) Hgt[i], (2) Hgt[w] such that right(v) w and w ’ P for some
v P, (3) Hgt[w] suchthatleft(v) w and w ’ Q for some v Q, and (4) Hgt[j]. These
O (log N) vertices can be found, and their minimum can be computed in O (log N) time. The
operation Set(i, h) sets Hgt[i] to h and then makes T current again by updating the Hgt
values of the interior vertices on the path from to the root. This takes O (log N) time.

Overall, the time taken to compute the height values in stage H is O(N + log N. Setl4),
where Setl-i is the number of indices for which height(i) [H, 2H 1]. Since ESetl-1 N
over all stages, the total additional time required to.compute Hgt during the sort is O(N log N).

The Hgt array gives the lcps of suffixes that are consecutive in the Pos array. Moreover,
an interior vertex of our interval tree gives the lcp between the suffixes at its leftmost and
rightmost leaves. We now show that not only are the arrays Llcp and Rlcp computable
from the array Hgt but are directly available from the interval tree by appropriately choosing
the shape of the tree (heretofore we only asserted that it needed to be full and balanced).
Specifically, we use the tre,e based on the binary search of Fig. 1. This implicitly-represented
tree consists of 2N 3 vertices, each labeled with one of the 2N 3 pairs (L, R) that
can arise at entry and exit from the while loop of the binary search. The root of the tree
is labeled (0, N 1), and the remaining vertices are labeled either (L/, M) or (M, Rt)
for some midpoint M [1, N 2]. From another perspective, the ,tree’s N 2 interior

944 UDI MANBER AND GENE MYERS

vertices are (LM, RM) for each midpoint M, and its N leaves are (i 1, i) for 6

[1, N 1] in left-to-right order. For each interior vertex, left((LM, RM)) (LM, M) and
r ght (LM, RM (M, RM). Since the tree is full and balanced, it is appropriate for realizing
Set and Min_Height if we let leaf (i 1, i) hold the value of Hgt[i]. Moreover, at the end
of the sort, Hgt[(L, R)] min(height(k) k 6 [L + 1, R]) lcp(Aeos[L], Apos[R]). Thus,
Llcp[M] Hgt[(Lt, M)] and Rlcp[M] Hgt[(M, Rt)]. So with this tree, the arrays
Llcp and Rlcp are directly available upon completion of the sort.4

5. Linear time expected-case variations. We now consider the expected time com-
plexity of constructing and searching suffix arrays. The variations presented in this section
require additional O (N) structures and so lose some of the space advantage. We present them
primarily to show that linear time constructions are possible and because some of the ideas
here are central to the implementation we found to be best in practice. We assume that all
N-symbol strings are equally likely.5 Under this input distribution, the expected length of
the longest repeated substring has been shown to be 2 lOglr N + O(1) [KGO83]. This fact
provides the central leverage for all the results that follow. Note that it immediately implies
that, in the expected case, Pos will be completely sorted after O(log log N) stages, and the
sorting algorithm of 3 thus takes O(N log log N) expected time.

The expected sorting time can be reduced to O(N) by modifying the radix sort of the
first stage as follows. Let T /lOglrl NI and consider mapping each string of T symbols
over E to the integer obtained when the string is viewed as a T-digit, radix-I E number. This
frequently used encoding is an isomorphism onto the range [0, E r c_ [0, N], and the
<-relation on the integers is identical with the <r-relation on the corresponding strings. Let
Intr(Ap) be the integer encoding of the T-symbol prefix of suffix Ap. It is easy to compute
Intr(Ap) for all p in a single O(N) sweep of the text by employing the observation that
Intr(Ap) aplEI T-1 -+- [Intr(Ap+l)/IElJ. Instead of performing the initial radix sort on
the first symbol of each suffix, we perform it on the integer encoding of the first T symbols
of each suffix. This radix sort still takes just O(N) time and space because the choice of
T guarantees that the integer encodings are all less than N. Moreover, it sorts the suffixes
according to the <r-relation. Effectively, the base case of the sort has been extended from
H to H T with no loss of asymptotic efficiency. Since the expected length of the
longest repeated substring is T (2 + O(1/T)), at most, two subsequent stages are needed
to complete the sort in the expected case. Thus, this slight variation gives an O (N) expected
algorithm for sorting the suffixes.

Corresponding expected-case improvements for computing the Icp information, in addi-
tion to the sorted suffix array, are harder to come by. We can still achieve O (N) expected-case
time as we now show. We employ an approach to computing height(i) that uses identity
(4.1) recursively to obtain the desired lcps. Let the sort history of a particular sort be the tree
that models the successive refinement of buckets during the sort. There is a vertex for each
H-bucket except those H-buckets that are identical to the (H/2)-buckets containing them.
The sort history thus has O(N) vertices, as each leaf corresponds to a suffix and each interior

4The interval tree requires 2N 3 positive integers. However, the observation that one child of each interior
vertex has the same value as its parent, permits interval trees (and thus the Llcp and Rlcp arrays) to be encoded and
manipulated as N signed integers. Specifically, if the number at a vertex is positive, then the vertex contains
the Llcp values; if it is negative, then its positive part is the Rlcp value. The other value is that of its parent. One
must store both the Llcp and Rlcp values for the root but this is only one extra integer. Note that in order to have
both the Llcp and Rlcp values available at a vertex we must descend to it from the root. This is naturally the case
for searches, and for Set and Min_height we simply traverse from root to leaf and back again at no increase in
asymptotic complexity.

5The ensuing results also hold under the more general model where each text is assumed to be the result of N
independent Bernoulli trials of a I I-sided coin toss that is not necessarily uniform.

SUFFIX ARRAYS 945

vertex has at least two children. Each vertex contains a pointer to its parent, and each interior
vertex also contains the stage number at which its bucket was split. The leaves of the tree are
assumed to be arranged in an N element array, so that the singleton bucket for suffix Ap can be
indexed by p. It is a straightforward exercise to build the sort history in O(N) time overhead
during the sort. Notice that we determine the values height(i) only after the sort is finished.

Given the sort history produced by the sort, we determine the lcp of Ap and Aq as follows.
First, we find the nearest common ancestor (nca) of suffixes Ap and Aq in the sort history
using an O(1) time nca algorithm [HT84], [SV88]. The stage number H associated with
this ancestor tells us that lcp(Ap, Aq) H + lcp(Ap+n, Aq+H) E [H, 2H 1]. We then
recursively find the lcp of Ap+H and Aq+H by finding the nca of suffixes Ap+n and Aq+H
in the history, and so on, until an nca is discovered to be the root of the history. At each
successive level of the recursion, the stage number of the nca is at least halved, and so the
number of levels performed is O(log L), where L is the lcp of Ap and Aq. Because the longest
repeated substring has expected length O (lOglz N), the N lcp values of adjacent sorted
suffices are found in O (N log log N) expected time.

The scheme above can be improved to O (N) expected time by strengthening the induction
basis as was done for the sort. Suppose that we stop the recursion above when the stage number
of an nca becomes less than T’ 1/2 lOglz NJ. Our knowledge of the expected maximum lcp
length implies that, on average, only three or four levels are performed before this condition
is met. Each level takes O (1) time, and we are left having to determine the lcp of two suffices
(say, Ap and Aq) that is known to be less than T’. To answer this final lcp query in constant
time, we build a IE Ir’-by-lE T’ array Lookup, where Lookup [IntT,(X), lntT,(y)] lcp(x, y)
for all T’-symbol strings x and y. By the choice of T’ there are no more than N entries in the
array, and they can be computed incrementally in an O (N) preprocessing step along with the
integer encodings IntT,(Ap) for all p. So for the final level of the recursion, lcp(Ap, Aq)
Lookup[IntT,(Ap), IntT,(Aq)] may be computed in O(1) time via table lookup. In summary,
we can compute the lcp between any two suffixes in O (1) expected time, and so can product
the lcp array in O(N) expected time.

The technique of using integer encodings of O(log N)-symbol strings to speedup the
expected preprocessing times, also provides a pragmatic speed-up for searching. For any
K < T, let Buck[k] min{i IntK(Apos[]) i}. This bucket array contains IEI K
nondecreasing entries and can be computed from the ordered suffix array in O(N) additional
time. Given a word W, we know immediately that Lw and Rw are between Buck[k] and
Buck[k + 1] for k IntK(W). Thus, in O(K) time we can limit the interval to which we
apply the search algorithm proper to one whose average size is N/IEI K. Choosing K to be T
or very close to T, implies that the search proper is applied to an O (1) expected-size interval
and thus consumes O(P) time in expectation regardless of whether the algorithm of Fig. or
Fig. 3 is used. While the use of bucketing does not asymptotically improve either worst-case
or expected-case times, we found this speed-up very important in practice.

6. Practice. A primary motivation for this paper was to be able to efficiently answer
on-line string queries for very long genetic sequences (on the order of one million or more
symbols long). In practice, it is the space overhead of the query data structure that limits the
largest text that may be handled. Throughout this section, we measure space in numbers of
integers where typical current architectures model each integer in 4 bytes. Suffix trees are
quite space expensive, requiring roughly 4 integers of overhead per text character. Utilizing
an appropriate blend of the suffix array algorithms given in this paper, we developed an
implementation requiring 1.25 integers of overhead per text character whose construction and
search speeds are competitive with suffix trees.

946 UDI MANBER AND GENE MYERS

There are three distinct ways to implement a data structure for suffix trees, depending on
how the outedges of an interior vertex are encoded. We characterize the space occupied by
that part of the structure needed for searches and ignore the extra integer (for "suffix links")
needed during the suffix tree’s construction. Using a]E I-element vector to model the outedges
gives a structure requiring 2N + (1 EI + 2). I integers, where I is the number of interior nodes
in the suffix tree. Encoding each set of outedges with a binary search tree requires 2N + 51
integers. Finally, encoding each outedge set as a linked list requires 2N / 41 integers. The
parameter I < N varies as a function ofthe text. The first four columns of Table illustrate the
value of I/N and the per-text-symbol space consumption of each of the three coding schemes
assuming that an integer occupies 4 bytes. These results suggest that the linked scheme is the
most space parsimonious. We developed a tightly coded implementation of this scheme for
the timing comparisons with our suffix array software.

TABLE
Empirical resultsfor texts of length 100,000.

Space (Bytes/text symbol)

S. Trees
I/N Link Tree Vector

Random (ILl 2) .99 23.8 27.8 19.8

Random (ILl 4) .62 17.9 20.4 18.9

Random ([EI 8) .45 15.2 17.0 20.8

Random (ILl 16) .37 13.9 15.4 30.6

Random (ILl 32) .31 13.0 14.2 46.2

Text (ILl 96) .54 16.6 18.8 220.0

Code (ILl 96) .63 18.1 20.6 255.0

DNA (ILl 4) .72 19.5 22.4 25.2

Construction Time

S. Arrays S. Trees S. Arrays

Search Time

S. Trees S. Arrays

5.0 2.6 7.1

5.0 3.1 11.7

5.0 4.6 11.4

5.0 6.9 11.6

5.0 10.9 11.7

5.0 5.3 28.3

5.0 4.2 35.9

5.0 2.9 18.7

6.0 5.8

5.2 5.6

5.8 6.6

9.2 6.8

10.2 7.0

22.4 9.5

29.3 9.0

14.6 9.2

For our practical implementation, we chose to build just a suffix array and use the radix-
N initial bucket sort described in 5 to build it in O(N) expected time. Without the lcp
array the search must take O (P log N) worst-case time. However, keeping variables and
r as suggested in arriving at the O(P + log N) search significantly improves search speed
in practice. We further accelerate the search to O (P) expected time by using a bucket table
with K logtz N/4 as described in 5. Our search structure thus consists of an N integer
suffix array and an N/4 integer bucket array, and so consumes only 1.25 integers/5 bytes per
text symbol assuming an integer is 4 bytes. As discussed in 3, 2N integers are required to
construct the suffix array (without lcp information). So constructing an array requires a little
more space than is required by the search structure, as is true for suffix trees. Given that
construction is usually once only, we choose to compare the sizes of the search structures in
Table 1.

Table summarizes a number of timing experiments on texts of length 100,000. All
times are in seconds and were obtained on a VAX 8650 running UNIX. Columns 6 and 7
give the times for constructing the suffix tree and suffix array, respectively. Columns 8 and 9
give the time to perform 100,000 successful queries of length 20 for the suffix tree and array,
respectively. In synopsis, suffix arrays are 3-10 times more expensive to build, 2.5-5 times
more space efficient, and can be queried at speeds comparable to suffix trees.

SUFFIX ARRAYS 947

Acknowledgment. The authors wish to thank the referees for the insightful comments,
especially one anonymous referee whose meticulous comments were beyond the call of duty.

REFERENCES

[Apo85] A. APOSTOLICO, The myriad virtues ofsubword trees, in Combinatorial Algorithms on Words, A. Apostolico
and Z. Galil, eds., NATO ASI Series F: Computer and System Sciences, Vol. 12, Springer-Verlag, Berlin,
New York, 1985, pp. 85-96.

[AIL88] A. APOSTOLICO, C. ILIOPOULOS, G. LANDAU, B. SCHIEBER, AND U. VISHKIN, Parallel construction ofa suffix
tree with applications, Algorithmica, 3 (1988), pp. 347-366.

[AP83] A. APOSTOLICO AND E E PREPARATA, Optimal off-line detection of repetitions in a string, Theoret. Comput.
Sci., 22 (1983), pp. 297-315.

[AP85] Structuralproperties ofthe string statisticsproblem, J. Comput. System Sci., 31 (1985), pp. 394-411.
[BL89] J. BAER AND Y. LIN, Improving quicksortperformance with a codeword data structure, IEEE Trans. Software

Engrg., 15 (1989), pp. 622-631.
[BG90] R. BAEZA-YATESAND G. GoNrqET, All-against-all sequence matching, Tech. Rep., Dept. ofComputer Science,

University of Chile, 1990.
[BB86] J. BLUMERAND A. BLUMER, On-line Construction ofa Complete Inverted File, Tech. Rep. UCSC-CRL-86-11,

Department of Computer Science, University of Colorado, Boulder, CO, 1986.
[BBE85] J. BLUMER, A. BLUMER, E. EHRENFEUCHT, D. HAUSSLER, M. T. CHEN, AND J. SEIFERAS, The smallest au-

tomation recognizing the subwords ofa text, Theoret. Comput. Sci., 40 (1985), pp. 31-35.
[Car75] A. E CARDENAS, Analysis and performance of inverted data base structures, Comm. ACM, 18 (1975), pp.

253-263.
[CHM86] B. CLIFT, D. HAUSSLER, R. MCCONNELL, T. D. SCHNEIDER, AND G. D, STORMO, Sequence landscapes,

Nucleic Acids Research, 4 (1986), pp. 141-158.
[CL90] W. I. CHANG AND E. L. LAWLER, Approximate string matching in sublinear expected time, Proc. IEEE 31st

Annual Symp. on Foundations of Computer Science, St. Louis, MO, October 1990, pp. 116-124.
[EH88] A. EHRENFEUCHT AND D. HAUSSLER, A new distance metric on strings computable in linear time, Discrete

Appl. Math., 40 (1988), pp. 191-203.
[FWM84] C. FRASER, A. WENDT, AND E. W. MYERS, Analyzing and compressing assembly code, Proceedings of the

SIGPLAN Symposium on Compiler Construction, 1984, pp. 117-121.
[Gal85] Z. GALIL, Open problems in stringology, in Combinatorial Algorithms on Words, A. Apostolico and Z.

Galil., eds., NATO ASI Series F: Computer and System Sciences, Vol, 12, Springer-Verlag, Berlin, New
York, 1985, pp. 1-8.

[GBS92] G. GONNET, R. BAEZA-YATES,AND T. SNIDER,New indicesfor text: PATtrees andPATarrays, in Information
Retrieval: Data Structures and Algorithms, B. Frakes and R. Baeza-Yates, eds., Prentice-Hall, Englewood
Cliffs, NJ, 1992.

[HT84] D. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J. Comput., 13
(1984), pp. 338-355.

[KGO83] S. KARLIN, G. GHANDOUR, EOST, S. TAVARE, AND L. J. KORN, New approachesfor computer analysis of
nucleic acid sequences, Proc. Natl. Acad. Sci. USA, 80 (September 1983), pp. 5660-5664.

[KMR72] R. M. KARP, R. E. MILLER, AND A. L. ROSENBERG, Rapid identification of repeated patterns in strings,
trees and arrays, Fourth Annual ACM Symposium on Theory of Computing, (May 1972), pp. 125-136.

[LV89] G.M. LANDAU AND U. VISHKIN, Fast parallel and serial approximate string matching, J. Algor., 10 (1989),
pp. 157-169.

[McC76] E.M. MCCREIGHT,A space-economical suffix tree construction algorithm, J. ACM, 23 (1976), pp. 262-272.
[MM90] U. MANBER AND E. W. MYERS, Suffix arrays: A new methodfor on-line string searches, First ACM-SIAM

Symposium on Discrete Algor., San Francisco, CA, January 1990, pp. 319-327.
[MRS0] M. E. MAJSTER AND A. REISER, Efficient on-line construction and correction ofposition trees, SIAM J.

Comput., 9 (1980), pp. 785-807.
[Mye86] E.W. MYERS,Incremental alignment algorithms and their applications, Tech. Report TR86-22, Department

of Computer Science, University of Arizona, Tucson, AZ.
[My93] A sublinear algorithmfor approximate keyword searching, Algorithmica, 1993, to appear.
[Ro82] M. RODEH, Afast testfor unique decipherability based on suffix tree, IEEE Trans. Inform. Theory, 28 (1982),

pp. 648-651.
[RPES1] M. RODEH, V. R. PRATT, AND S. EVEN, Linear algorithmfor data compression via string matching, J. ACM,

28 (1982), pp. 16-24.

948 UDI MANBER AND GENE MYERS

[Sli80] A. O. SLISENKO, Detection of periodicities and string-matching in real time, J. Soviet Math., 22 (1983),
pp. 1316-1387; translated from Zpiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta im. V. A. Steklova AN SSSR, 105 (1980), pp. 62-173.

[SV88] B. SCHm3ER AND U. VISHKIr, On finding lowest common ancestors: Simplification and parallelization,
SIAM J. Comput., 17 (1988), pp. 1253-1262.

[gui80] J. VUILLEMIN, A unified look at data structures, Comm. ACM, 23 (1980), pp. 229-239.
[Wei73] E WENEr, Linear pattern matching algorithm, Proc. 14th IEEE Sympos. Switching and Automata Theory,

(1973), pp. 1-11.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 949-975, October 1993

() 1993 Society for Industrial and Applied Mathematics

RANDOMIZING REDUCTIONS
OF SEARCH PROBLEMS*

ANDREAS BLASS AND YURI GUREVICH

Abstract. This paper closes a gap in the foundations of the theory of average-case complexity. First, it clarifies
the notion of a feasible solution for a search problem and proves its robustness. Second, it gives a general and
usable notion of many-one randomizing reductions of search problems and proves that it has desirable properties.
All reductions of search problems to search problems in the literature on average-case complexity can be viewed as
such many-one randomizing reductions, including those reductions in the literature that use iterations and therefore
do not look many-one. As an illustration, this paper presents a careful proof of a theorem of Impagliazzo and Levin
in the framework of the present work.

Key words, average case, search problems, reduction, randomization

AMS subject classification. 68Q15

1. Introduction and results. Reduction theory for average-case computational com-
plexity was pioneered by Levin [9]. Recently, one of us (Gurevich) wrote a survey on the
subject [6], and we refer the reader there for a general background. However, the present
paper is largely self-contained; we recall all necessary definitions.

We develop the foundations of the theory of many-one reductions of search problems in
the context of randomizing algorithms. Many-one reductions are easier to use than Turing
reductions, but one may wonder how restrictive they are. Indeed, there are cases in the
literature on average-case complexity], [8] in which reductions of search problems to search
problems are not many-one; those reductions are iterations of many-one reductions. It turns
out, however, that iteration is needed, not for reductions, but only for the resulting search
algorithms. Thus the theory of reductions can be simplified by treating reductions separately
from iteration. Our notion of many-one reduction was influenced by the specific reductions
used in [1], [8], [11].

As a general framework for the study of average-case complexity, we use domains. Def-
initions of domains and polynomiality on average are recalled in 2. Essentially, a domain is
a set of strings with a size function and a probability distribution. If X is a subset of positive
probability of a domain A, then the restriction of A to X is the domain obtained by assigning
zero probability to elements of A X and renormalizing the probabilities on X. The phrase
"polynomial on average" is abbreviated AP.

We consider search problems of the following sort. A domain A (of instances) is given,
along with a binary relation W between elements of A and arbitrary strings in some fixed
alphabet E. If W(x, w) holds, the string w is a witness for the instance x (with respect to
W) and x is a positive instance; an instance x is negative if it has no witnesses. We assume
that there exists an algorithm that, given an instance x of nonzero probability and a witness
w for x, computes W(x, w) in time polynomial in Ixl / Iwl, where Ixl Ixla is the size of
x with respect to A and Iwl is the ordinary length of w. The search problem SP(A, W) is the

*Received by the editors November 14, 1991; accepted for publication (in revised form) June 9, 1992. An
extended abstract of this paper was published earlier in [3].

tDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1003 (ablass@math.
l sa. umich, edu). This author’s work was partially supported by National Science Foundation grant DMR 88-
01988.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan
48109-2122 (gurevich@eecs. umich, edu). This author’s work was partially supported by National Science
Foundation grant CCR 89-04728 and Office of Naval Research grant N00014-9 l-J- 11861.

949

950 ANDREAS BLASS AND YURI GUREVICH

following: Given a positive instance x 6 A of nonzero probability, find a witness w such that
W(x, w).

Let A+ be the restriction of domain A to positive instances. An algorithm for SP(A, W)
is supposed to find witnesses for instances x 6 A+ of nonzero probability; it is immaterial
what the algorithm does for other instances.

In the context of polynomial-time (PTime) search algorithms, it is reasonable to assume
that the length of a witness is bounded by a polynomial of the size of the instance and that
W(x, w) is computable in time polynomial in Ixl since such an algorithm, given x, could
produce only w’s that are polynomially bounded with respect to x. Search problems of
this kind are called NP search problems; every NP decision problem gives rise to an NP
search problem. However, we shall work, not with polynomial-time algorithms but with
(randomizing) algorithms whose running time is polynomial on average (AP-time algorithms).
For such algorithms there may be an occasional input x (and a random string r) for which the
running time and the length of the output are very long. Therefore, we do not require that the
length of a witness be bounded by a polynomial of the size of the instance or that W(x, w)
be computable in time polynomial in Ix I, However, if we require that the length of a witness
be bounded by a polynomial of the size of the instance or that W(x, w) be computable in
time polynomial in Ix I, all of our theorems remain true. On the other hand, the condition that
W(x, w) is PTime computable relative to Ixl / Iwl can be relaxed to a hybrid--PTime with
respect to w and AP time with respect to x--without affecting the results of this paper [6].

It is often useful to consider search problems in which one seeks witnesses w for certain
instances but does not care what the algorithm does for other instances, even if those other
instances have witnesses. For example, in the unique search problems, considered in], the
algorithm applied to an instance x (and a random string) should produce a witness w when w
is the unique witness for x, but it does not matter what the algorithm does when it is applied to
an instance for which there is either no witness or more than one witness. Such problems can
be incorporated into our framework by replacing A with its restriction to important instances.

An interesting case is one in which every instance of nonzero probability has a witness.
This can be achieved by restricting the domain to positive instances, but there are other ways
as well. Consider, for example, the usual Hamiltonian circuit search problem with some
probability distribution on graphs. Not every graph has a Hamiltonian circuit. However, we
can require, in the case of a graph without a Hamiltonian circuit, that a witness establish
the nonexistence of a Hamiltonian circuit. For example, a witness may be a computation
establishing the nonexistence of any Hamiltonian circuit. Such a witness may be long, but
W(x, w) is required to be computable in time polynomial in Ix / wl, not in Ix I, so that
long witnesses may be all right. Indeed, there exists an algorithm for a randomized version
of the Hamiltonian circuit search (with an arbitrary but constant edge probability) that finds a
Hamiltonian circuit or establishes the nonexistence of one in linear (in the number of vertices)
expected time [7].

Before we explain our notion of feasible solutions, let us recall a useful notion of random
function [2]. Deterministic algorithms compute deterministic functions. Similarly, random-
izing (coin-flipping) algorithms compute random functions. Formally, a random function f
on a domain A is a deterministic function on an extension Df of A whose elements are pairs
(x, s), where x 6 A and s is a binary string to be regarded as the sequence of coin flips used
by the algorithm. In this introduction we allow ourselves to be sloppy about the distinction
between a randomizing algorithm and the random function it computes. The definition of
random functions is recalled in 2.

There are different approaches to defining what constitutes a good randomizing algorithm
for a search problem. One approach, closer to the actual use of such algorithms, requires that

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 951

a correct answer be obtained, with probability equal to or at least very nearly 1, in reasonable
time (i.e., in AP time). Another approach requires only that the algorithms have, for every
input of positive probability, a reasonably high probability of success, say, at least 1%. For
many purposes the two approaches are equivalent since an algorithm of the second, weaker sort
can be iterated with independent random strings to obtain a very high probability of success
at the cost of a moderate increase in the running time. A polynomial number of iterations
suffices to improve success probabilities from as low as a reciprocal of a polynomial of Ix to
as high as exponentially (relative to Ix I) close to 1. For average-case complexity the situation
is .even better. We can start with a success probability whose reciprocal is not polynomially
bounded but only polynomial on average, and we can iterate the algorithm to obtain a success
probability without increasing the time beyond AP.

To make these ideas precise we introduce in 3 the notions of AP-time randomizing
algorithms and almost-total randomizing algorithms. An almost-total, AP-time randomizing
algorithm succeeds with probability 1, but an arbitrary AP-time algorithm needs only to
succeed often enough on each instance. The notion of AP-time randomizing algorithms is
the central notion of this paper. Roughly speaking, a randomizing algorithm M with inputs
in a domain A is AP time if it has a set of good inputs (x, s), where x E A and s is a finite
sequence of coin flips, such that M terminates on every good input, the proportion of good
inputs (among all inputs) is at least the reciprocal of an AP function, and the computation time
of M on good inputs is not too large. It is not required that the set of good inputs be easily
recognizable in any way.

DEFINITION 1.1. A randomizing algorithm M is an AP-time solution (respectively, almost-
total, AP-time solution) for a search problem SP(A, W) if M is AP time (respectively, almost
total, AP time) on A+ and every terminating computation of M with input x E A+ of nonzero
probability (and arbitrary coin flips) produces as output a witness w with (x, w) 6 W.

It might seem more natural to require that an AP-time algorithm produce appropriate
outputs only for enough, but not all, of the terminating computations, but our definition is
somewhat simpler and is essentially equivalent: Every AP-time algorithm M for a search
problem H that produces correct outputs on its good inputs can be converted to an AP-time
solution M’ for YI.

Choose any iteration technique, subject to some natural fairness and carefulness conditions
specified in 4. Theorem 4.4, the main result of 4, implies the following theorem.

THEOREM 1.2. A randomizing algorithm M is an AP-time solutionfor a search problem
YI ifand only if the iteration M* ofM is an AP-time solutionfor YI that is almost total.

Thus an AP-time solution is iterable to an almost-total, AP-time solution, and this is
optimal. In addition, several natural iteration techniques are shown to satisfy the fairness and
carefulness conditions in question.

Now let us turn our attention to reductions. What is a (randomizing) many-one reduction
of a search problem YI SP(A, W) to another search problem 1-I’ SP(A’, W’)? Such
a reduction consists of two parts, the first producing, for each instance x A+ of nonzero
probability and some random strings s, an instance x’ f(x, s) A’, and the second
producing, for each witness w’ with (x’, w’) W’, awitness w g(x, s, w’) with (x, w) E W.
A reduction and any.algorithm M’ solving I-I’ yield, by composition, an algorithm M (equal
to g o M’ o f if g depends only on w’) that solves H. We wish to determine conditions on
randomizing algorithms f and g to ensure that when M’ has a good average-case solution,
namely, either almost total and AP time or simply AP time, then so does M. The conditions are
to be independent of Mt, so that a reduction makes sense, even when there is no algorithm M
available. Indeed, one of the most common uses of reductions is to prove that FI is complete
in one sense or another, and therefore no good algorithm solving FI’ is expected to exist. (Also,

952 ANDREAS BLASS AND YURI GUREVICH

one may want to require that if M’ be an efficient algorithm that uses some oracle; then M
should be a similarly efficient algorithm that uses the same oracle.)

The interesting parts of our conditions on f and g concern f; we shall simply require g
to be polynomial time. Notice that it would make no sense to weaken this to, say, AP time
on the set (E1)* of potential witnesses because we are not given a probability distribution on
(E’)*. Of course, M’ together with the probability distribution PA’ of A’ induces a distribution
on (E’)*, but our conditions are to be independent of M’. And if we required g to be AP time
with respect to some natural distribution on (E1)*, then some algorithm M might, with high
probability, produce witnesses w from a small set to which our natural distribution assigned
low probability and on which g takes very long to compute. Because of this situation, we
assume that g is polynomial time, and then we can ignore g in the following sense: M is AP
time or almost total and AP time if and only if M o f is. (There is a natural way to weaken
the condition of PTime computability of g (x, s, w/) to a hybrid--Ptime with respect to w and
AP time with respect to (x, s)--that preserves the results of this paper [4], but again we stick
here to the simpler assumption of PTime computability.)

What conditions should f satisfy? Consider first deterministic reductions. Obviously, f
should be AP-time computable in this case. What else? Nontrivial examples of deterministic
reductions may be found in [5], [9]. Actually, the two papers are devoted to NP decision prob-
lems, but one can consider the search versions of those problems instead; the deterministic
reductions of decision problems naturally transform to deterministic reductions of the corre-
sponding search problems. We tried to give a natural motivation and analysis for the additional
requirement (beyond AP-time computability) in the notion of deterministic reductions.

THEOREM 1.3 [2]. For every (deterministic)function f from A to A’ the following two
conditions are equivalent:

For every APfunction T on A the composition T o f is AP.
Thefunction x - IfxlA, is AP and A dominates A with respect to f,
i.e., the ratio Pa[f-1 {fx}]/Pa,{fx} is AP on A.

Thus if f is AP-time computable and A’ dominates A with respect to f, then for every
AP. time algorithm M on A the composite algorithm M’ f is AP on A.

This gives rise to the following reduction notions.
DEFINITION 1.4. A deterministic AP-time reduction of a domain A to a domain A’ is a

deterministic AP-time-computable function f from A to A such that A’ dominates A with
respect to f.

Since the domination relation is transitive [2], deterministic reducibility of domains is
transitive.

DEFINITION 1.5. A deterministic AP-time reduction of a search problem SP(A, W) to a
search problem SP(AI, W’) consists of the following:

A deterministic AP-time reduction f of A+ to (AI)+.
A polynomial-time computable function g such that if x f(x) and w is a W’-
witness for x1, then g(x, wI) is W-witness for x.

COROLLARY 1.6. Deterministic AP-time reducibility of search problems is transitive.
Further, a search problem FI is solvable by a deterministic AP-time algorithm if it is deter-
ministically AP-time reducible to some FI that is solvable in deterministic AP time.

Unfortunately, deterministic reductions are too weak for many purposes [5], and stronger
randomizing reductions are used in [1], [5], [8], [11]. The task of cleaning up the notion of
randomizing reductions was the main motivation of this paper.

So suppose that f is a random function from a domain A to a domain AI, and let T be an
AP-time random function on AI. There are four situations, according to whether T is assumed
to be almost total or not and whether T f is required to be almost total and AP time or only

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 953

AP time. It will be easy to see that one of the four situations is absurd; no f can convert

arbitrary AP-time functions T into almost-total T o f, because if T succeeds with probability- for every x’ then T o f will do no better.2
Of the three reasonable situations, the easiest to analyze is the one in which T is assumed

to be almost total and T f is required to be almost total and AP time. It is clear that such an

f must itself be AP time and almost total, because a computation of f is an initial segment of
any successful computation of T f, no matter how trivial T is. It turns out that Theorem 1.3
generalizes nicely in this case.

THEOREM 1.7. Let f be an almost-total, AP-time-computable random function from a
domain A to a domain A’ such that A’ dominates Df with respect to f Thenfor every almost-
total, AP-time randomizing algorithm M’ on A’ the composite algorithm M’ f is AP time
and almost total.

Theorem 1.7 follows from the more informative Theorem 5.2. It gives rise to the following
reduction notions.

DEFINITION 1.8. An almost-total, AP-time randomizing reduction of a domain A to a
domain A’ is an almost total, AP-time-computable random function f from A to A such that
A dominates Df with respect to f.

DEFINITION 1.9. An almost-total, AP-time randomizing reduction of a search problem
SP(A, W) to a search problem SP(A’, Wt) consists of the following:

An almost-total, AP-time randomizing reduction of A+ to (A’)+.
A polynomial-time computable function g such that if x f(x, s) and w is a
Wt-witness for x’, then g(x, s, wt) is a W-witness for x.

COROLLARY 1.10. Almost-total, AP-time randomizing reducibility on search problems is
transitive. Further, a search problem FI is solvable by an almost-total, AP-time randomizing
algorithm if it is reducible, by an almost-total, AP-time randomizing algorithm, to some FI
that is solvable by an almost-total, AP-time randomizing algorithm.

Finally, we turn to the most complicated situations, in which T f is only required be AP
time. This sort of reduction has the advantage that f (x, s) needs to be a reasonable instance of
FI’ only for so many random strings s. The random function f must be AP-time computable.
A set F of good inputs for f forms a domain in a natural way; see the notion of dilation in 2
in this connection.

THEOREM 1.11. Let f be an AP-time-computable randomfunction from a domain A to

a domain A’ with a domain F of good inputs dominated, with respect to f, by At. Then for
every AP-time algorithm M’ on A the composition M’ f is AP-time.

Theorem 1.11 follows from the much more informative Theorem 5.4. It gives rise to the
following reduction notions.

DEFINITION 1.12. An AP-time reduction of a domain A to a domain A’ is an AP-time-
computable random function f from A to A’ with a set F of good inputs such that A dominates
F with respect to f.

DEFINITION 1.13. An AP-time reduction of a search problem SP(A, W) to a search
problem SP(At, Wt) consists of the following:

An AP-time reduction (f, F) of A+ to (A’)+.
A polynomial-time-computable function g such that if (x, s) F, x f(x, s) and
w’ is a Wt-witness for x’, then g(x, s, w’) is a W-witness for x.

THEOREM 1.14. AP-time reducibility ofsearch problems is transitive. Further, a search
problem FI is solvable by an almost-total, AP-time algorithm if it is reducible, by an AP-time
algorithm, to some 1-I’ that is solvable by an AP-time algorithm.

Proof. To prove the second part of the theorem suppose that FI is solvable by an AP-time
algorithm. By Theorem 1.11, FI has an AP-time solution M. By Theorem 1.2, M* is an
almost total, AP-time solution for FI. [3

954 ANDREAS BLASS AND YURI GUREVICH

As an illustration of the theory of randomizing many-one reductions, we rewrite in 6
the proof of a theorem of Impagliazzo and Levin [8]; we believe that our version of the proof
is easier to comprehend.

2. Preliminaries. For the reader’s convenience we recall here some definitions and facts.
DEFINITION 2.1 [2], [5]. A domain A consists of all of the following:. An underlying set, often called A as well, whose members are strings over some

finite alphabet.
A size function that assigns to each x 6 A a positive integer Ixl Ixla called the
size of x.
A probability distribution PA on A.

Remark 1. In [2] we required that the number of nonzero-probability elements of any
given size be finite. The requirement seemed to be nonrestricting and useful. However, it
turned out to be too restrictive in the further analysis of randomizing computations, and in this
paper we remove it.

Because the elements of a domain A are strings, we can use the usual computation
model based on the Turing machine. Traditional concepts of (worst-case) complexity for such
functions are defined by means of the size function Ix I, which is usually polynomially related
to length of strings. For example, polynomial time would mean that there is a polynomial p
such that p(Ixl) bounds the time needed on input x. Concepts of average-case complexity are
defined by averaging with respect to the probability distribution PA.

As was pointed out by Levin [9] and discussed in some detail in], [5], the most obvious
definition of the concept polynomial time on average has inappropriate consequences, and
some care is needed to obtain a suitable definition. We use the following definition due to
Levin [9], as modified in [2] to permit as a value.

DEFINITION 2.2. Let T be a function from a domain A to the set Ra+ of nonnegative
reals augmented with cx. T is linear on average if T (x)/Ixl has finite expectation,

and T is polynomial on average (AP) if it is bounded by a polynomial of a function that is
linear on average. In other words, T is AP if, for some e > 0,

E 1

We use the convention that 0. cxz 0; thus an AP function can take the value cx but only
at points of probability 0.

LEMMA 2.3 [5]. The collection of AP functions over a given domain is closed under
addition and multiplication.

A (deterministic) algorithm, taking elements of a domain A as inputs, is polynomial time
on average, or AP time, if its running time on input x is an AP function of x. We consider the
running time to be cxz if the algorithm fails to terminate, so that an AP-time algorithm must
terminate on all inputs of positive probability.

DEFINITION 2.4. Consider a set X with a size function. A probability distribution v on X
dominates a probability distribution # on X if there exists a function g from X to Ra+ such
that g is AP with respect to X and/z and/z{x} < g(x). v{x} for all x in X.

The original notion of domination is due to Levin [9]. It is analyzed and generalized in
[2] and [5].

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 955

DEFINITION 2.5 [2]. Let f be a function from a domain A to a domain B. Then B
dominates A with respect to f, written A _<f B, if the ratio PA[f-l{fx}]/PB{fx} is AP
on A.

We will use the following easy characterization of domination.
LEMMA 2.6 [2]. Suppose that f is a function from a domain A to a domain B. Then

A <f B ifand only if PA is dominated by a probability distribution v such that the image of
v under f is PB, i.e., PB{Y} -xf-’{y} p{x} for all y B.

It will be convenient to restrict our attention to domains satisfying the following proviso.
Proviso. Ix is bounded by a polynomial of the length of x.
The proviso is needed only to derive the following consequence.
COROLLARY 2.7. If f is an AP-time function from a domain A to a domain B, then the

function x - If(X)IB is AP.
Proof. The length of the string f (x) cannot exceed the time needed to compute f (x).

Therefore, the length of f(x) is an AP function of x. Now use Lemma 2.3. [3

Instead of adopting the proviso, we could change the formulations ofsome ofour theorems
by explicitly requiring that the reducing functions not increase the size beyond AE It seemed
easier to adopt the proviso and to get the problem of size blowup out of the way. We did not
come across any need to consider a size function that is not bounded by a polynomial of the
length. However, as the following definition shows, we did come across a need to consider a
size function that may be much smaller than the length.

The notion of dilation was introduced in [5] and used in [2]. The idea is to combine
the probability distribution on instances and the probability distribution on coin flips into one
probability distribution. For this purpose we introduce a new domain consisting of pairs (x, s),
where x ranges over instances of the search problem under consideration, i.e., over elements
of a given domain A, and s ranges over the possible finite sequences of coin flips used by some
algorithm (in its terminating computations on input x). The size of (x, s) is taken to be Ixla,
not (as one might at first guess) IXla + Isl; this is done so that the complexity of computations
is measured relative to the size of the instance, not the number of coin flips. (If we used

IxlA -t- Isl, then a very inefficient computation could be made to look efficient---e.g., linear
timemby appending a lot of unnecessary coin flips to make Ix la -t- Is greater than half the
running time.) The probability of (x, s) is, except for a normalization factor, the probability
PA (X) 2-Isl for independent choices of x and s. The normalization factor, i.e., the lack of
actual independence, can be intuitively understood this way: Given x, the algorithm starts to
flip coins (independent of x) until the computation terminates, having used random string s.
But it may happen--and the probability of this does depend on xmthat the algorithm does
not terminate, in which case we restart the algorithm with a new, independent sequence of
coin flips. This restarting leads to the denominator in the probability clause of the following
definition.

DEFINITION 2.8. A dilation of a domain A is a domain A C A {0, 1 }* satisfying the
following conditions, where A (x) s (x, s) 6 A }:

For every x no member of A(x) is a proper prefix of another member of A(x).
For every x with PA (x) > 0, A (x) .
I(x,s)lzx IXIA.
Pzx(x, s) Pa(x)2-1sl/tezX(x) 2-1tl"

This definition is more general than the definition of dilation used in [2] because we do
not require se(x) 2-1sl 1. This sum occurs in the denominator of our definition of Pzx to
ensure that PA is indeed a probability measure, i.e., that the total probability of A is 1. We
say that a dilation A1 of A is a subdilation of a dilation A2 of A if A

A2.

956 ANDREAS BLASS AND YURI GUREVICH

DEFINITION 2.9. Let A be a dilation of A. The function

Uzx(x) szX(x) 2-1sl

is the rarity function of D. The dilation A is almost total if U/x for every x 6 A of
positive probability. This means that if we repeatedly flip a fair coin to produce a string of O’s
and ’s, then with probability we shall eventually obtain a string in A (x).

The notion ofrandomizing (coin-flipping) algorithms motivates a useful notion ofrandom
function [2].

DEFINITION 2.10. A randomfunction on a domain A is a function f on a dilation Df of A.
Such a random function f is almost total if the dilation Df is almost total and the probability,
with respect to Df, that the value of f is finite equals 1.

Composition of randomizing algorithms motivates composition of random functions.
DEFINITION 2.11 [2]. Suppose that f is a random function from a domain A to a domain

B such that Pn(f(x, s)) > 0 whenever PA(X) > 0, and let g be a random function on B. The
composition g o f of f and g is the random function h on A such that for every x 6 A we
have the following:

Dh(X)-- {St: S Df(x)andt 6 Dg(f(x,s))}.
If s Df(x) and Dg(f(x, s)), then h(x, st) g(f(x, s), t).

It is easy to see that the composition of almost-total random functions is almost total.

3. Randomizing algorithms. A randomizing algorithm on adomain A can be formalized
as a Turing machine M that takes as input an instance x 6 A and has access to an auxiliary
read-only tape, called the random tape, containing an infinite sequence r of random bits (O’s
and l’s). The random tape is bounded on the left and unbounded on the right; its head can
move only to the right. The set {0, 1} of all possible r’s is endowed with the probability
measure) that is the product measure derived from the uniform measure on {0, }. Both the
measure and M’s mode of access to the random tape can be described informally by saying
that M is allowed to flip a fair coin at various stages of its computation and that these coin
flips are independent.

Consider the computation of a fixed randomizing algorithm M with a fixed input x but with
varying sequence r {0, }. For each r let Read(r) (or Readt,x (r) if necessary for clarity)
be the initial segment of r that is actually read during the computation. If the computation
terminates, then Read(r) is finite; if not, then Read(r) may be finite or equal to r. Because
the computation with M and x fixed depends only on Read(r), it is clear that if r’ 6 {0, }
has Read(r) as an initial segment, then the computation using r is the same as that using r

and, in particular, Read(r’) Read(r). Thus the set

R(x) R/(x) {Read,x(r) r 6 {0, 1}}

has the property that no member of R(x) is a proper initial segment of another. We define the
probability measure p p4,x on R(x) to be the image, under the function Read/,x, of the
standard measure) on {0, . For any E

R (x)

p(E)){r Read(r) 6 E}.

Each R(x) is the disjoint union of the sets RF(x) and RI(x) consisting of the finite
and infinite strings in R(x), respectively. The measure p gives the probability 2-Isl to each
s 6 RF(x) and agrees on subsets of RI(x) with ;. Every r 6 {0, } either is in RI(x) or has
an initial segment in RF(x), namely Read(r). In [2] randomizing algorithms were assumed
to terminate for all x with PA(X) > 0 and all r; this ensured that if PA(X) > 0, then RI(x) is

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 957

empty and every r {0, } has an initial segment in RF(x) and therefore RF(x) is finite. In
the present paper we consider algorithms that may fail to terminate even on inputs of positive
probability, so that we must consider both RF(x) and RI(x); furthermore, RF(x) may well be
infinite.

If s e {0, }* is a finite sequence with no proper initial segment in RF(x), then s occurs
(with probability 2-Isl) as the random string read by some stage in a computation of M on x.
If, furthermore, s (RF(x), then this computation will read at least one additional random bit,
which is equally likely to be 0 or 1. If, on the other hand, s e RF(x), then the computation
will read no additional random bits. Writing "s is a prefix" for the event that the random string
actually read by M has s as an initial segment, we have (for future reference) the following
lemma.

LEMMA 3.1. The distribution p satisfies the equation

p(s is a prefix) / 2-1sl ifs has no proper initial segment in RF(x),

I 0 otherwise.

Furthermore, this equation completely determines p.

Proof. The proof is obvious.
We restrict our attention to randomizing algorithms M such that RFM(x) 7 0 whenever

PA (X) > 0. It follows that the set

RFM {(x, s) "x 6 A and s 6 RFM(X)}

forms a dilation of the domain A.
DEFINITION 3.2. The random function FM on A computed by M is the deterministic

function on DF RFM with F(x, s) equal to the output of M on (x, s).
We write Time(x, r) or TimeM (x, r) for the time taken by the computation ofM on x and

r; if this computation does not terminate, then Time(x, r) cx. Time(x, r) depends only on
x and Read(r) since the unread part of r cannot influence the computation time.

DEFINITION 3.3. The restrained timefunction of a randomizing algorithm M on A is the
random function T (x, s) TM (x, s) on A such that Dr RFM and

Time(x, r) T (x, Read(r))

for every r with a finite Read(r) part.
TimeM is not the only function on A x {0, 1 }o, that we have to consider. In this paper a

functional is a measurable function .T" from A x {0, } to Ra+ such that every finite value of
.T" is a positive integer. We say that a functional .T" is continuous if it is continuous with respect to
the product topology on A x {0, } and the natural topology onRa+. The continuity implies
that for every x and every r {0, } with 9r(x, r) < o there exists a finite initial segment
s of r such that U(x, r) U(x, r’) for every r’ with prefix s. The shortest initial segment s
with this property will be denoted Read:r,x (r). Define the restrained version of a functional
Or to be the random function F on A such that DF {(x, Read:r-,x(r)) .T’(x, r) < c} and
F(x, Read(r)) .T’(x, r). Thus TimeM is a continuous functional, and TM is the restrained
version of TimeM.

DEFINITION 3.4. A functional .T" on A is almost total if for every x 6 A of positive
probability

Z{r 6 {0, 1}c" ’(x, r) < cx} 1.

LEMMA 3.5. A functional is almost total ifand only if its restrained version is so.

958 ANDREAS BLASS AND YURI GUREVICH

Proof. The proof is clear. l
DEFINITION 3.6. An almost-total functional on a domain A is AP if there is a positive

e such that

EEr
where Ex and Er mean expectation with respect to x and r, the relevant probability distributions
being PA and

The proof of Lemma 2.3 works for almost-total functionals.
COROLLARY 3.7. The collection of AP almost-total functionals over a given domain is

closed under addition and multiplication.
By definition of p the expectation of a continuous almost-total functional with respect to

) and the expectation of its restrained version with respect to p agree for every x.

LEMMA 3.8. An almost-total, continuousfunctional " is AP ifand only if its restrained
version F is AP as a deterministicfunction on DF.

Proof.

E x, r)e -l F(x,s E Ixl
F(x s)e

(X,s)EDF

where the expectation E, is with respect to p.
Not all almost-total functionals of interest to us are continuous. This is why we have

defined directly when an almost-total functional is AP.
DEFINITION 3.9. A randomizing algorithm M is almost total if the functional Timet

is so.
By Lemma 3.5, M is almost total if and only if the restrained time function TM is

almost total.
DEFINITION 3.10. An almost-total randomizing algorithm M is AP time if the continuous

functional TimeM is AE
The intuitive content of this definition of an almost-total, AP-time algorithm is that for

each input x with PA (x) > 0 the algorithm will almost surely (i.e., with probability with
respect to r) terminate and will usually (with respect to x and r) require only a reasonable
amount of time.

Now we turn our attention to the main notion of this section, the notion of AP-time algo-
rithms. We consider randomizing algorithms that terminate with a not too small probability
(rather than almost surely) and that, in fact, require reasonable time with a not too small prob-
ability. To avoid confusion we remark that we do not require all the terminating computations
to take reasonable time, only enough of them to have reasonable probability.

DEFINITION 3.11. Let F be a random function on a domain A. F is AP on A if there is a
subdilation F of DF such that both of the following conditions hold:

1. The rarity function Ur is AE
2. For some e > 0

(x,s)er --[PA(X)2"lSl F(x, s)8 <

Condition 1 formalizes the part of the informal requirement above about enough termi-
nating computations having reasonable probability. The meaning of condition 2 is clarified
below (Lemma 3.12). Notice that the statement "F is AP on A" is, in general, weaker than

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 959

the statement "F is AP as a deterministic function on DF." We shall not need to generalize
the definition of an AP random function to functionals.

If 1-" satisfies these conditions, we call it a set of good inputs for F. The dilation of A
formed by 1-" may be called the domain ofgood inputs. The fact that F is AP means intuitively
that reasonably often F will be defined by virtue of a good input and that these values of F
are reasonably small on average. (F may also be defined on some inputs that are not good,
and the resulting values of F need not be small at all.) It is not required that good inputs be
easily recognizable in any way.

LEMMA 3.12. Let F be a randomfunction on a domain A, and let [’ be a subdilation of
OF such that the rarityfunction Ur is AP. Then the following conditions are equivalent:

1. F is AP on A with F as a set ofgood inputs.
2. The restriction of F (viewed as a deterministicfunction on DF) to is AP, i.e., there

exists e > 0 such that

)eE -(-xIF(x s -lPA(x)Z-lSlUr(x)F(x,s)e < .
(x,s)F (x,s)F

Proof. Since Ur(x) 1, condition 2 implies condition 1. Given condition 1, multiply
and divide each summand in part 2 of the definition of AP by U (x) Ur (x) to produce Pv
as a factor; we obtain

F(x, s)eE Ixl Ux) < ’XS

where the expectation over (x, s) is with respect to Pr. Also, because U is AP on A, we have
for some 6 > 0

6

where the expectation over x is with respect to PA and we used the fact that PA is the projection
of Pr. Adding the last two inequalities and using the fact that any weighted geometric mean
of two positive numbers is less then their sum, we find

F(x,s)e 6/(+6)
6

X,S

Algebraically simplifying the expression in brackets, we get

F(x, <,

which is the desired inequality with e3/(1 + 6) in place of e.
COROLLARY 3.13. An almost-total continuous functional U is AP if and only if its re-

strained version F is AP with DF as a set.ofgood inputs.
Proof. Use Lemmas 3.8 and 3.12.
DEFINITION 3.14. A randomizing algorithm M on A is AP time if the restrained time

function T is AP. A set of good inputs for T is also called a set of good inputs for M.
In the case of an almost-total randomizing algorithm M we have now two definitions .of

polynomiality on average. It is easy to see that they are equivalent.
COROLLARY 3.15. For every almost-total randomizing algorithm M the following are

equivalent:

960 ANDREAS BLASS AND YURI GUREVICH

Thefunctional TimeM is AP.
The randomfunction TM is AP on the input domain.

Proof. Use Lemma 3.8. [3

DEFINITION 3.16. A randomizing algorithm M is an AP-time solution (respectively,
almost-total, AP-time solution) to search problem SP(A, W) if it is AP time (respectively,
almost total and AP time) and every terminating computation of M with input x A (and
arbitrary random string r) produces as output a witness w with (x, w) W.

It might seem more natural to require appropriate output only for enough, but not all,
of the terminating computations, but our definition is somewhat simpler and is essentially
equivalent.

LEMMA 3.17. Every AP-time algorithm M for a search problem FI SP(A, W) that
produces correct outputs on its good arguments can be converted to an AP-time solution M’
for FI.

Proof. Append to M instructions, saying that when M terminates, M’ should check
whether the output w satisfies W(x, w) and M’ should terminate if and only if the check
succeeds. Because our definition of "search problem" required W to be polynomial-time
computable, the time used by M’ is bounded by a polynomial of the sum of Ix[and the time
used by M, so that replacing M with M’ does not ruin complexity estimates of the sort we are
considering. [3

LEMMA 3.18. Suppose that a search problem FI has an AP-time solution. Then the length
of the shortest witness is a (deterministic) APfunction.

Proof. Let M be an AP-time solution to FI with a set F of good inputs. Recall that the
2-lsl Write l(x) for therarity function U of 1-’ is the reciprocal of p,x(F(x)) Yrx

length of the shortest wimess for x. Clearly, T(x, s) > l(x) for all (x, s) 6 F because it takes
time (x) just to write a witness on the output tape. For every e > 0, we have

xA I(X)6PA(X) xA l(x)EPA(x)U(x)p(I"(x))

Z -[T(x, s)gPA(x)U(x)2-Isl.
(x,s)r’

Now use the fact that T is AP, and apply Lemma 3.12. [3

4. Iteration. It is well known that a randomizing algorithm that solves a search problem
with a certain probability can be iterated, by using independent sequences of coin flips, to
obtain a much higher success probability. A polynomial number of iterations suffices to
improve success probabilities from as low as a reciprocal of a polynomial of Ix to as high as
exponentially (relative to ix I) close to 1. For average-case complexity the situation is even
better. We can start with a success probability whose reciprocal is not polynomially bounded
but only polynomial on average, and we can iterate the algorithm to obtain a success probability
without increasing the time beyond AP. The main result in this section will establish a precise

version of this claim and will show that it is optimal.
Let M be a randomizing algorithm on a domain A that may or may not terminate on

a given input. In our application M is an algorithm for a search problem SP(A, W) whose
successful computations produce desired witnesses. For simplicity we assume in this section
that every termination of M is successful. It is easy to remove this assumption. Also, see
Lemma 3.17.

For technical reasons we start with what we call a perpetual iteration. M of a given
randomizing algorithm M. Given an input (x, r), where x A and r is an infinite random

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 961

sequence, M simulates many computations of M on inputs (x, s) for the same x but dif-
ferent random bit strings s (disjoint substrings of r); these computations of M will be called
subcomputations of M. M is called a perpetual iteration because it never halts. Even after
some subcomputations have terminated, M continues to run other subcomputations and to
start new subcomputations and it continues to allocate its random bits to subcomputations.
The corresponding iteration M* of M is like M except that M* halts if and when one of the
subcomputations terminates. The advantage of working with M rather than M* is that in a
computation of M every subcomputation runs either forever or until it terminates according
to the rules of M, whereas in a computation of M* a subcomputation can stop unnaturally
because another subcomputation terminated and thus stopped the whole computation of M*.

Presupposing a fixed perpetual iteration M and a fixed element x A, for each sequence
r {0, 1}, let j j(r) be the subsequence of r that M with input (x, r) passes to
subcomputation number j, and let sj sj (r) be the subsequence of j that is actually read by
subcomputation number j. Here are some examples of perpetual iteration.

Example 1. In eagerperpetual iteration stage n of the computation ofM consists of one
step in the first, second nth subcomputations, in that order. So one new subcomputation
is started at each stage, and each previously started subcomputation is carried one step further.
Also, during stage n, M reads n new bits from r and distributes them, in order, to these n
subcomputations. Thus each projection j is infinite. Note that this projection operation on
{0, } does not depend on M or on its input x.

Example 2. Lazy perpetual iteration is similar to the eager perpetual iteration except that
it distributes random bits only as the subcomputations ask for them. There is no longer an
a priori defined infinite sequence j for each subcomputation; in fact, j sj. To decide
which subcomputation will receive a particular bit from r it is no longer sufficient to know the
position of that bit in r; one needs to know both the input x and the preceding bits of r.

Example 3. Another variation of the eager perpetual iteration is obtained as follows. Fix a
polynomially bounded injection P (j, t) from pairs of positive integers to positive integers, and
reserve random bits P (j, 1), P (j, 2), P (j, 3) for the jth subcomputation. This perpetual
iteration is executed more naturally by a random-access machine than by a Turing machine.

DEFINITION 4.1. A perpetual iteration M is polynomially fair if the number m(j, t)
of steps of M required to achieve the tth step or termination (whichever occurs first) of
subcomputation j is bounded by a polynomial of j + t.

It follows that new subcomputations are started fairly often: the number m (j, 1) of steps
of M required to start the j th computation is bounded by a polynomial of j. Notice also
that each subcomputation gets enough random bits to proceed until termination or forever.

Remark 2. To deal with parallel iterations (in a sense they are more natural), add to the
definition of polynomial fairness the requirement that the number of subcomputations started
during the first n steps of M is bounded by a polynomial of n.

We call a perpetual iteration M careful if each subcomputation gets a sequence of fair
coin flips and the sequences for different subcomputations are independent (provided that M
gets a sequence of fair coin flips). We formulate this definition more formally. Recall the
probability distribution) of 3.

DEFINITION 4.2. A perpetual iteration M is careful if for each input x of positive
probability the function

r + (s1, $2 from {0, } to ({0, 1 }* t_J {0, })

sends) to the product measure on ({0, }* t.J {0, }) induced by the measure OM,x on
{O, 1}*t3{O, 1}.

962 ANDREAS BLASS AND YURI GUREVICH

LEMMA 4.3. M is careful ifand only iffor any input x A and anyfinite list tl,..., t
ofbinary strings the probability

){ r tj is a prefix ofsj(r) for all j k

is 0 if some tj has a proper initial segment in RFM(x) and is 2 otherwise, where n is the
sum of the lengths of the tj ’s.

Proof. Use Lemma 3.1.]

THEOREM 4.4. Let M be a careful andpolynomiallyfairperpetual iteration ofM. Then
M is AP time ifand only if the iteration M* is AP time and almost total.

Proof. Suppose that M is AP time, i.e., the restrained time function T TM is AP. Let
1-’ and e be as in the definition of the AP random function for T, and let U Ur be the rarity
function of [’. We first check that, for any input x of positive probability in A, M* terminates
with probability (with respect to r). In fact, we show more, namely, that for almost all r some
sj is good, i.e., belongs to 1-’(x). (If sj l"(x) and Pa(x) > 0, then the computation of M on
(x, sj) terminates, so that we are indeed proving more than originally claimed.) The event (--
set of r’s such) that no sj is in 1-’(x) is the intersection of the infinitely many events sj q[[’(x)
(j 1, 2, 3), which are independent and have probability 1 p(F(x)) (1/U(x)).
So their intersection has probability 0, as required.

We are now ready to estimate the computation time T* (x, r) of M* on input (x, r) and to
prove that M* is AP time. For any x 6 A of positive probability and any r 6 {0, } let k
k (x, r) be the smallest positive integer j with sj 6 I-" (x). We saw in the preceding paragraph
that for all x 6 A of positive probability such a k exists for almost all r. (Define k(x, r) cx
on the measure-zero set of pairs (x, r) where no such k exists.) Let T’ T’ (x, r) be the time
taken by the computation of M with input (x, s(,,r)), which is the kth subcomputation of M
on input (x, r). Since M is polynomially fair, the computation time T* of M* is bounded
by a polynomial of (k + T’). By Corollary 3.7 it suffices to prove that k(x, r) and T’(x, r)
are AP.

First we treat k. We begin with a well-known and quite general observation. Suppose
an experiment succeeds with probability p > 0, and suppose we make many independent
repetitions of this experiment until one, say, the kth, succeeds. Then k has expectation

o

)ii(1 p)i-lp
i=1 P

In the situation at hand the experiments are the subcomputations of M(x, r) (with ran-
dom r), which are independent by carefulness, "success" means that the string read by the
subcomputation is good, and thus 1/p U (x), k k(x, r), and Er k(x, r) U (x).

Choose positive 8 < witnessing that U is AP:

(1)E <

We check that this 6 also witnesses that k is AE The function f(y) y3 is a concave function
on the open real interval I (0, cx). By Jensen’s inequality (see Corollary 7.2 below),

Ex Er (xl k(x,r)8) =Ex (xlEr [k(x’r)8])
1Curiously, the useful functional k(x, r) is not continuous.

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 963

E V(x < .
Next we treat T’(x, r). Clearly, T’(x, r) T(x, s), where k k(x, r). Recall that

a positive e, one of the witnesses that M is AP, was chosen. We begin by computing the
expectation of T’(x, r)e T(x, s)e with respect to r.

E(r(x,, 2e((, r)= j). E (r(x, s2 (x, r)= j).
j=l

The event k(x, r) j whose probability occurs here is the intersection of the event

sj 6 F (x) and all events si F (x) with < j. Since M is careful, these are independent,
so the product (1 1/U(x))j-1 1/U(x) of their probabilities equals P(k(x, r) j). The
conditional expectation of T (x, sj)S relative to this intersection ofevents equals the conditional
expectation of T(x, sj) relative to sj 6 F(x) since, by the carefulness of M, T(x, sj) is
independent of the events si F (x) with - j. Further,

E (r(x,) s, r(x)) E r(x,
SeI"(x)

"-’-", T (x, s)e 2-Isl U (x).
sr’(x)

Thus we have

E(r’(X,r r)e) jl’=)j-1U(x) U(x) E (T(x,s)s 2-Isl. U(x))
sr(x)

U(x) r(x)

sr(x)

Recall that F, U, and e were chosen to witness that M is AE Thus U is AP and the factor
multiplying it is AP as well. (In fact, this factor is average linear.) So the product is AE
Choose a positive 3 < 1 to witness this. Using Jensen’s inequality again, we have

[T’(x r)eaExE (x] T’(x,r)s6) E(E])
<- Ex 1 (r’(x, r

Thus we have the desired estimate for T’, which completes the proof of one direction of the
theorem.

To prove the converse assume M* is an almost-total, AP-time algorithm. We must produce
a 1-" and a positive e witnessing that M is AP. Fix a positive e < witnessing that T* is AP:

EEr (x]T*(x’r)e)

964 ANDREAS BLASS AND YURI GUREVICH

That is,

Observe that, quite generally, if X is a nonnegative random variable with expectation m,
then by Markov’s inequality P(X < 2m) > 1/2. (Indeed, if P(X < 2m) p, then

rn E x) p. x _< 2m) + (1 p) x > 2m)
> p.0+(1-p).2m,

so that p _< 1/2, as claimed.)
Applying this observation to the random variable T*(x, r)e, for a fixed x and random

r 6 {0, we find that the set

r’(x) {r 6 {0, } T*(x, r)e < 2F(x)}

has probability > 1/2. For each r 6 F’ (x) let s(x, r) be the string of random bits actually read
by the subcomputation of M* on (x, r) that produced a witness for x. We define

F {(x, s(x, r)) x A and r 6 F’(x)},
so that F(x) {s(x, r) r 6 F(x)}, and we claim that this F and the e fixed above are as
required by the definition of M being AP. By the definition of s(x, r), F forms a dilation of A.

To check that the rarity function U Ur is AP, recall that for r 6 F(x), T*(x, r) <

(2F(x)) 1/e. Therefore, the number q q (x) of subcomputations started by M* on input
(x, r) is bounded by a polynomial of F(x). Since F(x) is AP (in fact, linear on average), q(x)
is AP. We have

q

Z P{r e F’(x)" s(x,r)=s and
seF(x) j=l

subcomputation j is the one that succeeds}
q

< y P{r 6 F’(x)" subcomputation j reads exactly s}
s6F(x) j=l

q

y 2-1sl q(x)
U(x)sF(x) j=l

So U(x) is bounded by the AP function 2q(x).
To prove the convergence condition in the definition of T as being AP, recall that each s

in F(x) is s(x, r) for some r 6 F’(x). Hence T(x, s)e < T*(x, r)e <_ 2F(x). So

Z T(x, s)e2-Isl < 2F(x). Z 2-1sl < 2F(x),
sr(x) sr(x)

which implies the desired convergence because F is linear on average. This completes the
proof of Theorem 4.4.]

It is easy to see that the perpetual iterations of Examples 1-3 are polynomially fair and
that the perpetual iterations of Examples and 3 are careful as well. It is not quite obvious
that the lazy perpetual iteration is careful. In the case of the lazy perpetual iteration, some

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 965

information about a given subcomputation j can be learned from watching other subcompu-
tations. Imagine, for example, that the first rn random bits received by subcomputation j >
happened to have the same values as the first rn random bits received by subcomputation
and that subcomputation requested another random bit. We know then that subcomputation
j will request another random bit as well.

THEOREM 4.5. Suppose that a perpetual iteration Moo has thefollowing properties:
Moo starts infinitely many subcomputations on every input (x, r).
No subcomputation of Moo is ever stalled: either it terminates or else it executes

infinitely many steps.
Mo serves random bits on afirst come, first served basis.

Then Moo is careful.
Proof. Fix an arbitrary x A of positive probability. Recall that sj sj (r) is the string

of random bits passed to the jth subcomputation. By Lemma 4.3 we must show that for any
input x A and any list t tk of binary strings the probability

){r tj is a prefix of sj(r) for all j k}

is 0 if some tj has a proper initial segment in RFM (x) and that otherwise it is 2-n where n is
the sum of the lengths of the tj ’s.

The first half of this is clear, because if tj has a proper initial segment in RFM(x), then
no subcomputation can read all of tj, and so sj tj. To prove the second half consider a
list tl tk of cumulative length n and with no proper initial segments of any tj being in
RFt (x). Note that sj(r) cannot, for any r, be a proper initial segment of tj because any finite

sj is in RFM(x), whereas no tj has a proper initial segment in RFM(x).
Call a finite binary string q, which we regard as a possible initial segment of r

pertinent (to the fixed list tl tk) if, when Moo reads q from its random tape, the strings
sj (q) that it passes to subcomputations j k are consistent with the tj ’s. ("Consistent"
means one is an initial segment, not necessarily proper, of the other.) For pertinent q write

s (q) for sj (q) or tj, whichever is an initial segment of the other; this is the part of tj already
read by subcomputation j when Moo has read q. Write rn (q) for the sum of the lengths bf the
strings s (q). We have 0 < rn (q) < n.

Let E denote the event

r tj is a prefix of sj (r) for all j 1 k }.

Recall that our objective is to prove that ;k(E) 2-n Call q {0, }* strange if it is pertinent
and .[E q is a prefix of r] 2-n+m(q). Observe that since the empty string e is pertinent
and prefixes every r, e is strange if and only if ;k(E) 2-n, which is the negation of what we
want to prove. We therefore assume e is strange and attempt to deduce a contradiction.

LEMMA 4.6. Ifq is strange, then so is at least one of its one-bit extensions qO or q 1.

Proof. Consider a computation of Moo (on our fixed input x) that has read q (and passed
its bits to the appropriate subcomputations).

Case 1. The next request for a bit comes from subcomputation with > k or with
< k and s (q) ti. Then both q0 and q are pertinent, and sj (q0) sj (q 1) s (q) for all

j k, so that rn (q0) rn (q 1) rn (q). Because q is strange,

2-n+m(q) ;k[E q is a prefix] (.[E q0 is a prefix] + k[E q is a prefix]),

so that the conditional probabilities on the right cannot both equal 2-n+m(q). This means that
one of q0 and q is strange.

966 ANDREAS BLASS AND YURI GUREVICH

Case 2. The next request for a random bit comes from subcomputation such that < k
and s (q) is a proper initial segment of ti. Then the next random bit read by M will go to

subcomputation i, and so q0 (respectively, q 1) will be pertinent if and only if the next bit in
ti after s is 0 (respectively, 1). Suppose without loss of generality that this bit is 0, so that q0
is pertinent. We have s (q0) s(q)0 and s (q0) s (q) for j in {1 k} {i }. We also
have, because q is strange and .[E q is a prefix] 0 (since q is impertinent),

so that

2-n+m(q) [E q is a prefix] ,k[E q0 is a prefix],

)[E q0 is a prefix] - 2-n+m(q)+l 2-n+m(qO)

and q0 is strange. 71

We obtain a contradiction from the assumption that e is strange as follows. Repeatedly
apply the lemma, starting with q e, to obtain a sequence of strange strings, each a one-bit
extension of the previous one. Thus we have an r 6 {0, 1} each of whose finite initial
,segments is strange. Fix such an r. By fairness each subcomputation j for j k either
terminates or is infinite on r.

For j k each sj (r) is consistent with tj because all finite initial segments of r,
being strange, are pertinent. We saw earlier that sj (r) cannot be a proper initial segment of

tj, so that tj must be an initial segment of sj (r) for each j k. Thus for a sufficiently
long finite initial segment q of r, each tj is an initial segment of the corresponding sj (q), and
therefore s (q) tj and rn (q) n. But then the event "q is a prefix" is a part of E, so that

,k[E q is a prefix] 2-n+m(q).

This contradicts the fact that q, a finite initial segment of r, is strange. V1

5. Randomizing many-one reductions. Let us clarify the notion of composition M
M2 o M1 of randomizing algorithms. Suppose that M1 computes a random function f from
a domain A to a domain B and that M2 is a randomizing algorithm on B. Given an instance
x 6 A and a random sequence r 6 {0, }, M begins by simulating M1 on x and r. If this
computation terminates with output x’ and if s is the finite initial segment of r read during this
computation, then M continues by simulating M2 on x’ and the part of r after s. Thus

RM(X) {st" s RFM(X)andt RM(f(x,s))}URIMl(X).

LEMMA 5.1. Suppose that P,(f(x,s)) > 0 whenever Pa(x) > 0, and let T TM2 be
the restrained timefunction of M2. Then both of thefollowing hold:

M is almost total if f and T are almost total.
M is AP time if f is AP time and the composition T f is AP.

Proof. The first claim is clear. To prove the second claim recall that, by definition, a
randomizing algorithm is AP if and only if its restrained time function is so. Let F be a set of
good inputs for T f. It is easy to see that is also a set of good inputs for f. Except for a
small bookkeeping overhead, TM is the sum of TM and T f on F. Thus F is a set of good
inputs for TM, SO that TM is AE V]

In the rest of this section f is a random function from a domain A to a domain B and T
ranges over random functions on B. If F is a dilation of A and A is a dilation of B, define
F A to be the dilation of A comprising pairs (x, st) such that (x, s) 1-’ and (f(x, s), t) A.
The notion of domination is recalled in 2.

THEOREM 5.2. Suppose that f is almost total. Then thefollowing are equivalent:

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 967

1. For every almost-total, AP random T, the composition S T o f is almost total and
AP.

2. The almost totalfunction (x, s) - If(x, s)18 is AP, and Df <_f B.
Proof. First, suppose part 1. Every deterministic function on B is an almost-total,

random function on B with good inputs (y, e), where Ps(Y) > 0 and e is the empty string.
By Theorem 1.3, Df <_f B and the restriction of the function (x, s) - If(x, s)18 to DU is
AE This implies part 2.

Second, suppose part 2, and let T be an almost-total, AP random function on B. The
domain I" Df of the AP function (x, s) - If(x, s)18 is an almost-total dilation of A.
Similarly, the domain A of T is an almost-total dilation of B. These two facts and the
domination condition imply that the dilation Ds * A is almost total. It remains to check
that S, as a deterministic function S(x, st) T (f (x, s), t) on 1-’ A, is AP. This function is
the composite of T with the function j (x, st) (f(x, s), t) from F A to A. By Theorem 1.3
it suffices to prove that A dominates 1-" A with respect to j. We have

and

Pr.zx[j-l {j (x, st)}] Pr.zx{(xo, sot) f (xo, so) f (x, s)}
Pr[f-1 {f(x, s)}]. 2-Itl

Pa{j(x, st)} Ps{f(x,s)} 2-Itl,

so that the ratio in the definition of domination for j is Pv[f-1 {f(x, s)}]/Ps{f(x, s)}, which
is AP on 1-’ because 1" f B. It follows immediately that this ratio is AP as a function on
F A (a function not depending on the part of its argument).

COROLLARY 5.3. Let f be a function from a domain A to a domain B, computed by
an almost-total, AP-time randomizing algorithm M1. Suppose that Df f B. Thenfor every
almost-total, AP-time randomizing algorithm M2 on B the composite algorithm M M2 M1
is almost total and AP time.

Now we turn to the case when the composite is not required to be almost total.
THEOREM 5.4. Suppose that F is a dilation of A. The following four statements are

equivalent.
(a) For every AP random function T on B with A as a set of good inputs, T o f is AP

with A as a set ofgood inputs.
(b) For every almost-total, AP random function T on B with A as a set ofgood inputs,

T f is AP with F A as a set ofgood inputs.
(c) For every deterministic AP function T on B, T f is AP with as a set of good

inputs.
(d) Thefunction x -+ If(x)[8 is AP with F as a set ofgood inputs and f B.
Proof. Clearly, (a) implies (b).
To derive (c) from (b) suppose (b) and let T be as in (c). Consider the dilation A of B

comprising pairs (y, e), where y ranges over B and e is the empty string. Now apply (b).
To derive (d) from (c) use Lemma 3.12 to restate (c) as follows: If T is any AP (deter-

ministic) function on B, then T f is an AP deterministic function on F. By Theorem 1.3
(and another application of Lemma 3.12), this implies (d).

It remains to derive (a) from (d). Assume (d), and let T and A be as in (a). Our first task
is to show that the rarity function Ur.x for the composite dilation F A of A is AP. It follows
from (d) that Ur is AP. By the hypothesis of (a), Uzx is AP. We compute

(1sF(x) t6A(f(x,s)) tA(f(x,s))

968 ANDREAS BLASS AND YURI GUREVICH

2_is
Uzx(f-(x,s))

and therefore for any 8 with 0 < 8 < 1

Z -[PA (X) -PA(X) 2-Isl"
xA

1)Uzx(f (x, s))

Z -]-PA(x) 2-Isl. Up(x)
Up(x)Uzx (f(x s))xA

’’PA (X)
xA Ur(x)Uzx (f(x, s))

where the expectation over s F(x) is with respect to the probability distribution P(s)
2-Isl. Ur(x).

Apply Jensen’s inequality (in the form of Corollary 7.4) to the last part of the computation
above"

Thus Ur.zx is AP if the product of Ur(x) and Uzx(f(x, s)) is AP on r, i.e., if both factors
are AP on F. Since Ur(x) is AP on A, it is AP on F. Applying Theorem 1.3, we find that the
composition U/(f(x, s)) is AP. Hence Ur.a is AP.

It remains to verify the convergence condition of the definition "T o f is AP with F A
as a set of good points," which, by Lemma 3.12 is equivalent to the statement that T f, as
a deterministic function on F. A, is AP. By the hypothesis of (a) plus Lemma 3.12, T, as
a deterministic function on A, is AP. Since T f is obtained from T by composition with
the function g(x, st) (f(x, s), t) from F A to A and Igl is AP on F. A, the desired
conclusion will follow by Theorem 1.3 if we show that A dominates F A with respect to g.

For this purpose we use Lemma 2.6 and seek a measure v on F A that projects by g to

Pzx and that dominates Pr.a. Assumption (d) that B dominates F with respect to f provides
a measure/z on F that projects to Pa by f and dominates Pr. We use/z to define v by

v(x, st) lZ(X, s) 2-Itl. Uzx (f(x, s)).

This projects to Pzx by g because for any (x’, t’) A

v(x, st) v(x, st’)
(x,st)g-l (x,,t,) (x,s)f-I (x,)

y. /Z(X, S). 2-It’l Ua(f(x, s)) 2-1t’Iu/(x’)
(x,s)f-l(x’)

2-1t’luzx(x’)Pa(x’) Pzx(x’, t’).

tz(x,s)
(x,s)f-l (x’)

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 969

So it remains to prove that v dominates Pr,a, that is, that the ratio Pr,zx (x, st)Iv(x, st)
is an AP function on F A. But this ratio is

PA (x). 2-Isl. 2-Itl. Ur,,zx(x) Pr(x, s) Ur,a(x) Pr(x, s)
< Ur, (x).

IX(x, s). 2-1tl U,(f(x, s)) Ur(x)ix(x, s)Uzx(f(x, s)) Ix(x, s)

To show that this is AP on F A it suffices to show that both Pr(x, s)/Ix(x, s) and Ur,zx (x),
considered as functions of (x, st), are AP on 1-’ A. Of course, the former is AP as a function
of (x, s) on 1-’ by our choice of Ix, and the latter is AP as a function of x on A, as proved
above, but neither of these is exactly what is needed. The desired information about Ur.,x (x)
follows easily because Pr., projects to PA under the map (x, st) - x, which preserves sizes.
Indeed, we have

Z Pr,a (x, st). (Ur,zx (x))e
I(x st)IF.A(x,st)F.A

(Ur,zx(x))e" Pr,zx(x, st)
x6A (x,st)F,A

-" (UF,A (X))gPA (X) <
xA

for sufficiently small e > 0 since Ur,zx is AP on A.
The same approach does not succeed with the function Pr/Ix on 1-’ because the projection

(x, st) - (x, s) from 1", A to 1-’ need not send Pr,zx to Pv; factors of Ur,zx and Ur get in
the way. Fortunately, Lemma 3.12 allows us to ignore those factors. Since Pr/Ix is AP on 1-’,
the lemma guarantees an e > 0 such that

(Pr(x,s))
e

Z -l PA(x)’2-1sl

For any fixed (x, s) 6 F the numbers 2-Itl, where ranges over A(f(x, s)), add up to at
most since no such is a proper initial segment of another. So

PA (x). 2-1s12-1’1 (Pr (__x_, s)) e
0.

/(x,st)F,A

By Lemma 3.12, Pr !Ix is AP on 1-’, A, and the proof of Theorem 5.4 is complete.]

Question. Do parts (a), (b), and (c) ofTheorem 5.4 remain equivalent ifthey are weakened
to assert only that T o f is AP, without specifying a particular set of good inputs? Is there an
analog of (d) for this situation?

COROLLARY 5.5. Let f be a randomfunctionfrom a domain A to a domain B computed
by an AP-time randomizing algorithm M1. If there exists a domain of good inputs for f
dominated, with respect to f, by B, then for every AP randomizing algorithm M2 on B the
composite algorithm M M2 M1 is AP time.

6. Impagliazzo and Levin’s theorem. To formulate the theorem in question, we need a
couple of definitions. We start with the definition of uniform domains. In the case of domains
with finite many elements, it would be natural to call a domain uniform if all elements have
the same probability. This definition makes no sense in the case of infinite domains, which
is the only case of interest to us. Another natural way to define uniform domains requires a
default probability distribution on positive integers; it is customary to assign the probability
/n (n + 1) to a positive integer n.

970 ANDREAS BLASS AND YURI GUREVICH

DEFINITION 6.1. A domain .is uniform if it has a finite number of elements of any given
size, all elements of a given size have the same probability, and
P{x Ixl n} 1/n(n + 1).

DEFINITION 6.2 [1]. A domain A is samplable if there exists a randomized algorithm S
such that all of the following conditions hold"

S takes no input (but tosses coins) and outputs an element of A if it converges.
PA (X) is proportional to the probability that S outputs x.
The computation time of S is bounded by a polynomial of the size of the output.

The restriction on the computation time of S can be relaxed [4].
Impagliazzo and Levin [8] deal with domains (though they do not use the term) for which

the size Ix of an element x is its length (recall that domain elements are strings); this restriction
is not necessary [4], but it simplifies the exposition and we stick to it in this section. Call a
sampling algorithm S length preserving if it uses exactly n coin tosses to produce a string of
length n. The following fact is well known, and we omit the proof.

LEMMA 6.3 [1], [4], [11]. Every search problem on a samplable domain reduces to a
search problem on a domain sampled by a length-preserving algorithm.

Impagliazzo and Levin prove that every NP search problem on a samplable domain reduces
to an NP search problem on a uniform domain. Recall that a search problem SP(A, W) is NP
if the length of a witness is bounded by a polynomial of the size of the instance and the witness
relation W(x, w) is PTime computable relative to Ix l. In fact, the argument of Impagliazzo
and Levin does not require the restriction to NP problems.

THEOREM 6.4 [8]. Every search problem 1-I SP(A, Wi) on a samplable domain A
reduces to a searchproblem on the uniform domain BS ofbinary strings. Ifthe source problem
is NP, then the target problem may be chosen to be NP as well.

Proof. First, we indicate the motivation behind the proof. There are two simple but
unsuccessful methods for attempting to reduce SP(A, W) to a search problem on a uniform
domain. One is simply to redefine the probability distribution on A to be uniform. This
fails because the obvious instance transformer, the identity map, violates the domination
condition. It is entirely possible for some instances x to have vastly larger probability in the
given samplable A than in the uniform domain; this occurs when S- (x) is large (since S
preserves length). A second method is to use the search problem on the domain BS defined by
W’(u) W(S(u)). The trouble with this is that an instance transformer should produce, for
any x, some u 6 S-1 (x), and this may be difficult even for a randomizing algorithm. Indeed,
one could imagine that each such u encodes a witness w for x, so that the new search problem
is trivial. Notice, however, that this second method fails only when S-1 (x) is rather small;
when it is large, an element of it can be found by guessing random elements and checking
them (as S is quickly computable).

The strategy of the proof is to interpolate between these two methods, leaning toward
the first (respectively, second) when s-l(x) is small (respectively, large). More precisely,
an instance of the new problem should be (approximately) n Ix bits long, consisting of

[log(llS-1 (x)ll)] bits of information about some u 6 S-1 (x) and n bits about x. (Here
IIS-X(x)ll is the cardinality of the set S-1 (x).)

There are some obvious difficulties with this. For one thing, we cannot efficiently compute
from x. But we can guess it; it lies between 0 and n, so that the probability of guessing

correctly is the reciprocal of a polynomial, which is good enough to give a nonrare dilation.
Another issue is how to select the right bits of information about u and x. This, too, is solved by
randomization. We randomly choose two matrices L and M (with entries in the two-element
field {0, }) of the appropriate size to hash u and x to vectors Lu and Mx of lengths and

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 971

n l, respectively. A key point in the proof is that randomly chosen hash matrices have a
reasonable probability of working the way we want.

Thus, finally, an instance of the new problem will consist of the two hash matrices L and
M and the results Lu and Mx of hashing u and v. A witness for such an instance will consist
of a u and a w such that Lu is as specified in the instance, S(u) is an x whose hashing Mx is as
specified in the instance, and W(x, w) holds. (Actually, there are a couple of minor technical
modifications in the actual proof, but this is the essential idea.)

Now we give the actual proof. We construct search problems l"I SP(Ai, Wi) for
2, 3, 4, 5 with A5 BS and reduce each l"I with < 5 to I-Ii+1. Accordingly, we

have four reduction lemmas. In each lemma the desired reduction is called (F, f, g). The
probability distribution of Ai is denoted Pi.

By Lemma 6.3 we may suppose that S is size preserving.
Notation. In the rest of this section x is an instance of FI with W1 (x) 7 0, n Ix I, m is

the cardinality of the set S-1 (x), and [log m]. If j is a natural number, then b(j) is the
(shortest) binary notation for j.

We define 1-I2. A2 comprises pairs (x, l), where x is an element ofA and is as above. The
size and probability of (x, l) are the size and probability ofx in A 1. Further, W2(x, l) W1 (x).

LEMMA 6.5. I-I1 reduces to I-I 2.
Proof. Define F(x) to contain one string, namely, b(1). We have Rarityv(x) 2Ib(l _<

21 _< 2n, so that 1-" is not rare.
Define f(x, b(l)) (x, 1). To check the domination property, take into account that f is

injective:
Pr(x, b(1)) P1 (x) 2-Ib(/)l

<1.
P2(x, l) P1 (x)

Finally, define g((x, b(/)), w) w. [

Notation. u ranges over binary strings of length n, u’ ranges over binary strings of length
l, and L ranges over n matrices over the field of two elements. If I is a matrix over the
field of two elements, then b(I) is the binary string obtained from I by writing down the first
row of I, then the second row of I, and so on. If s and s’ are strings, then s s’ denotes the
concatenation of s and s’.

We define I-I3. A3 comprises triples (x, L, u’) such that L has full rank (i.e., rank l) and
there exists u S-l(x) with Lu u’. A3 is isomorphic to a subdomain of A2 BS; the
isomorphism is t3(x, L, u’) ((x, 1), b(L) u’). Further,

W3(x, L, u’) {(u, w) S(u) x, Lu u’, and w 6 W1 (x)}.

LEMMA 6.6. 1-I 2 reduces to I-I3.
Proof. Define F to be the t3-image of A3. To prove that 1-" is not rare fix an instance (x, I)

of 1-I 2
CLAIM 6.7. In the uniform probability space of n matrices, the probability that a

matrix hasfull rank exceeds a positive constant independent of and n, e.g., 1/4.
Proof Only one row (namely, the row of zeros) cannot serve as the first row of a full-rank

matrix. Given the first row u 1, only two rows (namely, u and the zero row) cannot serve as the
second row of a full-rank matrix. Given the first two rows u and u2, only four rows (namely,
the four linear combinations of ul and u2) cannot serve as the third row of a full-rank matrix,
and so on. Thus the number of full-rank matrices is

l-1

(2 1)(2 2)(2 -4)... (2 2-) H(2 2i).
i=0

972 ANDREAS BLASS AND YURI GUREVICH

The total number of n matrices is 2in. Hence the probability of full rank is

HI-1 2n
i=0 2i)

21n -i
2n 2

i=0

1 1

i=0 i=0

To estimate this product consider the following probabilistic experiment. For each let
Ui be an urn with 2 balls such that exactly one of the balls is red and the others are green. Let
Ai be the event of selecting a green ball from Ui, and let Bi be the event of selecting the red
ball, so that P(Ai) P(Bi) 1/2i. We have

H()-- P [Ai=2 Ai]
i=2

I > ,__1 P 1 P(B/)
i=2 i=2

1- - +- q-...

2 2

Hence the probability of full rank exceeds (1 1/2) 1/2 1/4. [q

CLAIM 6.8. Consider the probability space ofpairs (L, u’), where L is offull rank. For
each x the probability of the event

{(L,u’) (:tu S-I(x))(Lu--

is at least 3/8.
Proof. Let u, v range over s-l(x). For each u, let E(u) {(L, u’) Lu u’}. Then the

cardinality IIE(u)ll of E(u) is the number F of full-rank matrices L. The event in question is
E(u), and the probability in question is II E(u)II/(F21).
We check whether, if u 7 v, the set E(u, v) E(u) N E(v) contains at most F/2

elements. Notice that

[(L, u’) E(u, v)] [Lu u’ Lv] === [L(u v) 0]

and that for each L that annihilates u v there exists a unique u’ such that (L, u’) e E (u, v).
Thus liE(u, v)ll equals the number of full-rank matrices L that annihilate u v. Among
all x n matrices, the probability of annihilating u v is exactly (1/2)I; among full-rank
matrices, the probability is < (1/2) Let us make this precise.

If n, then the probability that a full-rank matrix annihilates u v equals 0; so assume
that < n. The probability p that a random full-rank matrix L annihilates a specified nonzero
vector z {0, }n is independent of z. For any z, z’ there is a nonsingular n x n matrix A such
that Az z’. Then L annihilates z’ if and only if LA annihilates z, and LA has full rank if
and only if L does.

So without loss of generality z (0, 0 0, 1). It is clear now that p equals the number
of full-rank x n matrices with the last column of zeros divided by the total number of full-rank
x n matrices. In other words, p equals the number of full-rank x (n 1) matrices divided

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 973

by the number of full-rank x n matrices. Recall our counting of full-rank matrices above.
We have

l--I --2i--1 i ()l/=0" 1-Ii=0(2n-1
wIl- r"nZ

<
1i=0 2i) I--1I-1 COn 2i)1i=0, i=0

By the inclusion-exclusion principle 10]

F21 II Ju E(u)II > u IIE(u)ll liE(u) E(o)ll

Since the number of u’s is m,

rn

F21
IIE(u)II-- --mF= 2--[.

U

Further,

r-, m(m- 1) F m(m- 1)
Y.llE(u) c3 E(v)II <

F2 F21 2 2 221+1

lt2Thus the probability we want is bounded below by m/21 m(m 1)/221+1 >

and (because of the definition of l). But the minimum of thewhere rn/2 is between 7
2 1] is . So the probability we want is greaterquadratic function t on the interval [7,

than . FI

The twoclaims imply that F is nonrare. Define f - and g(((x, l), b(L),u’), (u, to))
w. It is easy to see that (F, f, g) is indeed the desired reduction. [3

Notation. k n + and M ranges over k n matrices over the two-element field.
We define Ha. An comprises 5-tuples (x, L, u’, M) such that (x, L, u’) A3, M is as

above (a k x n matrix), and there is no u e {0, }n S-1 (x) such that Lu u’ and M(S(u)
x) 0. It is isomorphic to a subdomain of A3 BS by the isomorphism 14 (X, L, u’, M)
((x, L, u’), b(M)). Further, W4(x, L, u’, M) W3(x, L, u’).

LEMMA 6.9. 1-I3 reduces to I-I4.
Proof. Define F to be the t4-image of A4. To prove that F is not rare fix an element

(x, L, u’) of A3 and call a matrix M bad if there exists u {0, }n S- (x) such that Lu u’
and M(S(u) x) O.

CLAIM 6.10. Thefraction ofbad matrices M is at most 1/2.
Proof. The number of strings u satisfying the equation Lu u’ is 2n-I 2k-1. For each

u {0, }n S- (x) there are exactly 2kn-k matrices M satisfying the equation M(S(u)-x)
0. Thus the number of bad matrices M is at most 2k-12kn-k 2kn-1, which is exactly half of
the total number of matrices M. U

The claim implies that F is not rare. Define f t- and g(((x, L, u’), b(M))(u, w))
(u, w). It is easy to see that F, f, g is indeed a reduction. [3

The domain A5 of our final problem 175 is BS. We do some work before defining Ws.
Consider the function

f (x, L, u’, M) b(L) u’ b(M) b(Mx) b(l)

from A4 to A5. (It will serve eventually as the instance transformer of the desired reduction
of Ha to 175.)

974 ANDREAS BLASS AND YURI GUREVICH

CLAIM 6.11. f is injective, and the components L, ut, and M as well as the numbers n,
l, and k are PTime computablefrom f(x, L, u’, M).

Proof. Because If(x, L, u’, M)I In + + kn + k + (n + 1)2 -+- and _< n,
the numbers n, l, and k are easily computable from If (x, L, u’, M)I. It follows that L, u’,
and M are easily computable from f(x, L, u’, M). To prove that f is injective, suppose that

f (x2, L, u’, M) f(x, L, u’, M). Then M(x2 x) O, and there exists u 6 s-l(x2) such
that Lu u’ and M(S(u) x) 0. Since M is not bad for (x, L, u’) (in the sense of the
proof of Lemma 6.9), X2 S(u) x.

CLAIM 6.12. f deterministically reduces A4 to A5.
Proof. Clearly, f is PTime computable. We need only to check that f satisfies the

domination condition. Since f is injective,

P4 (f-1 (f (x, L, u’, M)) P4 (x, L, u’, M)
P5 (f (x, L, u’, M)) P5 (f(x, L, u’, M))

P(x)Ps(b(L) u’ b(M))
PBs(b(L) * u’ b(M) b(Mx) b(1))

We may ignore factors polynomial in I(x, L, u’)1, i.e., polynomial in n. In that sense,

P (x)Ps(b(L) u’ b(M)) 2-(n-I)2-(ln+l+ln)

Ps(b(L) * u’ b(M) b(Mx) b(1)) 2-(ln+l+kn+k+lgl)

Now we are ready to define Ws.

W4(x, L, u’, M) if s f (x, L, u’, M)
W(s)

0 otherwise.

Since S is PTime computable and 1-I is an NP search problem, the search problem 1-I is

NP as well.
LEMMA 6.13. I’I4 deterministically reduces to II5.
Proof. The instance transformer f of the desired reduction is already defined. The

witness transformer is g((x, L, u’, M), (u, w)) (u, w). It is easy to see that (f, g) is indeed
a reduction.

Theorem 6.4 is proved.

7. Appendix (Jensen’s inequality). For the reader’s convenience we prove here two forms
of Jensen’s inequality that we need. The proof of Jensen’s inequality from 12] is used.

THEOREM 7.1. Consider an increasing concave function f on an interval (a, cx) of the
real line, and set f(x) limx. f(x). For every random variable X with values in the
interval (a, cxz] of the real line extended with

_<

Proaf. IfE(X) c, then f(E(X)) limxt f(x) > E(f(X)). Suppose that E(X) <
cx, The fact that f is concave means that for a < u < v < w

f(v) f (u)
> f(w) f(v)

V--hi ll0--1)

It is clear that the monotone limits

f (v) f (u) f(w) f(v)
A(v) =$ lim B(v) =J" lim

u?v V l,l wSv W V

RANDOMIZING REDUCTIONS OF SEARCH PROBLEMS 975

exist and that A(v) > B(v). For all positive real v, x and every c in [B(v), A(v)] we have

f(x) < c(x v) + f(v). In particular, there is c such that f (X) < c(X E(X)) + f(E(x))
and the desired inequality follows after expectations are taken. [3

COROLLARY 7.2. Suppose 0 < 6 < 1, and let X be any random variable with values in
(0, z]. Then

_<

THEOREM 7.3. Consider a decreasing convexfunction g on an interval (0, b) of the real
line and set g(0) limx+0 g(x). For every random variable X with values in the interval
[0, b) of the real line,

E(g(x)) >_ g (E(x)).

Proof. First, suppose E(X) 0. Since all values of X are > 0, we must have with
probability that X 0 and therefore g(X) g(0). Then E(g(X)) g(O) g(E(X)).

In the case E(X) > 0 the proof is similar to the part of the proof of Theorem 7.1 for the
case E(X) < ; just reverse some arrows and inequalities. [3

COROLLARY 7.4. Suppose 0 < 8 < 1, and let X be any random variable with values in
[0, b). Then

E(x (E(x))

REFERENCES

S. BEN-DAVID, B. CHOR, O. GOLDREICH AND M. LUBY, On the theory ofaverage case complexity, J. Comput.
System Sci., 44 (1992), pp. 193-219.

[2] A. BLASS AND Y. GUREVICH, On the reduction theory for average-case complexity, in Proc. CSL ’90, 4th
Workshop on Computer Science Logic, E. B6rger, H. K. BOning and M. Richter, eds.,, Springer Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1991.

[3] , Randomizing reductions of search problems, in Proc. lth Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Springer Lecture Notes in Computer Science 560,
Springer-Verlag, Berlin, 1991, pp. 10-24.

[4] Randomizing reductions ofdecision problems (tentative title), in preparation.
[5] Y. GUREVICH, Average case complexity, J. Comput. System Sci., 42 (1991), pp. 346-398.
[6] Average case complexity, in Proc. International Colloquium on Automata, Languages and Program-

ming, Springer Lecture Notes in Computer Science 510, Springer-Verlag, Berlin, 1991, pp. 615-628.
[7] Y. GUREVICH AND S. SHELAH, Expected computation time for Hamiltonian path problem, SIAM J. Comput.,

16 (1987), pp. 486-502.
[8] R. IMPAGLIAZZO AND L. A. LEVIN, No better ways to generate hard NP instances than picking uniformly at

random, in Proc. 31 st Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Washington, D.C., 1990, pp. 812-821.

[9] L.A. LEvIN, Average case complete problems, SIAM J. Comput., 15 (1986), pp. 285-286.
10] R. E STANLEY, Enumerative Combinatorics I, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1986.
11 R. VENKATESAN AND L. LEVIN, Random instances ofa graph coloring problem are hard, in Proc. 20th Annual

ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1988,
pp. 217-222.

[12] D. WILLIAMS, Probability with Martingales, Cambridge University Press, London, 1991.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 976-993, October 1993

() 1993 Society for Industrial and Applied Mathematics
005

AN OPTIMAL ALGORITHM FOR THE MAXIMUM
THREE-CHAIN PROBLEM*

RUEY-DER LOU AND MAJID SARRAFZADEH

Abstract. Given a two-dimensional point set p, a chain C is a subset of p in which for every two points one is
dominated by the other. A k-chain is a subset of p that can be partitioned into k-chains. The size of a k-chain is the
total number of its points. A k-chain with maximum size, among all possible k-chains, is called a maximum k-chain.
First geometric properties of k-chains are studied for an arbitrary k. Then a (R) (n tog n)-time algorithm is presented
for finding a maximum three-chain in a point set p, where n 1/91.

Key words, point dominance, chains, computational geometry, lower bound, optimal algorithm

AMS subject classifications. 52B55, 68Q20, 68Q25

1. Introduction. Consider a point set p {P1, P2 P,,} in the xy-plane, where
ei (xi, Yi) with xi > 0 and Yi > 0; by convention, xi > xj for > j and all the y’s are
distinct. Following [6], we say Pi dominates Pj if xi > xj and Yi > Yj. Points Pi and Pj are
crossing if xi > xj and yj > Yi or vice versa; otherwise, they are noncrossing. A subset of p
is called a chain if its points are pairwise noncrossing. A subset is called a k-chain if it can be
partitioned into k chains. The size of a k-chain is the number of its points. A maximum chain
is a chain with maximum size among all possible chains. A maximum k-chain is a k-chain
with maximum size among all possible k-chains. The problem of finding a maximum k-chain
is equivalent to the following problems:
Graph Theory: In a given representation of a permutation graph as a family of chords, find

a maximum k-partite subgraph. (The more general problem of finding a maximum
k-partite subgraph in an overlap graph, i.e., a circle graph, is NP-hard [8].)

Sequence Manipulation: Given a sequence of integers, find a maximum k-increasing sub-
sequence. (A k-increasing subsequence is a subset that can be partitioned into k
increasing subsequences.)

VLSl Layout: Solve the maximum k-layer subset problem and the k-layer topological by
minimization problem in a channel. Normally, k is a small constant (2, 3, or 4) [3],
[7]-[10].

The problem of the unweighted maximum k-partite subgraph in transitive graphs (which
includes the class of permutation graphs) was solved in O (kn) time, where n is the number of
vertices [4]. This result was extended to the weighted case in [3], 10] (both algorithms run in
0 (kn2) time). By using the geometric nature ofpermutation graphs (i.e., solving the equivalent
maximum k-chain problem) the following results have been obtained: A (R)(n log n)-time
algorithm for finding a maximum one-chain has been proposed [2]. This result was extended
to find a maximum two-chain in (R)(n log n) time [5]. In this paper we study geometric
properties of k-chains. Then we propose a (R) (n log n)-time algorithm for finding a maximum
three-chain.

This paper is organized as follows. In 2, preliminary results are presented. The main
idea of the algorithm is presented in 3. In 4, details of the implementation and the time
complexity of the algorithm are discussed.

2. Geometric properties of chains. In this section we first present an overview of the
approach. Next we provide some preliminary results that are essential for establishing the
main result.

*Received by the editors June 24, 1991; accepted for publication (in revised form) June 9, 1992. This work was
supported in part by the National Science Foundation under grant MIP-8921540 and MIP 9207267.

DepartmentofElectrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208.

976

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 977

2.1. Overview. The problem of finding a maximum k-chain and the more general prob-
lem of finding a maximum k-covering in a transitive graph G are well understood. The idea is
to repeatedly (i.e., k times) find a minimum-cost flow in G. At the end of each step, the graph
G needs to be modified. The currently known implementation of this idea requires O(kn2)
time, where n is the number of points (e.g., see [4]).

In the xy-plane a minimum-cost flow corresponds to finding a maximum chain. This
task can be efficiently accomplished by using the notion of point dominance [2]. To repeat
this task k times--as is done in the graph version of the problem--we need to modify the
xy-plane. Explicitly this is not possible. We will show that modifying the plane is equivalent
to redefining the cost of the chains. This idea is implicitly used in [5]. Here we use this idea
explicitly. We also explain why the same idea cannot be efficiently used for a k-chain, k > 3.

First we show various geometric relations between a maximum h-chain and a maximum
(h + 1)-chain. Then we show that a maximum h-chain can be effectively combined with a
collection of chains and antichains (which we call a z-chain) to obtain a maximum (h + 1)-
chain. We also show, on the basis of the notion of dominance, that a z-chain can be efficiently
obtained.

2.2. Preliminary results. Consider a chain C {P, Pr2 eT in a point set p,
where x,ri < xi/l for < < n. In the xy-plane an extended path 79(C) of C is a path
vertically from (x, y) (xrl, -c) to P, then to (x y), then to P2 Pm, and finally
from eT to (Xm ()o Extended path 79(C) partitions the plane into three connected regions:
points on 79(C), points to its left (i.e., points containing x -cx), and points to its right
(i.e., points containing x +cx). The points to the left of 79(C) are called the left-hand side
thereof and the points to the right of 79(C) are called the right-hand side thereof. The points
in p are also partitioned into three sets by the extended path 79(C)

(a) the subset of points on the left-hand side of 79(C);
(b) chain C;
(c) the subset of points on the right-hand side of 79(C).
We partition an h-chain H into h chains such that the th chain (from left to right) is

on the left-hand side of the extended path of the (i + 1)st chain. We call such partition a
normal partition of H, and we call each chain a component chain of H. (Clearly, a normal
partition of every h-chain can be found in linear time.) H(i) represents the ith, from left
to right, component chain of H. In the following discussion we express each h-chain H by
H H(1) U H(2) t_J.., t3 H(h).

Let Mh represent a maximum h-chain and Mh(i) represent the ith component chain of
Mh. The extended paths of the component chains of Mh, (i.e., 79(Mh (1)), 79(Mh (2)) and
79(Mh(h)), partition the point set p into 2h + subsets:

(a) h component chains of Mh;
(b) Rh(1), the subset of the points on the left-hand side of 79(Mh (1));
(c) Rh(i), the subset of the points on the fight-hand side of Tg(Mh(i 1)) and on the

left-hand side of 79(Mh (i)) for 2 < < h;
(d) Rh(h -+- 1), the subset of the points on the right-hand side of (Mh(h)).
As described in 2.1, our goal is to obtain a maximum (h + 1)-chain from a maximum h-

chain. To accomplish this task efficiently we need to establish some properties of a maximum
(h + 1)-chain. In particular, we will show that each component of a maximum (h + 1)-chain
is bounded by two components of a maximum h-chain. Such properties will be referred to
as the partition properties (to be proved in Lemmas 2.1 and 2.2) and properties P1-P3 (to be
proved in Lemma 2.3).

Consider a maximum h-chain Mh and an (h + 1)-chain F F(1) U F(2) U.-. t_J F(h + 1)
in point set p. We say F satisfies the partition property of Mh if

978 R.D. LOU AND M. SARRAFZADEH

(a) F(1) is a subset of Rh(1) U Mh(1);
(b) F(i) is a subset of Mh(i 1) U Rh(i) L) Mh(i) for 2 < < h;
(c) F(h + 1) is a subset of Mh (h) Rh (h + 1).
Given a maximum h-chain .Mh and a chain C, we can readily construct an (h + 1)-chain

F Mh t_J C such that F’ satisfies the partition property of Mh. An example is shown in
Fig. 1.

(a) before combination

r’()

x

(b) after combination

FIG. 1. The combination ofMe and C" (a) before combination and (b) after combination.

LEMMA 2.1. Given a maximum h-chain Mh and an (h + 1)-chain F in point set p, there
exists an (h + 1)-chain F’ such that F’ satisfies the partition property OfMh and [F’l > IFI.

Proof. Let F(j) be a component chain of F. Mh C) F(j) may not be empty. The total
number of points in the other h component chains of F is less than or equal to that of Mh.
Clearly, we can construct an (h + 1)-chain F Mh F(j) such that F’ satisfy the partition
property of Mh and F’I >_ FI.]

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 979

The following lemma is a corollary of Lemma 2.1.
LEMMA 2.2. Given a maximum h-chain Mh in point set p, there exists at least one

maximum (h + 1)-chain Mh+l such that Mh+ satisfies the partition property of Mh.
Consider a chain C in the point set p. The highest point of C (i.e., the point with maximum

y coordinate) is called the top point of C. Similarly, the lowest point of C is called the bottom
point of C. Assume C Prl, Pzr2 Prm }. Let C’ Pri, Pri+, Prri+j be a subset of
C such that there is no point in C C’ that dominates some point in C’ and is also dominated
by some point in C’. Then we say C’ is a continuous portion of C. Let C 1, C2, and C be
three chains in p. Assume C and C2 have some common points. A point set D is called an
overlapped portion of C with C2 if D has the following properties:

(O 1) D is a continuous portion of C and C2 (hence D is also a subset of common points
of C and C2).

(02) No other point set with property O contains D as a subset (i.e., D is maximal).
Similarly, we define overlapped portions of C2 with C3. Notice that an overlapped portion

of C with C2 may overlap with an overlapped portion of C2 with C3. With this definition
there exists an (h + 1)-chain Mh+ that satisfies the partition property of Mh. Furthermore,
Mh+l has the following properties (to be proved below):

(P1) All bottom points of Mh are bottom points of Mh+l.
(P2) All top points of Mh are top points of Mh+.
(P3) On each component chain Mh(j) its portions overlapped with Mh+l(j) and with

Mh+l(j / 1) appear alternately from bottom to top.
LEMMA 2.3. There exists an (h + 1)-chain Mh+l that satisfies the partition property of

Mh and attains properties P 1, P2, and P3.

Proof. Consider an (h + 1)-chain Mh+l that satisfies the partition property of Mh. Ac-
cording to Lemma 2.1, such a chain exists. Now we have to show that Mh+l attains additional
properties.

(1) Properties P1 and P2. Assume one bottom point Pbj of component chains Mh (j)
is not a bottom point of any component chain of Mh+l (see Fig. 2). Let the lowest point of
Mh(j)fqMh+ be Pa. Without loss ofgenerality, assume Pa ison Mh+ (j+ 1). Let the points in

Mh+l (j -+- 1) lower than Pa and not in Mh be Pal, Pa2 Pam, where Xa < Xa2 < < Xam.
Let m’ denote the number of the points in Mh(j) below Pa. Because Mh+ is amaximum
(h / 1)-chain, m > m’. Because Mh is a maximum h-chain, m < m’. Thus m m’. Hence
we can delete points Pal, Pa2 Pare from Mh+l and add the points that are on Mh (j) and
below Pa to Mh+. In the new Mh+, Pbj is the bottom point of Mh+ (j). Repeating this
procedure, we can make all bottom points of Mh bottom points of Mh+l. Similarly, we can
make all top points of Mh top points of Mh+l.

(2) Property P3. Assume property P3 is not satisfied for a maximum (h + 1)-chain Mh+.
Let Mh (j) be the leftmost component chain of Mh, such that property P3 is not satisfied
(i.e., the portions of Mh(j) overlapped with Mh+l(j) and with Mh+l(j + 1) do not appear
alternately). Consider the following two cases (in Case the property is violated by Mh (j)
and Mh+l(j), and in Case ii the property is violated by Mh (j) and Mh+(j + 1))"

Case (i). Assume that 0-1 and 0-2 are two overlapped portions of Mh(j) with Mh+ (j) and
that no portion of Mh(j) overlapped with Mh+l (j + 1) is between 0-1 and 0-2 (see Fig. 3). That
is, there are no common points of Mh (j) and Mh+ (j / 1) that dominate points in 0-1 and are
dominated by points in 02.

Let B1 be the set of points in Mh(j) and between 0"1 and 0"2. Let B2 be the set of points in

Mh+ (j) between 0" and 02 not including the overlapped portion of Mh(j 1) and Mh+ (j).
According to properties P1 and P2, the top point and the bottom point of Mh (j 1) are in
Mh+. Also, according to the assumption, Mh (j) is the leftmost component chain of Mh for

980 R.D. LOU AND M. SARRAFZADEH

Ma(j)

Ma+a(j + 1)

FIG. 2. ProofofLemma 2.3, P and P2.

B1

Jl/h+l(j)

FIG. 3. ProofofLemma 2.3, P3.

which P3 is not satisfied. Thus in Mh (j 1) let B3 be the portion between two portions of
Mh (j 1) overlapped with Mh+ (j 1).

If we delete all points in B2 from Mh+l (j) and add all points in B1 to Mh+l (j), the union
of Crl, B1, and tr2 becomes a new overlapped portion of Mh(j) and Mh+ (j). Because Mh
is a maximum h-chain, IB11 >_ B2 I. Thus the new Mh+ is still a maximum (h + 1)-chain.
However, B3 is not in the new Mh+l; furthermore, Mh (j 1) is the leftmost component chain
of Mh. Therefore, property P3 is now satisfied. Repeating the above procedure from left to
right, we can make all component chains of Mh satisfy property P3.

Case (ii). Assume that crl and or2 are two portions of Mh (j) overlapped with Mh+ (j + 1)
and that no portion of Mh(j) overlapped with Mh+l (j) is between crl and tr2. Let B1 be the set

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 981

of points in Mh (j) and between al and tr2. Let Bz be the set of points in Mh (j + 1) between
crl and a2. Let B3 be the set of points in Mh+ (j + 1) between crl and or2. As in Case i, we
can make all component chains of Mh satisfy property P3. [3

As explained in 2.1, we aim to construct a maximum (h + 1)-chain if a maximum h-chain
is available. We accomplish this task by deleting some points from the h-chain and adding new
points to it. The collection of the h-chain, the added points, and the points deleted is called
a z-chain, to be formalized below. Given a maximum h-chain Mh in p, we call the points in

Mh marked points and the other points in p unmarked points. A path, called a z-chain of Mh
(or simply a z-chain), is constructed as follows (see Fig. 4, where thin lines correspond to the
chains and thick lines correspond to the z-chain). The path consists of an ordered set of points
with the first point called the starting point and the last point called the ending point. Let Pi
be a point on the path. Let Pj be the point next to Pi on the path. If Pj is an unmarked point,
then Pj must dominate Pi. If Pj is marked, it either dominates or is dominated by Pi. If Pj
dominates Pi, then we say Pj is an up-point; otherwise, Pj is a down-point. The starting point
is defined to be an up-point. If Pi is an up-point and Pj is a down-point, we call Pi a peak
point. If Pi is a down-point and Pj is an up-point, we call Pi a valley point. Each portion of
points between a peak point and its following valley point in the path is called a reverse chain.
We also define the z-size of a z-chain as the number of unmarked up-points minus the number
of marked nonvalley down-points in the z-chain. A z-chain (of Mh) from point Pa to point
Pb with maximum z-size among all z-chains with the same starting point Pa and ending point
Pb is called a maximum z-chain (of Mh) from Pa to Pb. A maximum z-chain with maximum
z-size among all possible maximum z-chains between all pairs of points in p is called a global
maximum z-chain (of Mh).

z

FIG. 4. An example ofa z-chain.

Given a maximum h-chain Mh and a z-chain Z in p, if we change unmarked up-points
to be marked and nonvalley down-points to be unmarked, the set of resultant marked points is
called the combination of Mh and Z. The size of the combination of Mh and Z is the sum of
the size of Mh and the z-size of Z.

LEMMA 2.4. In a maximum z-chain no point is repeated.
Proof. Assume that Z is a maximum z-chain and that point Pa in Z appears twice. Then

there is a closed-loop z-chain Z whose z-size is larger than zero, for if its size is not positive

982 R.D. LOU AND M. SARRAFZADEH

it can be removed. Clearly, the combination of Mh and Zc is an h-chain with size larger than
that of Mh, which is a contradiction.

LEMMA 2.5. The combination ofa maximum h-chain Mh and a global maximum z-chain
is a maximum (h + 1)-chain.

Proof. Clearly, the combination of a maximum h-chain and a z-chain is an (h + 1)-chain.
In the following we will show that a maximum (h + 1)-chain can always be obtained from
the combination of a maximum h-chain and a z-chain. Thus the combination of a maximum
h-chain Mh and a glObal-maximum z-chain is a maximum (h + 1)-chain.

According to Lemma 2.2 there exists at least one max-(h + 1)-chain Mh+l that satisfies
the partition property of Mh. We construct a z-chain as follows. First we choose the starting
point of the z-chain. Consider the following two cases:

Case (i). If the bottom point Pb of component chain Mh+ (j) is not a bottom point of
Mh, we choose Pb as the starting point. Beginning from Pb, we let the points on Mh+ (j) be
up-points until we reach the top point of Mh+ (j) or reach a point Pa that is a common point
of Mh+l (j) and a component chain of Mh, say, Mh(j 1).

Case (ii). If all bottom points of Mh+l are bottom points of Mh, we choose the point
P{ that is the bottom point of two component chains of Mh+l as the starting point. Without
loss of generality, assume P is the bottom point of Mh+l (j), Mh+ (j + 1), and Mh(j). Also
assume that the lowest point in Mh+l(j), but not in Mh (j), is lower than the lowest point in

Mh+ (j) but not in Mh (j + 1) (see Fig. 5). Beginning from the starting point, we let the points
in Mh+l (j) be up-points until we reach the top point of Mh+l (j) or reach a point Pa that is a
common point of Mh+l(j) and a component chain of Mh, say, Mh (j 1).

FIG. 5. ProofofLemma 2.5.

Let the portion of Mh+ (j) overlapped with Mh (j 1) be denoted by O V 1. According
to Properties P1 and P3, there is a portion of Mh+l (j 1) overlapped with Mh (j 1), denoted
by O V2, below O V 1. If the points in O V2 have been processed, we follow Mh+l (j) up until
we reach another overlapped portion. Otherwise, we follow Mh (j 1) down and make all
points on Mh (j 1) and between O V and O V2 down-points; then we follow Mh+l (j 1)
up until we reach another overlapped portion.

Each time we meet an overlapped portion we repeat the above procedure. Finally, we
reach a top-point of Mh+l and obtain a z-chain Z. Obviously, the combination of Z and Mh
is Mh+

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 983

3. Algorithm MAX-THREE-CHAIN. In this section we first discuss some properties
of point dominance in the xy-plane. On the basis of these properties we present Algorithm
MAXZ2 for finding a global-maximum z-chain of a given maximum two-chain. We then
present Algorithm MAX-THREE-CHAIN for finding a maximum three-chain by using Algo-
rithm MAXZ2.

3.1. Maximum level and minimum level. Given a set of points p, the points that are
not dominated by any other points are called the maxima of p. We can find the maxima of p
where all maxima are at the same level, known as the dominance hull [6] of p. We then ignore
the points at this level and recursively find other points at the same level for the remaining
points. This process is repeated until all points in p have been assigned a level. We call the
levels from bottom to top levels 1, 2 s, where level s contains points on the dominance
hull of p [5].

In point set p, the points that do not dominate any other points are called the minima of p.
With a process symmetric to the process for maximum levels we can partition point set p into,
from bottom to top, minimum levels 1, 2 s’, where minimum level s’ is the top minimum
level. The maximum levels and minimum levels have properties stated in the following three
lemmas.

LEMMA 3.1. Each point at maximum level u, where < u < s, is dominated by at least
one point at maximum level u + 1.

Proof. Assume that point Pa is at level u. If Pa is not dominated by any point at level
u + 1, then Pa should be at level u + 1. This is a contradiction, rq

LEMMA 3.2. Each point at minimum level u, where < u < sf, dominates at least one
point at minimum level u 1.

The proof of Lemma 3.2 is similar to that of Lemma 3.1.
A chain C from a point Pa at maximum level u to Pb at maximum level v is called

a maximum-level solid chain if C has one point at each maximum level from u to v. A
minimum-level solid chain is similarly defined. The following lemma is based on Lemmas 3.1
and 3.2.

LEMMA 3.3. In a point set the number ofminimum levels and the number of maximum
levels are equal (i.e., s s’).

Consider the following procedure: Beginning from the leftmost point of maximum level
1, choose one point at each maximum level such that each chosen point at maximum level u
is the leftmost point at that level dominating the point chosen at maximum level u 1, where
u > 1. All chosen points form a maximum-level solid chain. This maximum-level solid chain
is denoted by MI. Symmetrically, beginning from the rightmost point of maximum level 1,
choose one point at each maximum level such that each chosen point at maximum level u is
the rightmost point at that level dominating the point chosen at maximum level u 1, where
u > 1. All chosen points form a maximum-level solid chain, which is denoted by Mr. Find
the extended paths of MI and Mr. The subset of the points on and between the two paths is
called the central subset of p. Clearly, points of every maximum chain of p are in the central
subset of p.

LEMMA 3.4. If two points Pa and Pb are at the same maximum level and Pa is in the
central subset ofp and at minimum level la, then Pb is at a minimum level l, where la >_ lb.

Lemma 3.4 can be proved from the definitions.

3.2. Basic z-chains. A z-chain can be partitioned into a collection of simpler shapes.
This is a nice feature, since it simplifies the problem ofobtaining a maximum z-chain. Consider
the following three types of (sub-) z-chains:

(1) An A-shaped z-chain consists of two parts (see Fig. 6(a))" (a) a chain from the first
point Pa of the z-chain to a marked point Pt, and (b) a reverse chain from Pt to the last point
Pb of the z-chain.

984 R.D. LOU AND M. SARRAFZADEH

(2) A V-shaped z-chain also consists of two parts (see Fig. 6(b)): (a) a reverse chain from
a marked point Pa to a marked point Pv, and (b) a chain from Pv to the last point P, of the
z-chain.

(3) A C-shaped z-chain consists of three parts (see Fig. 6(c)): (a) a reverse chain from a
marked point Pa to a marked point Pv, (b) a chain from Pv to a marked point Pt, and (c) a
reverse chain from Pt to the last point P, of the z-chain. Notice that all points in the chain
from Pv to Pt in (b), except for Pv and Pt, are unmarked points.

(a) A-shaped z-chain (b) V-sha.ped z-chain

(c) C-shaped z-chain

FIG. 6. Three types ofz-chains: (a) A-shaped z-chain; (b) V-shaped z-chain; and (c) C-shaped z-chain.

Given a pair of points Pa and Pb, according to t-he definition there may exist several A-
shaped z-chains from Pa to Pb. For simplicity, hereafter we use the term A-shaped z-chain
to imply an A-shaped z-chain with maximum z-size among all such z-chains from Pa to Pb.
For a V-shaped z-chain the situation is similar.

In the rest of this subsection we will elaborate on the properties ofbasic z-chains. Assume
that we have already found maximum levels, minimum levels, and a maximum chain M1. Let
each point Pa in p at maximum level u and minimum level v be assigned two values, L(a) u
and (a) o. We have the following lemma.

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 985

LEMMA 3.5. For any point Pa and a markedpoint Pb, if Pa is not dominated by Pb, then
an A-shaped z-chainfrom point Pa to Pb has z-size equal to L(b) L(a).

Proof. For convenience we add two fictitious points Pn+l (n + 1, n + 1) and P0 (0, 0)
(i.e., Pn+ and P0 do not make any contribution to the cardinality of any chain or z-chain) to
p. Also, let Pn+l and P0 be marked points. Note that P0 is dominated by every point and that

Pn+l dominates every point.
Because Pa is not dominated by Pb, we always can find a marked point Pc (e.g., Pn+l)

such that (i) L(c) > L(b), L(c) > L(a), and (ii) there exists a maximum level solid chain C
from point Pa to Pc (see Lemma 3.1). Thus chain C has L(c) L(a) + points.

The reverse chain from Pc to Pb has L(c)- L(b)+ points becauseM is also a maximum-
level solid chain. According to the definitions the z-chain from Pa to Pc and then to Pb is an
A-shaped z-chain with z-size L(b) L(a). It is easy to show that we cannot find any A-shaped
z-chain from Pa to Pb with a larger z-size.

The following lemma is similarly proved.
LEMMA 3.6. For a markedpoint Pa and any point P, if Pa is not dominated by Po, then

a V-shaped z-chainfrom Pa to P has z-size equal to l(b) l(a).
Given a pair of points Pa and P, we use MZ(Pa, Pb) to denote a maximum z-chain from

Pa to Pl.
LEMMA 3.7. For an arbitrary point Pa and a marked point P, if Pa is dominated by P,

then either (1) MZ Pa, P,) is a chainfrom Pa to Pb or (2) there exists a point Pd at maximum
level L(b) such that MZ(Pa, P) is an A-shaped z-chainfrom Pa through Pd to P.

Proof. Because P is marked, there are only two possible types of z-chains from Pa to P:
a chain or an A-shaped z-chain. In the following we show that if MZ(Pa, Pb) is an A-shaped
z-chain, then MZ(Pa, P) should have a point at maximum level L(b).

Let P be the highest point (i.e., with the largest y-coordinate) in MZ(Pa, P) dominated
by P. Let the number of points in MZ(Pa, Pb) from Pa to P be m; then MZ(Pa, P) has
z-size at least equal to m. Let P2 be the lowest point in MZ(Pa, P) not dominated by Pb. If

P2 is at a maximum level u > L(b), then the z-size of MZ(Pa, P) is m + L(b) u < m,
a contradiction. Thus P is at a maximum level u < L(b) and MZ(Pa, P) has a point at

maximum level L(b).
The following lemma is similarly proved.
LEMMA 3.8. For a markedpoint Pa and a point Pb, if Pa is dominated by P, then either

(1) MZ(Pa, P) is a chainfrom Pa to P or (2) there exists a point P at minimum level l(a)
such that MZ Pa, P is a V-shaped z-chainfrom Pa through P to Pb.

3.3. Algorithms MAXZ2 and MAX-THREE-CHAIN. We first discuss Algorithm
MAXZ2, which finds a global maximum z-chain of a given maximum two-chain Me. Then
we show how to combine a global maximum z-chain with a maximum two-chain to obtain a
maximum three-chain.

Consider a given global maximum z-chain Z of M2 starting from a point Ps, as shown
in Fig. 7. Without loss of generality, assume Ps is in R1 (1). For simplicity we add fictitious
points P0 (0, 0) and Pn+l (n + 1, n + 1) to p. (However, hereafter each time we partition
a point subset into levels, we do not take P0 and Pn+l into consideration.) Then Z starts from

P0 and terminates at Pn+l. For each point Pi in p let z(i) denote the z-size of the maximum
z-chain from P0 to Pi. Thus, if point Pi is in Z, z(i) is equal to the z-size of Z from point
Ps to Pi. Z may intersect M2 many times. Let Pt denote the jth peak point of Z on M2(),
where or 2. Let Po denote the jth valley point of Z on M2(e).

If we say that A-shaped and V-shaped z-chains are degenerate types of C-shaped z-chains,
then a maximum z-chain of M2 is partitioned by M2 into chains and C-shaped z-chains. For
example, Z is partitioned into the following sets (see Fig. 8):

986 R.D. LOU AND M. SARRAFZADEH

Z

minimum level

(b) M2 and Z

FIG. 7. M2 and global-maximum z-chain Z: (a) M2 and (b) M2 and Z.

(DZ1) a set of chains in R2(2);
(DZ2) a set of chains and C-shaped z-chains in R2 (1) U M2 (1);
(DZ3) a set of chains and C-shaped z-chains in M2(2) tO R2(3).
Consider two points Pa and Pb in Z. Assume that z(a) has already been found. If

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 987

FIG. 8. Partition of Z.

MZ(Pa, Pb) is a portion of Z, z(b) is equal to z(a) plus the z-size of MZ(Pa, Pb). If Pa
and Pb are both in R2(1) (or both in R2(3)) and if MZ(Pa, Pb) does not intersect M2, then
MZ(Pa, Pb) is a chain. If Pa and Pb are in M2 (1) U R2 (2) U M2 (2), according to the above
discussion there are two possibilities for MR(Pa, Pb): a chain or a C-shaped z-chain. Hence
we can construct algorithm MAXZ2 as follows.

Each time we process a point Pi we do the following:
(ZP1) Assume Pi is in a chain stated in DZ1. We find a point Pj dominated by Pi with

maximum z value. Let zl(i) z(j) + if Pi is unmarked; otherwise, letzl(i) z(j).
(ZP2) If Pi is a marked point, assume Pi is the ending point ofa C-shaped z-chain. We

have to find a marked point Pj in the same component chain with Pi and dominated by Pi,
such that z(j) plus the z-size of MZ(Pj, Pi) is maximum among all possible Pj’s. We denote
such a value by z2 (i). Notice that all unmarked points in such C-shaped z-chains are in R2(1)
(or R2(3)). Else, if Pi is unmarked, it is handled as in ZP1.

Then let z(i) max(z1 (i), z2(i)). After all points are processed, the point, except for
Pn+l, with the maximum z value in p is the last point of a global-maximum z-chain. We trace
back every point in Z starting from the last point of Z.

Algorithms in [2] or [5] can be used to handle case ZP1. However, for ZP2 we need some
detailed discussion. We use the C-shaped z-chain from Pt to Pv in Fig. 7 as an example to

explain how to find value z(v) of Pv if it is assumed that value z(t) of Pt is known.
Let Pt2(l denote the point subset p M2(2), and let P42(2 denote the point subset

p M2(1). Obviously, the two point subsets have common points. We find maximum levels
and minimum levels for both P/2(1) and pt2(2). It is clear that M2(), where 1 or 2, is
a maximum chain of point set Pt2(e; otherwise, M2 is not a maximum two-chain. To each
point Pi in R2(1) tO M2(1), values Lt2(l(i) and lt:(1)(i) are assigned to denote that Pi is
at maximum level Lt()(i) and minimum level lt()(i) of point set pt:(. Similarly, to
each point Pj in M2(2) tO R2(3) values Lt(2(j) and/t(2(j) are assigned. In the C-shaped

988 R.D. LOU AND M. SARRAFZADEH

z-chain from Pt to Pv in Fig. 7, according to Lemma 3.8 there is a point Pe at the minimum

level/M2(2(t) of Ph(2) such that MZ(Pt, Pe) is a V-shaped z-chain. Clearly, the z-size
of MZ(Pt, Pe) is 0 and z(e) z(t) (Lemma 3.6). Consider the following two cases:

(C1) Pe and Pv cross each other. Pe also crosses Pt. According to the proof of
Lemma 3.5 there is an A-shaped z-chain from Pe to Po and then to each point Pi in M2(2)
between Po and Pt. For each point Pi in M2(2) between Pt and Po, z2(i)= z(e) +
L(2(i)-LM(2(e). Because z2(t)= z(e)+ LM(2(t)-LI2(e), we have z2(i) z2(t)+
d + 1, where d is the number of points in M2(2) between Pt and Pi. Notice that z(t)
Zl(t) > z2(t). However, there are two problems: (i) if there are more than one point at
minimum level/2(2(t2) of Ph(2, we do not know which point is Pe; (ii) the above z2(i)
equations may not be true for points in M2 (2) higher than Pt. Thus we assign each point Pi a
proper z2(i) value as follows. For each point Pg in R2(3) we denote the intersection point of
M2(2) with the maximum-level solid chain from Pg to M2(2) by I (Pg,.M2(2)). We construct
a height-balanced binary priority tree data structure T1. Each leaf Z; of T1 represents a point Pg
in R2(3) and is assigned a weight W(,(g)). The root of T1 is also assigned a weight W().
When Pi is processed, the sum of the weights W(_,(g)) and W(), denoted by E(g), repre-
sents the sum of z(g) and the z-size of the A-shaped z-chain from Pg through I(Pa, M2(2))
to Pi only if I (Pa, M2(2)) is higher than Pi. Initially, T1 has no leaf and W() 0. When
we process Pi, we first increase the weight of the root by 1. For each point Pg at minimum

level/h(2(i) we calculate each z(g) + L(2(i) Lh(2(g) W(7) value, create a leaf
/2 in T to represent Pg, and store the value. Then in O (log n) time we can find the leaf in

T1 with maximum E value. Let Pa be the point represented by the leaf. If I (Pa, M2 (2)) is a
point higher than Pi, then z2(i) E(a); otherwise, delete the leaf representing Pa and find
another maximum E value again.

(C2) Pe is dominated by Po. According to Lemma 3.7 there is a point PI (in Z) at

maximum level L (v22) ofPh(2. Because Pv is in the central region ofPh(2), fromLemma 3.4,

PI is at a minimum level of P(2 lower than that of Po. Thus according to C1 when point

Po is processed, a leaf corresponding to point Pf has already been created in T. Furthermore,

MZ(Pe, Pf) is a chain. Therefore, we can obtain z(f) and then z(v2).
On the basis of the above discussion we introduce a type of level called a master level, as

follows. First we find minimum levels of M2(1) tO R2(2) U M2(2). Each point at minimum
level u of M2(1) tO R2(2) t3 M2(2) is assigned to master level u. For each point Pi in M2(1)
at master level u we assign all points in R2(1) at minimum level/h(l(i) to master level u.
Points in R2(3) are similarly assigned. Then Algorithm MAXZ2 has the following steps:

(XZl) Assign each point Pi in R2(1)tO M2(1) values Lh(l(i) and 1M2(1)(i). Assign each
point Pj in M2(2) to R2(3) values LMz(2)(j) and IMz(2)(j).

(XZ2) Assign points in p to master levels. Assume there are rn master levels. Let master
level be the bottom level.

(XZ3) For each point PU in R2 (1) find I (PT, M2 (1)). If there are several possible in-
tersection points, take the lowest one. Similarly, for each point Pg in R2(3) find
I (Pg, M2(2)).

(XZ4) Assign z(0) 0 for point P0.
(XZ5) For u to rn do the following (for each master level u):

(XZ5.1) Find z values for all points at master level u.
(XZ5.2) Find Z2 values for all marked points at master level u.
(XZ5.3) For each marked point Pi at master level u let z(i)= max(Zl (i), z2(2)).

For each unmarked point Pi at master level u let z(i)=zl (i).
(XZ6) Carry out the process to the top master level; the point with maximum z value is

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 989

the last point of a maximum z-chain. By tracing back from this point a maximum
z-chain can be found. (To trace every point in the maximum z-chain from its last
point we have to add some pointers in steps XZ5.1, XZ5.2, and XZ5.3. However,
for simplicity we do not discuss these pointers in this paper.)

Finally, Algorithm MAX-THREE-CHAIN has the following steps"

(MKC1) Call Algorithm MAX-TWO-CHAIN (see [5]) to find a maximum two-chain
(MKC2) Find a global-maximum z-chain of M2.
(MKC3) Combine the global maximum z-chain and M3 to obtain a maximum three-chain.

According to previous discussion we have the following lemma:
LEMMA 3.9. Algorithm MAX-THREE-CHAIN finds a maximum three-chain of point

set p.

4. Implementation and time complexity. In steps XZ and XZ2 of Algorithm MAXZ2
we have to partition point set p into levels. By using an algorithm in [5] we can partition point
set p into s maximum levels. With the staircase data structure in [5] step XZ5.1 takes O(log n)
time for each point. For completeness we briefly describe the algorithm and the data structure
again in the following two subsections. Then we discuss the time complexity of Algorithm
MAX-THREE-CHAIN.

4.1. Implementation ofAlgorithm MAX-LEVEL. Recall that points in p are assumed
to be sorted in ascending order of x-coordinates such that x < x2 < < xn. We use a plane
sweep technique [6] to scan the points from right to left and perform the following operations.
Suppose we have processed points Pn, Pn-, Pi+l and have obtained lists of points that
belong to the same levels. For each list we keep the y-coordinate of the last scanned point.
These y-values are maintained as a height-balanced tree T2. In processing Pi we use Tg. to
first identify the list/2(k) whose associated y-value is immediately below yi. We then insert

Pi into list/2(k) and replace the associated y-value by Yi. If Yi is smaller than all y-values in
Ta, the (l + 1)st list is created and its associated y-value is set to Yi. At the end of the process
the number s of the lists created is the total number of levels. We then reindex the lists, so
that the innermost level (created last) has index and the outermost one has index s. We call
the above algorithm MAX-LEVEL.

4.2. Staircase. Let Pu represent the set ofpoints at uth master level, where u 1, 2 s.
To simplify the discussion we assume that lPul ru and the points in p are reindexed as

Pl P, P2 erl }, P2 er,+l Pr,+r2 Ps er,+...+r,_,+l er,+...+rs },
so that x < x2 < < Xr,, Xr,+l < Xr,+2 < < Xrl+r2, etc. Consider the points in

Pl. Let Pi,d (xi, 0) be the downward vertical intersection (d-intersection for short) of
Pi, 1, 2 r. Let el,l (0, Yl), and let Pi,l (xi-1, Yi) be the leftward horizontal
intersection (/-intersection for short) of the left point P1 and other points Pi in p, respectively,
on the y-axis and the vertical line segment Pi-, Pi-,d, 2, 3,..., r (see Fig. 9(a)). The
rectilinear path (el,l P1P2,I P2"’" Pi,l Pi Pi,d), abbreviated as (el,l’" ei,d), is referred to as the
staircase S(Pi), 1, 2 rl. For convenience we augment the staircase by two points,
P/4 (0, oo) and Pr (oo, 0), and denote the staircase as (Pn PI,I PI"" Pi PT,I PT), where
Pr,t "= Pi,a. Furthermore, we adopt the convention that each point Pj in p U {Pn, Pr
on a staircase has both d- and/-intersections on the staircase except Pn, which has only d-
intersection Pn,,t "= el,l, and Pr, which has only/-intersection Pr,l := Pi,d. That is, we shift
each Pj,e up to the staircase and let new Pj,d "= Pj+l,l, where j 1, 2 1. Staircase

S(Prl) is called the staircase of level 1, denoted S, and is shown in Fig. 9(a).
Consider now the points in P2, i.e., Pr+, Pr+2, Pr +r2. Imagine dropping downward

a vertical line Vi from each point Pi, rl < < rl + r2. The point in S that is hit by Vi is

990 R.D. LOU AND M. SARRAFZADEH

&,’! i &

(&,) (&,)

SI

(a) Staircase $ (where r 3)

(b) Staircase S(P4) (where r 3)

FIG. 9. Example ofa staircase: (a) staircase ,51 (where rl 3) and staircase ,5(P4) (where rl 3).

the d-intersection, denoted by Pi,,, of Pi. on $1 (see Fig. 9(b)). For Pi P2, the/-intersection

on ,51, Pi,t, is defined in the same way as for the points in Pl. Let Pa be the left point in/92.
The l- and d-intersections, Pa,t and P,,, respectively, partition --qa into three substaircases:

(P),U(P), and f’r (P), where (Pa) (P/_/Pa,) is the leading portion of ,51,
f’ (Pa) (Pa,t’’" P,,), is the middle portion of ,51, and f’7(P) (Pa,d Pr, Pr)
is the trailing portion of ,5. Let Pk,t and Pk be two consecutive points in ,.q such that
x,t < x < x. The upward vertical projection (u-projection for short) of all the points
excluding the endpoints P,t and Pa,, in U(P) on the horizontal line segment P,, P

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 991

gives rise to the u-projections Pl,u, P2,u ek-l,u. Similarly, the rightward horizontal
projection (r-projection for short) of all the points excluding the two endpoints in fM (Pa)
on the vertical line segment Pa, Pa,a yields r-projections Pl,r, P2,r Pk-l,r. The staircase
S(Pa) associated with Pa is obtained from $1 as the concatenation of f’c (P), (Pa) and

.T’7 (Pa), where (Pa) is the substaircase (Pa,1PI,,"" Pk- 1,, Pa Pl,r Pk- 1,r Pa,d) derived
from projecting fM (P) onto Pa,l, Pa and Pa, Pa,a. Thus $(Pa) contains not only point P
and its l- and d-intersections Pa,l and Pa, but also the leading and trailing portions of $1 and
projections of the points in the middle portion of

Let Pa be the left point in pj, j > 1. In general, the staircase $(Pi) of any point Pi Pj
is a rectilinear path of the form (PI4 Pa,l [a P "]’a Pa+l,l /a+l Pa+l J’a+l Pi,l ,i Pi 7i
Pi,a 7(Pi)), where the/g’s, ’s, and f’(Pi) are, respectively, u-projections, r-projections,
and the trailing portion of the previous staircase S(Pi_). Note that fc (Pi) (PI4 Pa,l Ha Pa
a Pa+l,l Lta+l Pa+l a+l Pi,l) and J(Pi) (Pi,l Hi Pi 7i Pi,d). Now let us consider
how to obtain S(Pi+ from

_
(ei).

We first find the/-intersection Pi+l, on VL Pi, Pi,a and the d-intersection Pi+l,a on
$(Pi). Let R and R" be two consecutive points on VL containing Pi+l,l, and let Q’ and Q"
be two consecutive points on S(Pi) containing Pi+ 1,a. Thus ,T’, (Pi+l) is the substaircase
(R". Q’) of S(Pi), and the new f’(Pi+l) is obtained by projecting all points (including
projections) in f(Pi+l) vertically upward and horizontally rightward onto Pi+l,l, Pi+l,
Pi+l, Pi+1,, respectively. Note that points on the same vertical line segment have the same u-

projection and that points on the same horizontal line segment have the same r-projection. The
staircase $ Pi+ is the concatenation of the leading portion (P/ R’) ofS Pi),, Pi+),
and the trailing portion (Q’... Pr) of S(Pi). According to the convention adopted we shift
certain points each time a new staircase is obtained. Specifically, let Pf 6 p U P/-/, PT be the
rightmost point on S(Pi) whose y-coordinate is greater than Yi+ 1, and let Pg p U PI4, PT
be the leftmost point on S(Pi) whose x-coordinate is greater than xi+l. We let Pi+l,t and
Pi+l,a be the new Pf,a and Pg,l, respectively; that is, we shift Pf,a and Pg,1 from their original
positions to Pi+ 1,1 and Pi+1,a, respectively. For example, in Fig. 9(b), when $(P4) is obtained

P2,1 is shifted to P4,a and Pt-l,a is shifted to P4,I.

4.3. Time complexity. We first discuss the time complexity of Algorithm MAXZ2. In
steps XZ1 and XZ2 we have to partition point set p into levels. By using Algorithm MAX-
LEVEL and its modification we can complete step XZ1 and XZ2 in O (n log n) time, where
n]Pl. With the information of maximum levels of Pt2l) and p2:, step XZ3 takes linear
time. With thestaircase data structure step XZ5.1 takes O(log n) time for each point [5].
Step XZ5.2 takes O(n log n) time for Algorithm MAXZ2. Thus Algorithm MAXZ2 takes
O (n log n) time.

In step MKC1 of Algorithm MAX-THREE-CHAIN, Algorithm MAX-TWO-CHAIN is
called and takes O (n log n) time. In step MKC3 the combination of global maximum z-chain
and M2 takes linear time. Hence Algorithm MAX-THREE-CHAIN runs in O (n log n) time.

in [5] it is shown that the maximum two-chain problem has an (n log n) lower bound.
We extend an 92 (n log n) lower bound for the maximum three-chain problem as follows (as
done in [5] for the maximum two-chain problem). Given a point set p we can construct in
linear time a chain/5 in which each point is crossing with all points in p (see Fig. 10). A
maximum three-chain of p U 5 should include/5 and a maximum two-chain of p. So we can
find a maximum two-chain of p by applying any maximum three-chain algorithm to p tO/5.
Thus the following theorem is established.

THEOREM 4.1. Algorithm MAX-THREE-CHAINfinds a maximum three-chain ofa point
set p and runs in (R)(n log n) time, where n

992 R.D. LOU AND M. SARRAFZADEH

FIG. 10. p and .
5. Discussion. In algorithm MAXZ2 we mainly process points in M2 (1) to R2 (2) tOM2 (2).

The purposes of processing the points in R2 (1) and R2 (3) are (1) to help to determine z2 values
of marked points and (2) to handle the case for which the starting point and the ending point
may be in R2(1) or R2(3). In Case (1) we use C-shaped z-chain and z2 values to pass the
possible contribution of R2(1) and R2(3) on Z to the processing of M2(1) tO R2(2) tO M2(2).

We can extend Algorithm MAXZ2 to MAXZh, where h > 2, which finds a maximum
z-chain of a given maximum h-chain as follows. Consider Pa and Pb in the same component
chain Mh (j), and Pa dominates Pb. A right general C-shaped z-chain is a z-chain starting
from point Pa to Pt, all of whose points except for Pa and P are in gh (j + 1) tO Mh (j +
1) t_) gh (j q- 2) t3... O gh (h + 1). A left general C-shaped z-chain is symmetrically defined.
We preprocess the points to find all such z-chains. Then we mainly process points in each
Mh(i 1) to Rh(i) t3 Mh(i) for 2 to h in a manner similar to Algorithm MAXZ2. We
use fight general C-shaped z-chains to pass the possible contribution of the points on the
right-hand side of 79(Mh(i)) to the processing of Mh(i 1) t3 Rh(i) to Mh(i). Left general
C-shaped z-chains are also used for a similar reason.

Recall that the dominance property of marked points in z-chains may be reversed (i.e.,
the order of marked points in z-chains may be different from their order in chains). Hence in
the process of finding a global maximum z-chain we say that the dominance property between
each pair of points on the different sides of a component chain (i.e., in different Rh (i) regions)
has been destroyed. Basically, the dominance property provides the efficiency in finding the
maximum chain, the maximum two-chain, and the maximum three-chain; that is, it enables
us to solve the problems in O (n log n) time. In Algorithm MAXZ2 for the maximum three-
chain problem we mainly process points in region M2 (1) tO R2 (2) tO M2(2) and use a C-shaped
z-chain to combine results from R2(1) and R2(3). Because the dominance property in each
region still holds, we can process points master level by master level and use the dominance
property to reduce the time complexity.

For k > 3, for each region Mh(i 1) tO Rh(i) t3 Mh(i) there may be several regions on
the left- (or right-hand) hand side of T’(Mh(i 1)) (or 79(Mh(i)).) Because the dominance
property between regions has been destroyed, we cannot use dominance property to reduce the

ALGORITHM FOR THE MAXIMUM THREE-CHAIN PROBLEM 993

time complexity of finding left (or right) general C-shaped z-chains. The number of starting
point and ending point pairs of general C-shaped z-chains is O(n2). The time complexity
of MAXZh is O(n2). The time complexity of Algorithm MAX-k-CHAIN, which finds a
maximum k-chain by using Algorithm MAXZh, is thus O(n2) for any fixed k. This time
is equivalent to that obtained in [4] (or in [7]). In conclusion, we believe that an improved
algorithm for the maximum k-chain problem with k > 3 needs concepts beyond the z-chain
properties.

REFERENCES

[1] A.V. AHO, J. E. Hor’cROVT, AND J. D. UttMAN, The Design and Analysis of Computer Algorithms, Addison

Wesley, Reading, MA, 1974.
[2] M.J. ATALIAH AND S. R. KOSARAJU,An efficient algorithmfor maxdominance, with applications, Algorithmica,

4 (1989), pp. 221-236.
[3] J. CONG AND C. L. LIu, On the k-layer planar subset and via minimization problems, IEEE Trans. Computer-

Aided Design, 10 (1991), pp. 972-981.
[4] E GAVRII, Algorithms for maximum k-colorings and k-coverings of transitive graphs, Networks, 17 (1987),

pp. 465-470.
[5] R.D. Lou, M. SARrAFZADEH, AND D. T. LE, An optimal algorithm for the maximum two-chain problem, in

Proc. 1st SIAM-ACM Conference on Discrete Algorithms (SODA), Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1990; SIAM J. Discrete Math., 5 (1992), pp. 284-304.

[6] E P. P’AA’rA Arqr) M. I. SqAMOS, Computational Geometry, Springer-Verlag, New York, 1985.
[7] C.S. RIM, T. KASHIWABARA, AND K. NAKAJIMA, Exact algorithmsfor multilayer topological via minimization,

IEEE Trans. Computer-Aided Design, 8 (1989), pp. 1165-1184.
[8] M. SARArZADH AtqD D. T. Lr, New approach to topological via minimization, IEEE Trans. Computer-Aided

Design, 8 (1989), pp. 890-900.
[9] Topological via minimization revisited, IEEE Trans. Comput., 40 (1991), pp. 1307-1312.
[10] M. SARAZADEH AND R. D. Lou, Maximum k-coverings of weighted transitive graphs with applications,

Algorithmica, 9 (1993), pp. 84-100.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 994-1005, October 1993

() 1993 Society for Industrial and Applied Mathematics
006

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS*

JOAN FEIGENBAUM AND LANCE FORTNOW

Abstract. This paper generalizes the previous formal definitions of random-self-reducibility. It is shown that,
even under a very general definition, sets that are complete for any level of the polynomial hierarchy are not nonadap-
tively random-self-reducible, unless the hierarchy collapses. In particular, NP-complete sets are not nonadaptively
random-self-reducible, unless the hierarchy collapses at the third level. By contrast, we show that sets complete for
the classes PP and MODmP are random-self-reducible.

Key words, random-self-reductions, complexity classes, interactive proof systems, program checkers

AMS subject classifications. 68Q05, 68Q15

1. Introduction. Informally, a function f is random-self-reducible if the evaluation of

f at any given instance x can be reduced in polynomial time to the evaluation of f at one or
more random instances yi.

Random-self-reducible functions have many applications, including:

Average-case complexity. A random-self-reduction maps an arbitrary, worst-case in-
stance x in the domain of f to a set of random instances yl yk in such a way that f(x)
can be computed in polynomial time, given x, f(yl) f(yk), and the coin-toss sequence
used in the mapping. Thus the average-case complexity of f, where the average is taken with
respect to the induced distribution on instances Yi, is the same, up to polynomial factors, as the
worst-case randomized complexity of f. An important special case is that in which each ran-
dom instance yi .is uniformly distributed over all elements in Dom(f) that have length Ix I. In
this case f is as hard on average as it is in the worst case. For example, it follows from a result
in [21 that the permanent of integer matrices (PERM) function is random-self-reducible. The
PERM function is also #P-complete (cf. [29]); thus if PERM could be computed efficiently
on average (with respect to the target distribution of the reduction), then every function in #P
could, with a randomized algorithm, be computed efficiently in the worst case. Furthermore,
the random-self-reduction for PERM is very simple, whereas standard average-case hardness
proofs are often complicated.

Lower bounds. The random-self-reducibility ofthe parity function is used in [3] to obtain
a simple proof that a random oracle separates the polynomial hierarchy (PH) from PSPACE.
(An earlier proof of this result in [14] does not use random-self-reducibility.)

Interactive proof systems and program checkers. Random-self-reductions are cru-
cial ingredients in many of the original examples of interactive proof systems and program
checkers (cf. 11], 18]). intuitively, this occurs because the verifier/checker interrogates the
prover/program by comparing its output on the specific input of interest to its outputs on other
correlated random instances. Several variations of this relationship between random-self-
reducibility and proof systems/checkers are stated formally in [12], [22], [28]. These ideas
play a crucial role in the characterization of the language-recognition power of interactive

*Received by the editors January 29, 1991; accepted for publication (in revised form) July 7, 1992. This work was
supported in part by National Science Foundation grant CCR 90-09936. This is a revised version of the paper "On the
Random-Self-Reducibility of Complete Sets," appearing in Proceedings of the 6th Annual Structure in Complexity
Theory Conference, June 30-July 3, 1991, Chicago, Illinois. @1991 by IEEE Computer Society.

AT&T Bell Laboratories, Room 2C473, 600 Mountain Avenue, P.O. Box 636, Murray Hill, New Jersey 07974-
0636 (j f@research, att. corn).

tDepartment of Computer Science, University of Chicago, 1100 East 58th Street, Chicago, Illinois 60637
(fortnow@cs. uchicago, edu).

994

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 995

proof systems (cf. [5], [22], [25]). Currently, one of the most important open questions about
checkability is whether NP-complete sets are checkable. The main result that we present in
3 implies that if NP-complete sets are checkable, their checkers must use radically different
techniques ,from those used by the existing checkers.

Cryptographic protocols. The fact that certain number-theoretic functions are random-
self-reducible (and hence hard on average if they are hard at all) is used extensively in the theory
of cryptography, e.g., to achieve probabilistic encryption (cf. [17]) and cryptographically
strong pseudorandom number generation (cf. [13]). Random-self-reductions also provide
natural examples of instance-hiding schemes (cf. [1], [7], [8]), in which a weak, private
computing device uses the resources of a powerful, shared computing device without revealing
its private data.

Although random-self-reducibility had been used for a long time in the design and analysis
of cryptographic protocols (cf., e.g., 17], 13]), it was first defined formally and studied from
a complexity-theoretic point of view by Abadi, Feigenbaum, and Kilian]; they considered
reductions that map the given instance x to one random instance y. It is a corollary of the
main result in 1] that no NP-hard function is random-self-reducible in this sense unless the
polynomial hierarchy collapses at the third level.

Random-self-reductions that produce several correlated random instances yl y were
defined formally by Feigenbaum, Kannan, and Nisan [15]; however, they considered only
reductions that produce yi’s that are uniformly distributed over {0, 1 }lxl. Their main result
is that self-reductions that map x to two instances Yl and Y2, each of which is uniformly
distributed over {0, }lxl, do not exist for NP-hard functions unless the polynomial hierarchy
collapses at the third level.

The related idea of mapping an instance x in the domain of f to one or more random
instances Yl y in the domain of a different function g is studied in], [7], [8]. For the
case of one random y, a negative result for NP-hard functions is obtained in]. If multiple
random Yi’s are allowed, then every function f can be locally randomly reduced to a related
function g; see [7], [8] for a thorough discussion.

In this paper we continue the study ofrandom-self-reductions from a complexity-theoretic
point of view. We further generalize the formal definition of random-self-reducibility that is
studied in 15]. Specifically, we look at reductions that map a given instance x to a sequence of
random instances yl y, with the property that the induced distribution on each yi depends
only on the length of x. We consider both nonadaptive k-random-self-reductions, in which the
k random instances are produced in one pass, and adaptive k-random-self-reductions, in which
the instance Yi may depend not only on x and the coin-toss sequence used in the reduction but
also on f(Yl) f(Yi-1). Our main results are as follows:

If S is complete for E’ for any > and if)fs is nonadaptively k(n)-random-self-
reducible, for any polynomially bounded function k, then the polynomial hierarchy collapses
at the (i + 2)nd level. In particular, if the characteristic function for any NP-complete set has a
nonadaptive random-self-reduction, then the polynomial hierarchy collapses at the third level.
This strengthens the main result in 15].

If S is complete for PP or for MODmP for any m > 1, then)fs is adaptively k(n)-
random-self-reducible for some polynomially bounded function k. Setting m 2, we get that
@P-complete sets are random-self-reducible.

The rest of this paper is organized as follows. In 2, we define our terms precisely and
recall known results that we will use. Section 3 contains our main negative result about
complete sets in the polynomial hierarchy. Section 4 contains the proofs that complete sets
for PP and MODmP are random-self-reducible. Open problems are stated in 5.

996 JOAN FEIGENBAUM AND LANCE FORTNOW

2. Preliminaries. Throughout this paper, f is a function from {0, 1 }* to {0, }*, and x is
an arbitrary input for which we would like to determine f(x). We use r to denote a sequence of
fair coin tosses; if Ixl n, then Irl w(n), where w is a polynomially bounded function ofn.
The number of random queries produced by a reduction, denoted k(n), is also a polynomially
bounded function of n.

DEFINITION 2.1. A function f is nonadaptively k(n)-random-self-reducible (abbreviated
"nonadaptively k-rsr") if there are polynomial-time computable functions r and q with the
following properties.

(1) For all n and all x 6 {0, }n

f (x) (x, r, f(a(1, x, r)) f(a(k, x, r)))

for at least 3/4 of all r’s in {0, 1 }w(n).
(2) For all n, all {Xl, X2} C {0, 1}n, and all i, 1 _< < k, if r is chosen uniformly at

random, then o-(i, x, r) and r(i, x2, r) are identically distributed.
Feigenbaum, Kannan, and Nisan 15] use the term k(n)-random-self-reduction to describe

a special case of Definition 2.1, i.e., the case in which each of the random variables or(i, x, r)
is distributed uniformly over {0, }n.

Next we generalize Definition 2.1 to allow a multiround, adaptive strategy for choosing
random queries.

DEFINITION 2.2. The function f is adaptively k(n)-random-self-reducible (abbreviated
"adaptively k-rsr") if there is a probabilistic, polynomial-time oracle machine q that, on input
x of length n, produces k(n) rounds of f-oracle queries. The query Yi (x, r) produced in round
may depend on all queries and answers in rounds through 1.

The reduction 4 must have the following properties"
(1) For all x it outputs the correct answer f(x) for at least 3/4 of all r 6 {0, 1} w(n).
(2) For all n and all i, < < k, if Ixll Ix21 n and r is chosen uniformly from

{0, 1} w(n), then the random variables yi(xl, r) and yi(x2, r) are identically distributed. Note
that condition (2) is not required to hold for yi(x, r) if wrong answers are given in earlier
rounds.

We say that a function f is poly-rsr (or simply rsr) if there is some polynomially bounded
function k such that f is either nonadaptively or adaptively k-rsr. The reductions themselves
are also referred to as poly-rsr’s or rsr’s. A set S is poly-rsr if its characteristic function Xs is
poly-rsr.

Locally random reductions (lrr’s) are a generalization of nonadaptive random-self-reduc-
tions. In a (t, k)-lrr from f to g, an instance x in the domain of f is mapped (nonadaptively) to
k instances Yl y in the domain of a different function g. For any {il it 1 k}
the distribution induced on target queries Yil Yi, is the same for input instances Xl and

x2 if Ix ll Ix21. Thus a nonadaptive k-rsr for f is a (1, k)-lrr from f to f. Instance-hiding
schemes (ihs’s) provide a further generalization of this notion. In a t-private, k-oracle ihs
for f, the querier may use a multiround adaptive strategy to query k physically separated,
arbitrarily powerful oracles; the oracles may also use an adaptive strategy and may flip coins.
The view of any set of at most of the oracles (i.e., the transcript of queries and answers
together with the coin flips of the oracles) depends only on the length of the input instance.
One-oracle ihs’s were studied by Abadi, Feigenbaum, and Kilian], who showed that NP-
hard functions do not have one-oracle ihs’s unless the polynomial hierarchy collapses at the
third level. The question of whether multioracle ihs’s exist was posed by Rivest and was
answered by Beaver and Feigenbaum [7]. Every function f has a 1-private, (n + 1)-oracle
ihs. In fact, the general ihs construction of [7] uses only one round of queries and does not

require the oracles to flip coins; so, in current terminology, it is a (1, n + 1)-lrr. The term

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 997

lrr was subsequently introduced and formally defined by Beaver, Feigenbaum, Kilian, and
Rogaway [8], who also gave an improvement of the Beaver-Feigenbaum construction: For
every polynomially bounded (n) and every function f there is a function g such that f
is (t, (tn/logn) + 1)-lrr to g.

The gist of Definitions 2.1 and 2.2 is that, for any fixed value of i, the distribution of
random queries to the ith oracle depends only on the length n of the input x. In keeping with
the terminology in], [7], we say that an rsr "leaks at most n to each oracle." In cryptographic
applications it is often natural to consider reductions that leak at most some other function L;
Definitions 2.1 and 2.2 have natural generalizations that fit these applications; see], [7] for
details.

In several proofs we will use the following Chernoff bounds on the binomial distribution,
which are taken directly from [26, Lecture 4, p. 29].

FACT 2.3. Let Y Yn be independent, with Pr(Yj 1) pj andPr(Yj O) pj,
and normalize by setting Xj Yj pj. Set p (p +... + pn)/n and X X +... + X
Then

(1) Pr(X > a) < e-2a2/n

and

(2) Pr(X < -a) < e-a2/2pn.

LEMMA 2.4. Ifafunction f is nonadaptively (respectively, adaptively) k(n)-rsr, then f
is nonadaptively (respectively, adaptively) 24t (n)k(n)-rsr, where condition (1) ofDefinitions
2.1 and 2.2 holdsfor at least 2-tn ofthe r’s in {0, }24t(n)w(n).

Proof. Let r r ...r24t(n) with each ri E {0, 1} w(n). Define tTij t:r(i,x, rj) for
1 < < k and < j < 24t(n). Let dpj --c/)(x, rj, f(cqj) f(trkj)). Let the new q choose
the plurality of the 4j ’s, handling ties arbitrarily. Now apply inequality (2) from Fact 2.3 with
p 3/4, n 24t, a -n/4, and Yj if and only if)j f(x).

We now recall some definitions and known results that will be used in 3 and 4.
Let f {0, 1 }* --+ {0, 1} be an arbitrary Boolean function, and let fn {0, 1 }n __+ {0, 1}

be the restriction of f to inputs (Xl x,,) E {0, }". For any finite field Kn there is a unique
multilinear polynomial gn Kn [Xl Xn that represents f, over Kn, i.e., g,, agrees with
f,, on all inputs (Xl, x,,) in {0, 1 }. In the context of random-self-reducibility we always
take Kn to be a field of size at least n + 1. The polynomial gn has a standard explicit formula;
we give the formula here and discuss some computational aspects of it in 4 below. Let
x (x xn) be an arbitrary element of K, and let y (y Yn) be an arbitrary
element of {0, }. Then

(3) gn(X)= y(X)fn(y),
y{0,1}

and

(4) y(X) -I(xi (1 yi))(-1) (1-yi)

i=1

For x 6 {0, 1}" the monomial ty(X) is if y x and is 0 otherwise. We call g, the
arithmetization off over Kn, and we call g {gn }n>_ the arithmetization off over Kn }n>_ 1.

FACT 2.5 (the low-degree polynomial trick). If gn Kn[X1 Xn] has degree dn
and gnl > an, then g {gn }n>_l is nonadaptively (dn + 1)-rsr. In particular, if gn is the
arithmetization over Kn ofa Booleanfunction fn, then g is nonadaptively (n -t- 1)-rsr.

998 JOAN FEIGENBAUM AND LANCE FORTNOW

Proof. Let ot Oldn+l be distinct elements of Kn. Choose coefficients c Cn
independently and uniformly at random from Kn, and let a(i, (xl Xn), r) (coti +
x cnoti / xn) for < < dn+ 1. Let

G(Z) gn(c1Z -" Xl cnZ + Xn).

Then G is a one-variable polynomial of degree at most dn that satisfies

G(O) gn(xl Xn).

The function b of the rsr interpolates the d + values (Otl, G(ot)), (or2, G(ot2))
G(otd,+l)) to recover the polynomial G and outputs the constant term.

The random-self-reducibility of multivariate polynomials is the key to some of the results
stated above. Beaver and Feigenbaum’s general construction of multioracle ihs’s [7], which
they described in terms of arithmetic circuits, can be described in current terminology as
follows" Every Boolean function is (1, n + 1)-lrr to its arithmetization over Kn }n_> 1, where
K is any finite field of size greater than n. Lipton [21] later used the same construction
to show that multivariate polynomials are, in his terms, randomly testable; his was the first
paper to state the construction in terms of polynomials instead of arithmetic circuits. In
current terminology Lipton’s observation is that multivariate polynomials are nonadaptively
rsr, provided the degree is polynomially bounded in the number of variables. Lipton also
pointed out that the function that computes the permanent of a matrix over a finite field is a low-
degree multivariate polynomial and is thus randomly testable. Finally, Beaver, Feigenbaum,
Kilian, and Rogaway [8] showed how to represent fn as a degree-(n/logn) polynomial hn
over K by performing a simple change of variables, thus obtaining a (1, (n! log n) + 1)-lrr
from f to h.

DEFINITION 2.6. A complexity class C is #P-robust if FPc #pC, where FP denotes the
class of all polynomial-time computable functions.

In 4, we will use the following generalized version of #P.
DEFINITION 2.7 (cf. [16]). A function f {0, 1}* --+ Z is in the complexity class Gap-P

if there is an NP machine M such that, for all x, f (x) is the difference between the number of
accepting computations of M on input x and the number of rejecting computations of M on
input x. Equivalently, a function f is in Gap-P if it is the difference of two #P functions.

By analogy with Definition 2.6, we have the following definition.
DEFINITION 2.8. A complexity class C is Gap-P-robust if FPc Gap-Pc.
FACT 2.9. A complexity class C is Gap-P-robust ifand only if it is #P-robust.
Let (.,.) be a one-to-one, onto, polynomial-time-computable, polynomial-time invertible

pairing function from {0, 1 }* x {0, 1 }* to {0, }*. Gap-P has the following closure properties.
FACT 2.10 (cf. [16]). If a function f ((x, y)) Gap-P, then the following functions are

also in Gap-Pfor any polynomial p"
1. g((x, y)) f ((x, y));
2. g(x) Zlyl<_p(ix] f((x, y));
3. g(x) Hl<_y<_p(ixl) f ((x, y)).
In particular, Gap-P is closed under subtraction.
DEFINITION 2.11. Let m be a positive integer greater than 1. A set S is in MODmP if

there is an NP machine M with the following property: If x 6 S, then the number of accepting
computations ofM on input x is not equal to 0 mod m; if x ’ S, then the number of accepting
computations of M on input x is equal to 0 mod m.

Thus the class @E defined in [23], is MODzP in the notation used here.
FACT 2.12 (cf. [9], [20]). Ifml and m2 are relatively prime, then S MODmlm2P ifand

only if there are sets S1 G_ MODmlP and S2 MODm2P such that S $1 U $2.

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 999

FACT 2.13 (cf. [9], [20]). If pe 1. pt is the prime factorization of m, then MODmP
MODpl...ptP.

We use the following class of straight-line programs of multivariate polynomials over Z
to prove that sets complete for MODmP are rsr.

DEFINITION 2.14 (cf. [4]). A positive retarded arithmetic program with binary substitu-
tions (PRAB) is a sequence P {Pl Ps} of instructions such that, for every k, one of
the following holds"

(1) p is one of the constant polynomials 0 or 1;
(2) p xi for some _< k;
(3) p= 1-xiforsomei <k;
(4) p pi + pj for some i, j < k;
(5) p PiPj for some/+ j < k;
(6) p pj(xi 0) or pj(xi 1) for some i, j < k. Here pj(xi e) refers to the

polynomial obtained from pj by replacing the variable xi by the value e.
We say that the program P computes the polynomial Ps.

DEFINITION 2.15 (cf. [4]). A sequence P1, P2 of PRABs is uniform if there is a
deterministic polynomial-time machine that, on input n, outputs the instruction sequence Pn.

FACT 2.16 (cf. [4]). A set S is in MODmP if and only if there is a uniform sequence
{Pn}n>_l ofPRABs such thatfor every x {0, 1}*

Xs(X) =- Plxl(X) mod m.

We use AMply to denote the class of sets accepted by bounded-round Arthur-Merlin
games (cf. [6]) in which Arthur is given polynomial-length advice in addition to probabilistic
polynomial time. Note that this class is not necessarily the same as AM/poly, because AMpIy

requires proper probabilities of acceptance only when the advice is correct. Because the main
results of [6], [19] relativize, we have"

FACT 2.17. AMply NP/poly.
Finally, we use the following known relationship between levels of the polynomial hier-

archy and the corresponding nonuniform classes.
FACT 2.18 (cf. [30]). If E C_ Flie/poly, then the polynomial hierarchy collapses to

P,OE/+2.P Thisfact relativizes" For any O, if Eie’ c_ Flie’/poly, then PH c_ E/+2

3. Complete sets in the polynomial hierarchy.
THEOREM 3.1. If S is in NP and is nonadaptively poly-rsr, then is in AMpty.

Proof. Let or, be a nonadaptive k-rsr for S, where k k(n) is a polynomially bounded
function. By Lemma 2.4, we can assume gives an incorrect value for the characteristic
function of S with probability at most 2-n.

Consider instances x of length n. The verifier’s advice is the k-tuple (pl p), where

Pi is the probability that a target instance cr (i, x, r) is in S. The probability is computed over
all coin-toss sequences r.

We denote by Trans(x, r) the transcript of the reduction r, on input x and random
string r. That is, if Yi r(i, x, r) and bi Xs(Yi), then Trans(x, r) (yl, bl yg, b).
Fix a specific NP machine M that accepts S. Let ATrans(x, r), an augmented transcript, be
(yl, hi, Wl y, b, w), where Yi and bi are as before, wi NIL if bi O, and wi is a
witness, with respect to M, that Yi S if bi 1.

The following is an AMply protocol for -. Let m 9k3.

Interactive proof system for S. The quantifiers "for all < < k" and "for all < j <
rn" are implicit whenever the subscripts and j are used. For each j 7 j’, rj is independent
of rj,.

1000 JOAN FEIGENBAUM AND LANCE FORTNOW

V: Choose rj.
V --> P" {rj}.
P ---> V" A claimed value (yl,j, bl,j, Wl,j,..., Yk,j, blc,j, tvk,j) for ATrans(x, rj).
V: Accept if and only if

(1) $(x, rj, bl,j bk,j) O,
’s(2) More than pim 2k- of the Yi,j are in S according to P, and

(3) If YOi, j 6 NIL, then it is a correct witness that Yi,j - S.

Suppose that x is not in S and P is honest. Then acceptance condition (1) is met with
probability at least -m/2 > 11/12 for all n > log 12m. Condition (3) is, ofcourse, always
met if P is honest. We need to show only that condition (2) is met with probability at least
3/4 to have all three conditions met with probability at least 2/3. Let Zi, be an indicator

mvariable that is if Yi,j is in S and 0 otherwise, and let Zi Yj=I Zi,J Acceptance condition

(2) is met if Zi > pim 2kv/-- for all i. Because rl rm are pairwise independent, so are
Zi, Zi,m. Clearly, E(Zi) pim and Var(Zi) pi(1 -pi)m < m. So Chebyshev’s
inequality suffices to show that

Pr(Zi _< pim- 2--) < Pr(IZi- piml >_ 2/)
--Pr(lZi-E(Zi)l >2k)

Var(Zi)
< <

4km 4k

for each i. Thus the probability that at least one Zi is too small (i.e., the probability that
condition (2) is not met) is at most 1/4.

Now suppose that x is in S. We wish to show that the probability that V accepts is at most

1/3. If V accepts, condition (1) is satisfied, and so either
(a) Given correct answers bi,j, says x is not in S for some j, or
(b) P* must have lied about bi,j for at least one Yi,j for each j.
(The optimal cheating prover would never violate condition (3).) Event (a) can happen

only with probability at most m/2 < 1/12 for all n > log 12m. Thus we need only show
that event (b) can happen with probability at most 1/4.

If P* tells a total of m lies, there must be an for which P* claims that at least m/k of
’Sthe Yi,j that are in S are not in S. It suffices to show that, for each i, P* can do this with

probability at most 1/4k and still satisfy acceptance condition (2). The probability that P*
can tell m/k lies and still claim that more than pim 24-- of the Yi,j’S are in S is just

’Sthe probability that more than pim + m/k 2- of the Yi,j are in S. This probability

is at most exp(-2(m/k2-n//k+4k)) e-2k < 1/4k for m 9k and all positive integers k.
We obtain this bound by using inequality (1) from Fact 2.3, with a m/k 2k4- and
n rn.

The technique of showing that a particular type of random-self-reduction for S implies a
type of interactive proof system for S was first used by Feigenbaum, Kannan, and Nisan 15,
Thm. 4.4]. There it is shown that if S has what they call a "one-sided 1-rsr," then E AMply.

These reductions are much more restricted than the type of rsr’s considered here; a precise
definition can be found in 15].

In fact, the following stronger statement can be made. This observation is due to Szegedy.
COROLLARY 3.2. If S is in NP and is nonadaptively poly-rsr, then - is in AMlg.

Proof. Let r, 4 be a nonadaptive rsr for S. Define a new nonadaptive rsr a’, 4 as
follows. On input x and random string r’, first choose a uniformly random permutation zr on
1, k}. Let r be the unused portion of r’. For < < k, let r’(i, x, r’) a(rr(i), x, r).

Let ’(x, r’, bl bk) =-- (x, r, br-l(1) bzr-l()). Now all of the random variables

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 1001

tr’(1, x, r’) or’ (k, x, r’) are identically distributed. The proof system for S is essentially
the same as the one given in the proofofTheorem 3.1. The probabilities pl Pk are all equal
because tr’(1, x, r’) or’ (k, x, r’) are identically distributed. Let p Pl Pk. The
integer [pm 2k’-] is sufficient advice for the verifier on inputs of length n, and it can be
written down in O (log n) bits. [3

COROLLARY 3.3. Ifany NP-complete set is nonadaptively poly-rsr, then the polynomial
hierarchy collapses at the third level.

Proof. This follows directly from Theorem 3.1 and Facts 2.17 and 2.18. [3

COROLLARY 3.4. If S is completefor Ef or FIf > 1, and S is nonadaptively poly-rsr,
then the polynomial hierarchy collapses at the (i + 2)nd level.

Proof. The proofs of Theorem 3.1, Fact 2.18 and thus Corollary 3.3 relativize. If we
relativize them with respect to an oracle O such that O is Ef_-complete, we get
Corollary 3.4. [3

We end this section with a partial negative result about adaptive rsr’s for NP-complete
sets.

THEOREM 3.5. If S is NP-complete and is adaptively 0 (log n)-rsr, then the polynomial
hierarchy collapses at the third level.

Proof (sketch). We give the structure of the proof in some detail but omit the probability
calculations. All of the calculations involve Chemoff bounds and are analogous to the ones
used in the proof of Theorem 3.1.

As in the nonadaptive case, we will show that the hypothesis implies that - AMpty.
Suppose that S is adaptively k-rsr, where k(n) O(logn). In the augmented transcript
(y, bl, Wl yk, bk, w) of an adaptive reduction, Yi denotes the oracle query asked in the
ith round.

The AMply proof system for - is almost identical to the one in Theorem 3.1. The only
differences are that we may have to use a different polynomial for m and that the verifier, in
acceptance condition (3), must also check whether yi,j is indeed the query that the reduction
would produce in round if the input string is x, the random string is rj, and the answers in
rounds through 1 are bl,j through bi-l,j. However, it is trickier to show that the proof
system is correct in the adaptive case. The problem arises when x is in S and P* must lie
about at least one bi,j for each j. In the nonadaptive case the only way that P* can lie is to
claim that Yi,j is not in S when it really is. In the adaptive case this is not necessarily true.

Consider a k m matrix whose (i, j)th entry is P*’s claimed value for bi,j. In order to
convince V to accept an input x that is really in S, P* must claim that the number of ’s in row
is greater than pim 2k/, and P* must spoil every column, i.e., P* must lie about at least

one bi,j for each j. The problem is that there is a trade-off between these two requirements
that could work to P*’s advantage. Suppose that bio,j is the first lie that P* tells in column j.
(If this is so, we say that "column j is spoiled in row i0.") For this first lie, it must be the case
that Yi,j is in S but P* claims it is not. However, this incorrect bio,j is used in the subsequent

Scomputation of queries Yi,j, this may produce Yi,j > io that are in S where the correct
’Svalue of bio,j would have produced Yi,j that are not in S.

For k O(log n), we can still choose m poly(n) so that the proof system works. We
make the following worst-case assumption in our argument: If column j is spoiled in row i0,
then the rest of the column, i.e., all Yi,j with > i0, consists entirely of elements of S. We
now estimate now many columns can be spoiled in each row.

’SThe expected number of yl,j that are in S is plm; so, with very high probability, for
these particular choices r rm, the actual number is less than pm + 2k--. P* must
claim that more than plm 2- are in S; so, with high probability, P* may spoil at most
4/- columns in row 1 without getting caught.

1002 JOAN FEIGENBAUM AND LANCE FORTNOW

What happens in row 2? With high probability, the actual number of Y2,j ’S in S is less
than p2m + 2k/--. We assume that the columns .spoiled in row I contribute 4Ak,/- additional

’sY2,j in S. P* must claim that more than p2m 2kCk- are in S; so, with high probability,
P* may spoil at most 8k- new columns in row 2.

in row 3, the actual number of y3,j’s in S is less than p3m -k- 2kw/, with high probability.
’s P*Columns spoiled in rows and 2 contribute at most 12k additional y3,j in S. Thus

may, with high probability, spoil at most 164%-- new columns in row 3 and still claim that
’sp3m 2k-- of the Y3,j are in S.

Continuing in this manner, we see that, with high probability, at most 2k+2 columns
are spoiled in all k rows. For k < c log n, we can choose rn n4c, say, and prevent P* from
spoiling all of the columns.

In fact, the conclusion that is in AMply follows from the weaker assumption that S
has an adaptive rsr with O(log n) rounds of queries and polynomially many queries in each
round. Unfortunately, this proof technique does not work unless the number of rounds is
O(log n). U

4. Complete sets above the polynomial hierarchy. We first recall the following known
positive result.

THEOREM 4.1. If f is #P-complete, then f is poly-rsr.
Proof. This follows easily from the results on low-degree polynomials discussed in 2.

Let PERM be the #P-complete function that computes permanents of integer matrices. An
instance x of PERM can be reduced to the computation of PERM(x)mod Pi, for some small
collection of primes piwto recover PERM(x) from {PERM(x)mod Pi}, use the Chinese
Remainder Theorem. For each Pi, PERM(x)mod Pi is just a low-degree polynomial over
a finite field. Thus, by Fact 2.5, it can be reduced to the evaluation of a small collection of
random instances {PERM(yij)mod pi }. These Yij’S can be regarded as random instances of
PERMmfrom the value of PERM(Yij) over the integers, PERM(yij)mod Pi can be found
simply by reducing mod pi. In summary, the mapping from x to {Yij is an rsr for PERM.

Let f be #P-complete. On input x of length n, the rsr for f proceeds as follows. Reduce x
to one or more instances of PERM. Pad these instances if necessary so that their size depends
only on n: For any > k, a k k matrix M can be "padded" out to an matrix M’ with the
same permanent by letting M’(i, j) M(i, j) for < i, j < k, M’(i, i) 1 for k < < l,
and M’ (i, j) 0 for all other values of and j. Perform the above rsr of PERM. The random
PERM-instances thus produced can be mapped back to f-instances because f is #P-complete.
These f-instances leak at most n because the random PERM-instances leak at most n. rq

We now proceed to our new positive results. The first one is a straightforward extension
of Theorem 4.1.

COROLLARY 4.2. If S is completefor PP, then S is poly-rsr.
Proof. It is well known that the language classes pPr, and P#’ are equal. Thus S

and PERM are polynomial-time equivalent. The rest of the proof is identical to that of
Theorem 4.1. 1

THEOREM 4.3. Ifa complexity class C is #P-robust, then complete setsfor C are poly-rsr.
Proof. By Fact 2.9, it suffices to show that Gap-P-robustness of C implies that complete

sets for C are poly-rsr. Suppose that C is Gap-P-robust, and let S be a complete set for C. For
each n > 1, let Pn be a prime greater than n, let fn {0, }n --+ {0, be the characteristic
function of S on strings of length n, and let g {g }n_> be the arithmetization of f {f }>_
over {GF(p)}n_>l. By Fact 2.10, we can compute g (by using equations (3) and (4)) in Gap-Pc
and thus in FPc. By Fact 2.5, g is (nonadaptively) (n + 1)-rsr. On input x, the random-self-
reduction of S proceeds as follows: Generate p; interpret the input instance x as an element of

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 1003

Dom(g); apply the low-degree polynomial trick to get random instances Yl Yn+l; reduce
the computation of g (Yi) tO membership queries about S, which can be done because g FP
and S is complete for C. The entire reduction leaks at most n because each of its components
leaks at most n. [3

COROLLARY 4.4. Complete setsfor PSPACE and EXPTIME are poly-rsr.
Proof. This follows from the fact thatPSPACE andEXPTIME are #P-robust. Forexample,

let FPSPACE denote the set of functions computable in polynomial space. Then

FPPsPAcE c #pPSPACE C FPSPACEPsPAcE FPSPACE

and thus FPPSPACE #pPSPACE.
Note that is unknown whether #P is itself #P-robust.
THEOREM 4.5. If S is complete for MODmP, then S is poly-rsr. In particular, complete

setsfor @P are poly-rsr.
Proof. By Facts 2.12 and 2.13, we can assume without loss of generality that m is

prime. The reduction to the case of square-free m is trivial, by Fact 2.13. If m m ...mr,
where the mi’s are distinct primes, then Fact 2.12 tells us that S S1 t3... U St, where
Si MODmiP. Thus, a query about membership of x in S reduces to the disjunction of
queries about membership of x in $1 St. In what follows, we will show that Si is rsr.
Suppose that y is a random query produced by the rsr for Si on input x. We must show
how to compute Xsi (Y) by making queries to an S oracle. First note that there is a set T/ in
MODmP such that)s, (z) XT (Z) for all z: If the underlying NP machine for Si is Mi, then
the underlying NP machine for Ti is M[, where each computation path (accepting or rejecting)
in Mi is replaced by m/mi distinct paths in M[. Finally, T/can be reduced to S because S is
complete for MODmP.

Let S be a complete set in MODmP, where m is prime, and let x (Xl xn) be an
element of {0, } for which we would like to determine membership in S. By Fact 2.16,
there is a PRAB Pn {Pl Ps} for which)s(x) Pn(x) mod m. Furthermore, Pn can
be generated in polynomial time, and it depends only on S and n (i.e., it leaks nothing about
x except its length). We would like to apply Fact 2.5 (the low-degree polynomial trick) to Ps
and then map the random p-instances back to S-oracle queries. However, there are only m
distinct points in Zm, and the degree of p is a (polynomially bounded) function of n; thus,
there will not be enough interpolation points to recover p (x) this way.

We deal with this problem as it is dealt with in the proof that MODmP-complete sets are
checkable (cf. [4]). For every positive integer k there is a unique finite field GF(m), and it is
a vector space over Zm. Fix a basis for this vector space. This entails finding a polynomial of
degree k that is irreducible over Zm, which can be done in probabilistic polynomial time [10],
[24]. (In fact, we could choose k so that all that is required is a polynomial of degree l, where
f2 (k/log m) < k, that is irreducible over Z Such a polynomial could be generated in
deterministic polynomial time [2], but this is not necessary for our purpose, which is to use
the polynomial in a reduction that is inherently probabilistic.) We can represent each element
a of GF(m) as the k x k matrix Ma denoting the linear transformation x - ax of GF(m)
to itself. Then M0 is the zero matrix, M1 is the identity matrix, Ma+b Ma + Mb, and
Mab Mba MaMb.

Choose k so that mk > d degree(ps), and represent the elements computed by P
as matrices over Zm. There is another PRAB, say, {Pl (1, 1) Pl (k, k) ps (1, 1)
p(k, k)}, where Pi (r, c) computes the element in row r, column c of pi(xl Xn). Because
mk > d, we can apply Fact 2.5 to Ps in the following way: Let Otl otd+l be distinct elements
of GF(mk). Choose cl c independently and uniformly at random from the set of all
k k matrices over Zm that encode elements of GF(mk). Then Pn(cl Z + Xl cnZ +x) is

1004 JOAN FEIGENBAUM AND LANCE FORTNOW

a degree-d, one-variable polynomial with constant term Pn (x))s (x). So evaluate Pn at the
d/ 1 uniformly distributed inputs (ClOt1 +Xl CnOtl +Xn), (ClCd+I +Xl CnOtd+l +
Xn), and interpolate.

It remains to show that the computation of Pn (ClOtj / xl Cnaj + Xn) can be reduced
in polynomial time to a sequence of S-oracle queries. In the matrix representation of Pn, each
Pi (r, c) is an instruction in a PRAB over Zm. Thus it is polynomial-time reducible to S by
Fact 2.16, because S is complete for MODmP.

As in the previous proofs in this section, each S-oracle call leaks at most n because each
random input (ClOl 21- X CnOlj + x,) leaks at most n.

5. Open problems. Open problems abound and include the following:
Do NP-complete sets have adaptive k-rsr’s for some k >> log n?
Are NP-complete sets checkable in the sense of 11]? Note that all known checkers for

sets that are complete for natural complexity classes use rsr’s.
What other sets do or do not have rsr’s? How about incomplete sets? Or sets and

functions complete for classes C that satisfy PH

BPPc and pC _c PSPACE? The classes

MODmP, PP, and #P all fall between PH and PSPACE in this sense (cf. [27]).

Acknowledgments. We would like to thank Manuel Blum, Russell Impagliazzo, Steven
Rudich, Gibor Tardos, and the referee for their comments on earlier versions of this paper.

REFERENCES

M. ABAoI, J. FEIGENBAUM, AND J. KIIIArq, On hiding information from an oracle, J. Comput. System Sci., 39
(1989), pp. 21-50.

[2] L. ADIEMAN ANI H. LENS’rRA, Finding irreducible polynomials over finite fields, in Proceedings of the 16th
Symposium on the Theory of Computing, Association for Computing Machinery, New York, 1986,
pp. 350-355.

[3] L. B,3,I, Random oracles separate PSPACEfrom the polynomial-time hierarchy, Informat. Process. Lett., 26
(1987), pp. 51-53.

[4] L. BA3,I AND L. FORTNOW, Arithmetization: A new method in structural complexity theory, Comput. Com-
plexity, (1991), pp. 41-66.

[5] L. BABAI, L. FORTNOW, AND C. LUND, Non-deterministic exponential time has two-prover interactive protocols,
Comput. Complexity, (1991), pp. 3-40.

[6] L. BAB,I AND S. MORAr, Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity
classes, J. Comput. System Sci., 36 (1988), pp. 254-276.

[7] D. BAVR AND J. FEIGt3AUM, Hiding instances in multioracle queries, in Proceedings of the 7th Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, Vol. 415, Springer,
Berlin, 1990, pp. 37-48.

[8] D. BAvEr, J. FEIGENBAUM, J. KItAy, AND P. ROGAWAY, Security with low communication overhead, in Ad-
vances in Cryptology--Crypto ’90, Lecture Notes in Computer Science, Vol. 537, Springer, Berlin, 1991,
pp. 62-76.

[9] R. BEIGEL ,ND J. GILI, Counting classes: Thresholds, parity, mods, andfewness, Theoret. Comput. Sci., 103
(1992), pp. 3-23.

10] E. BERtAM’, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[11] M. BLUM AND S. KANNAN, Designing programs that check their work, in Proceedings of the 21st Symposium

on the Theory of Computing, Association for Computing Machinery, New York, 1989, pp. 86-97.
[12] M. BLUM, M. LUB, AND R. RUBINFELD, Self-testing with applications to numerical problems, in

Proceedings of the 22nd Symposium on the Theory of Computing, Association for Computing Machinery,
New York, 1990, pp. 73-83.

13] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences ofpseudo-random bits, SIAM
J. Comput., 13 (1984), pp. 850-864.

[14] J. C,, With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy, J.
Comput. System Sci., 38 (1989), pp. 68-85.

RANDOM-SELF-REDUCIBILITY OF COMPLETE SETS 1005

15] J. FEIGENBAUM, S. KANNAN, AND N. NISAN, Lower bounds on random-self-reducibility, in Proceedings of
the 5th Structure in Complexity Theory Conference, IEEE Computer Society, Los Alamitos, CA, 1990,
pp. 100-109.

16] S. FENNER, L. FORa’NOW, AND S. KURTZ, Gap-definable counting classes, in Proceedings of the 6th Structure
in Complexity Theory Conference, IEEE Computer Society, Los Alamitos, CA, 1991, pp. 30-42.

[17] S. GOLDWASSEr AND S. MICAII, Probabilistic encryption, J. Comput. System Sci., 28 (1984), pp. 270-299.
[18] S. GOLDWASSEP,, S. MICAII, AND C. RACrCOF, The knowledge complexity of interactive proof-systems, SIAM

J. Comput., 18 (1989), pp. 186-208.
19] S. GOLDWASSEI AND M. SIPSER, Private coins versus public coins in interactive proofsystems, in Randomness

and Computation, S. Micali, ed., Advances in Computing Research, Vol. 5, JAI Press, Greenwich, CT,
1989, pp. 73-90.

[20] U. HERTRAMPF, Relations among MOD-classes, Theoret. Comput. Sci., 74 (1990), pp. 325-328.
[21] R. LIPTON, New directions in testing, in Distributed Computing and Cryptography, J. Feigenbaum and M. Mer-

ritt, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 2, American
Mathematical Society, Providence, RI, 1991, pp. 191-202.

[22] C. LUND, L. FORTNOW, H. KAe,t.orr, AND N. NISAN, Algebraic methodsfor interactive proofsystems, J. Assoc.
Comput. Mach., 39 (1992), pp. 859-868.

[23] C. PAPADIMITRIOU AND S. ZACHOS, Two remarks on the power of counting, in Proceedings of the 6th GI
Conference on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 145, Springer,
Berlin, 1983, pp. 269-276.

[24] M. RABN, Probabilistic algorithms infinite fields, SIAM J. Comput., 9 (1980), pp. 273-280.
[25] A. SHAMIR, IP PSPACE, J. Assoc. Comput. Mach., 39 (1992), pp. 869-877.
[26] J. SPENCER, Ten Lectures on the Probabilistic Method, Conference Board ofthe Mathematical Sciences, Society

for Industrial and Applied Mathematics, Philadelphia, PA, 1987.
[27] S. TODA, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), pp. 865-877.
[28] M. TOMPA AND H. WOLL, Random self-reducibility and zero-knowledge interactive proofs ofpossession of

information, in Proceedings ofthe 28th Symposium on Foundations ofComputer Science, IEEE Computer
Society, Los Alamitos, CA, 1987, pp. 472-482.

[29] L. VALIANT, The complexity ofcomputing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 189-201.
[30] C. YAP, Some consequences ofnonuniform conditions on uniform classes, Theoret. Comput. Sci., 26 (1983),

pp. 287-300.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 1006-1034, October 1993

() 1993 Society for Industrial and Applied Mathematics
007

LEARNING BINARY RELATIONS AND TOTAL ORDERS*
SALLY A. GOLDMAN’r, RONALD L. RIVEST*, AND ROBERT E. SCHAPIRE

Abstract. The problem of learning a binary relation between two sets of objects or between a set and itself is
studied. This paper represents a binary relation between a set of size n and a set of size rn as an n rn matrix of bits
whose (i, j) entry is if and only if the relation holds between the corresponding elements ofthe two sets. Polynomial
prediction algorithms are presented for learning binary relations in an extended on-line learning model, where the
examples are drawn by the learner, by a helpful teacher, by an adversary, or according to a uniform probability
distribution on the instance space.

The first part of this paper presents results for the case in which the matrix of the relation has at most k row
types. It presents upper and lower bounds on the number of prediction mistakes any prediction algorithm makes
when learning such a matrix under the extended on-line learning model. Furthermore, it describes a technique that
simplifies the proof of expected mistake bounds against a randomly chosen query sequence.

In the second part of this paper the problem of learning a binary relation that is a total order on a set is considered.
A general technique using a fully polynomial randomized approximation scheme (fpras) to implement a randomized
version of the halving algorithm is described. This technique is applied to the problem of learning a total order,
through the use of an fpras for counting the number of extensions of a partial order, to obtain a polynomial prediction
algorithm that with high probability makes at most n lg n + (lg e)lg n mistakes when an adversary selects the query
sequence. The case in which a teacher or the learner selects the query sequence is also considered

Key words, machine learning, computational learning theory, on-line learning, mistake-bounded learning, binary
relations, total orders, fully polynomial randomized approximation schemes

AMS subject classifications. 68Q25, 68T05

1. Introduction. In many domains it is important to acquire information about a relation
between two sets. For. example, one may wish to learn a "has-part" relation between a set of
animals and a set of attributes. We are motivated by the problem of designing a prediction
algorithm to learn such a binary relation when the learner has limited prior information about
the predicate forming the relation. Although one could model such problems as concept
learning, they are fundamentally different problems. In concept learning there is a single
set of objects and the learner’s task is to classify these objects, whereas in learning a binary
relation there are two sets of objects and the learner’s task is to learn the predicate that relates
the two sets. Observe that the problem of learning a binary relation can be viewed as a concept
learning problem if one lets the instances be all ordered pairs of objects from the two sets.
However, the ways in which the problem may be structured are quite different when the true
task is to learn a binary relation as opposed to a classification rule. That is, instead of a rule
that defines which objects belong to the target concept, the predicate defines a relationship
between pairs of object.

*Received by the editors December 1, 1991; accepted for publication (in revised form) June 9, 1992. Most of
this research was carried out while all three authors were at MIT Laboratory for Computer Science with support
provided by National Science Foundation grant DCR-8607494, U.S. Army Research Office grant DAAL03-86-K-
0171, Defense Advanced Research Projects Agency contract N00014-89-J-1988, and a grant from the Siemens
Corporation. Preliminary versions of this paper appeared in the Proceedings of the 30th IEEE Symposium on
Foundations of Computer Science, October 1989, and as Massachusetts Institute of Technology’s Laboratory for
Computer Science Technical Memo, MIT/LCS/TM-413, May 1990.

Department of Computer Science, Washington University, St. Louis, Missouri 63130 (s g@ c s. wu st 1. edu).
This author currently receives support from G.E. Foundation Junior Faculty Grant and from National Science Foun-
dation grant CCR-9110108.

MIT Laboratory for Computer Science, Cambridge, Massachusetts 02139 (r +/-re s t @ theory. 1 c s. m+/- t.

edu).
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (schapire@research. att. com). This au-

thor received additional support from U.S. Air Force Office of Scientific Research grant 89-0506 while at Harvard
University.

1006

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1007

A binary relation is defined between two sets of objects. Throughout this paper we
assume that one set has cardinality n and the other has cardinality m. We. also assume that for
all possible pairings of objects the predicate relating the two sets of variables is either true (1)
or false (0). Before defining a prediction algorithm, we first discuss our representation of a
binary relation. Throughout this paper we represent the relation as an n x rn binary matrix,
where an entry contains the value-of the predicate for the corresponding elements. Since
the predicate is binary valued, all entries in this matrix are either 0 (false) or (true). The
two-dimensional structure arises from the fact that we are learning a binary relation.

For the sake of comparison we now briefly mention other possible representations. One
could represent the relation as a table with two columns, where each entry in the first column
is an item from the first set and each entry in the second column is an item from the second set.
The rows of the table consist of the subset of the potential nm pairings for which the predicate
is true. One could also represent the relation as a bipartite graph with n vertices in one vertex
set and rn vertices in the other set. An edge is placed between two vertices exactly when the
predicate is true for corresponding items.

Having introduced our method for representing the problem, we now informally discuss
the basic learning scenario. The learner is repeatedly given a pair of elements, one from each
set, and is asked to predict the corresponding matrix entry. After making its prediction, the
learner is told the correct value of the matrix entry. The learner wishes to minimize the number
of incorrect predictions. Since we assume that the learner must eventually make a prediction
for each matrix entry, the number of incorrect predictions depends on the size of the matrix.

Unlike problems typically studied, in which the natural measure ofthe size of the learner’s
problem is the size of an instance (or example), for this problem the natural measure is the size
of the matrix. Such concept classes with polynomial-sized instance spaces are uninteresting in
Valiant’s probably approximately correct (PAC) model oflearning [27]. In this model instances
are chosen randomly from an arbitrary unknown probability distribution on the instance space.
A concept class is PAC-learnable if the learner, after seeing a number of instances that are
polynomial in the problem size, can output a hypothesis that is correct on all but an arbitrarily
small fraction of the instances with high probability. For concepts whose instance space has
cardinality polynomial in the problem size, by asking to see enough instances the learner can
see almost all of the probability weight of the. instance space. Thus it is not hard to show
that these concept classes are trivially PAC-learnable. One goal of our research is to build a
framework for studying such problems.

To study learning algorithms for these concept classes we extend the basic mistake bound
model [14], [15], [19] to the cases in which a helpful teacher or the learner selects the query
sequence, and, in addition, to the cases in which instances are chosen by an adversary or
according to a probability distribution on the instance space. Previously, helpful teachers
have been used to provide counterexamples to conjectured concepts], [2] or to break up
the concept into smaller subconcepts [23]. In our framework the teacher selects only the
presentation order for the instances.

If the learner is to have any hope of doing better than random guessing, there must be
some structure in the relation. Furthermore, since there are so many ways to structure a binary
relation, we give the learner some prior knowledge about the nature of this structure. Not
surprisingly, the learning task depends greatly on the prior knowledge provided. One way to
impose structure is to restrict one set of objects to have relatively few types. For example,
a circus may contain many animals but only a few different species. In the first part of this
paper we study the case in which the learner has a priori knowledge that there are a limited
number of object types. Namely, we restrict the matrix representing the relation to have at
most k distinct row types. (Two rows are of the same type if they agree in all columns.) We

1008 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

define a k-binary-relation to be a binary relation for which the corresponding matrix has at
most k row types. This restriction is satisfied whenever there are only k types of objects in
the set of n objects being considered in the relation. The learner receives no other knowledge
about the predicate forming the relation. With this restriction we prove that any prediction
algorithm makes at least (1)km + n [lg(/k)J (1 -/)k/lg(/k)J mistakes in the worst
case for any fixed 0 < / < against any query sequence. So for/ , we get a lower
bound of + (n) [lg k on the number ofmistakes made by any prediction algorithm.
If computational efficiency is not a concern, the halving algorithm [4], 19] makes at most
km+ (n k)lgk mistakes against any query sequence. (The halving algorithm predicts
according to the majority of the feasible relations (or concepts), and thus each mistake halves
the number of remaining relations.)

We present an efficient algorithm making at most krn + (n k)[lg kJ mistakes in the
case in which the learner chooses the query sequence. We prove a tight mistake bound2 of
km + (n k)(k 1) in the case in which the helpful teacher selects the query sequence.
When the adversary selects the query sequence, we present an efficient algorithm for k 2
that makes at most 2m + n 2 mistakes, and for arbitrary k we present an efficient algorithm
that makes at most krn + n/(k 1)rn mistakes. We prove that any algorithm makes at least
krn + (n k) llg kJ mistakes in the case in which an adversary selects the query sequence, and
we use the existence of projective geometries to improve this lower bound to f2 (kin + (n
k) [lg kJ + min{n/’, rn Vrff}) for a large class of algorithms. Finally, we describe a technique
for simplifying the proof of expected mistake bounds when the query sequence is chosen at
random, and we use it to prove an O(krn + nk/-) expected mistake bound for a simple
algorithm. (Here H is the maximum Hamming distance between any two rows.)

Another possibility for known structure is the problem of learning a binary relation on
a set where the predicate induces a total order on the set. (For example, the predicate may
be "<".) In the second half of this paper we study the case in which the learner has a priori
knowledge that the relation forms a total order. Once again, we see that the halving algorithm
[4], 19] yields a good mistake bound against any query sequence. This motivates a second
goal of this research: to develop efficient implementations of the halving algorithm. We
uncover an interesting application of randomized approximation schemes to computational
learning theory. Namely, we describe a technique that uses a fully polynomial randomized
approximation scheme (fpras) to implement a randomized version of the halving algorithm.
We apply this technique, using a fpras due to Dyer, Frieze, and Kannan 10] and to Matthews
[22] for counting the number of linear extensions of a partial order, to obtain a polynomial
prediction algorithm that makes at most n lg n + (lg e)lg n mistakes with very high probability
against an adversary-selected query sequence. The small probability of making too many
mistakes is determined by the coin flips ofthe learning algorithm and not by the query sequence
selected by the adversary. We contrast this result with an n mistake bound when the learner
selects the query sequence [28] and with an n mistake bound when a teacher selects the
query sequence.

The remainder of this paper is organized as follows. In the next section we formally
introduce the basic problem, the learning scenario, and the extended mistake bound model. In
3 we present our results for learning k-binary-relations. We first give a motivating example
and present some general mistake bounds. In the following subsections we consider query
sequences selected by the learner, by a helpful teacher, by an adversary, or at random. In
4 we turn our attention to the problem of learning total orders. We begin by discussing

1Throughout this paper we use lg to denote log2.
2The tight mistake bound is a worst-case mistake bound taken over all consistent learners; see 2 for formal

definitions.

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1009

the relationship between the halving algorithm and approximate counting schemes in 4.1.
In particular, we describe how an fpras can be used to implement an approximate halving
algorithm. Then in 4.2 we present our results on learning a total order. Finally, in 5 we
conclude with a summary and discussion of related open problems.

2. Learning scenario and mistake bound model. In this section we give formal defini-
tions and discuss the learning scenario used in this paper. To be consistent with the literature
we discuss these models in terms of concept learning. As we have mentioned, the problem of
learning a binary relation can be viewed in this framework by letting the instance space be all
pairs of objects, one from each of the two sets.

A concept c is a Boolean function on some domain of instances. A concept class C
is a family of concepts. The learner’s goal is to infer some unknown target concept chosen
from some known concept class. Often C is decomposed into subclasses Cn according to
some natural dimension measure n. That is, for each n > let Xn denote a finite learning
domain. Let X [,.Jn>_l Xn, and let x X denote an instance. To illustrate these definitions
we consider the concept class of monomials. (A monomial is a conjunction of literals, where
each literal is either some Boolean variable or its negation.) For this concept class n is just
the number of variables. Thus IXnl 2, where each x Xn is chosen from {0, } and
represents the assignment for each variable. For each n > let C be afamily ofconcepts on
Xn. Let C Un>l Cn denote a concept class over X. For example, if Cn contains monomials
over n variables, then C is the class of all monomials. Given any concept c C, we say that x
is a positive instance of c if c(x) 1, and we say that x is a negative instance of c if c(x) O.
In our example the target concept for the class of monomials over five variables might be
xlx--xs. Then the instance 10001 is a positive instance and the instance 00001 is a negative
instance. Finally, the hypothesis space of algorithm A is simply the set of all hypotheses (or
rules) h that A may output. (A hypothesis for Cn must make a prediction for each x Xn.)

A prediction algorithm for C is an algorithm that runs under the following scenario. A
learning session consists ofa set of trials. In each trial the learner is given an unlabeled instance
x Xn. The learner uses its current hypothesis to predict whether x is a positive or negative
instance of the target concept c Cn, and then the learner is told the correct classification of x.
If the prediction is incorrect, the learner has made a mistake. Note that in this model there is no
training phase. Instead, the learner receives unlabeled instances throughout the entire learning
session. However, after each prediction the learner discovers the correct classification. This
feedback can then be used by the learner to improve the learner’s hypothesis. A learner is
consistent if on every trial there is some concept in Cn that agrees both with the learner’s
prediction and with all the labeled instances observed on preceding trials.

The number of mistakes made by the learner depends on the sequence of instances pre-
sented. We extend the mistake bound model to include several methods for the selection of
instances. A query sequence is a permutation yr (xl, x2 XlXnl of Xn, where xt is the
instance presented to the learner at the tth trial. We call the agent selecting the query sequence
the director. We consider the following directors"

Learner. The learner chooses yr. To select xt the learner may use time polynomial in
n and all information obtained in the first 1 trials. In this case we say that the learner is

self-directed.
Helpful teacher. A teacher who knows the target concept and wants to minimize the

learner’s mistakes chooses yr. To select xt the teacher uses knowledge of the target concept,
xl xt-, and the learner’s predictions on x xt-. To avoid allowing the learner and
teacher to have a coordinated strategy, in this scenario we consider the worst-case mistake
bound over all consistent learners. In this case we say the learner is teacher directed.

1010 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

TABLE
Summary of testing reactionsfor allergy testing example.

Degree of Epicutaneous Intradermal
patient allergy (scratch) (under the skin)

Not allergic Negative Negative

Mildly allergic Negative Weak positive

Highly allergic Weak positive Strong positive

Adversary. The adversary who selected the target concept chooses zr. This adversary,
who tries to maximize the learner’s mistakes, knows the learner’s algorithm and has unlimited
computing power. In this case we say the learner is adversary directed.

Random. In this model, re is selected randomly according to a uniform probability
distribution on the permutations of Xn. Here the number of mistakes made by the learner for
some target concept c in Cn is defined to be the expected number of mistakes over all possible
query sequences. In this case we say the learner is randomly directed.

We consider how a prediction algorithm’s performance depends on the director. Namely,
we letMBz (A, Cn denote the worst-case number ofmistakes made by A for any target concept
in Cn when the query sequence is provided by Z. (When Z adversary, MBz(A, Cn)
MA (Cn) in the notation ofLittlestone 19].) We say that A is apolynomialprediction algorithm
if A makes each prediction in time polynomial in n.

3. Learning binary relations. In this section we apply the learning scenario of the
extended mistake bound model to the concept class C of k-binary-relations. For this concept
class the dimension measure is denoted by n and m and by Xn, n} m }.
An instance (i, j) is in the target concept c Cn,m if and only if the matrix entry in row and
column j is a 1. So in each trial the learner is repeatedly given an instance x from Xn,m and is
asked to predict the corresponding matrix entry. After making a prediction the learner is told
the correct value of the matrix entry. The learner wishes to minimize the number of incorrect
predictions during a learning session in which the learner must eventually make a prediction
for each matrix entry.

"We begin this section with a motivating example from the domain of allergy testing. We
use this example to motivate both the restriction that the matrix has k row types and the use
of the extended mistake bound model. We then present general upper and lower bounds on
the number of mistakes made by the learner, regardless of the director. Finally, we study the
complexity of learning a k-binary-relation under each director.

3.1. Motivation: Allergist example. In this subsection we use the following example
taken from the domain of allergy testing to motivate the problem oflearning a k-binary-relation.

Consider an allergist with a set of patients to be tested for a given set of allergens. Each
patient is either highly allergic, mildly allergic, or not allergic to any given allergen. The
allergist may use either an epicutaneous (scratch) test, in which the patient is given a fairly
low dose of the allergen, or an intradermal (under the skin) test, in which the patient is given
a larger dose of the allergen. The patient’s reaction to the test is classified as strong positive,
weak positive, or negative. Table describes the reaction that occurs for each combination of
allergy level and dosage level. Finally, we assume that a strong positive reaction is extremely
uncomfortable to the patient but not dangerous.

What options does the allergist have in testing a patient for a given allergen? One option
(option 0) is just to perform the intradermal test. Another option (option 1) is to perform an

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1011

epicutaneous test and, if it is not conclusive, then perform an intradermal test. (See Fig.
for decision trees describing these two testing options.) Which testing option is best? If the

Option 0:

Not
Allergic

n trong

Mildly Highly
Allergic Allergic

Option # 1"

n> \ weak

weak

Not Mildly Highly
Allergic Allergic, Allergic,

FIG. 1. Testing options available to the allergist.

patient has either no allergy or a mild allergy to the given allergen, then testing option 0 is best,
since the patient need not return for the second test. However, if the patient is highly allergic
to the given allergen, then testing option 1 is best, since the patient does not experience a bad
reaction. We assume that the inconvenience ofgoing to the allergist twice is approximately
the same as having a bad reaction. That is, the allergist has no preference for an error in a
particular direction. Although the allergist’s final goal is to determine each patient’s allergies,
we consider the problem of learning the optimal testing option for each combination of patient
and allergen.

The allergist interacts with the environment as follows. In each trial the allergist is asked
to predict the best testing option for a given patient-allergen pair. The allergist is then told
the testing results, thus learning whether the patient is not allergic, mildly allergic, or highly
allergic to the given allergen. In other words, the allergist receives feedback as to the correct
testing option. Note that we make no restrictions on how the hypothesis is represented, as
long as it can be evaluated in polynomial time. In other words, all we require is that given
any patient-allergen pair, the allergist decides which test to perform in a reasonable amount
of time.

1012 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

How can the allergist possibly predict a patient’s allergies? If the allergies of the patients
are completely random, then there is not much hope. What prior knowledge does the allergist
have? He or she knows that people often have exactly the same allergies, and so there is a set of
allergy types that occur frequently. (We do not assume that the allergist has a priori knowledge
of the actual allergy types.) This knowledge can help guide the allergist’s predictions.

Having specified the problem, we discuss our choice of using the extended mistake bound
model to evaluate learning algorithms for this problem. First of all, observe that we want an
on-line model. There is no training phase here; the allergist wants to predict the correct testing
option for each patient-allergen pair. Also, we expect that the allergist has time to test each
patient for each allergen; that is, the instance space is polynomial sized. Thus, as discussed
in 1, the distribution-free model is not appropriate.

How should we judge the performance of the learning algorithm? For each wrong predic-
tion made, a patient is inconvenienced by making a second trip or having a bad reaction. Since
the learner wants to give all patients the best possible service, he or she strives to minimize
the number of incorrect predictions made. Thus we want to use the absolute mistake bound
success criterion. Namely, we judge the performance of the learning algorithm by the number
of incorrect predictions made during a learning session in which the allergist must eventually
test each patient for each allergen.

Up to now the standard on-line model (which uses absolute mistake bounds to judge the
learners) appears to be the appropriate model. We now discuss the selection of the instances.
Since the allergist has no control over the target relation (i.e., the allergies of the patients),
it makes sense to view the feedback as coming from an adversary. However, do we really
want an adversary to select the presentation order for the instances? It could be that the
allergist is working for a cosmetic company and, because of the restrictions of the Food and
Drug Administration and the cosmetic company, the allergist is essentially told when to test
each person for each allergen. In this case it is appropriate to have an adversary select the
presentation order. However, in the typical situation the allergist can decide in what order to
perform the testing so that he or she can make the best predictions possible. In this case we
want to allow the learner to select the presentation order. One could also imagine a situation
in which an intern is being guided by an experienced allergist; in this case a teacher helps to
select the presentation order. Finally, random selection of the presentation order may provide
us with a better feeling for the behavior of an algorithm.

3.2. Learning k-binary-rdations. In this section we begin our study of learning k-
binary-relations by presenting general lower and upper bounds on the mistakes made by the
learner, regardless of the director.

Throughout this section we use the following notation" We say an entry (i, j) of the
matrix (M j) is known if the learner was previously presented that entry. We assume without
loss of generality that the learner is never asked to predict the value of a known entry. We say
that rows and i’ are consistent (given the current state of knowledge) if Mij Mi,j for all
columns j in which both entries (i, j) and (i’, j) are known.

We now look at general lower and upper bounds on the number of mistakes that apply
for all directors. First of all, note that k < 2m since there are only 2m possible row types for a
matrix with rn columns. Clearly, any learning algorithm makes at least km mistakes for some
matrix, regardless of the query sequence. The adversary can divide the rows into k groups
and reply that the prediction was incorrect for the first column queried for each entry of each
group. We generalize this approach to force mistakes for more than one row of each type.

THEOREM 3.1. For any 0 < 6 < 1 any prediction algorithm makes at least (1)km +
n/lg(6k)J (1 -/)k/lg(/k)J mistakes, regardless ofthe query sequence.

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1013

Proof. The adversary selects its feedback for the learner’s predictions as follows. For
each entry in the first llg(/Sk)J columns the adversary replies that the learner’s response is
incorrect. At most/Sk new row types are created by this action. Likewise, for each entry in the
first (1 fl)k rows the adversary replies that the learner’s response is incorrect. This creates
at most (1 -/5)k new row types. The adversary makes all remaining entries in the matrix
zero (see Fig. 2). The number of mistakes is at least the area of the unmarked region. Thus
the adversary has forced at least (1)km + n llg(/3k)J (1 -/5)k/lg(/Sk)J mistakes while
creating at most/Sk + (1 -/5)k k row types.

m oluaxtm

FIG. 2. Final matrix created by the adversary in the proof of Theorem 3.1. All entries in the unmarked area
will contain the bit not predicted by the learner; that is, a mistake isforced on each entry in the unmarked area. All
entries in the marked area will be zero.

By letting/5 we obtain the following corollary.
COROLLARY 3.2. Any algorithm makes at least + (n Llg k 1J mistakes in the

worst case, regardless of the query sequence.
If computational efficiency is not a concern, for all query sequences the halving algorithm

[4], 19] provides a good mistake bound.
Observation. The halving algorithm achieves a km + (n k) lg k mistake bound.

Proof. We use a simple counting argument on the size of the concept class Cn,m. There
are 2km ways to select the k row types, and there are k(n-k) ways to assign one of the k
row types to each of the remaining n k rows. Thus [Cn,ml <_ 2kmk(n-k). Littlestone [19]
proves that the halving algorithm makes at most lglCn,ml mistakes. Thus the number of
mistakes made by the halving algorithm for this concept class is at most lg(2kmkn-k)) < km
+(n k) lg k.

In the remainder of this section we study efficient prediction algorithms designed to
perform well against each of the directors. In some cases we are also able to prove lower
bounds that are better than that of Theorem 3.1. In 3.3 we consider the case in which the
query sequence is selected by the learner. We study the helpful-teacher director in 3.4. In
3.5 we consider the case of an adversary director. Finally, in 3.6 we consider instances
drawn uniformly at random from the instance space.

3.3. Self-directed learning. In this section we present an efficient algorithm for the case
of self-directed learning.

1014 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

THEOREM 3.3. There exists a polynomial prediction algorithm that achieves a km + (n
k) lg kl mistake bound with a learner-selected query sequence.

Proof. The query sequence selected simply specifies the entries of the matrix in row-
major order. The learner begins by assuming that there is only one row type. Let/ denote

the learner’s current estimate for k. Initially/ 1. For the first row the learner guesses each
entry. (This row becomes the template for the first row type.). Next the leamer assumes that
the second row is the same as the first row. If a mistake is made, then the learner revises the
estimate for/ to be 2, guesses for the rest of the row, and uses that row as the template for the
second row type. In general, to predict Mij the learner predicts according to a majority vote
of the recorded row templates that are consistent with row (breaking ties arbitrarily). Thus
if a mistake is made, then at least half of the row types can be eliminated as the potential type
of row i. If more than/lg/[mistakes are made in a row, then a new row type has been found.

In this case,/ is incremented, the learner guesses for the rest of the row, and the learner makes
this row the template for row type/ + 1.

How many mistakes are made by this algorithm? Clearly, at most m mistakes are made
for the first row found of each of the k types. For the remaining n k rows, since < k, at
most lg kJ mistakes are made.

Observe that this upper bound is within a constant factor of the lower bound of Corollary
3.2. Furthermore, we note that this algorithm need not know k a priori. In fact, it obtains the
same mistake bound even if an adversary tells the learner which row to examine and in what
order to predict the columns, provided that the learner sees all of a row before going on to the
next. As we will later see, this problem becomes harder if the adversary can select the query
sequence without restriction.

3.4. Teacher-directed learning. In this section we present upper and lower bounds on
the number of mistakes made under the helpful-teacher director. Recall that in this model we
consider the worst-case mistake bound over all consistent learners. Thus the question asked
here is" What is the minimum number of matrix entries a teacher must reveal so that there is
a unique completion of the matrix? That is, until there is a unique completion of the partial
matrix, a mistake could be made on the next prediction.

We now prove an upper bound on the number of entries needed to uniquely define the
target matrix.

THEOREM 3.4. The number ofmistakes made with a helpful teacher as the director is at
most km + (n k)(k 1).

Proof. First the teacher presents the learner with one row of each type. For each of the
remaining n k rows the teacher presents an entry to distinguish the given row from each of
the k incorrect row types. After these km + (n k)(k 1) entries have been presented we
claim that there is a unique matrix with at most k row types that is consistent with the partial
matrix. Since all k distinct row types have been revealed in the first stage, all remaining rows
must be the same as one of the first k rows presented. However, each of the remaining rows
have been shown to be inconsistent with all but one of these k row templates. q

Is Theorem 3.4 the best such result possible? Clearly, the teacher must present a row of
each type. But, in general, is it really necessary to present k entries of the remaining rows
to uniquely define the matrix? We now answer this question in the affirmative by presenting
a matching lower bound.

THEOREM 3.5. The number ofmistakes made with a helpful teacher as the director is at
least min{nm, km + (n k)(k 1)}.

Proof. The adversary selects the following matrix. The first row type consists of all zeros.
For 2 < z < min{m + 1, k}, row type z contains z 2 zeros, followed by a one, followed by

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1015

m z / zeros. The first k rows are each assigned to be a different one of the k row types.
Each remaining row is assigned to be the first row type (see Fig. 3). Until there is a unique
completion of the partial matrix, by definition there exists a consistent learner that could make
a mistake. Clearly, if the learner has not seen each column of each row type, then the final
matrix is not uniquely defined. This part of the argument accounts for km mistakes. When
m + > k, for the remaining rows, unless all of the first k columns are known, there
is some row type besides the first row type that must be consistent with the given row. This
argument accounts for (n k)(k 1) mistakes. Likewise, when m + < k, if any of the first
m columns are not known then there is some row type besides the first row type that must be
consistent with the given row. This accounts for (n k)m mistakes. Thus the total number of
mistakes is at least min{nm, km + (n k)(k 1)}.

5 row
types

000600 00
100000000
010000000
001000000
000100000
000000000

000000000

FIG. 3. Matrix created by the adversary against the helpful teacher director. In this example five row types
appear in the firstfive rows of the matrix.

Because of the requirement that mistake bounds in the teacher-directed case apply to all
consistent learners, we note that it is possible to get mistake bounds that are not as good as those
obtained when the learner is self-directed. Recall that in 3.2 we proved a km + (n k) llg kJ
mistake bound for the learner director. This bound is better than that obtained with a teacher
because the learner uses a majority vote among the known row types for making predictions.
However, a consistent learner may use a minority vote and could thus make km+ (n k)(k 1)
mistakes.

3.5. Adversar)-directed learning. In this section we derive upper and lower bounds on
the number of mistakes made when the adversary is the director. We first present a stronger
information-theoretic lower bound on the number of mistakes an adversary can force the
learner to make. Next we present an efficient prediction algorithm that achieves an optimal
mistake bound if k < 2. We then consider the related problem of computing the minimum
number of row types needed to complete a partially known matrix. Finally, we consider
learning algorithms that work against an adversary for arbitrary k.

We now present an information-theoretic lower bound on the number of mistakes made
by any prediction algorithm when the adversary selects the query sequence. We obtain this
result by modifying the technique used in Theorem 3.1.

THEOREM 3.6. Any prediction algorithm makes at least min{nm, km+ (n k)llg kJ
mistakes against an adversary-selected query sequence.

Proof. The adversary starts by presenting all entries in the first /lg k] columns (or m
columns if m < /lg kJ) and by replying that each prediction is incorrect. If m > [lg kJ, this
step causes the learner to make n/lg kJ mistakes. Otherwise, this step causes the learner to

1016 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

make nm mistakes. Each row can now be classified as one of k row types. Next the adversary
presents the remaining columns for one row of each type, again replying that each prediction
is incorrect. For m > [lgkJ this step causes the learner to make k(m [lgkJ) additional
mistakes. For the remaining matrix entries the adversary replies as dictated by the completed
row of the same row type as the given row. So the number of mistakes made by the learner is
at least min{nm, n [lg kJ

Special case: k 2. "We now consider efficient prediction algorithms for learning the
matrix under an adversary-selected query sequence. (Recall that if efficiency is not a concern,
the halving algorithm makes at most km + (n k) lg k mistakes.) In this section we consider
the case in which k _< 2 and present an efficient prediction algorithm that performs optimally.

THEOREM 3.7. There exists a polynomial prediction algorithm that makes at most 2m
n 2 mistakes against an adversary-selected query sequencefor k 2.

Proof The algorithm uses a graph G whose vertices correspond to the rows of the matrix
and that initially has no edges. To predict mij the algorithm 2-colors the graph G and then
proceeds as follows:

1. If no entry of column j is known, it guesses randomly.
2. Else if every known entry of column j is zero (respectively, one), it guesses zero

(one).
3. Else it finds a row i’ assigned the same color as and known in column j, and it

guesses Mi,j.
Finally, after the prediction is made and the feedback received, the graph G is updated by
adding an edge ii’ to G for each row i’ known in column j for which Mij Mi,j. Note that
one of the above cases always applies. Also, since k 2, it will always be possible to find a
2-coloring.

How many mistakes can this algorithm make? It is not hard to see that cases and 2 each
occur only once for every column, and so there are at most m mistakes made in each of these
cases. Furthermore, the first case-2 mistake adds at least one edge to G. We now argue that
each case-3 mistake reduces the number of connected components of G by at least 1. We use
a woof by contradiction. That is, assume that a case-3 mistake does not reduce the number
of connected components. Then it follows that the edge e Vl v2 added to G must form a
cycle (see Fig. 4). We now separately consider the cases in which this cycle contains an odd
number of edges or an even number of edges.

v

FIG. 4. Situation that occurs if a case-3 mistake does not reduce the number of connected components of G.
The thick gray edges and the thick black edge show the cycle created in G. Let e (shown as a thick black edge) be
the edge added toform the cycle.

Case 1" Odd-length cycle. Since G is known to be 2-colorable, this case cannot occur.

Case 2: Even-length cycle. Before e is added, since Vl and v2 were connected by an odd
number of edges, in any legal 2-coloring they must have been different colors. Since step 3 of

LEARNING BINARY RELATIONS AND TOTAL ORDERS 10 17

the algorithm picks nodes of the same color, an edge could have never been placed between
vl and v2. Thus we again have a contradiction.

In both cases we reach a contradiction, and thus we have shown that every case-3 mistake
reduces the number of connected components of G. Thus after at most n 2 case-3 mistakes,
G must be fully connected and thus there must be a unique 2-coloring of G and no more
mistakes can occur. Thus the worst-case number of mistakes made by this algorithm is
2m+n-2.

Note that for k 2 this upper bound matches the information-theoretic lower bound of
Theorem 3.6. Also note that if there is only one row type, then the algorithm given in Theorem
3.7 makes at most m mistakes, matching the information-theoretic lower bound.

An interesting theoretical problem is to find a linear mistake bound for constant k >_ 3
when provided with a k-colorability oracle. However, such an approach would have to
be greatly modified to yield a polynomial prediction algorithm since a polynomial-time k-
colorability oracle exists only if 79 A/’79. Furthermore, even good polynomial-time approx-
imations to a k-colorability oracle are not known [5], 8].

The remainder of this section focuses on designing polynomial prediction algorithms for
the case in which the matrix has at least three row types. One approach that may seem promising
is to make predictions as follows: Compute a matrix that is consistent with all known entries
and that has the fewest possible row types; then use this matrix to make the next prediction.
We now show that even computing the minimum number of row types needed to complete a
partially known matrix is A/’79-complete. Formally, we define the matrix k-complexity problem
as follows" Given an n m binary matrix M that is partially known, decide if there is some
matrix with at most k row types that is consistent with M. The matrix k-complexity problem
can be shown to be A/’79-complete by a reduction from graph k-colorability for any fixed k > 3.

THEOREM 3.8. Forfixed k > 3 the matrix k-complexity problem is ./V’79-complete.
Proof. Clearly, this problem is in A/’79 since we can easily verify that a guessed matrix

has k row types and is consistent with the given partial matrix.
To show that the problem is A/’79-complete, we use a reduction from graph k-colorability.

Given an instance G (V, E) of graph k-colorability we transform it into an instance of the
matrix k-complexity problem. Let m n IV I, For each edge {vi, vj E we add entries
to the matrix so that row and row j cannot be the same row type. Specifically, for each vertex

vi we set Mii 0, and Mji for each neighbor vj of vi. An example demonstrating this
reduction is given in Fig. 5.

We now show that there is some matrix of at most k row types that is consistent with
this partial matrix if and only if G is k-colorable. We first argue that if there is a matrix M’
consistent with M that has at most k row types, then G is k-colorable. By construction, if two
rows are of the same type, there cannot be an edge between the corresponding nodes. So just
let the node color for each node be the type of the corresponding row in Mt.

Conversely, if G is k-colorable, then there exists a matrix M consistent with M that has
at most k row types. By the construction of M, if a set of vertices are the same color in G,
then the corresponding rows are consistent with each other. Thus there exists a matrix with at
most k row types that is consistent with M. [3

Row-filter algorithms. In this section we study the performance of a whole class of
algorithms designed to learn a matrix with arbitrary complexity k when an adversary selects
the query sequence. We say that an algorithm A is a row-filter algorithm if A makes its
prediction for Mij strictly as a function of j and all entries in the set I of rows consistent with
row and defined in column j. That is, A’s prediction is f (I, j), where f is some (possibly

3Two 2-colorings under renaming of the colors are considered to be the same.

1018 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

6(3 7

2 0 1
3 1 1 0
4
5 1
6

7 1

0 1o

G M

FIG. 5. Example ofthe reduction used in Theorem 3.8. Graph G is the instancefor the graph coloring problem,
and partial matrix M is the instance for the matrix complexity problem. Note that there exists a matrix that is a

completion of M that uses only three "row types. The corresponding 3-coloring of G is demonstrated by the node
colorings used in Go

probabilistic) function. So to make a prediction for Mij a row-filter algorithm considers all
rows that could be the same type as row and whose value for column j is known and uses
these rows in any way one could imagine to make a prediction. For example, it could take a
majority vote on the entries in column j of all rows that are consistent with row i. Or, of the
rows defined in column j, it could select the row that has the most known values in common
with row and predict according to its entry in column j. We have found that many of the
prediction algorithms we considered are row-filter algorithms.

Consider the simple row-filter algorithm ConsMajorityPredict, in which f (I, j) computes
the majority vote of the entries in column j of the rows in I. (Guess randomly in the case of
a tie.) Note that ConsMajorityPredict takes only time linear in the number of known entries
of the matrix to make a prediction. We now give an upper bound on the number of mistakes
made by ConsMajorityPredict.

THEOREM 3.9. The algorithm ConsMajorityPredict makes at most km + nv/(k 1)m
mistakes against an adversary-selected query sequence.

Proof For all let d(i) be the number of rows consistent with row i. We define the
potential of a partially known matrix to be -]i= d(i). We first consider how much the
potential function can change over the entire learning session.

LEMMA 3.10. The potentialfunction decreases by at most -Zl n2 during the learning
session.

Proof. Initially, for all i, d (i) = n. So (I)init n2. Let C(z) be the number ofrows oftype z
for < z < k. By definition, (Ifinal Z=I C(Z)2. Thus our goal is to minimize =1 C(z)2

kunder the constraint that z= C(z) n. Using the method of Lagrange multipliers, we

obtain that (I)final is minimized when for all z, C(z) n/k. Thus (I)final >_ ()2k -. So
(I) (I)init- (I)final < n2 n ---n2

k k
Now that the total decrease in over the learning session is bounded, we need to determine

how many mistakes can be made without decreasing by more than/---n2. We begin by
noting that is strictly nonincreasing. Once two rows are found to be inconsistent, they
remain inconsistent. So to bound the number of mistakes made by ConsMajorityPredict we
must compute a lower bound on the amount is decreased by each mistake. Intuitively, one
expects to decrease by larger amounts as more of the matrix is seen. We formalize this

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1019

intuition in the next two lemmas. For a given row type z let B(j, z) denote the set of matrix
entries that are in column j of a row of type z.

LEMMA 3.11. The rth mistake made when predicting an entry in B(j, z) causes to
decrease by at least 2(r 1).

Proof.. Suppose that this mistake occurs in predicting entry (i, j) where row is of type z.
Consider all the rows of type z. Since r mistakes have occurred in column j, at least r
entries of B (j, z) are known. Since ConsMajorityPredict is a row-filter algorithm, these rows
must be in I. Furthermore, ConsMajorityPredict uses a majority voting scheme, and thus if a
mistake occurs there must be at least r entries in I (and thus consistent with row i) that
differ in column j with row i. Thus if a mistake is made, row is found to be inconsistent
with at least r 1 rows it was thought to be consistent with. When two previously consistent
rows are found to be inconsistent, (P decreases by 2. Thus the total decrease in (P caused by
the rth mistake made when an entry is predicted in B(j, z) is at least 2(r 1). [3

From Lemma 3.11 we see that the more entries known in B (j, z), the greater the decrease
in (P for future mistakes on such entries. So intuitively it appears that the adversary can
maximize the number of mistakes made by the learner by balancing the number of entries
seen in B(j, z) for all j and z. We prove that this intuition is correct and apply it to obtain a
lower bound on the amount must have decreased after the learner has made/z mistakes.

LEMMA 3.12. After lZ mistakes are made, the total decrease in (P is at least km (-m 1)2.
Proof From Lemma 3.11, after the rth mistake in the prediction of an entry from B(j, z),

the total decrease in from its initial value is at least Y-=I 2(x 1) >_ (r 1)2. Let W(j, z)
be the number of mistakes made in column j of rows of type z. The total decrease in is at
least

m k

D (W(j, z) 1)2

j=l z=l

subject to the constraint jm=l ---1 W(j, z) lz.
Using the method ofLagrange multipliers, we obtain that D is minimized when W(j, z)

__u for all j and z. (Since any algorithm clearly must make km mistakes,/z > km and thuskm
Iz/km > 1.) So the total decrease in (I) is at least

k

(ll")2
j=l z=l

=km(-m -1)2

"We now complete the proof of the theorem. Combining Lemma 3.10 and Lemma 3.12, along
with the observation that is strictly nonincreasing, we have shown that

()2 k-1 2km -1 < n.
km k

This implies that tz _< km / n4’(k 1)m.
We note that by using the simpler argument that each mistake, except for the first mistake

in each column of each row type, decreases (I) by at least 2, we obtain a km / n2 mistake
bound for any row-filter algorithm. Also, Goldman and Warmuth [12] give an algorithm,
based on the weighted majority algorithm of Littlestone and Warmuth [20], that achieves an
0 (km + nv/m lg k) mistake bound. Their algorithm builds a complete graph of n vertices in
which row corresponds to vertex vi and all edges have initial weights of 1. To predict a value
for (i, j) the learner takes a weighted majority of all active neighbors of vi (v is active if Mkj
is known). After receiving feedback the learner sets the weight on the edge from vi to Vk to

1020 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

be 0 if Mkj Mij. Finally, if a mistake occurs, the leamer doubles the weight of (1)i, 13k) if
Mkj Mij (i.e., the edges to neighbors that predicted correctly). We note that this algorithm
is not a row-filter algorithm.

Does ConsMajorityPredict give the best performance possible by a row-filter algorithm?
We now present an information-theoretic lower bound on the number of mistakes an adversary
can force against any row-filter algorithm.

nTHEOREM 3.13. Any row-filter algorithmfor learning an n x m matrix with m > 7 and
k > 2 makes f2 (nv/--) mistakes when the adversary selects the query sequence.

Proof. We assume that the adversary knows the learner’s algorithm and has access to any
random bits the learner uses. (One can prove a similar lower bound on the expected mistake
bound when the adversary cannot access the random bits.)

x x X

X X X

X X X

X x

X x x

X x

X X

FG. 6. Projective geometryfor p 2, m’ 7.

Let m’ (p2 + p + 1) be the largest integer of the given form such that p is prime and
m’ < m. Without loss of generality we assume in the remainder of this proof that the matrix
has m’ columns, and we prove an g2 (n/-7) mistake bound. From Bertrand’s conjecture4 it
follows from this result that the adversary has forced f2 (n/-) mistakes in the original matrix.

Our proof depends on the existence of a projective geometry F on m’ points and lines [6].
That is, there exists a set of m’ points and a set of m’ lines such that each line contains exactly
p + points and each point is at the intersection of exactly p 4- lines. Furthermore, any pair
of lines intersects at exactly one point, and any two points define exactly one line. (The choice
of m’ p2 4- p 4- for p prime comes from the fact that projective geometries are known
to exist only for such values.) Figure 6 shows a matrix representation of such a geometry; an

"" in entry (i, j) indicates that point j is on line i. Let F’ denote the first [J lines of F.
Note that since m > 7, all entries of F’ are contained within M.

The matrix M consists of two row types: The odd rows are filled with ones and the even
rows with zeros. Two consecutive rows of M are assigned to each line of F’ (see Fig. 7). We
now prove that the adversary can force a mistake for each entry of F’. The adversary’s query

Fsequence maintains the condition that an entry (i, j) is not revealed unless line] of
contains point j. In particular, the adversary will begin by presenting one entry of the matrix
for each entry of F’. We prove that for each entry of F’ the learner must predict the same value
for the two corresponding entries of the matrix. Thus the adversary forces a mistake for the

[J (p 4- 1) [2 (n--7) entries of F’. The remaining entries of the matrix are then presented
in any order.

Let I be the set ofrows that may be used by the row-filter algorithm when it predicts entry
(2i, j). Let I’ be the set of rows that may be used by the row-filter algorithm when it predicts

4Bertrand’s conjecture states that for any integer n > 2 there exists a prime p such that n < p < 2n. Although
this is known as Bertrand’s conjecture, it was proved by Chebyshev in 1831.

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1021

o
1 1 1 1

0. N 0N0 0

1 1 1 1

0 0
1 i

0 0

1 1 N

FIG. 7. Matrix created by the adversary in the proof of Theorem 3.13. The shaded regions correspond to the
entries in Ft. The learner isforced to make a mistake on one of the entries in each shaded rectangle.

entry (2i 1, j). We prove by contradiction that I I’. If I 5 I’, then it must be the case
that there is some row r that is defined in column j and consistent with row 2i, yet inconsistent
with row 2i (or vice versa). By the definition of the adversary’s query sequence it must be

the case that lines [] and I (2/-1)]2 of F’ contain point j. Furthermore, since (2/- 1, j)

is being queried, that entry is not known. Thus rows r and 2i must both be known in
some other column j’ since they are known to be inconsistent. Thus since only entries in
F’ are shown, it follows that lines [] and of F’ also contain point j’ for j’ :/: j. So this

implies that lines [q and of F’ must intersect at two points, giving a contradiction. Thus
I I’, and so f(I, j) f(I’, j) for entry (2i, j) and entry (2i 1, j). Since rows 2i and
2i 1 differ in each column and the adversary has access to the random bits of the learner,
the adversary can compute f(I, j) just before making the query and then ask the learner to

predict the entry for which the mistake will be made. This procedure is repeated for the pair
of entries corresponding to each element of Ft.

n This bound, combinedWe use a similar argument to get an (mx/-ff) bound for rn < 7"
with the lower bound of Theorem 3.6 and Theorem 3.13, permits us to obtain a f2 (km + (n
k) [lg kJ + min{nx/, mx/-ff}) lower bound on the number of mistakes made by a row-filter
algorithm.

COROLLARY 3.14. Any row-filter algorithm makes 2 (km+(n-k) [lg kJ +min{nx/-, mx/-ff})
mistakes against an adversary-selected query sequence.

Comparing this lower bound to the upper bound proven for ConsMajorityPredict, we
see that for fixed k the mistake bound of ConsMajorityPredict is within a constant factor of
optimal.

Given this lower bound, one may question the 2m + n 2 upper bound for k 2 given in
Theorem 3.7. However, the algorithm described is not a row-filter algorithm. Also, compared
to our results for the learner-selected query sequence, it appears that allowing the learner to
select the query sequence is quite helpful.

3.6. Randomly directed learning. In this section we consider the case in which the
learner is presented at each step with one of the remaining entries of the matrix selected
uniformly and independently at random. We present a prediction algorithm that makes O (km+
nkr) mistakes on average, where H is the maximum Hamming distance between any two
rows of the matrix. We note that when H f2 () the result of Theorem 3.9 supersedes
this result. A key result of this section is a proof relating two different probabilistic models

1022 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

for analyzing the mistake bounds under a random presentation. We first consider a simple
probabilistic model in which the requirement that matrix entries are known is simulated by
assuming that each entry of the matrix is seen independently with probability t_L_. We then

nm
prove that any upper bound obtained on the number ofmistakes under this simple probabilistic
model holds under the true model (to within a constant factor) in which there are exactly
entries known. This result is extremely useful since in the true model the dependencies among
the probabilities that matrix entries are known makes the analysis significantly more difficult.

We define the algorithm RandomConsistentPredict to be the row-filter algorithm in which
the learner makes a prediction for Mij by choosing one row i’ of I uniformly at random and
predicting the value Mi,j. (If I is empty, then RandomConsistentPredict makes a random
guess.)

THEOREM 3.15. Let H be the maximum Hamming distance between any two rows of M.
Then the expected number ofmistakes made byRandomConsistentPredict is 0 (k(n/-+m).

Proof. Let Ut be the probability that the prediction rule makes a mistake on the (t 4- 1)st
step. That is, Ut is the chance that a prediction error occurs on the next randomly selected
entry, given that exactly other randomly chosen entries are already known. Clearly, the

S-1expected number of mistakes is t=0 Ut, where S nm. Our goal is to find an upper bound
for this sum.

The condition that exactly entries are known makes the computation of Ut rather messy
since the probability of having seen some entry of the matrix is not independent of knowing
the others. Instead, we compute the probability Vt of a mistake under the simpler assumption

independent of the rest of thethat each entry of the matrix has been seen with probability 3’
S-1matrix. We first compute an upper bound for the sum Yt=0 Vt, and we then show that this

S-1sum is within a constant factor of t=0 Ut.
S-1LEMMA 3.16. -t=0 Vt 0 (km 4- nkv/-).

Also, let d(i) be the number of rows of the same type asProof. Fix t, and let p 3"
row i. We bound V0 by trivially, and we assume henceforth that p > 0.

By definition, Vt is the probability of a mistake occurring when a randomly selected
unknown entry is presented, given that all other entries are known with probability p. Since

it follows thateach entry (i, j) is presented next with probability 3,

Wt

where Rij is the probability of a mistake occurring, given that entry (i, j) is unknown and is
presented next.

Let Iij be the random variable describing the set of rows consistent with row and known
in column j, and let Jij be the random variable describing the set of rows i’ in Iij for which
Mij =/: Mi,j. If Iij is nonempty, then the probability of choosing a row i’ for which Mij =/: Mi,j
is clearly Jij[/ lijl. Thus the probability of a mistake is just the expected value ofthis fraction,
if it is assumed that lij =/: 0.

Unfortunately, expectations of fractions are often hard to deal with. To handle this situ-
ation we therefore place a probabilistic lower bound on the denominator of this ratio, i.e., on
lij [. Note that if and i’ are of the same type, then the probability that i’ Iij is just the
chance p that (i’, j) is known. Since there are d(i) rows of type (including itself), we see
that Pr[llijl < y] is at most the chance that fewer than y of the other d(i) rows of the same
type as are in Iij. In other words, this probability is bounded by the chance of fewer than y
successes in a sequence of d(i) Bernoulli trials, each succeeding with probability p.

We use the following form of Chernoff bounds, due to Angluin and Valiant [3], to bound
this probability:

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1023

LEMMA 3.17. Consider a sequence ofm independent Bernoulli trials, each succeeding
with probability p. Let S be the random variable describing the total number of successes.
Thenfor 0 < < the following hold:

Pr[S < (1 ?,)mp] < e-’2mp/2,

and

Pr[S > (1 + ?’)mp] < e-V2mp/3.

Thus by letting y p(d(i) 1)/2 and applying this lemma, it follows that

Pr[lI/;I < p(d(i)- 1)/2] < e-p(d(i)-l)/8.

Note that this bound applies even if d(i) 1.
Thus we have

Rij <_ Pr[llijl < y] + E, ,lijl [Iij > y Pr[lli#l > y]

Pr[lI/al < y] +

< Pr[llijl < y] +

E[IJij[lIijl Y]

So to bound Rij it will be useful to bound E[I Ji I].
We have

EtlJijl]= Pr[i’elij].
i’i, MFjMij

Pr[]lial >_ y]

If Mij Mi,j, then Pr[i’ lij] is the chance that (i’, j) is known and that and i’ are
consistent. Entry (i’, j) is known with probability p, and and i’ are consistent if either

(i, j’) or (i’, j’) is unknown for each column j’ - j in which and i’ differ, if h(i, i’) is the
Hamming distance between rows and i’, then this probability is (1 p2)h(i,i’)-l.

Combining these facts, we have

Zi,#i,Mi,jMi p(1 p2)h(i,i’)-I
V, < - EE e-p(d(i)-l)/8 + - E E p(d(i)- 1)/2d(i)>- 2h(i, i’)(1 p2)h(i,i’)-Ie-P(d(i)-l)/8 +-d(i)>l i’i

d(i)Ft

S-1Recall that our goal is to upper bound the sum Yt=0 Vt. Applying the above upper bound for
Vt, we get

(1)

ZVt< Z e-
t=0 t=0 n

s- 2h(i, i’)
1-/, " E d(i) 1

t=0 d(i)>l

1024 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

We now bound the first part of the above expression. We begin by noting that

zS-,___., e-(t/S)(d(i)-l)/8 < +
t=0 n

i=1
n

i=1

e-(t S)(d(i)-)/8dt)
1(16S)_<- l+d---n

i=1

where this last bound follows by evaluating the integral in the two cases that d(i) and
d(i) > 1. This last expression equals

+ 16m
d(i)i=1

16km+ 1,

where the last step is obtained by rewriting the summation to go over all the row types: There
are d(i) terms for rows of the same type as row i; thus each row type contributes to the
summation.

We next bound the second part of expression (1). To complete the proof of the lemma it
suffices to show that

s- h(i’i)Z - Z Zd(i)_l
t--O d(i)> i’i

We begin by noting that this expression is bounded above by- - h(i, i’) (1 + foS(()2)
h(i’i’)-I

dt
S d(i)-d(i)> i’i

If h(i, i’) 1, then this integral is trivially evaluated to be S. Otherwise, by applying the
inequality e > + x we get

(2) (())h(i,i’)-I fo { (1]s 2 s 2

’)1- dt <_ exp (h(i,i -1) dt.

A standard integral table [13] gives

(3) exp (h(i, i’) l) dt
2/h(i, i’)

Combining these bounds, we have

(4) loS (l (t2)
h(i’i’)-I

dt <
S/-

/2h(i,i’)

for h(i, i’) > 1. Thus we arrive at an upper bound of

!
1 h(i, i’) [- Z d(i)_d(i)> i’i

1+ t)2

dt

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1025

2h(i,i’) (< i d(i)
1+

S
i’#i

)/2h(i, i’)

2m /h(i, i’)
< i -+/-i d(i)S

i’#i i’#i

O(nk/-).

This implies the desired bound. [3

To complete the theorem we prove the main result of this section, namely, that the upper
bound obtained under this simple probabilistic model holds (to within a constant factor) for
the true model. In other words, to compute an upper bound on the number of mistakes made
by a prediction algorithm when the instances are selected according to a uniform distribution
on the instance space, one can replace the requirement that exactly matrix entries are known
by the requirement that each matrix entry is known with probability mm"

LEMMA 3.18. -.tS__-0 Ut 0 (’.st_d V,).
Proof. We first note that

r--O

To see this, observe that for each r, where r is the number of known entries, we need only
multiply Ur by the probability that exactly r entries are known if it is assumed that each entry

Therefore,is known with probability of .
(5)

S-1

t=O r=O

Thus to prove the lemma it suffices to show that the inner summation is bounded below by a
positive constant. By symmetry assume that r < and let y S- r. Stirling’s approximation
implies that

Applying this formula to the desired summation, we obtain that

(6)
t=0

-’-I Y t--0 Y

S - r+x y-x Y

r y

The last step above follows by letting x r and reducing the limits of the summation. To
complete the proof that equation (6) is bounded below by a positive constant we need prove

1026 S.A. GOLDMAN, R, L. RIVEST, AND R. E. SCHAPIRE

only that

f()
r y

for all 1 < x < /ry/ S.
By using the inequality q- x < ex it can be shown that for -- y > O, -+- y > ey/(I+y)

We apply this observation to get that

r,-,,x __,X
y

(1*)r r

{x x}> exp
+ - 1 x

y

=exp{ rx yx}r+x y-x

--X2 (r + y)
=exp

(r+x)(y-x)

_Sx2 }=exp
(r + x)(y x)

Since x < /ry/S, it follows that Sx2 <_ ry. By applying this observation to the above
inequality it follows that

(r-l-x)r (Y-yX)Y Ir
> exp

(r
-ry }-+- x)(y x)

exp { --ry

ry + (y r)x x2

-ry]>_ exp ryry--

{_1}exp
1 X

Finally, we note that for S > 2, e-1/(1-1/S) e-2. This completes the proof of the
lemma. [3

Clearly, Lemma 3.16 and Lemma 3.18 together imply that y’tsf0 Ut O(km + nk/-),
giving the desired result. [3

This completes our discussion of learning k-binary-relations.

4. Learning a total order. In this section we present our results for learning a binary
relation on a set where it is known a priori that the relation forms a total order. One can view
this problem as that of learning a total order on a set of n objects where an instance corresponds
to comparing which of two objects is greater in the target total order. Thus this problem is
like comparison-based sorting, except for two key differences: We vary the agent selecting
the order in which comparisons are made (in sorting the learner does the selection), and we
charge the learner only for incorrectly predicted comparisons.

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1027

Before describing our results, we motivate this section with the following example. There
are n basketball teams that are competing in a round-robin tournament. That is, each team

will play all other teams exactly once. Furthermore, we make the (admittedly simplistic)
assumption that there is a ranking of the teams such that a team wins its match if and only if
its opponent is ranked below it. A gambler wants to place a $10 bet on each game: if he bets
on the winning team he wins $10 and if he bets on the losing team he loses $10. Of course,
his goal is to win as many bets as possible.

We formalize the problem of learning a total order as follows. The instance space Xn
n} x n }. An instance (i, j) in Xn is in the target concept if and only if object

precedes object j in the corresponding total order.
If computation time is not a concern, then the halving algorithm makes at most n lg n

mistakes. However, we are interested in efficient algorithms, and thus our goal is to design an
efficient version of the halving algorithm, in the next section we discuss the relation between
the halving algorithm and approximate counting. Then we show how to use an approximate
counting scheme to implement a randomized version of the approximate halving algorithm,
and we apply this result to the problem of learning a total order on a set of n elements. Finally,
we discuss how a majority algorithm can be used to implement a counting algorithm.

4.1. The halving algorithm and approximate counting. In this section we review the
halving algorithm and approximate counting schemes. We first cover the halving algorithm
[4], 19]. Let) denote the set of concepts in C,, that are consistent with the feedback from
all previous queries. Given an instance x in Xn, for each concept in 12 the halving algorithm
computes the prediction ofthat concept for x and predicts according to the majority. Finally, all
concepts in l that are inconsistent with the correct classification are deleted. Littlestone 19]
shows that this algorithm makes at mostlglC mistakes. Now suppose the prediction algorithm
predicts according to the majority of concepts in set 12’, the set of all concepts in Cn consistent
with all incorrectly predicted instances. Littlestone [19] also proves that this space-efficient
halving algorithm makes at most lglCn mistakes.

We define an approximate halving algorithm to be the following generalization of the
halving algorithm. Given instance x in Xn, an approximate halving algorithm predicts in

agreement with at least q)IVl of the concepts in for some constant 0 < p < .
THEOREM 4.1. An approximate halving algorithm makes at most lOg(l_e- ICn mistakes

for learning Cn.
Proof Each time a mistake is made, the number of concepts that remain in 12 are reduced

by a factor of at least 1 q). Thus after at most log(l_0_ Cn mistakes there is only one

consistent concept left in Cn. U
We note that the above result holds also for the space-efficient version of the approximate

halving algorithm.
When we are given an instance x Xn, one way to predict as dictated by the halving

algorithm is to count the number of concepts in 12 for which c(x) 0 and for which c(x)
and then to predict with the majority. As we shall see, by using these ideas we can use an

approximate counting scheme to implement the approximate halving algorithm.
We now introduce the notion of an approximate counting scheme for counting the number

of elements in a finite set $. Let x be a description of a set Sx in some natural encoding.
An exact counting scheme on input x outputs ISxl with probability 1. Such a scheme is

polynomial if it runs in time polynomial in Ix I, Sometimes exact counting can be accomplished
in polynomial time; however, many counting problems are #P-complete and thus are assumed
to be intractable. (For a discussion of the class #79 see Valiant [26].) For many #P-complete
problems good approximations are possible [16], [24], [25]. A randomized approximation
scheme R for a counting problem satisfies the following condition for all , 3 > 0:

1028 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

Pr
(1+)

where R(x, , 3) is R’s estimate on input x, , and 3. In other words, with high probability,
R estimates ISxl within a factor of + . Such a scheme is fully polynomial if it runs in time

and lgpolynomial in Ix I, , . For further discussion see Sinclair [24].
We now review work on counting the number of linear extensions of a total order. That is,

given a partial order on a set of n elements, the goal is to compute the number of total orders
that are linear extensions of the given partial order. We discuss the relationship between this
problem and that of computing the volume of a convex polyhedron. (For more details on
this subject, see Lovfisz [21, 2.4].) Given a convex set S and an element a of)]n, a weak
separation oracle either (i) asserts that a 6 S or (ii) asserts that a ’ S and supplies a reason
why. In particular, for closed convex sets in 9n, if a ’ S, then there exists a hyperplane
separating a from S. So if a ’ S, the oracle responds with such a separating hyperplane as
the reason why a ’ S.

We now discuss how to reduce the problem of counting the number of extensions of
a partial order on n elements to that of computing the volume of a convex n-dimensional
polyhedron given by a separation oracle. The polyhedron built in the reduction will be a
subset of [0,]n (i.e., the unit hypercube in tn), where each dimension corresponds to one
of the n elements. Observe that any inequality xi > xj defines a half-space in [0, 1]n. Let
A (t) denote the polyhedron obtained by taking the intersection of the half-spaces given by
the inequalities of the partial order t. (See Fig. 8 for an example with n 3.) For any pair

x (O.l,i)
(Id.i)

(o,od)

(i.l.O)

(o.o,o) (1 .o.o)

FIO. 8. Polyhedronformed by the total order z > y > x.

of total orders tl and t2 the polyhedra A(tl) and A(t2) are simplices that intersect only in a
face (zero volume): A pair of elements, say, xi and xj, that are ordered differently in tl and tg.

(such a pair must exist) define a hyperplane xi xj that separates A (tl) and A (t). Let Tn be
the set of all n! total orders on n elements. Then

(7) [0,]n U A(t).
6Tn

In other words, the union of the polyhedra associated with all total orders yields the unit
hypercube. We have already seen that polyhedra associated with the 6 Tn are disjoint. To

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1029

see that they cover all of [0, In observe that any point y 6 [0, 1]n defines some total order
t, and clearly y 6 A(t). Let P be a partial order on a set of n elements. From equation (7)
and the observation that the volumes of the polyhedra formed by each total order are equal,
it follows that the volume of the polyhedron defined by any total order is . Thus it follows
that for any partial order P

(8)
number of extensions of P

volume of A(P).
n!

Rewriting equation (8), we obtain that

(9) number of extensions of P n!. (volume of A(P)).

Finally, we note that the weak separation oracle is easy to implement for any partial order.
Given inputs a and S, it just checks each inequality of the partial order to see whether a is in
the convex polyhedron S. If a does not satisfy some inequality, then it replies that a (S and
returns that inequality as the separating hyperplane. Otherwise, if a satisfies all inequalities,
it replies that a 6 S.

Dyer, Frieze, and Kannan 10] give a fully polynomial randomized approximation scheme
(fpras) for approximating the volume of a polyhedron, given a weak separation oracle. From
equation (9) we see that this fpras for estimating the volume of a polyhedron can be easily
applied to estimating the number of extensions of a partial order. Furthermore, Dyer and
Frieze [9] prove that it is #P-hard to exactly compute the volume of a polyhedron given either
by a list of its facets or its vertices.

Independently, Matthews [22] has described an algorithm to generate a random linear
extension of a partial order. Consider the convex polyhedron K defined by the partial order.
Matthew’s main result is a technique to sample nearly uniformly from K. Given such a
procedure to sample uniformly from K, one can sample uniformly from the set ofextensions of
a partial order by choosing a random point in K and then selecting the total order corresponding
to the ordering of the coordinates of the selected point. A procedure to generate a random
linear extension of a partial order can then be used repeatedly to approximate the number of
linear extensions of a partial order [22].

4.2. Application to learning. We begin this section by studying the problem of learning
a total order under teacher-directed and self-directed learning. Then we show how to use an
fpras to implement a randomized version of the approximate halving algorithm, and we apply
this result to the problem of learning a total order on a set of n elements.

Under the teacher-selected query sequence we obtain an n mistake bound. The teacher
can uniquely specify the target total order by giving the n 1 instances that correspond to
consecutive elements in the target total order. Since n 1 instances are needed to uniquely
specify a total order, we get a matching lower bound. Winkler [28] has shown that under the
learner-selected query sequence, one can also obtain an n mistake bound. To achieve this
bound the learner uses an insertion sort, as described, for instance, by Cormen, Leiserson,
and Rivest [8], where for each new element the learner guesses it is smaller than each of the
ordered elements (starting with the largest) until a mistake is made. When a mistake occurs,
this new element is properly positioned in the chain. Thus at most n mistakes will be made
by the learner. In fact, the learner can be forced to make at least n 1 mistakes. The adversary
gives feedback by using the following simple strategy: The first time an object is involved in
a comparison, reply that the learner’s prediction is wrong. In doing so, one creates a set of
chains, where a chain is a total order on a subset of the elements. If c chains are created by this

1030 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

process, then the learner has made n c mistakes. Since all these chains must be combined
to get a total order, the adversary can force c additional mistakes by always replying that
a mistake occurs the first time that elements from two different chains are compared. (It is
not hard to see that the above steps can be interleaved) Thus the adversary can force n 1
mistakes.

Next we consider the case in which an adversary selects the query sequence. We first
prove an f2 (n lg n) lower bound on the number of mistakes made by any prediction algorithm.
We use the following result of Kahn and Saks [17]: Given any partial order P that is not a
total order there exists an incomparable pair of elements xi,xj such that

3 number of extensions of P with X Xj 8

11 number of extensions of P 11

So the adversary can always pick a pair of elements, so that regardless of the learner’s pre-
diction, the adversary can report that a mistake was made while only eliminating a constant
fraction of the remaining total orders.

Finally, we present a polynomial prediction algorithm making n lg n + (lg e)lg n mistakes
with very high probability. We first show how to use an exact counting algorithm R, for
counting the number of concepts in Cn consistent with a given set of examples, to implement
the halving algorithm.

LEMMA 4.2. Given a polynomial algorithm R to exactly count the number ofconcepts in

Cn consistent with a given set E of examples, one can construct an efficient implementation
of the halving algorithmfor Cn.

Proof. We show how to use R to efficiently make the predictions required by the halving
algorithm. To make a prediction for an instance x in Xn the following procedure is used:
Construct E- from E by appending x as a negative example to E. Use the counting algorithm
R to count the number of concepts C- 6 V that are consistent with E-. Next, construct E+

from E by appending x as a positive example to E. As before, use R to count the number of
concepts C+ 6 V that are consistent with E+. Finally, if IC-I IC/I, then predict that x is
a negative example; otherwise, predict that x is a positive example.

Clearly, a prediction is made in polynomial time, since it only requires calling R twice.
It is also clear that each prediction is made according to the majority of concepts in V. [3

We modify this basic technique to use an fpras instead of the exact counting algorithm
to obtain an efficient implementation of a randomized version of the approximate halving
algorithm, in doing so, we obtain the following general theorem describing when the existence
of an fpras leads to a good prediction algorithm. We then apply this theorem to the problem
of learning a total order.

THEOREM 4.3. Let R be anfprasfor counting the number ofconcepts in Cn consistent with
a given set E ofexamples. IflXl is polynomial in n, one can produce a prediction algorithm

and makes at most lg ICnl(1 + 1_)thatfor any 3 > 0 runs in time polynomial in n and lg
mistakes with probability at least 1 3.

Proof. The prediction algorithm implements the procedure described in Lemma 4.2 with
the exact counting algorithm replaced by the fpras R (n, g,). Consider the prediction for
an instance x Xn. Let l be the set of concepts that are consistent with all previous instances.
Let r+ (respectively, r-) be the number of concepts in 12 for which x is a positive (negative)
instance. Let ;+ (respectively, -) be the estimate output by R for r+ (r-). Since R is an
fpras, with probability at least 1

F- ?’+<;- <(l+)r- and <r+ < (l+)r+,
1+ 1+

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1031

where +/-. Without loss of generality assume that the algorithm predicts that x is a
n

negative instance and thus ;- > ;+. Combining the above inequalities and the observation
that r- + r+ IVI, we obtain that r- _> l+(l_t_e)2.IVl

We define an appropriate prediction to be a prediction that agrees with at least IVI
l+(i+e)

of the concepts in V. To analyze the mistake bound for this algorithm we suppose that each
prediction is appropriate. For a single prediction to be appropriate, both calls to the fpras R
must output a count that is within a factor of + e of the true count. So any given prediction
is appropriate with probability at least ITI’ and thus the probability that all predictions
are appropriate is at least

IXnl 1-N.

Clearly, if all predictions are appropriate, then the above procedure is in fact an implementation
of the approximate halving algorithm with q9 1+(1+)2, and thus by Theorem 4.1 at most

and simplifying thelog(l_ol-, Cn[mistakes are made. Substituting e with its value of g
expression, we obtain that with probability at least 6

lg ICl(1 0) number of mistakes <
lg 1__1

lg ICnl

n 2Since n2/Zn+l >- n’

n2

1-

lg(l+l-n2-)

l+lg(1- 1/4)
lg(1 1/4)

l+lg(1- 1/4)"
and + lg (1 lgBy applying the inequalities lg (1) _> n-1 g) _< -h-- it follows that

lg(1-) > n--1
lge

-lge
n- 1- n---211g e
-lge

Finally, applying these inequalities to equation (10) yields that

lg Ifnlnumber of mistakes <
lg + n2+2n+l

lge)_<lglCnl 1+

Note that we could modify the above proof by not requiring that all predictions be appro-
priate. In particular, if we allow , predictions not to be appropriate, then we get a mistake

bound oflglCn[l+--if- +g.

1032 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

We now apply this result to obtain the main result of this section. Namely, we describe
a randomized polynomial prediction algorithm for learning a total order in the case in which
the adversary selects the query sequence.

THEOREM 4.4. There exists a prediction algorithm A for learning total orders such that
on input (for all > 0), andfor any query sequence provided by the adversary, A runs in
time polynomial in n and lg 1/2 and makes at most n lg n + (lg e)lg n mistakes with probability
at least 8.

Proof We apply the results of Theorem 4.3 by using the fpras for counting the number
of extensions of a partial order given independently by Dyer, Frieze, and Kannan 10] and by
Matthews [22]. We know that with probability at least the number of mistakes is at most
lg ICnl(1 q- lge). Since]Cnl n!, the desired result is obtained.

We note that the probability that A makes more than n lg n + (lg e)lg n mistakes does not

depend on the query sequence selected by the adversary. The probability is taken over the
coin flips of the randomized approximation scheme.

Thus, as in learning a k-binary-relation by using a row-filter algorithm, we see that a
learner can do asymptotically better with self-directed learning than with adversary-directed
learning. Furthermore, whereas the self-directed learning algorithm is deterministic, here the
adversary-directed algorithm is randomized.

As a final note, observe that we have just seen how a counting algorithm can be used to

implement the halving algorithm. In her thesis Goldman 11 has described conditions under
which the halving algorithm can be used to implement a counting algorithm.

5. Conclusions and open problems. We have formalized and studied the problem of
learning a binary relation between two sets of objects and between a set and itself under an
extension of the on-line learning model. We have presented general techniques to help develop
efficient versions ofthe halving algorithm. In particular, we have shownhow a fully polynomial
randomized approximation scheme can be used to efficiently implement a randomized version
of the approximate halving algorithm. We have also extended the mistake bound model by
adding the notion of an instance selector. The specific results are summarized in Table 2.
In this table all lower bounds are information-theoretic bounds and all upper bounds are for
polynomial-time learning algorithms. Also, unless otherwise stated, the results listed are for
deterministic learning algorithms.

From Table 2 one can see that several of the above bounds are tight and several others
are asymptotically tight. However, for the problem of learning a k-binary-relation there is
a gap in the bound for the random and adversary (except k < 2) directors. Note that. the
bounds for row-filter algorithms are asymptotically tight for k constant. Clearly, if we want
asymptotically tight bounds that include a dependence on k, we cannot use only two row types
in the matrix used for the projective geometry lower bound.5

For the problem of learning a total order all the above bounds are tight or asymptotically
tight. Although the fully polynomial randomized approximation scheme for approximating
the number of extensions of a partial order is a polynomial-time algorithm, the exponent on n is
somewhat large and the algorithm is quite complicated. Thus an interesting problem is to find
a practical prediction algorithm for the problem of learning a total order. Another interesting
direction of research is to explore other ways of modeling the structure in a binary relation.
Finally, we hope to find other applications of fully polynomial randomized approximation
schemes to learning theory.

5Chen [7] has recently extended the projective geometry argument to obtain a lower bound of (nv/m lg k) for

rn > nlgk.

LEARNING BINARY RELATIONS AND TOTAL ORDERS 1033

TABLE 2
Summary of results.

Concept Lower Upper
class Director bound bound Notes

Learner + (n)[lgk lJ km+ (n k) Llg k

Teacher km + (n k) (k 1) km + (n k) (k 1)

Binary relation Adversary km + (n k) [lg kJ O(km+n lg k) Due to M. Warmuth

(k row types) Adversary 2m + 2 2m + 2 k 2

/-
Adversary f2(km+(n-k) lgk+min{n/, mq/-ff}) km + nv/(k 1)m Row-filter algorithm

kmUniform dist. -- + (n)[lg k 1J O (km + nk/-) Avg. case, row-filter alg.

Teacher

Total order Learner n Due fo P. Winkler

Adversary f2 (n lg n) lg + (lg e) lg Randomized algorithm

aNote that if computation time is not a concern, we have shown that the halving algorithm makes at most km + (n k) lg k
mistakes.

Acknowledgments. The results in 4 were inspired by an open problems session led
by Manfred Warmuth at our weekly Machine Learning Reading Group meeting, where he
proposed the basic idea of using an approximate halving algorithm based on approximate and
probabilistic counting and also suggested the problem of learning a total order on n elements.
We thank Tom Leighton for helping to improve the lower bound of Theorem 3.13. We also
thank Nick Littlestone, Bob Sloan, and Ken Goldman for their comments.

REFERENCES

[1] D. ANGLUIN, Learning regular sets from queries and counterexamples, Inform. and Comput., 75 (1987), pp.
87-106.

[2] Queries and concept learning, Mach. Learning, 2 (1988), pp. 319-342.
[3] D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J.

Comput. System Sci., 18 (1979), pp. 155-193.
[4] J. BARZDIN AND R. FREIVALD, On the prediction ofgeneral recursivefunctions, Soviet Math. Dok., 13 (1972),

pp. 1224-1228.
O4[5] A. BLtM, An O(n)-approximation algorithm for 3-coloring, in Procceedings of the Twenth First Annual

ACM Symposium on Theory of Computing, 1989, pp. 535-542.
[6] R. CARMICHAEL, Introduction to the Theory ofGroups ofFinite Order, Dover, New York, 1937.
[7] W. CHEN, personal communication, 1991.
[8] T. H. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press/McGraw-Hill,

Cambridge, MA, 1990.
[9] M. DYER AND A. FRIEZE, On the complexity of computing the volume of a polyhedron, SIAM J. Comput., 17

(1988), pp. 967-974.
10] M. DYER, A. FRIEZE, AND R. KANNAN, A random polynomial-time algorithmfor approximating the volume of

convex bodies, J. Assoc. Comput. Mach., 38 (1991), pp. 1-I7.
11 S.A. GOLDMAN, Learning Binary Relations, Total Orders, and Read-once Formulas, Ph.D. thesis, Department

ofElectrical Engineering and Computer Science, Massachusetts Institute ofTechnology, Cambridge, MA,
1990.

12] S.A. GOLDMAN AND M. K. WARMUTH, Learning binary relations with weighted majority voting, Proc. of the
Sixth Annual Workshop on Computational Learning Theory, July 1993, to appear.

[13] T. GRADSITEYN AND I. RYZHIK, Tables oflntegral, Series, and Products, Academic Press, New York, 1980;
corrected and enlarged edition by A. Jeffrey.

1034 S.A. GOLDMAN, R. L. RIVEST, AND R. E. SCHAPIRE

[14] D. HAUSSLER, M. KEARNS, N. LITTLESTONE, AND M. K. WARMUTH, Equivalence of models for polynomial
learnability, Information and Computation, 95 (1991), pp. 129-161.

[15] D. HAUSSLER, N. LITTLESTONE, AND M. WARMUTH, Expected mistake boundsfor on-line learning algorithms,
unpublished manuscript, 1988.

[16] M. JERRUM AND A. SINCLAIR, Approximating the permanent, SIAM J. Comput., 18 (1989), pp. 1149-1178.
[17] J. KAHN AND M. SAKS, Balancing poset extensions, Order, (1984), pp. 113-126.
18] N. LINIAL AND U. VAZIRANI, Graph products and chromatic numbers, in Proceedings of the 30th Annual IEEE

Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1989, pp.
124-128.

19] N. LITTLESTONE, Learning when irrelevant attributes abound: A new linear-threshold algorithm, Mach. Learn-
ing, 2 (1988), pp. 285-318.

[20] N. LITTLESTONE AND M. K. WARMUTH, The weighted majority Algorithm, in Proceedings of the 30th Annual
IEEE Symposium on Foundations ofComputer Science, IEEE Computer Society, Washington, DC, 1989,
pp. 256-261. To appear in Information and Computation.

[21] L, LovAsz, An algorithmic theory of numbers, graphs and convexity, in CBMS-NSF Regional Conference
Series on Applied Mathematics, Philadelphia, PA., 1986.

[22] E MATTHEWS, Generating a random linear extension ofa partial order, Ann. Prob., 19 (1991), pp. 1367-1392.
[23] R.L. RIVEST AND P. SLOAN, Learning complicated concepts reliability and usefully, in Proceedings of the 1988

Workshop on Computational Learning Theory, Morgan Kaufmann, San Mateo, CA, 1988, pp, 69-79.
[24] A. SINCLAIR, Randomised Algorithms for Counting and Generating Combinatorial Structures, Ph.D. thesis,

Department of Computer Science, University of Edinburgh, Edinburgh, Scotland, U.K., 1988.
[25] L. STOCKMEYER, An approximation algorithmfor # P, SIAM J. Comput., 14 (1985), pp. 849-861.
[26] L. VALIANT, The complexity ofcomputing the permanent, Theoret. Comput. Sci., 8 (1979), pp. 198-201.
[27] ,A theory ofthe learnable, Comm. ACM, 27 (1984), pp. 1134-1142.
[28] P. WINKLER, personal communication, 1989.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 1035-1052, October 1993

() 1993 Society for Industrial and Applied Mathematics
008

DRAWING GRAPHS IN THE PLANE WITH HIGH ,RESOLUTION*

M. FORMANNt, T. HAGERUPt, J. HARALAMBIDES, M. KAUFMANN, E T. LEIGHTON1,
A. SYMVONIS2, E. WELZLt, AND G. WOEGINGER

Abstract. This paper presents the problem of drawing a graph in the plane so that edges appear as straight lines
and the minimum angle formed by any pair of incident edges is maximized. The resolution of a layout is defined
to be the size of the minimum angle formed by incident edges of the graph, and the resolution ofa graph to be the
maximum resolution of any layout ofthe graph. The resolution R of a graph is characterized in terms of the maximum

2r for any graph. Moreover, it is proved that R (R) ()node degree d of the graph by proving that f2 (b) -< R _< 7"
for many graphs including planar graphs, complete graphs, hypercubes, multidimensional meshes and tori, and other

special networks. It is also shown that the problem of deciding if R - for a graph is NP-hard for d 4, and by
log dusing a counting argument that R 0 d-dr-) for many graphs.

Key words, coloring, graph layout, resolution, square graph

AMS subject classifications. 05C15, 05C85, 68Q25, 68R10, 05C99

1. Introduction. Graph layout problems have been extensively studied in a wide variety
of contexts. Examples include both linear 12], 19] and planar], [2], [4], [7], [9], 10], 13],
15]-[18] layout problems. Typically, nodes are represented by distinct points to be embedded

in a line or plane, and they are sometimes restricted to be grid points. (Alternatively, nodes
are sometimes represented by line segments [13]). Edges are often constrained to be drawn as
straight lines [4], [6], [9], [10], [13], [15] or as a contiguous set of line segments [1], [7], [16],
18] (e.g., when bends are allowed). The objective is to find a layout for a graph that minimizes
some cost function, such as area [1], [7], [15], number of edge crossings [1], maximum edge
length [1], [2], number of bends [1], [7], [13], [16], visual complexity [17], density [9], [10],
and so on. Note that the above references on graph layout algorithms form a representative
set, but are far from complete. In [3], a survey on graph layout problems is given. For a
list of references on graph drawing algorithms, see the annotated bibliography by Eades and
Tamassia [5]. In 14], the same cost function as in this paper was investigated heuristically
for planar graphs.

In this paper, we consider straight line layouts of graphs in the plane. Specifically, we
introduce a new cost function for such layouts, called resolution. We define the resolution of
a layout of the graph to be the size of the minimum angle formed by any two edges incident to
a common node (the angles formed by crossing edges are not taken into account). We define
the resolution of a graph to be the maximum resolution of any (straight line) layout for the

*Received by the editors February 19, 1991; accepted for publication (in revised form) June 3, 1992.
tlnstitut ftir Informatik, Fachbereich Mathematik, Freie Universitit Berlin, D-1000 Berlin 33, Germany. This

author’s research was partially supported by the ESPRIT II Basic Research Actions Program of the EC contract 3075
(project ALCOM).

Fachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbrticken, Germany. This author’s research was
partially supported by the ESPIRIT II Basic Research Actions Program of the EC contract 3075 (project ALCOM).

Department of Computer Science, Barry University, Miami Shores, Florida 33161.
Fachbereich Informatik, Universitit des Saarlandes, D-6600 Saarbrticken, Germany. This author’s research was

supported by the DFG, Sonderforschungsbereich 124, Teilprojekt B2 (VLSI-Entwurfsmethoden und Parallelitit).
1Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of Technology, Cam-

bridge, Massachusetts 02139. This author’s research was supported by Air Force Office of Scientific Research contract
AFOSR-89-0721, Defense Advanced Research Projects Agency contract N00014-87-K-825, Army Research Office
contract DAAL-03-86-K-0171, and the Clear Center at UTD.

2Basser Department of Computer Science, University of Sydney, Sydney N.S.W. 2006, Australia.
Institut ftir Mathematk, Technical University ofGraz, Kopernikusgasse 24, A-8010 Graz, Austria. This author’s

research was supported by the Fonds zur F6rderung der Wissenschaftlichen Forschung (FWF), Project $32/01.

1035

1036 FORMANN ET AL.

graph in the plane. For example, the resolution of K3 (the 3-node complete graph) is . Our
objective in this paper is to find layouts for graphs with the highest possible resolution.

2rr OfAn obvious upper bound on the resolution of a graph with maximum degree d is y.
course, this bound is not tight for many graphs. (For example, d 2 for K3 but the resolution
is -.) Unfortunately, we will show that the problem of determining whether or not a graph

9.,r is NP-hard, at least in the case d 4. Whetherwith maximum degree d has resolution -d-
or not the resolution problem is in NP is still unknown. Determining the precise complexity
of the problem is complicated by the fact that there are simple 11-node graphs (such as that
shown in Fig. 1) for which there is a layout with resolution - for any > 0, but for which

These difficulties can be overcome by restricting thethere is no layout with resolution -.
problem so that the nodes of the graph are required to be placed at distinct grid points in a grid
of a fixed size (e.g., N x N), in which case the resolution of any N-node graph becomes a well
defined NP-complete problem. We will consider both grid-based and unrestricted layouts in
this paper.

Fwo vertices

FIG. 1. An 11-node graphfor which there is a layout with resolution e for any > O, butfor which there
is no layout with resolution -.

On the positive side, we can prove nearly tight bounds on the resolution for many natural
classes of graphs. For example, we prove that any planar graph with maximum degree d
has resolution (R)(). We also prove similar bounds for special networks like the hypercube,
torus, complete graph, and others. We construct a layout for an arbitrary graph with maximum
degree d that has resolution f2 (). Hence, the resolution of any bounded-degree graph is
constant, independent of the number of nodes in the graph. Whether or not there exists a
family of graphs with maximum degree d and resolution (R)(2r) is still unknown. Natural
candidates for graphs with low resolution such as the (d2 d 4- 1)-point projective plane and

dthe (+ 1) x (7 + 1) mesh of cliques (both of which are d-regular) have resolution (R) ().
We do not even know of any simply constructible family of graphs with maximum degree d
that has resolution o(2), although, using a counting argument, we can prove the existence of

log dmany graphs with maximum degree d and resolution O a2). Hence, the S2 (2r) worst-case
lower bound is not to far from reality for many graphs.

Several of our constructions are based on the close relationship between the chromatic
number ofthe square ofa graph and its resolution. In particular, we will show that the resolution
of any graph G is at least e for any e > 0, where X (G2) denotes the chromatic number

of G2. (The graph G2 is formed from G by connecting pairs of nodes that are within distance
2 of each other in G.) Moreover, we will show that the resolution of any N-node graph G is
f2 (), even if we are restricted to position the nodes of G at distinct grid points of a square
grid with area O(x(GZ)3N). Hence, we can produce linear area layouts (in the sense of [1],
[7], 18]) that have constant resolution for any bounded-degree graph.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1037

Our (R)(2) bound on the resolution of any planar graph with maximum degree d, in
particular, stems from the fact that the square of any planar graph with maximum degree d has
chromatic number O (d). In this paper, we show an upper bound of d + O(d2/3), which is

close to the best known existential lower bound of 23-d. (The lower bound is provided by the
graph shown in Fig. 2.) The exact worst-case bound remains an unsolved problem.

d/2 nodes
d/2 nodes

d/2 nodes

3dFIG. 2. Example ofa planar graph with maximum degree dfor which x(G2) > W.

Our interest in the problem of maximizing resolution stems largely from the fact that
resolution seems to be a natural property of graphs that was previously (to our knowledge)
unexplored. In addition, the resolution problem is related to problems that arise in network
communication via optic beams [8], 1]. For example, consider a network in which each
node represents a processor that can communicate via optical beams with its neighbors in
the graph. By maximizing the resolution of the layout, we simplify the task of designing the
processor and the task of recognizing one’s neighbors. (It is hard to send or receive at very
tight angles for a unit size processor.) Similar applications might arise in radio networks that
make use of directional antennas.

The remainder ofthe paper is divided into sections as follows: In 2, we examine graphs of
maximum degree 4 and prove that it is NP-hard to decide if we can draw them with resolution. In 3, we first present an algorithm for general graph layouts. We then consider the case of
planar graphs. Finally, because of their importance, we consider layouts of special networks.
In 4, we present an upper bound on the resolution of random graphs. Section 5 contains some
remarks and additional topics for research.

2. NP-hardness. Given a graph with maximum degree d, we know that its optimum
2, In what follows, we show that theembedding on the plane can have resolution at most -d-"

problem of deciding whether a graph of maximum degree d has an embedding on the plane
2, is NP-hard in the case d 4.with resolution -d-

THEOREM 1. Given a graph G ofmaximum degree 4, the decision problem ofwhether or
not G can be embedded in the plane with resolution - is NP-hard.

Proof. The proof is done by a reduction from 3-SAT. Let S be a formula in 3-CNF, let
U {Xl, X2, X3 Xn} be the variables occurring in S, and let C {Cl, c2, c3 Ck} be

1038 FORMANN ET AL.

the clauses in S, such that every clause c.6 C consists of exactly three literals. We construct

a graph G of maximum degree 4 that is embeddable with resolution if and only if S is
satisfiable.

The skeleton of G is given in Figure 3(a). For each variable xi, < n, there is a
node in the skeleton. The same holds for each clause cj, 1 < j <_ k. Observe that up to
reflections, rotations, and stretchings, the embedding of G with resolution (if there is any)
essentially has to look like the one in Fig. 3(a). Now we append at each node xi the tower of
Fig. 3(b). For each such tower, there are two possible embeddings (in relation to the skeleton)"
The negated nodes to the left and the nonnegated nodes to the right, or vice versa. Finally, for
each clause Cj {Xi, Xk, X }, we connect the node Cj to the nodes Xi, j, Xk,j, and Xl,j (or to the
corresponding negated nodes, if the literals are negated) by a path consisting of three edges
(Fig. 3(c)).

Line L

b)

X .j.

Cj

FIG. 3. The components used in the NP-hardness proof.

r then we can find a truthWe claim that if there is an embedding of G with resolution -,
assignment for S. We make the following observations:

Observation 1. All nodes cj, <_ j <_ k, have to be embedded to the right of line L (see
Fig. 3(a)).

Observation 2. All nodes on the left side of a tower have to be embedded to the left of
line L.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1039

Observation 3. A path of length 3 that leaves cj in the eastern direction can never reach
any node on the !eft side of any tower (Fig. 3(d)).

Observation 4. A path of length 3 that leaves cj in the southern or the northern direction
can reach any node, on the left or on the right, or any tower (Fig. 3(e)).

Observation 5. A path of length 3 that leaves cj in the eastern direction can reach any
node on the right side ,of any tower (Fig. 3(f)).

With the above observations in mind, the rest of the proof is obvious: If the negated nodes
-i,j, <_ j <_ k, are embedded on the left side of the tower at xi, then xi is set to TRUE. If
the nonnegated nodes xi,j, <_ j < k, are embedded on the left side, then xi is set to FALSE.
To see why the above assignment satisfies S, consider any embedded node cj. There are three
paths leaving cj, one in the eastern, one in the northern, and one in the southern direction.
The eastern path can never reach a false value. Hence, the clause will contain at least one true
literal.

Conversely, if we are given a satisfying assignment for the 3-SAT problem, from the
above discussion it is obvious how to embed the corresponding graph with resolution . This
completes the proof. [3

3. Drawings with high resolution. In this section, we describe how to draw graphs in
the plane with high resolution. Denote by X (G) the chromatic number of graph G, i.e., the
minimum number of colors necessary to color the vertices of G such that no two adjacent
vertices receive the same color. We start by establishing the connection between resolution
and X (G2) in 3.1. As a consequence, we show that any N-node graph with maximum degree
d has resolution at least f2 (r), even if we are restricted to embedding nodes in distinct grid
points of a square O min d2 N N)-node grid. In 3.2, we show that) (G2 < d+O d2/3

for any planar graph G with maximum degree d, thereby obtaining a tight (R) () bound on the
resolution of any planar graph with maximum degree d. We conclude in 3.3 by constructing
optimal-resolution layouts for a variety of special networks such as arrays, hypercubes, etc.

3.1. Drawings for general graphs based on X (G2) Given a graph G (V, E), the
square of G (denoted by G2 (V2, E2)) is defined as follows: V2 V and E2 E
{(i,j)li, j V and3 k 6 V such that(i,k) 6 E and (k,j) 6 E}. A simple argument
reveals that if G has maximum degree d, then G2 has maximum degree d2, and thus that

X (G2) < d2 + 1.. In what follows, we will show how to draw G in the plane with resolution- for any > 0.

ALGORITHM: DRAW
Step Given G, construct G2 and color the nodes of G2 with u colors where X (G2) < u <

d2 + 1. Adjacent nodes in G2 should be assigned different colors.
Step 2 Draw a unit circle on the plane and u equidistant points P1 Pu on the circle.
Step 3 Place the nodes of G that are assigned color in G2 into a ball of radius around

Pi(1 < < u).
Step 4 Draw the edges of G as straight line segments.

THEOREM 2. Given a general graph G, a coloring of G2 with u colors, and any >
O, Algorithm DRAW constructs a straight-line drawing of G on the plane with resolution

o().
U

Proof. Let Vl be an arbitrary node of G and (Vl, v2), (Vl, v3) edges incident with vl. In
G2, Vl, v2, and v3 are all adjacent, and they are colored differently (say, with colors Cl, c2, c3,

respectively). Hence, they are placed within distance of three different points Pc, Pc2, Pc3,
respectively, on the unit circle. The angles formed by edges connecting the u points Pi on the

(In fact, they are all multiples of g.) Since dist(vi, Pci) < andunit circle are all at least .

1040 FORMANN ET AL.

dist(ei, PCj ’ (), for 1 < i, j < 3, - j, this means that the angle formed by vl, 1)2, 1)3

must be at least - O(e), where the constant implicit in the O(e) is independent of u and of
U

the number of nodes in the graph.
COROLLARY 1. For any graph G with maximum degree d, and any given > O, we can

draw G with resolution r

In fact, the layout given by algorithm DRAW can be modified so that the nodes of the
graph G are placed at distinct grid points of an O(-)-side grid. This can be done by
first refining the coloring of G2 so that each color group contains at most u__ nodes. This step

U

introduces at most u new colors for a total of 2u overall. We next place the nodes of
each color group arbitrarily in a x /-/u square, and then arrange the 2u squares
at equidistant points around the perimeter of a circle of radius u /-. This results in a layout
of area O (u3N) and resolution f2 (). For graphs with bounded degree, u is constant and the
layout has linear area, which is optimal. For graphs with larger u, however, it seems likely that
the bound on area can be improved without dramatically affecting the bound on resolution.

3.2. Drawing planar and outerplanar graphs. We can substantially improve upon
Corollary in the case of planar and outerplanar graphs. In particular, we will prove that any
planar graph of maximum degree d can be drawn with resolution f2 (1/2), which matches the
naive upperbound to within a constant factor. The proofis based on the fact that) (G2) O (d)
for any planar graph G with maximum degree d. Showing that X (G2) O(d) is relatively
straightforward. As the determination of the worst-case value of X (G2) is of independent
interest, we have included the details of a !d + O(d2/3) bound in what follows.

LEMMA 1. Let U and W be disjoint node sets in a planar graph and suppose that each
node in U has at least three neighbors in W. Then IUI _< 21Wl 4.

Proof. Remove all nodes not in U tO W and all edges except those with one endpoint
in each of U and W. The resulting graph G is planar and bipartite. Denote by m and f the
number of edges and faces of G, respectively. It is easy to see that 4f < 2m and m > 31U 1.
Hence, by Euler’s formula,

IUI / IWl- 2 m f > m/2 > 31U1/2

and IUI _< 2lWl- 4.
DEFINITION. For k > 1, denote by 4 (k) the supremum, over all planar graphs G, of the

proportion of nodes in G of degree > k.
LEMMA 2.

1, fork < 6;

4(k) 3-_3, for 6 < k < 12;

fork> 12.

Proof. First, we will give proofs for the upper bounds. For the range k < 6, the upper
bound is trivial.

For 6 < k < 12, let G (V, E) be a planar graph and define W as the set of nodes in
G of degree > k. At least k W 31WI edges join a node in w with a node in V\W. This
implies that

and hence,

IWi(k- 3) < IEI 31VI-- 3(IWI + IV\WI)

IWl(k 6) < 3lV\Wl
IWl(k -6)= <_ IV\Wl.

3

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1041

Hence, the proportion of nodes of degree > k is at most

IWl IWi 3

IWl / IV\Wl IWl / IWl(-6) + (k___fi6) k- 3"

Next, we show the upper bound for k > 12.
Fix k > 12, let G (V, E) be a planar graph, and define W as the set of nodes in G of

degree > k and U as the set of nodes in V\W with at least three neighbors in W. By Lemma
1, IUI < 21Wl.

By planarity, the subgraph of G induced by U U W has at most 3(IuI / IWl) edges, at
most 31Wl of which have both endpoints in W. Hence, at least kiWI 31UI 61Wl edges in
G join a node in W with a node in V\(U U W). It follows that

(kiWI-31UI-61WlIV\(U W)l >_

and hence, that

IVI IWl + IUI + IV\(U t_J W)l

(klWl-31UI-61Wl)>_ IWl + IUI +
1/2klWl-21Wl- IUI

3)lWl.>_ 1/2klWl-21Wl- IWl (

Finally, the proportion of nodes in G of degree > k is

IVl (3)lWl

Now for each k we give a planar graph, which realizes the lower bound. The infinite triangular
grid serves as a basis. The degree of each node is 6, such that the grid establishes the lower
bound for k < 6. In the following, we consider the triangular grid embedded in the plane such
that the faces are equal-sided triangles, and we can consider the faces as lying in horizontal
rows.

To construct the graph for a specific value of k between 7 and 12, we start with the graph
for k and extend certain subset of the faces, which are left unchanged in previous steps.
The extension of a single-face f consists of an insertion of a node v, which is connected to
the three nodes on the boundary of f. In each step, we ensure that the degree of each original
node is increased by exactly 1. Figure 4(a) shows the resulting graph for k 7.

Then the number ofnew nodes is times greater than the number of the original nodes.
And the proportional of the original nodes is

3 3

1+- 3+k-6 k-3

For values k > 12, we extend the augmented graph for k 12 by adding k 12 paths of
length 2 parallel to every other horizontal edge of the triangular grid (Fig. 4(b)). The degree
of every original node is k, the nodes inserted in the previous extension have degree 3, and the
new nodes have degree 2. Hence, there are as twice as many nodes inserted in the previous
step as the number of original nodes. The number of new nodes is times larger than the
number of the original nodes. Hence, the proportion of the original vertices is

2

+2+ k-12 k-6"
[3

2

1042 FORMANN ET AL.

(a) Graphfor k 7.

(b) Graphfor k > 12.

FG. 4. Graphs that realize the lower bounds on the supremum over all planar graphs.

THEOREM 3. The square ofany planar graph G with maximum degree d can be colored
using at most d + 0(d2/3) colors.

Proof. Let k, l, and d be any integers for which k > >_ 2 and d > k / I. We will prove
by induction on the number ofnodes that the square of any planar graph with maximum degree

|/-12 k6at most d can be colored using at most A d + (1 3)(/- 1) + max{k, d- ,7z J + 1}
colors. By setting k F76-d] and (R)(dl/3), this will produce the desired asymptotic bound
as d becomes large. As can be seen easily, the constant factors associated with the low-order
terms will not be large.

Define W as the set of nodes in G of degree > k and U as the set of nodes in G of degree
< and with at most two neighbors of degree > I. By Lemmas and 2,]W] < 2-_6 IV] and

I1 > IVl- 3. _-lVl- lVl >_ 0.

Case l. Some node v in U has at most one neighbo in W. Contract v into a neighbor w of
v of minimal degree, i.e., add an edge between w and each node othe than w that is a nighbo
of v, but not of w, and subsequently emove v. Since w W unless v is ofdge l, the new
degree of w is bounded by max{d, k + 3 d, and the inductive hypothesis implies that
th square of the esulting gaph can be colored with at most A olos. Fuhermoe, the co|os
assigned can be etained in a valid coloring of G2, the only emaining poblem being to olo v.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1043

Since the number of nodes in G at distance or 2 from v is at mostd + (k- 1) + (1 3)(/- 1),
the indicated number of colors suffices.

Case 2. Every node in U has exactly two neighbors in W. By planarity, at most 3[
pairs of nodes in W can have a common neighbor in U. Hence, some pair of nodes in W has
at least

IUI 12 k 6
3>

31WI -6 6

common neighbors in U. Choose v as one of these common neighbors and contract v into
a neighbor of minimal degree as above. Again, this does not increase the maximum degree,
and the inductive assumption applies to the resulting graph. Finally, note that the number of
nodes in G at distance or 2 from v is less than

2d t-12 k-6
I-6 6 + (1 3)(1 1),

and we can find an acceptable color for v.
From this fact, we can conclude that planar graphs with optimal resolution R for a fixed

7Rconstant c can be embedded with resolution at least -g cR4/3

THEOREM 4. Any planar graph with maximum node degree d has resolution 7r
13d_cd-1/3

R< 2.__
d

Proof. The upper bound is trivial. The lower bound follows from Theorems 2
and 3.

For outerplanar graphs, the bounds on X (G2) are much tighter, as we show in what follows.
LEMMA 3. Every biconnected outerplanar graph on at least three nodes contains a node

ofdegree 2 with a neighbor ofdegree 2 or with adjacent neighbors, one ofwhich is ofdegree
at most 4.

Proof. Let T be the dual of an outerplanar embedding g of the given graph, with (the node
representing) the outer face removed. As is well known, T is a free tree, i.e., it is connected
and acyclic. A face of g is a leaf, i.e., of degree 1, in T if and only if exactly one of its
boundary edges does not bound the outer face. Let Fr and Fv be faces of g whose distance
from each other in T is maximal. Root T at Fr, let v be any node of degree 2 on the boundary
of Fv, and let v and v be the neighbors of v (Fig. 5). If v, or v is of degree _< 2, we are
done. Otherwise, define F, F,, and F as shown in the figure. At least one of F and F, say
F, is a child of F in T, and hence, by the choice of Fr and Fo, a leaf in T. But then v is of
degree 4.

FI6. 5. Thefaces ofthe planar graph used in the proofofLemma 3.

THEOREM 5. The square ofany outerplanar graph G ofmaximum degree d can be colored
using at most d + 3 colors.

1044 FORMANN ET AL.

Proof. We can assume that G is biconnected and contains at least three nodes. Let H be
the set of nodes in G of degree 2 with at least one neighbor of degree 2. If H - 0, remove all
nodes in H and, if any nodes are left, color the remaining graph inductively, using d+ 3 colors.
Then obtain a coloring of the original graph by adding back the nodes in H and coloring them
in an arbitrary order. Since at most d + 2 nodes have distance 1 or 2 from each fixed node in
H, this can be done using d + 3 colors.

If H # 0, remove a node v of degree 2 with adjacent neighbors, one of which is of degree
< 4, and color the remaining graph inductively. Since there are at most d + 2 nodes at distance
or 2 from v, the proof again is completed easily.

It is worth noting that the bound in Theorem 5 is nearly tight since the (d 4- 1)-node star
graph is an outerplanar graph G with maximum node degree d for which) (G2) d 4- 1.
There exist quite straightforward implementations, based on the proofs of Theorems 3 and
5, to find the coloring of the square of any outerplanar and planar graph. So, we state the
following theorem 6.

THEOREM 6. (a) The square of any outerplanar graph G with maximum degree d can
be colored using at most d 4- 3 colors in time linear with respect to the number of nodes.
(b) The square ofany planar graph G with maximum degree d can be colored using at most
13d 4- O (d2/3) colors in time quadratic to the number ofnodes.7

3.3. Special networks. In this section, we examine the resolution of some special net-
works. We present optimal or nearly optimal layouts for the complete graph, the hypercube,
multidimensional arrays and tori, the mesh of cliques, and the projective plane. The first four
of these networks are important because of their uses as processor interconnection networks.
The last two networks are interesting because they would seem to be good candidates for
graphs with resolution (R) () since the chromatic number of square of a d-regular mesh of

cliques and projective plane is (R)(d2). Somewhat surprisingly, however, we show that the
resolution of all the special networks mentioned is (R) ().

3.3.1. The complete graph.
THEOREM 7. The complete graph ofN nodes has resolution N"

Proof. For the lower bound, draw the N nodes of the graph at equidistant points on a
circle. Then the angles formed by incident edges will have size at least N"

For the upper bound, consider the convex hull of the nodes in some layout. If the convex
hull has vertices, then the sum of the inner angles at the vertices is (l 2)yr; so there is

e)yr < (1)yr. All the other N 1one vertex v, where the inner angle is at most (1
nodes are contained in that angle, so the edges to two of them form an angle of at most
(1 -)yrl(N :2) . r-I

Actually, the proof gives us the following more general statement.
COROLLARY 2. The resolution ofany d-regular graph is at most d----"

3.3.2. Hypercubes and multidimensional meshes. In this section, we consider hyper-
cubes and multidimensional meshes. The k-hypercube has 2k nodes, each one represented
by a k-tuple (il, i2 i) 6 {0, }k. Edges occur between nodes that differ in precisely one
bit. By Corollary 2, we know that any layout of a k-hypercube has resolution at most --_. In
what follows, we present an algorithm that draws the k-hypercube with resolution -. We then
extend this algorithm to derive an optimal layout for the k-dimensional mesh.

ALGORITHM: HYPERCUBE(k)
Step Design on the plane an angle q of size yr {. Divide q into k-1 equal angles

which define a k-axes system.
Step 2 Initialization: Create a 1-hypercube on the 1st axis.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1045

Step 3 for j 2 to k do
3.1 Create a copy of the (j 1)-hypercube.
3.2 Translate the copy parallel to the jth axis.
3.3 Create connections between the corresponding nodes of the two (j 1)-hyper-

cubes.

Since each line segment drawn by algorithm HYPERCUBE(k) is parallel to one of the k
axes, we have the following Theorem 8.

THEOREM 8. Algorithm HYPERCUBE draws the k-hypercube in the plane with
resolution k"

THEOREM 9. For 3-hypercubes, the algorithm HYPERCUBE is optimal.
r Each vertexProof. Assume we have a layout of the 3-hypercube with resolution > -.

v lies on three 4-cycles. One of these 4-cycles has an interior angle > at v. Hence, the
six 4-cycles of the cube have eight angles > g. We may conclude that one of the remaining
angles of the 4-cycles in smaller than -, a contradiction. [3

An algorithm to embed a k-dimensional mesh with resolution - can be obtained by
extending algorithm HYPERCUBE. Note that a k-hypercube is the basic unit component of a
k-dimensional mesh. The maximum degree for any internal node of the mesh is 2k. Since
is an obvious upper bound for the resolution of any graph of maximum degree d, the extended
algorithm will produce an optimal embedding.

3.3.3. Tori. The m-dimensional torus network T(m) is actually an m-dimensional mesh
with wrap-around connections.

THEOREM 10. The m-dimensional torus can be embedded on the plane with resolution
provided that all dimensions have size greater than 32m

Proof. Consider the embedding of the 4 x 4 torus (Fig. 6). Observe that it replicates
the embedding of the 4-hypercube. We use this embedding as a base layout of any two-
dimensional torus. We can extend the embedding of the 4 x 4 torus to any a x b torus by
inserting extra nodes in regular intervals of the edges of the respective dimensions. By a
similar argument, the embedding of an m-dimensional 4 x 4 x x 4 torus can be used as
a base layout of any m-dimensional torus, since it is isomorphic to the 2m-hypercube. From
Theorem 8, we know that the k-hypercube can be embedded with resolution -. Therefore,
the proof follows. [3

3.3.4. Mesh of cliques. The m-regular mesh ofcliques is defined to be the regular graph
with m2 nodes arranged as an m x m mesh. All nodes on the same row of the mesh are
connected in a clique. The same holds for nodes in the same column. Obviously, the m-
regular mesh of cliques has degree 2m 2. It also has the property that between any two of
its nodes there exists a path of length 2. Thus, its square graph is a clique of size m2. In the
following, we present a layout of the m-regular mesh of cliques, which has resolution O().

THEOREM 11. The m-regular mesh ofcliques can be embedded on the plane with resolu-
tion 2m"

Proof (by construction). We group the cliques that correspond to rows into m regular
m-gons. Then we place these m-gons on the plane such that their centers are located on the
boundary of a circle and also form a regular m-gon. Moreover, the nodes of each column
should form a regular m-gon. Observe that the angles formed by any two edges that belong
to the same "row (column) clique" have resolution at least degrees. Thus, we only need to
consider the angles formed by an edge that belongs to a "column clique" with an edge that
belongs to a "row clique." Notice that for any regular m-gon the slopes of the lines in the
m-gon all differ from each other by a multiple of . Hence, if we rotate the m-gons that

rn

1046 FORMANN ET AL.

1,1 1,2

1,4 1,3

4,4 4,3

FIG. 6. The embedding of the 4 x 4 torus.

relative to m-gons that corresponds to "column cliques"correspond to "row cliques" by -then the embedding has resolution --2m’3.3.5. Projective plane. The projective plane consists of a set of objects called points,
a second set of objects called lines, and a notion of when a point lies on a line, so that the
following three conditions are satisfied"

(C1) Two distinct points lie on one and only one common line.

(C2) Two distinct lines pass through one and only one point.
(C3) There are four distinct points, no three of which lie on the same line.

In a projective plane of order d 1, every point lies on exactly d lines and every line
passes through exactly d points. A projective plane of order d 1 exists if d 1 is a prime
power. It has exactly de d + points and d2 d+ lines. The projective plane of order d
can be represented as a bipartite graph G (A, B, E) where the set of nodes A corresponds
to points, the set of nodes B corresponds to lines, and an edge (u, v), u A and v B,
belongs to E if and only if point u lies on line v. Note that in the square graph of G the nodes
of A and B form two cliques, and thus X (G2) O(d2)

As in the case of the mesh of cliques, however, the projective plane can be drawn with
resolution (R) (). The embedding is described roughly as follows.

A projective plane of order d can be drawn using the following method (non-straight-
line drawing): We draw a square grid of (d 1)2 points. We say that a point belongs in the
set Pi, if it belongs to the th column, where 0 < < d 1. Clearly, we have d 1 points
in each set. Grid points are connected by lines with slopes 0, 1, d 2, and cxz. We say
that a line belongs in the set Li, 0 < < d 1 or c, if it has slope i. In addition to the
grid points, we have d more points called the infinity points. We call an infinity point the Pic
point if it is contained in all lines with slope i, where 0 < < d 1 or cxz (parallel lines
connected at infinity). We denote by L/ the line that is of cxz slope and contains the points of

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1047

the th column, where 0 < < d 1. LineL contains all infinity points. Figure 7 illustrates
the method for d 3.

Poini.s in
Lines in

0

FIG. 7. The projective plane oforder 2 (d 3).

We can draw a projective plane of order d 1 with straight lines using the following
method: We arrange the nodes (points, lines) into two tree structures, which are identical if we
interchange the notion of point and line. Therefore, we only describe one of the tree structures.

The nodes in the set Pi, _< _< d 1, are leaves of the tree, and furthermore, they are
drawn as colinear points. Nodes in set Pi are placed a unit apart from each other, while nodes
in set Pi+ are placed at distance O (d) units apart from the nodes in Pi, for O _< < d 2.
Node L/ is the root of all the nodes in set Pi, for 0 _< < d 1. The L/ nodes are placed
such that they form a line parallel to the one formed by the leaves of the tree. Node L is
placed O(d) units apart from node L1, for 0 < < d 1. Node P is the root of all
L/ nodes and is placed O (d2) units apart from them. This concludes the drawing of the tree
structure.

We now place on tree structure as a minor image of the other with the leaves facing each
other and placed O(d2) units apart. We make all necessary connections between nodes Pi
and Lj. Finally, we connect the roots of the trees and refine the structure so that the angles
formed in the two roots are sufficiently large. Figure 8 illustrates the method. We observe
that no angle is smaller than f2 (2). Thus, we have the following Theorem 12.

THEOREM 12. The projective plane of order d 1 can be embedded on the plane with
resolution 0 (-).

4. An upper bound on the resolution of a random graph. In this section, we prove
log dthat many graphs with maximum degree d have resolution at most O(--), for any d. We will

prove this result with a counting argument. For simplicity we will consider directed graphs
with outdegree d, and we will restrict our attention to the angles formed by the outgoing
edges at each node. (Angles with incoming edges are ignored.) We will show that almost all

O log dsuch graphs with N nodes (N > d2) have resolution 2 J. Since almost all graphs with
outdegree d have indegree O (d + log N), this means that many undirected graphs with degree

log dO (d) have resolution O -dr-). It is probably also true that almost all d-regular graphs have
log d ,resolution O (-dr-J but the proof appears to be more complicated.

The proof will make use of the following combinatorial facts.

1048 FORMANN ET AL.

Dlslarce O(d) DIslar’ce O(c

FIG. 8. The general layoutfor the projective plane oforder d 1.

FACT 1. For all a b, () < ae)b
Proof.

ab(ab) aa
b)a-b

<
bb (a b)a-b bb (1 "d

ab ab

(ae)b

b3 ...)(a-b) (-b+ b2 b3 beb/2abbe 2a 3a bbe a +Er "’’)

FACT 2. For a > 2b, () >

Proof.

abeb

2r--bbe +O(b3/a2)

(ab) a, / a a

b!(a b)t 2rb(a b) bb(a b)a-b

ab abeb
b)a-b b2bb(1 "d- 2-bbea+O(b3/a2)

for a > 2b.
FACT 3. Given rn boxes containing nl, n2 n,, labeled balls, respectively, the number

of ways of choosing j balls from the boxes so that at most one ball is chosen from each box
is,at most

where n n -[- n2 + + nm.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1049

Proof. The maximum is achieved when each box has the same number of balls; i.e.,
ni

n for all i. The bound then follows straightforwardly. q
m
FACT 4. Given rn + 1 boxes containing no, n nm labeled balls, respectively, the

number of ways of choosing d balls from the boxes so that at most one ball is chosen from
boxes 1, 2 rn (any number can be taken from box 0) is at most

()d(d + 1) de(l_x)2d/4m

where x no and n no + n + + nm.n

Proof. We can compute the number of possibilities using Facts 1 and 3 and by letting
j otd denote the number of balls coming from box 0. Then, by Fact 3, the number of ways
of selecting the balls is at most

.o () (d j) (n n)
<(d+l) max (n)(m)(n-n)

(1-1

0<ot<l otd (1 ot)d rn

By using Fact 1, we get that the above is

(noe)(me)1-)()1-<(d+l) max n-no
0<ot<l -- (1 or)de(1-t)d/2m rn

< (d + l) max(nexC(l_x)l_)d0<< da(1)(1-a)e(1-a)2d/2m

(d + 1) de(l_xl/4m

because the maximum of

x (1 x) (1-t)

ot (1 og) (1-t) e(1-t)Ed/2m

occurs for a value of ot very near x. V]

FACT 5. Given any placement of N points on the plane, it is possible to find concentric
Ucircles with radii rl and r2 so that at least 3 points are inside or on the boundary of the inner

Ucircle, and so that at least 3" points are outside or on the boundary of the outer circle, where

r2 _> "v/ rl.
NProof. Find a smallest circle that contains at least 3" points. This will be the inner circle;

it has radius rl. Let r2 be the radius of the largest concentric outer circle that leaves 3" points
outside. Since the concentric circle with radius f r can be covered with four circles of

N points outside of the concentric circle with radius rlradius r (Fig. 9), there are at least 3"
Hence, r2 >_ w/ r. V]

We can now bound the resolution of a random graph with outdegree d.
THEOREM 13. Given a random N-node directed graph G in which every node has out-

degree d, with high probability, every embedding ofG has resolution 0 (l----(d).
Proof. We will count all graphs with N-labeled nodes and outdegree d that can be

constructed so that there is anembedding in which every angle formed by outgoing edges is

1050 FORMANN ET AL.

FIG. 9. Covering a circle of radius r] q/ withfour circles of radius r].

log dat least c--dr, where c is a sufficiently small constant. We will show that this number is far

less than (U-l)N, which is the number of N-node outdegree d graphs, thereby implying the
theorem.

Given any embedding of any graph, we know by Fact 5 that there are concentric circles
U points are outside theU points are contained in the inner circle, 3with radii rl and r2 so that 3"

outer circle, and r2 > rl. Partition the region outside the outer circle into m equal slices,
as shown in Fig. 10. Notice that if any node within the inner circle is connected by outgoing
edges to two or more nodes in the same slice, then there must be an angle of size O().

FI6. 10. The partition of the plane used in the proofofTheorem 13.

cdIn what follows, we will show that, if m i-ffg, then there are far less than _\Udl)U ways
of constructing such a graph. The counting proceeds as follows.

DRAWING GRAPHS IN THE PLANE WITH HIGH RESOLUTION 1051

N(a) The number of ways to pick 3- nodes to be inside the inner circle is

(N) N
< (5e) 3-"

N/5

N(b) The number of ways to pick 3- nodes to be outside the outer circle is

(4N/5 < (4e)
\ N/5 l

N selected nodes outside to slices is(c) The number of ways to assign the 3-

N

(d) The number of ways to connect 53 nodes outside the inner circle to other nodes is

4N

N nodes inside the inner circle to other nodes, such(e) The number of ways to connect 3-
that no two outgoing edges of one of these nodes go to nodes in the same slice, is (Fact 4)

< (d + 1)
de(l_4/5)2d/4m

N

Thus, the total number of graphs that do not have resolution O() divided by the total number
of graphs overall is

N

(5e) 3- (4e) 3- rn (- (d + de(t_4/5)2d/4m

120e2m(d+l)((N-1)e)dl-ded/lOOm

By using Fact 2, we get that the above is

cd2 for some small constant c, the value in the brackets canBy choosing N >_ d2 and rn <
log dbe made smaller than N. Hence, the probability of getting a graph with resolution O(is

at least -u.]

1052 FORMANN ET AL.

5. Remarks. There are several questions left open in this paper. We list some of them
below.

1. Is the problem of determining the resolution of a graph in NP?
2. Are there interesting trade-offs between the resolution of a layout and its area for

graphs with large maximum d? Can the area bound in 3 by improved?
3. What is the worst case value of) (G2) if G is a planar graph with maximum degree

d?
4. What happens to the resolution of planar graphs if we restrict the layout to be planar?

Does every degree-3 planar graph have a planar embedding with constant (indepen-
dent of the number of nodes) resolution?

5. Is there a meaningful relationship between the resolution of a graph and its density
(see [7]-[8] for definitions)? (In the case of planar graphs, the two quantities appear
to be very similar.)

Acknowledgments. We would like to thank Alok Aggarwal, Leo Guibas, Mike Kluger-
man, Gary Miller, and Joel Spencer for helpful discussions.

REFERENCES

S.N. BHATT AND E T. LEIGHTON, A frameworkfor solving VLSI graph layout problems, J. Comput. System
Sci., 28 (1984), pp. 300-343.

[2] S.N. BHATTAND C. E. LEISERSON, Minimizing the Longest Edge in a VLSI Layout, unpublished memorandum,
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

[3] F.J. BRANDENBURG, Nice drawings ofgraphs are computationally hard, Proceedings ofthe 7th Interdisciplinary
workshop on Informatics and Psychology, May 1988, LNCS 439, pp. 1-15.

[4] H. DE FRAYSSEIX, J. PACH, AND R. POLLACK, How to draw a planar graph on a grid, Combinatorica, 10 (1990),
pp. 41-51.

[5] P. LADES AND R. TAMASSIA, Algorithms for Automatic Graph Drawing: An Annotated Bibliography, Tech.
Report CS-89-09, Department of Computer Science, Brown University, Providence, RI, 1989.

[6] I.F.RY, On straight lines representations ofplanar graphs, Acta Sci. Math. (Szeged), 11 (1948), pp. 229-233.
[7] C.E. LEISERSON, Area-efficient graph layouts (for VLSI), Proceedings of the 21st Annual IEEE Symposium

on Foundations of Computer Science, October 1980, pp. 270-281.
[8] E LIN, Optical Holographic Interconnection Networksfor Parallel andDistributed Processing, Optical Comp.

Technical Digest Series, 9 (1989), pp. 150-153.
[9] G. MILLER AND S. VAVASIS, Density graphs and separators, Proceedings of the 2nd Annual Symposium on

Discrete Algorithms, 1991.
10] G. MILLER, S.-H. TENG, AND S. VAVSIS, A Unified Geometric Approach to Graph Separators, unpublished

manuscript, 1990.
11] R. ARRATHOON, ED., Optical Computing: Digital and Symbolic, Marcel Dekker, New York, 1989.
12] C. H. PAPADIMITRIOU, The NP-completeness of the bandwidth minimization problem, Computing, 16 (1976),

pp. 263-270.
13] E ROSENSTIEHL AND R. E. TARJAN, Rectilinear planar layouts and bipolar orientations of planar graphs,

Discrete Comput. Geom., (1986), pp. 343-353.
14] U. SCHNIEDERS, Zeichnen yon planaren Graphen mit Winkeloptimierung, Diplomarbeit, Fakultit fiir Mathe-

matik und Informatik, Universitit Passau, 1990.
15] W. SCHNYDER, Embedding planar graphs on the grid, Proceedings of the 1st Annual Symposium on Discrete

Algorithms, 1990, pp. 138-148.
16] R. TAMASSIA, On embedding a graph in the grid with the minimum number of bends, SIAM J. Comput., 16

(1987), pp. 421-444.
17] R. TAMASSIA, C. BATINI, AND M. TALANO, An algorithmfor automatic layout of entity-relationship diagrams,

J. Systems and Software, 4 (1984), pp. 147-162.
18] L.G. VALIANT, Universality considerations in VLSI circuits, IEEE Trans. Comput., C-30 (1981), pp. 135-140.
19] M. YANNAKAKIS, A polynomial algorithmfor the rain cut linear arrangement oftrees, Proc. 24th Annual IEEE

Symposium on Foundations of Computer Science, 1983, pp. 274-281.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 1053-1074, October 1993

() 1993 Society for Industrial and Applied Mathematics
009

PROBABILISTIC ANALYSIS OF DISJOINT SET UNION ALGORITHMS*
BlLA BOLLOBAS AND ISTVAN SIMON*

Abstract. A number of open questions are settled about the expected costs of two disjoint set Union and Find

algorithms raised by Knuth and Schrnhage [Theoret. Comput. Sci., 6 (1978), pp. 281-315]. This paper shows that
the expected time of the Weighted Quick-Find (QFW) algorithm to perform (n 1) randomly chosen unions is
cn + o(n/ log n), where c 2.0847 Through an observation of Tarjan and Van Leeuwen in [J. Assoc. Comput.
Mach., 22 (1975), pp. 215-225] this implies linear time bounds to perform O(n) unions and finds for a class of
other union-find algorithms. It is also proved that the expected time of the Unweighted Quick-Find (QF) algorithm
is n2/8 + O(n(logn)2). The expected costs of QFW and QF are analyzed when fewer than (n 1) unions are
performed. Among other results, for QFW it is shown that the expected cost of m o(n) randomly chosen unions
is m(1 + o(1)). If m tn/2, where ot _< e-E, this cost is m(1 + (ot) + o(1)), where (ct) -- 0 as t -- 0 and
;(e-2) < .026. For QF, the expected cost of n/2 n2/3(logn)2/3 randomly chosen unions is O(n log n).

Key words, probabilistic method, random graphs, analysis of algorithms, expected time bounds, Union-Find
problem, equivalence algorithms, disjoint set union, Quick-Find algorithms

1. Introduction. The Union-Find problem of Aho, Hopcroft, and Ullman consists of
maintaining a representation of a partition ofan n-set S in such a way that two operations called
Find[x] and Union[x, y] can be implemented efficiently. Suppose that Name is an injective
mapping that associates with each equivalence class of the partition an integer called its name.
Then the result of Find[x] for x e S is the name of the equivalence class that contains x, and
the result of Union[x, y] for x, y S is a new partition of S in which the equivalence classes
Cx and Cy, which contain x and y, respectively, are merged into one equivalence class Cx t3 Cy.
Thus, the partition before the execution of Union[x, y] is a refinement of the partition that
results after the Union operation is carried out.

The Union-Find problem arises in several applications, so that efficient implementations
are of some practical interest. One of the simplest algorithms proposed for the problem
uses an array Name[x] to store the name of the equivalence class that contains x, and for
each name s a linked list L[s] of all the elements of the equivalence class s. With such a
representation, the Find operation consists of a direct access to the array Name and, hence, can
be implemented in constant time. To implement Union[x, y], where Name[x] 5 Name[y],
one must set Name[u] -- Name[y] for each u in L[Name[x]] and append L[Name[x]] to
L[Name[y]]. Hence, the cost of a Union operation is proportional to ICxl, the cardinality
of Cx. This algorithm, which appears in Aho, Hopcroft, and Ullman 1], was baptized as
the Quick-Find algorithm (QF) by Yao [27]. By maintaining a separate array N[s] with the
cardinality of the equivalence class s and changing the name of the elements of the smaller
of the two classes, the cost of Union[x, y] can be reduced to min(ICx I, ICyl). This version of
the algorithm is known as the Weighted Quick-Find (QFW) algorithm, again following Yao
[27]. It is usually assumed that both algorithms start with the finest partition of S in which
each equivalence class is a singleton.

It is easily seen that the worst-case cost of (n 1) Unions that merge all the equivalence
classes into one using QF is n (n 1)/2 n2/2. Using QFW reduces this cost to n log2 n. The

*Received by the editors December 16, 1987; accepted for publication (in revised form) July 6, 1992. A
preliminary version of this work appeared in the Proceedings of the Seventeenth Annual Symposium on the Theory
of Computing, 1985.

University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, 16 Mill Lane, Cam-
bridge, England, CB2 1SB, and Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana
70803.

tDepartment of Mathematics and Computer Science, Califomia State University, Hayward, California 94542-
3092. This author’s research was supported by CNPq grant 201.630-82-CC.

1053

1054 BILA BOLLOBAS AND ISTVAN SIMON

worst-case behavior of other Union-Find algorithms has been also investigated extensively by
Hopcroft and Ullman [21], Tarjan [24], [25], and Tarjan and Van Leeuwen [26]. The best
algorithms run in nonlinear time in the worst case. If the structure of the Unions is known in
advance, Gabow and Tarjan 19] give a linear time algorithm.

The average case behavior is less well known and was examined by Doyle and Rivest
[14], Yao [27], and Knuth and Sch6nhage [22], under three different input models. Of these
the most natural approach seems to be the one based on Random Graphs defined in Yao [27]
and adopted in Knuth and SchiSnhage [22].

Roughly speaking, Knuth and Sch6nhage [22] have shown that under the Random Graph
model QFW runs in O (n) expected time for (n 1) Unions, while the corresponding cost of
QF is n2/8 + o(n2). Knuth and Sch6nhage posed several questions concerning the average
behavior of QF and QFW. For example, they present empirical data that suggest that 2n
might be an upper bound on the expected running time T (n) of QFW, and prove that T (n)/n
is bounded, but give no explicit bound on limn_,T(n)/n. They also left open whether
T(n) cn + o(n) for some constant c. In this paper, we prove that T(n) cn + o(n! log n),
where c 2.0847 thus answering all the above questions.

Furthermore, among other results, we show that QFW is linear over the entire range. In
fact, if o(n) then the cost of unions is/(1 + o(1)). This settles another open question
of Knuth and Sch6nhage [22]. Concerning QF, we prove that the expected cost of (n 1)
Unions is n/8 + O(n(logn)), improving on the error term. We also show that the cost of
n/2 n2/3(logn)/3 Unions using QF is O(n log n). Hence, even QF is reasonably efficient
on the average if we do not perform too many Unions. Of course, the worst-case cost for
n/2- n2/3(logn)2/3 Unions for QF is still 0(n2).

To derive the above results, we make use of techniques from Random Graph Theory. This
theory was founded by Erd6s and R6nyi 15], 17], who were also the first to study the evolution
of a random graph [16], [18]. In this paper, we rely on recent refinements and extensions of
their theorems obtained by Bollobis [9], [10]. The application of these techniques to the
analysis of algorithms is of independent interest and is particularly instructive in this case
because of the precision of the results. There are a growing number of applications of the
probabilistic method to the design and analysis of algorithms. See, for example, [2]-[5], 12],
[13], [20], [22], [23], [27].

In 2, we define the basic concepts from Random Graph Theory and establish the con-
nection of QF and QFW with random graphs. In 3, we analyze the expected cost of QFW
for (n 1) randomly chosen Unions. In 4, we study QFW for small t. The analysis of the
unweighted algorithm is presented in 5.

2. Random graphs and quick-find. Let N () and V 1, 2 n}. As in 10], a
graph process on V is a sequence (Gt)Uo such that (i) Gt is a graph on V with edges and (ii)
Go Q G1 C Q GN. The set of all N! graph processes on V is denoted by . We turn into
a probability space by assigning the same probability (N!) -1 to each graph process. A graph
process G 6 is then called a random graph process. The sequence of graphs G (Gt)Uo is
often called the evolution ofa random graph.

An execution of a sequence of Unions using QF or QFW can be associated in a natural
way with a graph process: the vertices in V represent the elements of S, and the execution
of the tth Union[x, y] operation corresponds to adding the edge {x, y} to Gt-1 to obtain Gt.
This way the partition after such operations is given by the vertex sets of the connected
components of Gt. The cost of the tth edge is the cost of the corresponding Union operation.
Hence, for QF this cost is (k + 1)/2, and for QFW it is min{k, l}, provided that the edge joins
two distinct components of Gt_ of sizes k and l, respectively. If the tth edge falls within an
existing component of Gt-l, then no merge occurs, so we define the cost of such an edge to

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1055

be zero. The cost of the graph process is the sum of the costs of its edges. In this way, the
cost is a random variable (r.v.) on . We are interested in the expected value of this r.v.

We remark that is one of the most widely used models in the theory of random graphs.
It gives the most detailed information about a random graph. The model is close to the
Poisson process model used by Knuth and Sch6nhage in [22], but it is not quite the same. In
fact, results about random graph processes can be readily translated to the Poisson process
model, but the converse is not true.

In addition to , we shall need two other probability spaces over graphs:
(i) the spaceM that consists of all graphs on V with exactly M edges, where 0 < M < N

and all its () members are equiprobable;
(ii) the space p that consists of all 2N graphs on V in which each of the N possible edges

are chosen independently with probability p. Thus, a given graph with rn edges occurs in p
with probability pm (1 p)N-,.

For basic properties of these models the reader is referred to 10]. Clearly, the probability
that a random graph GM e has a property Q is the same as the probability that a random
graph process ((Gt)No is such that Gt has Q for M. Also, the expected number
of edges of a random graph Gp p is pN, and loosely speaking, if M is "close" to pN, then
G and Gp are "close."

We denote the expectations of a r.v. X by E(X). Usually our random variables (r.v.’s)
will be parameters of a random graph or graph process, and since we work with all the above
models, to avoid confusion, we denote by Ep(X) the expectation in p, and by E(X) the
expectation in.

3. The weighted case. Let n be the set of all graphs on V 1, 2 n}. Let {ze
G 6 n} be a collection of real valued functions, where the domain of ze is V(2)\E(G), the
set of nonedges of G. For a graph process ((Gt)No set

N

Z() ZGt_I (et),
t=l

where the set of edges of Gt is E(Gt) {el, e2,..., et}. Furthermore, for G e 0n, denote
by za(G) the average of ze(e) as e runs over V(2)\E(G) and set

N-1

Za() Za(Gt).
t=0

If (is a random _graph process, then both Z(() and Z,(().are r.v.’s. Furthermore, their
expected value in is the same, i.e.,

(1) E(Z()) E(Za()).
On the other hand, Za(Gt) is a r.v. on Ot and

N-1

(2) E(Za()) Et(Za(Gt)).
t=0

We shall consider two such collections of functions and their associated r.v.’s. For G e 0n

we define we V(2)\E(G) ---> by

k if e joins a component of G of
size k to another component of

we(e) size at least k,

0 otherwise.

1056 Bt.LA BOLLOBAS AND ISTVAN SIMON

Hence, relative to QFW, wa(e) is the cost of adding the edge e to G, wa(G) is the average
cost of adding an edge to G, and W(t) is the cost of the graph process (. Similarly, for
e V2\E(G) and ko [2(lnn)13j we let

wa(e)
0

if e joins a component of G of
size k < ko to another component
of size at least k,

otherwise.

By (1) and (2) the expected cost of a random graph process is

(3)
N-1

E(W(d)) E Et(toa(Gt)).
t=0

Our first aim is to show that, in fact,

(4)
N-1

E(W(d)) EEt(wa(Gt)) d- o(n/logn).
t=O

This we do by relying on Theorem 1, an easy consequence of results in Bollobis [9], [10].
Let us call a component of a graph of order n large if it has order at least n2/3. Otherwise,

we call the component small. As it turns out, almost every graph process is such that, except
for close to n/2, small components are very small, and a little after n/2 there is only one
large component.

THEOREM 1. Le So [n(lnn)-6J, to In/2 + Sol, and In/2 + sJ. Denote by o
the set ofall graph processes satisfying the followingfour conditions:

(i) For Isl _> So all the small components of at have at most ko [2(lnn)13J vertices.
(ii) For s < 0 and Isl _> So all the components of Gt are small.
(iii) For > to, G has exactly one large component.
(iv) The large component of Gto has at most 5n(ln n)-6 vertices.

Then the probability that a random graph process is in o is at least 1 o((ln n)-2).
Proof. It suffices to show that each of the four conditions occurs (independently of the

others) with probability at least -o((ln n)-2). The result then follows because for any events
A, B the probability of A f B is at least P (A) P (B).

By 10, Thm. VI. 1, pp. 124-126] a.e. graph process (is such that G has no component
of order k with ko <_ k < n2/3 for 0 < < In Sol and to < < n. Actually, as remarked
in 10], the bound < n is only for convenience and can be easily discarded. Furthermore,
by analyzing the proof, one can readily see that the event occurs with probability at least
1 o(n-8/15); hence, (i) follows.

To see that (ii) holds, we observe that Gt for 0 has only small components. Moreover,
for any such that 0 < < In sol if Gt has only small components, then by (i) the order
of the components of Gt is bounded by ko with probability o((ln n)-2). Hence, the order
of the components of Gt+l is at most 2ko < n2/3, i.e., Gt+l has only small components as
well. This proves (ii).

Condition (iii) follows immediately from [10, Thm. VI.8, pp. 135-136] and condition (iv)
from [10, Thm. VI.9, pl 136] for a.e. graph process t. By examining the proof we get that
(iii) and (iv) hold with probability at least o((lnn)-2). q

THEOREM 2. The expected cost ofa random graph process relative to QFW is given by

N-1

E(W(d)) E Et(Wta(Gt)) + o(n/logn).
t=o

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1057

Proof. For every graph process t we have 0 < W’() < W(t) < n log2 n. Hence,

(5) 0 < E(W() W’(()l(o) < n log2 n.

On the other hand, if G 6 o, then by Theorem l,

(6) W(()- W’(t)= Z {wot_ (et)lw’Gt-1 (et) WGt_ (et) }.
It-n/21<So

If w’ (et) wt_ (et), then et is an edge of the large component of Gto Hence, (6)Gt-I
is bounded by rn log2 m, where rn is the order of the large component of Gto. Since rn <

5n(lnn) -6, it follows by Theorem that when 0,

(7) E(W()- W’(t)lt 6 o) O(n(lnn)-5).

From (5) and (7) by Theorem 1,

E(W()- W’())= E(W()- W’(()l(’ o)" P((’ o)(8) +E(W() W’()I e o) P(e o) o(n/logn).

The theorem follows from (8) by (1) and (2).
It is usually more pleasant to work in Gp than in Gt. In this case, we may do so 10, Thm.

II.4, p. 36], which we state below without proof as Lemma 3.
LEMMA 3. Let X be a graph parameter, (i.e., a real-valuedfunction on a graph). Then,

y Et(X) (N -k- 1) Ep(X)dp.
t=0

By Lemma 3, we have

(9)
N-1

Et(Wta(G)) (N + 1) f0 Ep(Wta(Gp))dP"
t=0

Furthermore, for p >_ 5 lnn/n, the probability that Gp is connected is at least O(n-4).
Therefore,

(10) (N + 1)
f
/

lnn/n
Ep(w’a(Gp))dp <_ n2. n O(n-4) o(n-1/2).

Hence, it suffices to compute Ep(wa(Gp)) for p < 5 lnn/n. In Theorem 4, we estimate the
expected number of components of order k in Gp for p < 5 In n/n and k <_ ko.

Let C(k, d) denote the number of labeled connected graphs on k vertices with (k + d)
edges. Following [9] and [10] let us call a component with k vertices and (k + d) edges
a (k, d)-component, and let X (k, d) be the number of (k, d)-components of a graph. Let
X (k) be the number of components of order k and T (k) be the number of tree components of
order k.

THEOREM 4. For p <_ 5 lnn/n, k < k0 [2(lnn)-13j, and c pn,

kk-2(n)Ep(T(k)) -. - (ce-c)k(1 "k- o(n-1/2))
Ep(X(k)) Ep(T(k))(l + o(n-1/2)).

1058 BtLA BOLLOB/S AND ISTVAN SIMON

Proof. The probability that a fixed labeled connected graph with k vertices and (k + d)
edges is a component of Gp is

pk+d (1 p)k(n-k)+()-k-d.

It follows that

Ep(X(k, d)) (;)C(k, d)pk+d(1-- p)k(n-k)+(2)-k-d.

By elementary approximations we get,

(11) Ep(X(k,d))
C(k,d) (c)d (ce-C)l(1 + O((lnn)27/n)),

k! n

where the constant in the error term does not depend on k. Ford we have C (k, d) k/-2,
so

(12) kk-2(n)Ep(T(k)) -. - (ce-c)k(1 q-o(n-1/2)).

From [10, Thm. V.20, p. 125], [11] it follows that for some absolute constant Cl,

(13) C(k, d) <_ Cl6-dkk+(3d-1)/2.

Since X(k) E{X(k, d)l- < d < ([) k}, the Theorem follows from (11), (12), and (13)
by simple manipulations. [3

To be able to compute Ep(w’a(Gp)) we also need Ep(X(k)X(l)), and Ep(X(k)2) for
k l, such that k, < ko and p _< 5 In n/n. These are estimated in Theorem 5.

THEOREM 5. For p < 5 Inn/n, k l, and k, < ko 12(lnn)13J we have

Ep(X(k)X(1)) Ep(T(k))Ep(T(l))(1 q-o(n-1/2)),

and

Ep(X(k)(X(k)- 1))--(Ep(T(k)))2(1 q-o(n-1/2)).

Proof. The proof is similar to that in 10, Thm. VI.2, pp. 127-128]. If (kl, dl) (k2, d2),
then by [10, Eq. (5), p. 127],

Ep(X(kl, dl)X(k2, d2)) Ep(X(kl, dl))Ep(X(k2, d2))
(n)kl+2

(1 p)-12
(n)k(n)k2

By elementary manipulations, letting c pn,

(n)k+k2
(1 p)-klk23(p, kl, k2, n)

(n)t (n)k

=exp
2n ++ + 1+O

n R2

+ 8’(n), where 6’(n) o(n-/2).

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1059

Hence, by Theorem 4 for k l,

Ep(X(k)X(1)) Ep(T(k))Ep(T(l))(1 + o(n-/2)).
Similarly,

Ep(X(k)(X(k) 1)) (Ep(T(k)))2(1 -t-o(n-1/2)).
Theorems 4 and 5 enable us to estimate Ep(wla(ap)) for p _< 5 lnn/n.
THEOREM 6. For p <_ 5 lnn/n and ko 12(lnn) 131 we have,

IEp(lIJ’a(Gp)) - nk2Ep(T(k))
k=l

Z k21Ep(T(k))Ep(T(1))
<l <k<ko

1

k=l

Z k3Ep(T(k)) (1 + o(n-i/2)) + o(n-2).
k=l

Proof. Let k _< ko. The number of edges e 6 V(2)\E(Gp) such that w’ap (e) k is

) lk2kX(k) n-Z1X(l) +- X(k)(X(k)-l)
/=l

lk2x(knkX(k)- Z klX(k)X(l)- k2X(k)2--
l<l<k

Hence, the average cost of adding an edge to Gp, measured by w’ap is

wa(Gp)
Z nk2X (k) Z
<k<ko <l<k<_ko

1

<k<ko <k<ko

N -e(Gp)
(14)
where e(Gp) is the number of edges of Gp. The distribution of e(Gp) is binomial with
parameters N and p. Hence, for p < 5 lnn/n, the probability that e(Gp) > 5n lnn >

2(5 lnn/n)N is exponentially small; in particular, it is o(n-3). Furthermore,

(15) W (Gp) <_ ko
for every Gp. Let us denote the event e(Gp) <_ 5n lnn by R. Then

Ep(wta(ap)) Ep(Wa(ap)lR)P(R) nt- Ep(Wa(Gp)IR)P(R)
Ep(tOa (ap)lR) -t- o(kon-3)

(16) Ep(wta(ap)lR) + o(n-2).
On the other hand, if R holds, then N e(Gp) N(1 o(n-/2)), so from (14) we get

E’p(W’a(Gp)IR)-- - Z tlk2F-’p(X(k)lR)- k21Ep(X(k)X(1)IR)
<k<ko <l<k<ko

Z k3Ep(X(k)IR)! (1 4-o(n-/2)).Z k3Ep(X(k)2IR)- -(17)
2 <<o /

1060 BILA BOLLOBAS AND ISTVAN SIMON

Since X(k) <_ n for every Gp, arguing as in (16) we obtain

{ Z nk2Ep(X(k))- k2lEp(X(k)X(1))Ep(Wta(Gp)IR) - l<k<ko l<l<k<ko

(18)
2

k3Ep(X(k)2) - Z k3Ep(X(k)) (1 .qt_ 0(//-1/2)) .qt_ 0(//-2).
<k<ko <k<ko

Finally, from (18) we get the result by Theorems 4 and 5. [3

We now have all the elements needed for the analysis of QFW. From Theorems 4 and 6
we get an explicit formula for Ep(w’ (Gp)). Integrating this formula, we obtain by Theorem
2, (9) and (10) the expected cost of a random graph process.

THEOREM 7. The expected cost ofa random graph process G relative to QFW is given by

E(W(d)) con + o(n/logn),

where

>_1 k

2.0847

kkl1-1 (k +/- 2)!)k l (k -at- l)k+l-1/=1

Proof. By Theorem 2, (9) and (10) we have

1nn/n
(19) E(W(d)) (N nt- 1) Ep(wla(ap))dp + o(n/logn).

By Theorems 4 and 6,

(20)

where

(21)

Ep(wla(Gp)) (b/1 //2 /’/3 U4)(1 -k- o(n-1/2)) nt- o(n-2),

ok
n2 y -(ce-C)Ul

C
k=l

kk l-1

(22) ue n2 y
k! l! c2

(ce-c)k+l
<_l <k<_ko

ko k2k-1 (ce_c)2k and(23) U3 n2

(k)2 2c2
k=l

o k/+l l(ce_C)"(24) //4 n k--
k=l

Since c pn, integrating by parts we get that for a positive integer a and a real b,

f (X_ axa-1 (a)2xa-2 a!)(25) Xae-bxdx --e-bx nt-
b2

d-
b3

nt-’’’ nt-

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1061

We have from (21),

(26)

In n/n f051nnUldp
n

ko kk f051nnuldc=nZ-.
k=l

ko kk (k- 1)!
n -. kk

k=l

+o(1)

kony +o(1).
k=l

ck- e-ckdc

Similarly, from (22) to (24),

(27)

(28)

o

1nn/n

1nn/n

u2dp n
kk l-1 (k + 2)!Z k--(. l’ (k + l)k+l-1<l<k<ko

+ o(1),

ko (2k 2)! 2_2ku3dp n ,
(k!)2

-k- o(1)
k=l

n Z (2kk)2_2
k>_l 2k(2k 1)

+ o(n/logn)

n(1 ln2) + o(n/logn),

and

(29) fo 51nnln bt4dp ko L2(lnn)13j o(nl logn).

The Theorem follows from (19), (20), and (26) to (29). [

4. The weighted case for small t. In this section, we analyze the behavior ofQFW when
0 < < otn/2 for 0 < ot < e-2. We shall show that for in this range, the average cost
of adding an edge to Gt is at most 1 + e(ot) + o(1) for almost every random graph process,
where e(ot) --+ 0 as ot - 0, and e(e-2) < .026. To carry out the analysis we shall need a few
preliminary results.

LEMMA 8. Let 0 < ot < 1/7, p ot/n and < k < 100 In n. Then

(i) For O, or 2 (k+l)iEp(T(k+l)) < orel-a"kiEp(T(k))

(ii) (k+l)2(Ep(T(kd-1)))2 --or)2k2(gp(T(k))) (ore

(iii) Ep(X(k)) <_ Ep(T(k))(1 / (lnn)2/n)
(iv) Ep(T(k)) < n-9 if lOlnn <_ k <_ 1001nn.

Proof. As in Theorem 4,

(30) Ep(T(k)) (nk)kk-2pk-l (1- P)k(n-k)+()-k+l

Hence, for 0, 1, 2,

(31)
(k -t- 1)iEp(T(k at- 1))

kiEp(T(k))
(1 k/n)(1 + 1/k)-2+ipn(1 p)n-k-2 <_ otel-u.

This shows (i).
Statement (ii) follows trivially from (i).

1062 BtLA BOLLOBAS AND ISTVAN SIMON

To see (iii), note that the expected number of components of order k with k / d edges is

(32)

where, as earlier, C (k, d) is the number of labeled connected graphs of order k with k + d
edges.

By (13), for some absolute constant c

(33) Ep(X(k, d)) < F(n, k, p, d) Cl ()kl+(3d-1)/2pl+d(1 p)k(n-k)+()-k-d

Therefore,

(34)

Ep(X(k)) Ep(T(k)) + Ep(X(k, d))
d=0

()-< Ep(T(k)) + F(n, k, p, d).
d=0

Since, for d > -1,

F(n, k, p, d + 1) k3/2 p
<

(lnn)7/4

F(n,k,p,d) 1-p n

and from (30) and (33),

F(n,k, p,-1) ClEp(T(k)),

(iii) follows.
Finally, if k >_ 10 In n, then from (i)

Ep(T(k)) <_ (otel-)k-lEp(T(1)) <_ n -9,

for0 < < 1/7. S
Denote by LI(G) the order of the largest component of G. Next we show that in our

range L (Gt) is at most 10 Inn with very high probability.
THEOREM 9. Let 0 < cg < 1/7 and denote by 1 the set ofgraph processes such thatfor

0 <_ < n/2 the order ofthe l_argest c_omponent ofGt is atmost 101nn. Then theprobability
that a random graph process G is in is at least n -7.

Proof. Let 0 <_ < otn/2, 0 < ot _< 1/7 and p p(t) 2t/n2. By the analogue of [10,
Thm. II.2.iii, p. 35],

(35) Et(X(k)) <_ 3nl/2Ep(X(k)).

Hence, by Lemma 8 (iii) and (iv), for 10 In n < k _< 100 In n,

(36) Et(X(k)) < 3n-9(1 -k (lnn):Z/n)n/: < n-8 1/4.

Therefore,

(37)
otn/2 20 In n

E Z Et(X(k)) <_ 5or Inn n-7 1/4 <_ n-7.
t=0 k=101nn

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1063

From (37) it follows that the probability that a random graph process is such that up to time
oral2, 101nn < LI(Gt) < 201nn is at most n-7. Since LI(Go)= and LI(Gt+I) <
2LI(Gt), this implies that for0 < < otn/2

P(L1 (Gt) >_ 10 lnn) < n-7.

For a graph G, denote by nk ng(G) the number of vertices on components of order at
least k. In our next result, we estimate Ep(n).

THEOREM 10. Let 0 < ot < e-2 and p ot/n. Thenfor < k < 100 In n,
(i) Ep (n 1) n, and
(ii) Ep(nk) < (1 --otel-)-ikEp(T(k)) + 2(lnn)2.
Proof. Clearly, n n, so Ep (n l) n, and for k > 1,

(38) Ep(n) Z jEp(X(j)).
j>k

Hence, by Lemma 8 (i) and (iii), for < k < 100 In n

(39)

10 Inn

Ep(nk) y jEp(X(j)) 4- jEp(X(j))
j=k j=101nn

< jEp(T(j)) (1 + (lnn)2/n) + jEp(X(j))
j=k j=101nn

< (1 -otel-)-lkEp(T(k))(1 4- (lnn)2/n) 4- Z jEp(X(j)).
j--101nn

Denote by e(Gp) the number of edges of Gp. Then,

(40)

> 101nn) < P/|LI(Gp) > lOlnnle(Gp) < 1.05otn|-\P(LI(Gp)
__

4-P (e(Gp) > 1.05ot).
By Theorem 9, since 1.05cn/2 < (1/7)n/2,

(41) P(LI(Gp) > lOlnnle(Gp) < 1.05otn/2) < n-7,

and

(42) P(e(Gp) > 1.05otn/2)= P(e(Gp) > 1.05pN) < n-7.

Hence, from (40) to (42)

(43) P(L (Gp) > 10 Inn) < 2n-7.

Therefore,

(44) jEp(X(j)) < 2n-5.
j=101nn

The result follows from (39) and (44).

1064 BtLA BOLLOB,S AND ISTVAN SIMON

Let V(u) -]u= kT(k). Thus, V(u) is the number of vertices on tree components of
order at most u. In our next result, we show that V (u) can be approximated by its expectation
in p.

THEOREM 11. There is a constant no such that if n > no, p ot/n, 0 < ot < e-2, and
1 < u < 100 In n, then

IV(u)- Ep(V(u))l < (lnn)n /2

with probability at least 2/(lnn)2.
Proof. The proof is similar to 10, Thm. V.9, pp. 100-101]. We estimate the variance of

V (u) and obtain the result by Chebyshev’s inequality.
The expected number of ordered pairs of tree components of orders k and l, respectively,

is clearly

(45) Ep(T(k))Ep(T(I))
(n k)(n k 1)... (n k + 1)

(1 p)-l
n(n 1)... (n + 1)

because of (30). By elementary approximations we get for < k < < 100 Inn

(46)
(n k)(n k 1)... (n k + 1)

(1 p)-kl < 1.
n(n 1)... (n + 1)

Hence, if < k < < 100 Inn, then

(47) Ep(T(k). T(l)) < Ep(T(k))Ep(T(1)),

and if < k < 100 In n, then

(48) Ep(T(k). (T(k)- 1)) < (E.p(T(k)))2.

Therefore,

(49) Ep((T(k))2) < (Ep(T(k)))2 q- Ep(T(k)).

Since,

(50) (g(/,t))2 kT(k) k2T(k)2 + 2
k=l k=l l<k<j<_u

k. jT(k)T(j),

we get from (50) by (47) and (49),

(51)

Ep((V(u))2) < k2(Ep(T(k)))2 + 2 Z k. jEp(T(k))Ep(T(j))
k--1 l<k<j<u

+k2Ep(T(k))
k=l

(Ep(V(u)))2 - kZEp(T(k))
k=l

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1065

Therefore, by Lemma 8 (i),

(52) _< _<
k=l

The result follows from (52) by Chebyshev’s inequality.
From Theorem 11 we obtain the following easy consequence.
COROLLARY 12. Let 0 < ot < e-2 < k < 101nn, 0 < < otn/2, and p 2tin2

Then with probability at least 5/(lnn)2, a random Gt is such that

nl(Gt) < Ep(nk(Gp)) q- 1.1(lnn)n 1/2.

Proof. Let U (k) be the number of vertices on components of order at most k, which are
not trees, and let p 2tin2. Then nk n V(k 1) U(k 1) < n V(k 1), so by
Lemma 8 (iii),

(53) Ep(n) >_ n Ep(V(k- 1)) -(lnn)2.

(54)

Hence, by Theorem 11, with probability at least 2/(ln n)2 a random Gp is such that

n(Gp) < Ep(n(Gp)) + (Inn)n1 (lnn)2 < Ep(n(Gp))-t- 1.1(lnn)n 1/2.

Since nk(G) is monotonically increasing, that is, if H C G, then n(H) <_ n(G), we have
that (54) is a convex property. Hence, the result follows by [10, Thm. 11.2 (ii), p. 35].

We can now show the main result of this section.
THEOREM 13. Let 0 < ot < e-2. Then with probability at least -6/(lnn)2 a random

graph process G is such thatfor 0 < < otn/2 the average cost ofadding an edge to Gt by
QFW is at most + (ot) + c2(lnn)2/n 1/2, where C2 is an absolute constant, () -- 0 as
ot --+ O, and (e-z) <_ 0.026.

Proof. We shall show that the result holds with

(:(or) (1 otel-c)-2(1 (oel-t)2)-lot2e-4t.

The number of edges that join a component of order k to another component of order at least
k is at most (n2k). Hence the average cost of adding an edge to G by QFW is

(55) toa(Gt) <_ k>_lg_t(n2k) <- Ik>_l (n2k)/ ()] (1-Jr-I/n)"

By Theorem 9 and Corollary 12 with probability at least 6/(In n)2 the graph process (is
such that for 0 < < otn/2 and LI(Gt) < 101nn and for p 2tin2 and < k < 101nn
we have,

(56) n,(G) < Ep(n) + 1.1(lnn)n 1/2.

Hence, for such a G we have nk 0 for k > 10 Inn u. Therefore, from (55) we get

(57) wa(Gt)< [:=] (n2’)/()] (1 + l/n).

1066 BLA BOLLOBAS AND ISTVAN SIMON

Since n n,

(58)

wa(Ot) I1-" k=2 (2k)/ ()] (IAf- 1//’/)

< [l + (nk/n)2] (l +

Furthermore, nk < n; therefore, by (56),

(59) wa(Gt) < 1 q- Z(Ep(nk)/n)2 -+- 23(lnn)2/n 1/2.
k=2

Now by Theorem 10, for at pn 2t/n,

(60) Ep(nl) < (1 -ottel-’) -1
kEp(T(k)) q- 2(lnn)2.

Therefore, since at < ot _< e-z,
(61) Ep(nl) < (1 -otel-)-lkEp(T(k)) + 2(lnn)2.

Let f (or) (1 cel-)-. Then

(62) (Ep(rtk))2 <_ (f(ot))2k2(Ep(T(k)))2 "if- 4f(ot)kEp(T(k))(lnn)2 + 4(lnn)4.

Therefore, by Lemma 8, for g(ot) (1 (otel-)2)- we get,

(63) ’(Ep(nl))2 < 4(f(ot))2g(ot)(Ep(T(2)))2 q--hl(Ot)n(lnn)2,
k=2

where h(oe) is bounded.
From (30) by elementary approximations

(64) Ep(T(2)) < ote-2n(1 + 1/n).

Consequently, for e(c) (f(ot))2g(ot)ot2e-4’ and h2(ot) bounded

(65) (Ep(nl))2 <_ (ot)n2 + h2(ot)n(lnn) 2.
k=2

From (59) and (65)

(66) Voa(Gt) < 1 + () + c2(lnn)2/n 1/2,

where C2 is an absolute constant at most 24.]

Armed with Theorem 13 we can easily derive Et(wa) in the interval 0 < < an
THEOREM 14. Let O < < e-2, 0 _< _< otn/2. Then the expected cost ofadding an edge

to G by QFW is at most 1 + (or) + c3/(ln n), where c3 is an absolute constant, (or) --+ 0 as
ot --+ 0 and (e-z) < 0.026.

Proof. Let be as in Theorem 9 and denote 2 the set of graph processes such that for
O <_ <_ otn/2 and p 2t/n2,

(67) n(Gt) <_ Ep(nl) + (lnn)n/.

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1067

Then

Et(ul)a) Et(wa]d 1 2)P(5 1 ("1 2) +Et(wal5 2)" P(G

(68)
By Theorem 13,

(69) Et(wa]d e 10 2) _< --t-- (5(0/) -- c2(lnn)2/n 1/2.

By Theorem 9 and Corollary 12,

(70) Et(wald E A 2)P(G E 1N2) --< 501nn/(lnn)2 50(lnn)-.
By Theorem 9,

(71) Et(wald l)P(d G 1) <_ n. n-7 n-6.

The result follows from (68) to (71). U
An immediate corollary of Theorem 14 is that if o(n), then the expected cost of a

random graph process by QFW up to time is at most (1 + o(1)).

5. The unweighted algorithm. Since the analysis of the unweighted algorithm is in
many respects similar to that of 3, we shall give a less detailed account.

In QF, the cost of an edge that joins a component of order k to a component of order
II isis gk + g l. We shall say that gk is the contribution of the component of order k and g

the contribution of the component of order I. Thus, to analyze QF we need to estimate the
contributions of components of any given order. To do this we shall rely on the following
consequence of results in [10], which summarizes the key facts needed for the analysis. As
before, we refer to a component as large if it has at least n2/3 vertices; otherwise, it is small.
Throughout this section, when we mention cost it means cost in QE

THEOREM 15. Let n/2 / s and kl(s) 3(nZ/s2) lnn for --n/2 <_ s <_ N- n/2, and
set Sl n2/3(lnn)2/3 with t n/2 + s. Let 3 be the set ofgraph processes such that

(i) For 0 < <_ n/2 s, all the components of at are small.
(ii) For n/2 + s and Isl > s, all the small components of Gt have order at most

k(s).
(iii) For t < < N, the graph Gt has exactly one large component called the giant

component.
(iv) The giant component of Gt, has at most 5nZ/3(lnn)2/3 vertices.
(v) For > 2n In n, G is connected.

Then the probability that a random graph process is in 3 is at least n -1

The proof of Theorem 15 is analogous to that of Theorem 1. Since every graph process
costs at most n (n 1)/2, an immediate consequence of Theorem 15 is that the graph processes
that are not in 3 contribute at most O(n) to the expected cost of a random graph process.
Hence, we may restrict our attention to graph processes that are in 3. Furthermore, Theorem
15 suggests breaking down the expected cost of such graph processes into three major parts:
the expected contribution of the giant component, the expected contribution of the small
components, and the expected contribution of the large components during the transition
period, i.e., the period that goes from time n/2 sa to n/2 + s.

THEOREM 16. For a random graph process in 3 the expected contribution of the large
components during the transition period is at most 0 (n(ln n)2).

1068 3LA BOLLOB/,S AND ISTVAN SIMON

Proof. Let (be the random graph process in 3. Since the order of a component that
contains any given vertex never decreases with t, by Theorem 15 every vertex that is in a large
component during the transition period is in the giant component by time tl n/2/sl. Hence,
the number of vertices on large components in the transition period is at most 5n2/3 (In n)2/3.
Consequently the probability that the edge at time in the transition period joins a large
component to another component is at most

5n2/3 (In n)2/3n O((lnn)Z/3n-1/3).
N-t

Since the transition period lasts 2sl 2n2/3 (ln n)2/3 time, the expected number of such edges
is at most O(n /3 (ln n)4/3). The contribution of the large component for each such edge is at
most O(nZ/3(lnn)2/3). Hence, the theorem follows.

Knuth and Sch6nhage [22] state that the expected contribution of the small components
is n In n. The following is a stronger version of this result.

THEOREM 17. The expected contribution of the small components of a random graph
process is 1/3n Inn + O(n lnlnn).

Proof As before, let X (k) be the number of components of order k of a graph G of order
n. Then the probability that the edge to be added to G joins a given component of order k to
another component is k(n k)/(N t). Hence, the expectation of S, the contribution of the
small components, is

N_ n2/3_

lk2(n k)Et(X(k))/(N t)
t=0 k=l

nl N-1

(72) k(n k) Et(X(k))/(g t).
k=l t=0

Since with probability at least O(n-5) a random Gt is connected for > 2n lnn, by
Lemma 3

E(S) - Et(X(k)) (1 + O(lnn/n)) + O(n-2)
k=l t=0

lk2(n k)N- Z Et(X(k)) (1 + O(lnn/n)) + O(n-)
k=l t=0

/ n2/3kl f01(73) k2(n k) Ep(X(k))dp (1 + O(lnn/n)) + O(n-2).

By the methods used in Theorem 4, for < k < n2/3/In n

(74) Ep(X(k)) < Ep(T(k))(1 -1-c3(lnn)-3/2)

and for < k < n2/3

(75) Ep(X(k)) < c4Ep(T(k)).

Furthermore, for 1 < k < n2/3 and p c/n,

kk-2 n (ce_C), exp [k2
(76) Ep(T(k)) k---. - -n (c- 1) n2 (1 + O(n-1/3)).

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1069

Hence, by (25), integrating (76) by parts we get,

(77) Ep(T(k))dp n-1 Ep(T(k))dc k-3e-k3/3nz(1 4- O(n-1/3)).

Therefore,

(78) lk2(n k) Ep(T(k))dp (1 + O(lnn/n)) n Inn -t- O(n)
k=l

Consequently, our result follows if we show that the contribution of small nontree components
is O(n In Inn). To see this note first that by (73) and (78), in the range where (74) applies, the
contribution of the small nontree components is at most

(79) O(n lnn)O((lnn) -3/2) O(n(lnn) -1/2) O(n).

Therefore, by Theorem 15 and (75), it suffices to show that the contribution of small tree
components from time n/2 s2 to time n/2 + s2 is O(n lnlnn), where s2 n2/3 Inn.

n nFor $2 < _< + S2 and <_ k < n2/3,

t-k+l

k 2
where N1 (nk), and N (). Since N/N < (1) and by standard computations,
fort +s,

t1(7)- (N1)t-k+l(t)k-1
k + (N)t-k+l(N + k 1)k-1

(81) < c3n-(k-1)e-k+k2/2n e(sk2-2szk)/n2

Furthermore, e(sk2-2szk)/n2 < el/8; therefore, from (80) and (81) we obtain that,

(82) Et(T(k)) < cank-5/2e-s2k/n2,

where C4 is an absolute constant.
The probability that the edge at time will join a given tree component of order k to

another component is 2k(n k)/n2. Therefore, by (82), the expected contributions of small
tree components from time n/2 s2 to n/2 4- s2 is

q-s2 n2/3-1 k2(n k)Z Et(T(k))
n2

t= g-s: k=l

nt’S2 n213

< c4k-1/2e-sk/n
t=--s k=l

In2/3n2/3--1 $2n2/3--1 s2k I< 2C4 Z k-1/24- k-’/2e--
s=0 k=l s=n2/3 k=l

O(n) + O(n lnlnn) O(n lnlnn). [3

Since by Theorem 15, with probability at least n-1, all components of a random graph
process are small for 0 < < n/2 s, it follows immediately from Theorem 17 that the

1070 BILA BOLLOBAS AND ISTVAN SIMON

expected cost of a random graph process up to time n/2 s1 is O(n lnn). To complete the
analysis, we determine the expected contribution of the giant component in our next result.

THEOREM 18. For a random graph process in 3 the expectedcontribution of the giant
component is n2/8 + O(n(lnn)2).

Proof. We shall denote the order ofthe largest component by L 1, the number ofvertices on
small components by Y, and, as before, the number of components of order k by X (k). Thus,
by Theorem 15, for arandom graph process in3 and for n/2+s, with kl (s) 3n2 In n/s,
we have

(83)
kl(s)

Y kX (k)
k=l

and

(84) L n Y.

The probability that the edge to be added to G joins the giant component to another component
is L1Y/(N t). Hence, by Theorem 15, the expected contribution of the giant component at
time is

g(t) Et(LZl Y/(2(N t)))

{ n2y 2ny2 + Y3]Et n2 + O(lnn)

n2 Et (Y) 2nEt (y2) d- Et (y3)
(85) + O(ln n).

/,/2

Similarly to Theorem 5, we can show that for s > Sl and < k < < kl(S)

(86) Et(X(k)X(l)) Et(X(k))Et(X(l)) + 0 -and for <_ k <_ kl(S),

(87) Et(X(k)) Et(X(k))2 + 0 -1 + Et(X(k)).

Therefore, by (83), (86), and (87),

() E,(r) E(g) + O(s/n) E(X()) + E(X()).
\=1 =

As in (82), we get by standard approximations

(89) kE(X(k)) > csnk-/ exp(-2sk/n),

for an absolute constant c5. Hence,

(90)

so (88) and (90) imply

(91)

k(s)

kZEt(X(k)) O(nZ/s),
k=l

Et(Y2) Et(Y)2 + O(n2/s).

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1071

Similarly,

(92) Et(Y3) Et(Y) -4- O(n3/s).

From (85), (91), and (92),

(93) g(t)

Since

n2Et(Y) 2n(Et(Y))2 -t-- (Et(Y))
n2 + O(lnn) + O(n/s).

2n In n

Z O(lnn + n/s) O(n(lnn)2),
S-"SI

we may ignore the error term in (93). Furthermore, if Et(Y) Yo + Yo, where Yo O(Yo)
and Yo 0 (n Yo), then

(94)

(Yo A- yo)(n Yo Yo)2 Yo(n Yo)2 O(yoYo(n Yo)) -4- O(yo(n Yo)2)
O(yo(n- Yo)n) O(yoS. n),

because n Yo O(s). Hence, we may ignore the error term Yo as well, provided that

(95)
2n In

Z yoS O(n(lnn)2)"
n

S--S

The expected number of vertices on small nontree components is 0(n2/$2). The expected
number of vertices on small tree components is

(96)
n

k
kk-1 -c)k ((sk2) (k))Et(T) (ce + 0 + 0

where c-- + 2sin. But, if s > sl, then

(97) k---(-. (ce-c)k O(1) k-3/2 nt- e-2s/n --o(n-4)
C

k=n2/3 A- k=n2/3-t-

for all M > 0. So

(98) Et(Y) t(c)n -f- Yl -4- Y2 -+- Y3
where,

(99) kk-1

t(c) -7:-, (ce-C)k,
C

k=l

(100) Yl 0(n2/$2),

(101)
//2/3 kk+ n2/3

Y2 O(s/n)

_
-. (ce-C)k O(s/n) kl/2(cel-c)k,

k=l k=l

1072 BtLA BOLLOBAS AND ISTVAN SIMON

and

(102)
n2/3 kk n2/3

Y3 O(1) Z .(ce-c)k O(1) Z k-1/2(cel-c)k"
k=l k=l

Clearly,

(103)
2n In n_, yls/n O(n lnn)
S--SI

and

(104)

2n In 2n In :V3

Z y2s/n-- O(n-2) Z s2y kl/2(cel-c)k
S=Sl S=Sl k=l

2/3 2n In n

O(n-2) kl/2 Z s2((1 at- 2s/n)e-2S/n)k"
k=l s=sl

Since,

ln((1 + 2s/n)e-2S/n): O(ks2/n2),

we have that

(105)
2n In s2

s2((1 + 2s/n)e-2S/n)k= 0(1)-s2-- O(s23),
SSI

where s2 O(nk-1/2). Hence, from (103) and (104) we get

(106)
2n In n

y2s/n O(n-2) -$32kl/2--- O(rl) 1/k O(n Inn).
s=s k=l k=l

Similarly,

(107)
2n In

Z y3s/n O(n).
S’-’SI

Therefore, from (93), (95), (103), (106), and (107) we get that , the expected contribution of
the giant component, is given by

(108)
2n In 2n In ny g(t) n. y (t(c) 2t(c)2 + t(c)3) + O(n(lnn)2).
S---SI S---S1

SIBy Theorem 16, s=o g(t) O(n(lnn)2). Therefore,

(109)

2n In n, n Z (t(c) 2t(c)2 + t(c)3) + O(n(lnn)2)
s=0

n [fl yl fl]-- t(c)dc- 2 t(c)2dc + t(c)3dc + O(n(lnn)2).

ANALYSIS OF DISJOINT SET UNION ALGORITHMS 1073

Therefore, our result follows if we show that

(110) t(c)dc- 2 t(c)Zdc + t(c)3dc -.
Indeed, from 10, p. 97, Eq. 5]

(111) t(c) u/c,

where u u (c) is the unique solution to the equation

(112) ue ce

in the interval 0 < u < 1.
From (112),

(113) lnu u lnc- c.

Taking derivatives with respect to c we get

u’
(114) u’ 1.

bt C

From (114) multiplying by u/c,

(115)
uu’ u u’- ()’c c c c2 c

and similarly,

(116)
C2 C"- + C2 C3 C- --Hence, from (111) and (115) integrating by parts,

t(c)2dc +2 UU’dc
c

=1+2 UU’dc + 2 Udc + 2
c c

(117) 2 (c)dc 1.

Similarly, from (111), (116), and (117),

fl []U3 U 3
-fi-dc/-(c)3dc --dc c2

-c +2 + - 4c J
(a) 3 (c)dc 7/4.

Therefore, (110) follows from (117) and (118) by simple substitution, concluding the
proof. [3

1074 BtLA BOLLOBAS AND ISTVAN SIMON

Acknowledgments. Major parts of this research were carried out at the University of
Cambridge, England, at the Instituto de Matemitica, Estatfstica, e Cincia da Computa:5o,
Universidade Estadual de Campinas, Brazil, at Louisiana State University, andat the California
State University, Hayward. We thank the anonymous referees for their helpful suggestions
and for catching a number of typos and small mistakes in the original manuscript.

REFERENCES

[1] A V. AHO, J. E. HOPCROFr, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison

Wesley, Reading, MA, 1974.
[2] M. AJTAI, J. KOMLt3S, AND E. SZEMERDI, An O(n log n) Sorting Network, Proc. Fifteenth Annual ACM Sym-

posium on Theory of Computing, (1983), pp. 1-9.
[3] D. ANGULIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J.

Comput. System Sci., 18 (1979), pp. 155-193.
[4] L. BABAI, P. ERDtJS, AND S. M. SELKOW, Random graph isomorphism, SIAM J. Comput., 9 (1980), pp. 628-635.
[5] J.L. BENTLEY, D. S. JOHNSON, E T. LEIGHTON, C. C. MCGEOCH, AND L. A. MCGEOCH, Some unexpected expected

behavior results for bin packing, Proc. Sixteenth Annual ACM Symposium on Theory of Computing,
(1984), pp. 279-288.

[6] B. BOLLOB.S, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
[7] Random graphs, in Combinatorics, London Mathematical Society Lecture Notes, 52, Cambridge

University Press, Cambridge, 1981, pp. 80-102.
[8] Lectures on Random Graphs, Proc. Waterloo Silver Jubilee Conference, 1982.
[9] The evolution of random graphs, Trans. Amer. Math. Soc., 286 (1984), pp. 257-274.

[10] Random Graphs, Academic Press, New York, I985.
11 The evolution of sparse graphs, in Graph Theory and Combinatorics, A Volume in Honour of Paul

Erd6s, B. Bollobfis, ed., Academic Press, London, 1984, pp. 35-57.
12] B. BOLLOB.S, A. BRODER, AND I. SIMON, The cost of clustering in random probing, J. Assoc. Comput. Mach.,

37 (1990), pp. 224-237.
[13] B. BOLLO3AS AND A. THOMASON, Parallel Sorting, Discrete Appl. Math., 6 (1983), pp. 1-11.
14] J. DOYLEAND R. RIVEST, Linear expected time ofa simple union-find algorithm, Inform. Process Lett., 5 (1976),

pp. 146-148.
[15] E ERD(SS AND A. RINYI, On random graphs I, Publ. Math., Debrecen, 6 (1959), pp. 290-297.
16] On the evolution ofrandom graphs, Publ. Math. Inst. Hungar. Acad. Sci., 5 (1960), pp. 17-61.
[17] On the strength of connectedness ofa random graph, Acta Math. Acad. Sci. Hungar., 12 (1961), pp.

261-267.
18] On the evolution ofrandom graphs, Bull. Inst. Internat. Statist. Tokyo, 38 (1961), pp. 343-347.
19] H.N. GABOWAND R. E. TARJAN, A linear time algorithmfor a special case ofdisjoint set union, Proc. Fifteenth

Annual ACM Symposium on Theory of Computing, 1983, pp. 246-251.
[20] L. J. GUIBAS AND E. SZEMERIDI, The analysis of double hashing, J. Comput. System Sci., 16 (1978), pp.

226-274.
[21] J.E. HOPCROFT AND J. D. ULLMAN, Set merging algorithms, SIAM J. Comput., 2 (1973), pp. 294-303.
[22] E.E. KNUTH AND A. SCHINHAGE, The expected linearity ofa simple equivalence algorithm, Theoret. Comput.

Sci., 6 (1978), pp. 281-315.
[23] L. POSA, Hamiltonian circuits in random graphs, Discrete Math., 14 (1976), pp. 359-364.
[24] R.E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. Assoc. Comput. Mach., 22 (1975), pp.

215-225.
[25] A class ofalgorithms which require nonlinear time to maintain disjoint sets, J. Comput. System Sci.,

18 (1979), pp. 110-127.
[26] R.E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis ofset union algorithms, J. Assoc. Comput. Mach., 31

(1984), pp. 245-281.
[27] A. C. YAO, On the average behavior of set merging algorithms, Proc. Eighth Annual ACM Symposium on

Theory of Computing, 1976, pp. 192-195.

SIAM J. COMPUT.
Vol. 22, No. 5, pp. 1075-1086, October 1993

() 1993 Society for Industrial and Applied Mathematics
010

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP*

JACK H. LUTZt

Abstract. It is known from work of Bennett and Gill [SIAM J. Comput., 10 (1981), pp. 96-113] and of Ambos-
Spies [in Proc. 1st Structure in Complexity Theory Conference, 1986, pp. 23-34] that the following conditions are

equivalent:
(i) L BPP.
(ii) For almost all oracles A, L pA.

It is shown here that the following conditions are also equivalent to (i) and (ii):
(iii) The set of oracles A for which L pA has pspace-measure 1.
(iv) For every pspace-random oracle A, L pA.

It follows from this characterization (and its proof) that almost every A ESPACE is _<-hard for BPPA Succinctly,
the main content of the proof is that pseudorandom generators exist relative to every pseudorandom oracle.

Key words, probabilistic complexity, BPP, resource-bounded measure, random oracles, pseudorandom oracles,
pseudorandom generators

AMS subject classifications. 68Q15, 03D15

1. Introduction. The class BPP consists of those decision problems that are feasibly
solvable by randomized algorithms. This class, defined by Gill [9], has been shown to admit
a variety of equivalent definitions [1], [2], [11]-[13], [27], [28], [30]-[32]. A particularly
elegant and useful characterization of BPP is the following.

THEOREM (Bennett and Gill [2], Ambos-Spies [1]). For a language L c_ {0, 1}* the
following conditions are equivalent:

(1) L BPP.
(2) For almost all oracles A, L pa.
The "almost all" in condition (2) here refers to Lebesgue measure on the set of all oracles.

(Oracles in this paper are languages A c_ {0, }*.) That is, if an oracle A is chosen probabilis-
tically, by using an independent toss of a fair coin to decide whether each string x 6 {0, }* is
in A, then condition (2) asserts that L 6 pA with probability one.

Interesting though it is, this characterization demands a more careful analysis. Since BPP
is countable, Theorem implies that almost every oracle is <-hard for BPP. Nevertheless,
Theorem gives no information regarding which oracles are <P-hard for BPP. (The inclusion
BPP c_ E C) FI2P of Sipser and Gics [25] implies that oracles that are <-hard for ENH have
this property, but by Theorem 1 this is only a measure-0 set of oracles, unless BPP E2P A FI.)

In this paper we refine Theorem by proving the following.
MAIN THEOREM. For a language L {0, }* thefollowing conditions are equivalent:
(1) L 6 BPP.
(2) The set oforacles A for which L pA has pspace-measure 1.
(3) For every pspace-random oracle A, L pA.

(Conditions (2) and (3) here refer to the resource-bounded measure theory and measure-
theoretic pseudorandomness ofLutz [18]; see 3 belowfor details.)

Intuitively, the Main Theorem says that every sufficiently random oracle is _<-hard for
BPP and that pspace-randomness is sufficient here. Of course, every random oracle (i.e.,
every language whose characteristic sequence is algorithmically random in the equivalent

*Received by the editors April 18, 1990; accepted for publication (in revised form) April 18, 1992. This research
was supported in part by National Science Foundation grants CCR-8809238 and CCR-9157382 and also by the Center
for Discrete Mathematics and Theoretical Computer Science (DIMACS), where the author was visiting while part of
this work was performed.

Department of Computer Science, Iowa State University, Ames, Iowa 50011.

1075

1076 JACK H. LUTZ

senses of Martin-L6f [20], Levin [14], Schnorr [23], Chaitin [5], [6], Solovay [26], and Shen’
[24]) is pspace-random, so that it follows immediately from the Main Theorem that every
random oracle is _<-hard for BPE Since almost every oracle is random [20], this in turn
gives the (1) == (2) part of Theorem 1. However, the Main Theorem is much stronger
than this. For example, since every pspace-measure-1 set has measure 1 in ESPACE
DSPACE(2linear) 18], the (1) === (2) part of the Main Theorem tells us that for each L E BPP,
L is <-reducible to almost every A E ESPACE. Similarly, since almost every language in
E2SPACE DSPACE(2plynmial) is pspace-random 18], the (1) === (3) part of the Main
Theorem tells us that almost every language in E2SPACE is <P-hard for BPP. In fact, our proof
tells us more, namely, that almost every language A 6 ESPACE is <-hard for BPPA.

2. Overview of proof. The following notion of hardness relative to oracle circuits is
Central to the proof of the Main Theorem.

DEFINITION (Nisan and Wigderson [21], [22]). Given languages L, A

{0, 1}*, a real

3 > 0, and n, s N, L is (3, s)a-hard at n if

]L(?" A)/k L=n] > 2n-l(1 3)

for every n-input oracle circuit ?, with size(?,) < s. (Here L=n denotes L N {0, 1}n.) The
hardness of L relative to A is the function Ha N --+ N defined by

H(n) max{h 6 NIL is (h -1, h)A-hard at n}.

(See [19] or [29] for details concerning oracle circuits.)
Thus a language L is (3, s)a-hard at n if ?,a computes L incorrectly on at least 50(1 3)

percent of the inputs in {0, }n, whenever ?, is an n-input oracle circuit of size s.
For each real 0 < ot < and each oracle A

{0, }* define the relativized hardness class

Ha {L

{0, 1}* H(n) > 2an a.e.}.

(We say that a condition t0(n) holds almost everywhere (a.e.) if it holds for all but finitely
many n 6 N. We say that to(n) holds infinitely often (i.o.) if it holds for infinitely many
n E N.) Also define

If EA DTIMEA (2linear) contains a hard language, then this language can be used to
construct a pseudorandom bit generator that is quick enough and secure enough to achieve
pA BppA. That is, we have the following.

THEOREM 2 (Nisan and Wigderson [21], [22]). For every oracle A and every 0 < c < 1,

ifEA f HA 5/= 0, then pa Bppa.
The proof of Theorem 2, a relativization of arguments in [21], [22], will not be given here.
The following result, which is the main technical content of this paper, will be proven

in 4.
THEOREM 3. /Zpspace({A IEA f3 HA 5 l}) 1. (That is, the indicated set oforacles has

pspace-measure 1.)
COROLLARY 4. /Zpspace({A Pa BppA}) 1.
The proof of the Main Theorem is now easy. If condition (1) holds, then pa Bppa

implies L 6 pa, SO that condition (2) follows by Corollary 4. If condition (2) holds, then
condition (3) holds because every pspace-random language is, by definition, an element of

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP 1077

every pspace-measure-1 set 18]. Finally, almost every oracle A is pspace-random 18], so
that condition (1) follows from condition (3) by the (2) =: (1) part of Theorem 1.

The relationship between pseudorandom generators and pseudorandom oracles is a par-
ticularly interesting aspect of this proof. A pseudorandom generator is a function G
{0, 1}* xN -- {0, 1}* such that IG(x,n)l--n forallx andn. Given a functionl" N -- N and
an oracle A

{0, }*, a generator G is A-quick and A-secure on seeds of length 1, and we write

G _A n if (i) G(x, n) is deterministically computable in 2lxl time relative to A whenever

Ixl l(n); and (ii) for every family t’ (Yn) of oracle circuits with size(yn) O(n) we have

IPr[’A(G(x,n)) 1]- Pr [’na (y) --111 <
n

where x {0, }/(n) and y {0, }n are chosen according to the uniform distributions.
The main part of Nisan and Wigderson’s proof of Theorem 2 shows that for every real

0 < ot < there exists c N such that for all A

{0, }* if Ea f"l Ha # 0, then there is a

a
generator G c log n n. Putting this together with Theorem 3 gives the following.

THEOREM 5. There is a positive integer c such that for every pspace-random oracle
A

A

_
{0, }* there exists a pseudorandom generator G c log n n.
Less formally, this says that pseudorandom generators exist relative to every pseudoran-

dom oracle.

3. pspace-measure and pspace-randomness. In this section we review some funda-
mentals of resource-bounded measure and pseudorandomness, where the resource bound is
polynomial space. For more details, examples, and proofs, see 18].

We work with two alphabets, the binary alphabet {0, 1 and the extended binary alphabet
E {0, 1, _1_}. The symbol / (bottom) denotes an undefined bit. We fix the partial ordering_

of E in which _1_

_
0, _1_

_
1, and 0 and are incomparable. Given a string or sequence

x E* U E, we write x[i] for the ith bit of x and x[i..j] for the string consisting of the ith
through jth bits of x. We also fix the standard enumeration so), s 0, s2 1, s,3

00 of {0, }*, and we write x[w] x[i] whenever w si and 0 _< < Ixl, We extend_
bitwise to strings and sequences, i.e., x

_
y if and only if (i N)x’[i]

_
y’[i], where

x’ x if Ix , x’ x_t_ if Ix < , and y’ is defined similarly. The cylinder specified
by a string x 6 E* is Cx {A c_ {0, }* Ix

_
XA}, where XA G {0, } is the characteristic

sequence of A, i.e., each Xa[i] is if si A and is 0 otherwise. We use the symbol -l- (top)
to specify the empty set, i.e., Ca- 0. For x, y 6 E* we let x/x y be the shortest string such
that CxAy Cx I’l Cy. Note that x/x y T if x and y are incompatible, i.e., if Cx N Cy 0.
The measure Ix(x) of a cylinder Cx is the probability that A Cx when A

{0, }* is chosen

according to the random experiment in which an independent toss of a fair coin is used to
decide whether each string w 6 {0, }* is in A. Thus if we let #(b, x) denote the number of
occurrences of the symbol b in the string x and if we define

/#(0, x)-+-#(1, x) ifx E*,Ilxll i cx ifx -l-,

then Ix(x) 2-Ilxll for all x E* U {T}.
We fix once and for all a one-to-one pairing function (,) from {0, 1 }* x {0, }* onto {0, }*

such that the pairing function and its associated projections (x, y) - x and (x, y) y
are computable in polynomial time. We insist further that this pairing function satisfy the
following condition for all x, y {0, }*: (x, y) {0}* if and only if x, y {0}*. This
condition canonically induces a pairing function (,) from N x N onto N. We write (x, y, z)
for (x, (y, z)), etc., so that tuples of any fixed length are coded by the pairing function.

1078 JACK H. LUTZ

We let D {m2-n m, n 6 N} be the set of nonnegative dyadic rationals. Many
functions in this paper take their values in D or in [0, oo), the set of nonnegative real numbers.
In fact, with the exception of some functions that map into [0, oo), our functions are of
the form f X --+ Y, where each of the sets X, Y is N, {0, 1}*, D, or some Cartesian
product of these sets. Formally, in order to have uniform criteria for their computational
complexities, we regard all such functions as mapping {0, 1}* into {0, 1}*. For example, a
function f N2 x {0, 1 }* --, N x D is formally interpreted as a function f {0, 1 }* --+ {0, }*.
Under this interpretation f(i, j, w) (k, q)means that f((0i, (0J, w))) (0h, (u, v)), where
u and v are the binary representations of the integer and fractional parts of q, respectively.
Moreover, we care only about the values of ffor arguments of the form (0 (0J, w)), and we
insist that these values have the form (0h, (u, v)) for such arguments.

For a function f N x X --+ Y and k 6 N we define the function f X -+ Y by f (x)
f((0, x)). We then regard f as a uniform enumeration of the functions f0, fl, f2
For a function f N x X --+ Y (n > 2) we write f, (f)l, etc. For a function

f {0, }* -+ {0, }* we write fn for the n-fold composition of f with itself.
We work with the resource bound

pspace {f" {0, 1}* ---, {0, 1}*If is computable in polynomial space}.

(The length If (x)l of the output is included as part of the space used in computing f.)
Resource-bounded measure and pseudorandomness were originally developed in terms

of "modulated covering by cylinders" [15]-[17]. Athough the main results of these papers
are true, the underlying development was technically flawed. This situation was remedied
in 18], in which resource-bounded measure was reformulated in terms of density functions.
We review relevant aspects of the latter formulation here.

A densityfunction is a function d {0, }* --+ [0, oo) satisfying

d(x) >_
d(xO) + d(x 1)

for all x 6 {0, }*. The global value of a density function d is d()v). An n-dimensional density
system(n-DS) is a function d N x {0, }* --+ [0, oo) such that d is a density function for
every k 6 Nn. It is sometimes convenient to reg_..ard a density function as a 0-DS.

A computation of an n-DS d is a function d Nn+l x {0, }* -+ D such that

I’,,r (X) d7(x) _< 2

for all k 6 Nn, r 6 N, and x 6 {0, }*. A pspace-computation of an n-DS d is a computation
d such that d pspace. An n-DS is pspace-computable if there exists a pspace-computation
d of d. (Note that (3.1) implies that

d,(x) lim dL (x)
r---> oo

for all k N and x {0, }*.)
The set covered by a density function d is

S[d] U Cx
x{O, 1}* /xd(x)>

A density function d covers a set X of languages if X c. S[d]. A null cover of a set X of
languages is a 1-DS d such that, for all k 6 N, dk covers X with global value dk(.) < 2-g. It is
easy to show 18] that a set X oflanguages has classical Lebesgue measure 0 (i.e., probability 0

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP 1079

in the coin-tossing random experiment) if and only if there exists a null cover of X. In this
paper we are interested in the situation in which the null cover d is pspace-computable.

DEFINITIONS. Let X be a set of languages and let X denote the complement of X.
(1) A pspace-null cover of X is a null cover of X that is pspace-computable.
(2) X has pspace-measure O, and we write/Zpspace(X) 0, if there exists a pspace-null

cover of X.
(3) X has pspace measure 1, and we write/Zpspace(X 1, if/Zpspace(Xc) 0.
(4) X has measure 0 in ESPACE DSPACE(21inear), and we write/z(X ESPACE) 0,

if/Zpspace(X (ESPACE) 0.
(5) X has measure in ESPACE, and we write /z(X ESPACE) 1, if

lz(XCl ESPACE) 0. In this case, we say that X contains almost every language in
ESPACE.

It is shown in 8] that these definitions endow ESPACE with internal measure-theoretic
structure. Specifically, if 77 is either the collection Zpspace of all pspace-measure-0 sets or
the collection ’ESPACE of all sets of measure 0 in ESPACE, then 2" is a pspace-ideal, i.e., it is
closed under subsets, finite unions, and pspace-unions (countable unions that can be generated
in polynomial space). More importantly, it is shown that the ideal Z’EsPACE is a proper ideal,
i.e., that ESPACE does not have measure 0 in ESPACE.

Our proof of Theorem 3 does not proceed directly from the above definitions. Instead
we use a sufficient condition, proved in 18], for a set to have pspace-measure 0. To state
this condition we need a polynomial notion of convergence for infinite series. All series here
consist of nonnegative terms. A modulus for a series Yn=0 an is a function m N N such
that

an<2_j
n--m(j)

for all j 6 N. A series is p-convergent if it has a modulus that is a polynomial. A sequence

aj, (j O, 1, 2
k=0

of series is uniformly p-convergent if there exists a polynomial m N2 N such that, for
each j 6 N, mj is a modulus for the series =0 aj,. We will use the following sufficient
condition for uniform p-convergence. (This well-known lemma is easily verified by routine
calculus.)

LEMMA 6. Let aj, [0, cx) for all j, k N. Ifthere exist a real e > 0 and a polynomial
g N -- N such that aj,k <_ e- for all j, k N with k > g(j), then the series

aj,k (j O, 1, 2
k=0

are uniformly p-convergent.
The proof of Theorem 3 is greatly simplified by using the following special case (for

pspace) of a uniform, resource-bounded generalization of the classical first Borel-Cantelli
lemma.

LEMMA 7 (Borel [3], Cantelli [4], Lutz [18]). Ifd is a pspace-computable 2-DS such that
the series

Z dj,k()) (j O, 1, 2,...)
k=O

1080 ACK H. LUTZ

are uniformly p-convergent, then

. nU =0.
=0 t=0 k=t

If we write S 0=o U--t SIdLe] and S U__0 S, then Lemma 7 gives a sufficient
condition for concluding that S has pspace-measure 0. Note that each S consists of those
languages A that are in infinitely many of the sets S[d,t].

Finally, we review the notion ofpspace-randomness. A pspace-test is a set X oflanguages
such that pspace(X) 1. A language A passes a pspace-test X if A X. A language A is
pspace-random, and we write A RAND(pspace), if A passes all pspace-tests. That is,

RAND(pspace) N X.
/pspace (X)-----

Since every finite subset of ESPACE has pspace-measure 0 18], it is immediate that

(3.2) RAND(pspace) n ESPACE 0.

Moreover, every pspace-random language has essentially maximum circuit-size complexity
and space-bounded Kolmogorov complexity 18]. Intuitively, pspace-random languages are
random enough for all pspace-computable purposes. On the other hand, pspace-random
languages may be computable. In fact, notwithstanding (3.2), almost every language in

EzSPACE DSPACE(2plynmial) is pspace-random 18].

4. Hardness under pseudorandom oracles. In this section we prove Theorem 3. For
each A

{0, }* let

where

and let

ODD(A) { u 6 {0, 11" [C(u, A)[is odd],

C(u, A) {uv A Iwl 2lul},

X {A ODD(A) ’ HA/.

Then ODD(A) 6 EA for all A, so that it suffices to prove that/Zpspace(X 0.
For each j, k N let

{AI A
Xj,k

0
HODD(A) (n) <-- 2(1)n} if j 2/2 and k 2n,

if j and k are not of this form,

where or(l) /+1 (Note that or(0)3-T- , or(1) is strictly increasing, and lim/ or(l) .) It
is clear that

(4.1)
j=0 t=0 k=t

We will use (4.1) and Lemma 7 to prove that]Zpspace (X) 0.

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP 1081

For all l, n 6 N let j 2/2, k 2n, and define the sets

OCIRC(/, n) {y Y is a novel n-input oracle circuit with size(y) < k(t)},

{ k -or(t) }DELTA(/,n)= D___{0,1}]D] < (1-k

(An n-input oracle circuit y is novel if it is functionally distinct from all those preceding it in
a standard enumeration.) Then for all y 60CIRC(/, n) and D 6 DELTA(l, n) let

Y,D {AILA(y) A D ODD(A)=n}.

Note that

(4.2) Xj,. U U Y,D
yeOCIRC(/,n) DeDELTA(I,n)

for all 1, n 6 N, where j 2/2 and k 2n.
Define d :N2 x {0, }* --+ [0, cxz) by

(4.3)

dj,(x) eOCIRCq,) eDELTAq,m
0,

The conditional probability

P(Y,D C) if j 2/2 and k 2n,

if j and k are not of this form.

P(Y,D Cx) PAr[A e Y,D A Cz]

in (4.3) is computed according to the uniform distribution on languages A

{0, }*, i.e., the

random experiment in which A is chosen probabilistically by using an independent toss of a
fair coin to decide whether each string y 6 {0, 1}* is in A. Note that P(Xj,k Cx) < dj,k(X)
for all j, k 6 N and x 6 {0, }*. (This inequality may be strict because the union (4.2) is not
a disjoint union.)

By (4.1) and Lemma 7 it suffices to prove the following three claims.
CLAIM 1. d is a pspace-computable 2-DS.
CLAIM 2. For all j, k N, Xj,k S[dj,k].
CLAIM 3. The series

E dj,(Z) (j O, 1, 2
k=O

are uniformly p-convergent.
ProofofClaim 1. First note that each

P(Y,D Cx)
P(Y,D n Cx)

P(Cx)
P(Y,D V Cxo) -t"- P(Y,D n Cxi)

P(Cx)
P(rr, n Co) P(rr,. n c)+

2P(Cxo) 2P(Cx)
P(Y,D CxO) + P(Y,D Cxl)

1082 JACK H. LUTZ

so that

dj,g (xO) + dj,k (x 1)

for all j, k 6 N and x 6 {0, }*. It follows that d is a 2-DS.
It is clear that we can use (4.3) to compute d, provided that we can compute the conditional

probabilities P(Y,o Cx). We thus focus on this computation.
Fix 9/ 60CIRC(/, n) and D 6 DELTA(I, n). Let SOURCES(n) {0, 1 k3+k2. For each

z 6 SOURCES(n) let a string w 6 E* of length 2k(/)+l and a set ODD

_
{0, 1}" be

constructed as follows. (For each A Y,o this process will, for some z, produce a string
W ,A and corresponding set ODD ODD(A) N {0, }n.) Initially, ODD 0 and w is all
2-’s. Then simulate 9/on the successive inputs u 6 {0, }n. Each time 9/queries a string y in
this simulation, do if w[y] 2_ then (w[y], z) := (head(z), tail(z)). (Note that Iwl has been
chosen large enough for w[y] to exist here.) Then, in any case, use w[y] as the response to the
query. If 9/(u) in this simulation, do ODD := ODD U {u}. After 9/has been simulated on
all inputs, do ODD ODD/X D. At this point note that at most kl+(t) < k4/3 of the bits w[y]
of w are in {0, }; the rest are still 2_. Finally, use the remaining bits of z (actually use a portion
of them, as needed) to complete the specification of w as follows. For each u 6 {0, 1 }n first
use bits of z to fill in all but one of the values w[uv] for v 6 {0, 1 }2n; then define the remaining
bit w[uv] according to whether u 6 ODD. (The measure argument in Claim 3 below works
precisely because these k bits--one for each umare determined by ODD.) Finally, let z’ be
the initial segment of the original string z 6 SOURCES(n) consisting of those bits actually
used in this construction. Note that Iz’l < k -+- k4/3 and that all but Iz’l / k bits of w are still
2-. Since w depends only on the prefix z’ of z, we write w w(z’).

Let SOURCES’(n) {z’ z 6 SOURCES(n)}. Since 9/is a fixed oracle circuit (whose
gates we simulate in a fixed topological order), we have Co(z,l) Cwz;) 0 for distinct

Zl, z2 6 SOURCES’ (n). Moreover, it is clear that

(4.4) Y,o U Cwz,.
z’eSOURCES’(n)

It follows that for all x 6 {0, }*

P(Y,D Cx) P(Cw(z,) Cx)
z’eSOURCES’(n)

(4.5)
21xl_iix/xw(z,)ll.

z’SOURCES’)

This is the basis for our computation. Given j, k, x, 9/, D, and z’, it is clear that we can compute
2Ixl-IIx/(z’ll in space polynomial in j + k + Ix[. (The string w(z’) has fewer than k + k2 + k
non-2- bits, so that it can be stored in space polynomial in k.) We can find the successive

strings z’ 6 SOURCES’(n) by a depth-first search of {0, 1}-<3+, also in polynomial space.
We can thus use (4.5) to calculate P(Y,o Cx) in space polynomial in j + k + Ixl. As
already noted, we can then use (4.3) to calculate dj,(x) in polynomial space. This proves that
d pspace, whence d is certainly pspace-computable, affirming Claim 1.]

Proof of Claim 2. Fix j, k 6 N. If j and k are not of the form j 2t2 and k 2n,
then Xj, c__ S[dj,] holds trivially. If j 212 and k 2, let A Xj,. By (4.2) fix

9/60CIRC(/, n) and D 6 DELTA(l, n) such that A 6 Y,o. By (4.4) fix z’ 6 SOURCES’(n)
such that a C(z,. Let m w(z’)]. Then

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP 1083

dj,k(XA[O..m- 1]) >_ P(Yy,D ICxA[O..m_I]
P(Cw(z,) CxA[o..m_l])

---1,

so that A S[dj,k] in any case. This proves Claim 2. 71

Proof of Claim 3. We estimate the global values dj,k()). Fix l, n 6 N, and let j 2t2,
k 2n. Fix 9/ 60CIRC(/, n) and D 6 DELTA(l, n). By (4.5) and the fact that k bits of each
w(z’) are determined by ODD, we have

P(Y,,D C) 2
z’SOURCES’(n)

2-k 2-Iz’l

z’eSOURCES’(n)

(The last equality here holds because every string z 6 SOURCES(n) has exactly one prefix
z’ 6 SOURCES’(n).) Since 9/and D are arbitrary here, it follows by (4.3) that

(4.6) dj,O) <_ IOCIRC(1, n)l IDELTA(I, n)l. 2-.
A routine counting argument shows that

[OCIRC(1, n)l _< a(4ek(l))I(l,

where a 2685. (This is Lemma 4.2 of [19].) It follows that there is a constant n 6 N such
that

(4.7) IOCIRC(I, n)[_< 2

for all l, n 6 N with n > nl. (The constant n does not depend on here because or(l) < g
for all 1.) By the Chernoff bound (see [7], [8], [10]),

(4.8) IDELTA(/, n)l _< 2p,
where

g k-(1).
l+e

Calculating with Taylor approximations, we have

e| (1 +2e 0(8)) 8g ln(1-2e+o(e))

l+e
e-2e2+{e2) 1- 2e2+ O(e2)

12 32as e --+ 0. Since (1 s:)(1 is is + o(:) as s -- 0, it follows that

(1-)el-+- ()(4.10) < (1-e2) 1-e2

for all sufficiently small e. By (4.8), (4.9), and (4.10) there is a constant n2 N such that

1084 JACK H. LUTZ

(4.11)

1/32)k/2[DELTA(l, n)[< 2(1
2/+(//2) log(1-(1/2)e2)

< 2k-cke2

< 2k-ck1-21)

(The constant n2 does not depend on becausefor all l, n 6 N with n >_ n2, where c 41n2
e k-’l) < k- k-1/4 in any case.)

Let k0 2max{n’’n2}. By (4.3), (4.6), (4.7), and (4.11) we have

(4.12) dj,k(< 2kal log k-ck1-2t)

for all j, k 6 N with j 212 and k > k0. Define a polynomial g N --+ N by

g(j) 2185jTM + k0

for all j 6 N. Writing In k and a 3l + 4, we have

k >_ g(j) == > 185 ln2 / 381/2 ln2
(4.13) > 128 + 264/2

> 8a2.

Examining the function f(t) et/a 4t 4 and its derivative shows that f(t) > 0 for all
>_ 8a2. By (4.13) then

k > g (j == e /a 4t 4 > O

== kI/a -41nk-4 > 0

(4.14)
ck1-3(l) log k log e > 0

2kl) log k-ck l-2a(l) -k(l)<e.

By (4.12) and (4.14) we have

dj,k()) <_ e-kl) <_ e-k’/4

for all j, k 6 N with k > g(j). It follows by Lemma 6 that the series

Z dj,k()) (j O, 1, 2
k=0

are uniformly p-convergent, i.e., Claim 3 holds.
By (4.1) and Claim 2 we have

UNU UNU
j=0 t=0 k=t j=0 t=0 k=t

By Claims and 3 and Lemma 7 it follows that]Jpspace(X) 0. This completes the proof of
Theorem 3 (and the Main Theorem).

5. Conclusion. We have used pseudorandom oracles to give a new characterization of
BPP. If we write RAND(pspace) for the set of all pspace-random languages, then our char-

A PSEUDORANDOM ORACLE CHARACTERIZATION OF BPP 1085

acterization implies that L pA for every L BPP and every A RAND(pspace). This
result strengthens the intuition that pspace-random languages are adequate sources for all BPP
problems. (Earlier, more asymptotic evidence for this view appears in 17].)

Our work also gives a more detailed analysis of the Bennett and Gill [2] result that
pa Bppa for almost every oracle A. Specifically, under every pspace-random oracle A, Ea

contains languages that are very hard to approximate with oracle circuits. Such a hard language
can, by the work of Nisan and Wigderson [21], [22], be used to construct a pseudorandom
generator that is quick enough and secure enough to establish pA Bppa. Since almost every
oracle A is pspace-random, the result of Bennett and Gill [2] follows.

Acknowledgments. I thank Ron Book and other participants in an informal workshop
in structural complexity theory, held in 1990 at the University of California in Santa Barbara,
for their helpful remarks on this work. I also thank David Juedes and Elvira Mayordomo for
useful observations on resource-bounded measure.

REFERENCES

K. AMBOS-SPIES, Randomness, relativizations, andpolynomial reducibilities, in Proc. st Structure in Complex-
ity Theory Conference, Berkeley, California, Lecture Notes in Computer Science, 223, 1986, Springer-
Verlag, Berlin, pp. 23-34.

[2] C.H. BENNETT AND J. GILL, Relative to a random oracle A, pa 5 NpA 5 co_NpA with probability 1, SIAM
J. Comput., 10 (1981), pp. 96-113.

[3] E. BOREL, Sur les probabilits dnombrables et leurs applications arithmtiques, Rend. Circ. Mat. Palermo,
26 (1909), pp. 247-271.

[4] F.P. CANTELLI, La tendenza ad un limite nel senzo del calcolo della probabilit& Rend. Circ. Mat. Palermo, 16
(1916), pp. 191-201.

[5] G.J. CHAITIN, A theory ofprogram sizeformally identical to information theory, J. Assoc. Comput. Mach., 22
(1975), pp. 329-340.

[6] Incompleteness theoremsfor random reals, Adv. in AppI. Math., 8 (1987), pp. 119-146.
[7] H. CHERNOFF, A measure of asymptotic efficiency for tests ofa hypothesis based on the sum of observations,

Ann. Math. Statist., 23 (1952), pp. 493-509.
[8] P. ERDOS AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.
[9] J. GILL, Computational complexity ofprobabilistic Turing machines, SIAM J. Comput., 6 (1977), pp. 675-695.

[10] T. HAGERUP AND C. ROB, A guided tour ofChernoffbounds, Inform. Process. Lett., 33 (1990), pp. 305-308.
11 P. HINMAN AND S. ZACHOS, Probabilistic machines, oracles and quantifiers, in Proc. Oberwolfach Recursion-

Theoretic Week, Lecture Notes in Mathematics, 1141, 1984, Springer-Verlag, Berlin, pp. 159-192.
12] J. KAMPER,Non-uniformproofsystems: A newframework to describe non-uniform andprobabilistic complexity

classes, in Proc. 8th Conference on Foundations of Software Technology and Theoretical Computer
Science, Pune, India, Lecture Notes in Computer Science, 338, 1988, Springer-Verlag, Berlin, pp. 193-
210.

[13] S. KtJRTZ, A note on randomizedpolynomial time, SIAM J. Comput., 16 (1987), pp. 852-853.
[14] L.A. LEVIN, On the notion ofa random sequence, Soviet Math. Dokl., 14 (1973), pp. 1413-1416.
15] J.H. LtJTz, Almost everywhere high nonuniform complexity, in Proc. 4th IEEE Structure in Complexity Theory

Conference, IEEE Computer Society, Eugene, Oregon, 1989, pp. 37-53.
16] Category and measure in complexity classes, SIAM J. Comput., 19 (1990), pp. 1100-1131.
[17] ,Pseudorandom sourcesfor BPP, J. Comput. System Sci., 41 (1990), pp. 307-320.
[18] Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44 (1992), pp. 220-258.
[19] J. H. LUTZ AND W. J. SCHMIDT, Circuit size relative to pseudorandom oracles, Theoret. Comput. Sci., 107

(1993), pp. 95-120.
[20] P. MARXIN-LOF, On the definition ofrandom sequences, Inform. and Control, 9 (1966), pp. 602-619.
[21] N. NISAN, Using Hard Problems to Create Pseudorandom Generators, MIT Press, Cambridge, MA, 1992.
[22] N. NISAN AND A. WI6DERSON, Hardness vs. randomness, in Proc. 29th Anual IEEE Symposium on Foundations

of Computer Science, IEEE Cmputer Society, Washington, DC, 1988, pp. 2-11.
[23] C.P. SCHNORR, Process complexity and effective random tests, J. Comput. System Sci., 7 (1973), pp. 376-388.
[24] A.K. SHENt, On relations between different algorithmic definitions ofrandomness, Sov. Math. Dokl., 38 (1989),

pp. 316-319.

1086 JACK H. LUTZ

[25] M. SIPSER, A complexity-theoretic approach to randomness, in Proc. 15th Annual ACM Symposium on Theory
of Computing, Association for Computing Machinery, New York, 1983, pp. 330-335.

[26] R.M. SOLOVAY, 1975, reported in [6].
[27] S. TANG AND R. BOOK, Polynomial-time reducibilities and "almost-all" oracle sets, Theoret. Comput. Sci., 81

(1991), pp. 35-47.
[28] S. TANG AND O. WATANABE, On tally relativizations of BP-complexity classes, SIAM J. Comput., 18 (1989),

pp. 449-462.
[29] C.B. WILSON, Relativized circuit complexity, J. Comput. System Sci., 31 (1985), pp. 169-181.
[30] S. ZACHOS, Probabilistic quantifiers and games, J. Comput. System Sci., 36 (1988), pp. 433-451.
[31] S. ZACHOS AND M. FURER, Probabilistic quantijers vs. distrustful adversaries, in Proc. 7th Conference on

Foundations of Software Technology and Theoretical Computer Science, 1987, pp. 443-455.
[32] S. ZACHOS AND H. HEELER, A decisive characterization of BPE Inform. and Control, 69 (1986), pp. 125-135.

SlAM J. COMPUT.
Vol. 22, No. 5, pp. 1087-1116, October 1993

1993 Society for Industrial and Applied Mathematics
011

POLYNOMIAL-TIME APPROXIMATION ALGORITHMS
FOR THE ISING MODEL*

MARK JERRUMt AND ALISTAIR SINCLAIRt

Abstract. The paper presents a randomised algorithm which evaluates the partition function of an arbitrary
ferromagnetic Ising system to any specified degree of accuracy. The running time of the algorithm increases only
polynomially with the size of the system (i.e., the number of sites) and a parameter which controls the accuracy of
the result. Further approximation algorithms are presented for the mean energy and the mean magnetic moment of

ferromagnetic Ising systems.
The algorithms are based on Monte Carlo simulation of a suitably defined ergodic Markov chain. The states

of the chain are not, as is customary, Ising spin configurations, but spanning subgraphs of the interaction graph of
the system. It is shown that the expectations of simple operators on these configurations give numerical information
about the partition function and related quantities.

The performance guarantees for the algorithms are rigorously derived and rest on the fact that the Markov chain

in question is rapidly mixing, i.e., converges to its equilibrium distribution in a polynomial number of steps. This is

apparently the first time that rapid mixing has been demonstrated at all temperatures for a Markov chain related to

the Ising model.

Key words, the Ising model, statistical physics, ferromagnetism, spin-glasses, partition function, #P-completeness,
approximation algorithms, Markov chains, rapid mixing, Monte Carlo simulation

AMS subject classifications. 05C85, 60J10, 60J20, 60K35, 68Q20, 68Q25, 82B20, 82B31, 82B80

1. Summary. This paper is concerned with computational solutions to a classical com-
binatorial problem of statistical physics. Generally known as the Ising model, the problem
has been the focus of much attention in the physics and mathematics communities since it was
first introduced by Lenz [24] and Ising 14] in the early 1920s. We will not present a detailed
historical account here; a very readable survey is given by Cipra [6], while Welsh [30] sets the
Ising model in the context of other combinatorial problems in statistical physics.

The problem is easily stated. Consider a collection of sites [n] {0, n }, each
pair i, j of which has an associated interaction energy Vij. In most cases of physical interest,
the set E of pairs with nonzero interaction energies forms a regular lattice graph ([n], E). A
configuration is an assignment of positive (o" -t-1) and negative (o -1) spins to each
site E [n]. The energy of a configuration r (ri) is given by the Hamiltonian

{i,j}6E k6[n]

where B is an external field.
In the case where all interaction energies are nonnegative, such a system models the

behaviour of a ferromagnet; in fact, it was towards an understanding of spontaneous magne-
tization that the model was first conceived. However, the Ising model has since become a
powerful paradigm for the investigation of more general cooperative systems in which short-
range interactions between elements can give rise to long-range order.

The central problem is to compute the partitionfunction

Z Z(Vij B,/3) Z exp(-flH(cr)),

*Received by the editors February 10, 1992; accepted for publication (in revised form) March 30, 1992. An
extended abstract of this paper appeared in the "Proceedings of the International Colloquium on Automata, Lan-
guages and Programming," Warwick, United Kingdom, July 1990; published by Springer-Verlag as Lecture Notes in
Computer Science, Vol. 443.

Department of Computer Science, University of Edinburgh, The King’s Buildings, Edinburgh EH9 3JZ, Scot-
land.

1087

1088 MARK JERRUM AND ALISTAIR SINCLAIR

where/3 > 0 is related to the temperature and the sum is over all possible configurations
r. Almost all the physical properties of the system can be computed from knowledge of Z.
Essentially, Z is the normalising factor in the calculation of probabilities: according to the
fundamental theory of statistical mechanics, the probability that the system in equilibrium
is found in configuration cr is exp(-H(cr))/Z. Moreover, certain logarithmic derivatives
of Z correspond to quantities such as the mean energy and the mean magnetic moment.

Singularities in these derivatives generally correspond to phase transitions, when a small
change in a parameter has an observable effect on the macroscopic properties of the system.

The search for efficient computational solutions to these problems has proved extremely
hard and has generated a vast body of literature. A major breakthrough was achieved in the
early 1960s by Kasteleyn 19] and Fisher [11], who reduced the problem of computing Z
for any planar Ising system (i.e., one whose graph ([n], E) of nonzero interactions is planar)
to the evaluation of a certain determinant. This must rank as one of the highlights in the
field of combinatorial algorithms. It remains the state of the art as far as exact solutions are
concerned; in particular, it does not appear to generalise to nonplanar systems. On the other
hand, a huge amount of computational effort is poured into numerical solutions of the Ising
model for three-dimensional regular lattices and other nonplanar systems. The problem is that
the methods used here, while ingenious, generally lack a rigorous theoretical base and rely for
their validity largely on physical intuition.

In this paper, we exhibit what we believe to be the first provably efficient approximation
algorithm for the partition function of an arbitrary ferromagnetic Ising system. By "efficient"
here we mean that the algorithm is guaranteed to run in time polynomial in the number
of sites n. The algorithm is a fully polynomial randomised approximation scheme (fpras),
i.e., it will produce solutions which, with very high probability, fall within arbitrarily small
error bounds specified by the user, the price of greater accuracy being a modest increase in
runtime. We also show that such an algorithm is essentially the best one can hope for, in
the sense that the existence of an efficient exact algorithm for the problem, or even of an
efficient approximation algorithm for the nonferromagnetic case, would have devastating and
far-reaching consequences in the theory of computation.

From the point ofview of theoretical computer science, our result provides a new example
of a significant combinatorial enumeration problem which is #P-complete, and hence appar-
ently intractable in exact form, but for which an efficient approximation algorithm exists. This
is an intriguing class of problems, and includes the problems of computing the volume of a
convex body [9], the partition function of a monomer-dimer system [16], and the permanent
of a large class of 0-1 matrices [16]. Our algorithm is also of interest in its own right as a
further application of the general technique of simulating an ergodic stochastic process whose
rate of convergence can be analysed. This approach has recently attracted much attention, and
its full algorithmic potential is only now becoming apparent.

The idea is the following. In order to compute weighted combinatorial sums, such as the
Ising partition function, it is often enough to be able to sample configurations r at random with
probabilities proportional to their weights, in this case exp(-/H(a)). This can be achieved
by setting up an ergodic Markov chain whose states are configurations and whose transitions
correspond to small local perturbations. If the chain is designed so that the equilibrium
distribution to which it converges is the desired weighted distribution over configurations,
then we get a random sampling procedure by simulating the chain for some number of steps
and outputting the final state. For such a procedure to be efficient, the chain must be rapidly
mixing in the sense that it gets very close to equilibrium after a small (i.e., polynomial) number
of steps. This is a highly nontrivial requirement, since the number of states is exponentially
large. Recent developments have provided appropriate analytical tools for establishing the
rapid mixing property for chains of this kind [27], [29], [7], [28].

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1089

The Markov chain simulation approach to the Ising model is far from new" Under the
name of the Monte Carlo method, this technique has been applied extensively to a whole range
of problems in statistical physics (see, e.g., [4]). The problem with the approach, however, is
that it appears very difficult to define a Markov chain on Ising spin configurations cr which is
rapidly mixing; indeed, the chains which are frequently used in practical simulation studies
clearly do not have this property.

We overcome this obstacle by transforming the problem to an entirely new domain,
where the configurations are spanning subgraphs of the interaction graph ([n], E). Each
subgraph has an "energy" which is determined by weights attached to its edges and vertices.
Although there is no direct correspondence between configurations in the two domains, and
the subgraph configurations have no obvious physical significance, the two partition functions
are, remarkably, very closely related. Moreover, and crucially, there is a natural Markov chain
on the subgraphs with the appropriate equilibrium distribution which is rapidly mixing. Thus
the Markov chain approach can be made to work efficiently in the new domain.

The above transformation is a classical result [26], often known as the "high-temperature
expansion" of the Ising model partition function. However, the idea of viewing the graphs
in this expansion as a statistical mechanical system which forms the basis of a Monte Carlo
simulation appears to be new. To the best of our knowledge, our results represent the first
rigorous proof ofrapid mixing at all temperatures for a Markov chain related to the Ising model.
Moreover, this property is entirely independent of the interaction topology and relies on no
assumptions of any kind. We therefore believe that the chain deserves further investigation as
a potentially powerful experimental tool.

The mechanism by which we use sampling of subgraph configurations to compute
the partition function is perhaps of independent interest. This is achieved by subjecting an

Ising system with fixed interactions and at a fixed temperature to varying external fields. By
observing a small number of configurations, randomly selected at appropriately chosen values
of the field, we are able to get an accurate estimate of Z. It is significant that this idea is
motivated by combinatorial considerations and does not correspond to any obvious physical
intuition.

As mentioned earlier, it is often derivatives of the partition function, rather than the
function itself, which are of primary interest. For example, two important quantities are the
mean energy g -0(ln Z)/Ofl, and the mean magnetic moment A//=/-10(ln Z)/OB. Our
approximation algorithm for Z says nothing about our ability to compute these quantities
accurately. However, it turns out that both g and A//can be expressed in terms of expectations
of certain simple operators on configurations in the subgraphs domain. Thus estimates of
and A//can be read off from our configuration sampling algorithm, though again we may have
to vary the external field in order to maximise the accuracy of the statistical experiment. As
a result, we get a fpras for both and as well. We regard this as confirmation that our
approach to the Ising model is robust and computationally effective.

The remainder of the paper is organised as follows. In 2 we describe the transformation
of the Ising model to the new domain in which configurations are spanning subgraphs of
the interaction graph. Section 4 is devoted to a discussion of the Markov chain on these
configurations, and in particular to a proof that it is rapidly mixing. This fact is used in 3 to
construct a fpras for the partition function of an arbitrary ferromagnetic Ising system, and in

5 to construct efficient approximation algorithms for the mean energy and the mean magnetic
moment. Finally, in 6 we present strong evidence that our results are, in a precise theoretical
sense, best possible.

2. The spins world and subgraphs world. Recall that our primary aim is to construct
an algorithm for the following problem:

1090 MARK JERRUM AND ALISTAIR SINCLAIR

INSTANCE: A real symmetric matrix (V/j i, j [n]) of interaction energies, a real number
B (the external field), and a positive real number ft.

OUTPUT: The ising partition function

(1) Z Z(Vij, B, fl) exp(-flH(tr)),
r6{-1,+l)

where the Hamiltonian H(r) is given by

{i,j}E k[n]

and E is the set of unordered pairs {i, j} with V/j 0.

Our algorithm will address theferromagnetic case of the Ising model, which is characterised
by the interaction energies g/j being nonnegative. Furthermore, rather than attempting to
evaluate the partition function exactly, we shall content ourselves with a close approximation.
The phrase "close approximation" will be given a precise meaning in the next section.

One strategy, which has been applied successfully to problems of this type and has, for
example, been used to estimate the partition function of a general monomer-dimer system [27],
16], involves the simulation of an appropriately defined Markov chain. A direct application of

this strategy to the Ising partition function would proceed as follows. View the configurations
of the Ising system, namely, the 2 possible spin vectors cr {-1, +1 }n, as the states of
a Markov chain. Choose transition probabilities between states so that the Markov chain
is ergodic and so that, in the stationary distribution, the probability of being in state cr is
Z-1 exp(-H(tr)). A reasonable way to achieve this, and one which is often used in practice,
is to allow transitions to occur between spin configurations which differ injust one component,
and to choose transition probabilities according to the Metropolis rule [20]. If the resulting
Markov chain is rapidly mixing, that is, if it converges rapidly to the stationary distribution
regardless of the choice of initial state, then it can be used effectively to sample configurations
cr from a distribution which is close to the stationary distribution. By collecting enough sample
configurations, using different values of B and/3, it should then be possible to estimate the
partition function Z with good accuracy.

Unfortunately, it transpires that the Markov chain described, and which we refer to as the
spins-worM process, is not rapidly mixing. It is well known that ferromagnetic Ising systems
typically exhibit a phase transition at a certain value of the parameter ; for values of/3 above
this criticat value, the system settles into a state in which there is a preponderance of spins of
one or other sign. Transitions between the majority + states and majority -1 states occur
very infrequently, simply because the stationary distribution assigns small total weight to the
configurations with balanced spins. (Informally, the state space has a constriction separating
the majority + states and the majority states.) Although it could be argued that the barrier
to rapid mixing just described is somewhat trivial, there exist other more subtle barriers that
apparently cannot be surmounted.

The problem caused by the absence of rapid mixing in the spins-world process can be cir-
cumvented by simulating a different Markov chain, which we refer to as the subgraphs-world
process. The two Markov chains are structurally very different; furthermore, the subgraphs-
world process has, as far as we are aware, no direct physical significance. However, the
subgraphs-world process has a close connection with the Ising partition function and, cru-
cially in the current application, is rapidly mixing. For the time being, we content outselves
with describing the subgraphs-world configurations and associated partition function. The
description of the subgraphs-world process itself is deferred to 4.

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1091

We say that a subgraph is spanning if it includes all the vertices of the parent graph. (Note
that spanning subgraphs are not, in general, connected.) The subgraphs-world configurations
are spanning subgraphs of the interaction graph ([n], E). In the sequel we shall drop the
adjective "spanning" where it seems safe to do so, and frequently identify a spanning subgraph
([n], X) with the set X of edges which define it. To simplify notation, let

(2))ij tanh fl Y/j and /x tanh fiB

Each configuration X c E is assigned a weight according to the formula

(3) w(X) /.4
Idd(X)l H .ij,

{i,j}EX

where the notation odd(X) stands for the set of all odd-degree vertices in the graph X. The
subgraphs-world partition function is simply

(4) Z’-- , w(X).
XCE

The above sum is generally known as the "high-temperature expansion."
It is a surprising fact that the spins- and subgraphs-world partition functions Z and Z’ are

related in a simple way. Define

(5) A (2coshflB)n H cosh
{i,j}EE

and note that A is an easily computed function of the parameters that specify the Ising system.
The following classical result [26] relates the two partition functions.

THEOREM 1. Z AZ.
In recognition of the central role it plays in our algorithm, we present a full proof of this

result below.
Theorem prompts us to consider a statistical mechanical system whose configurations

are spanning subgraphs of ([n], E). We shall define a Markov chain whose states are these
configurations, and whose stationary distribution assigns probability rr(X) w(X)/Z’ to
configuration X. This subgraphs-world process will be analysed in detail in 4 and shown to
be rapidly mixing. Hence it will provide us with an efficient means of sampling subgraphs-
world configurations with probabilities roughly proportional to their weights. Since Z’ is
a weighted sum of the configurations, we might expect such a procedure to give us useful
information about Z’ itself, and hence about the original spins-world partition function Z.
The next section confirms that this is indeed the case.

Proof of Theorem 1. Taking (1) as a starting point, apply the identity e cosh x (1 4-
tanh x) to recast the partition function in the form

Z 2-hA H {1 + tanh(flVijaiaj)} H {1 + tanh(flBak)},
o-{-1,+1} {i,j}E k[n]

where A is defined in (5). Note that the spin variables ak disappear from the expression for A
because ak -4-1 for all k, and coshx is an even function. Similarly, since tanhx is an odd
function, the spin variables may be brought outside allowing Z to be rewritten as

Z 2-nA H / O" O’j tanh fl V/j} H {1 + ak tanh flB }.
{i,j}E kE[n]

1092 MARK JERRUM AND ALISTAIR SINCLAIR

Expanding the two products, and changing variables according to (2), we obtain

XC_E {i,j}X U[n]

which, on interchanging the order of summation, yields

(6) Z--2-nA W(U,X,a),
XE UZ[n]

where

w(g, X, or) H "Ok 1-I ijffiffJ"
kU {i,j}X

Now we claim that Y W(U, X, a) 0 unless X is a graph in which all vertices in U have
odd degree, and all vertices in In] U have even degree. To see this, fix U and X, and let
k 6 [n] be such that either k U and has even degree in X or k [n] U and has odd degree
in X. For any vector a 6 {-1, + }n, let a (k) denote the vector derived from a by inverting
the sign of the kth component. Then the terms W(U, X, a) and W(U, X, a (k)) are equal in
size but opposite in sign. Hence the terms of the sum -o W(U, X, a) cancel out in pairs.

Conversely, suppose that X is a graph in which all vertices in U have odd degree and all
vertices in [n] U have even degree. Then, for all a 6 {-1, + }n and k 6 [n], the terms
W(U, X, a) and W(U, X, ak)) are equal. Thus the value of W(U, X, a) is independent of a
and

Z W(U, X, a) 2n/z IUI H)ij 2nw(x)
{i,j}X

Finally, substituting for Y W(U, X, a) in (6) we obtain the identity Z A Yx_E w(X), as
required.

3. Estimating the partition function. The aim of this section is to present an efficient
approximation algorithm for computing the partition function Z of a ferromagnetic Ising
system. The section is structured as follows. First, we define precisely what we mean by an
efficient approximation algorithm. Then we state, without proof, the properties ofthe sampling
procedure for subgraphs-world configurations which plays a key role in our algorithm: the
construction and analysis of this procedure, based on a suitably defined Markov chain, is left
to the next section. Finally, we explain how to use samples produced by this procedure to
obtain a reliable approximation of Z.

Our definition of an efficient approximation algorithm is a very demanding one, following
Karp and Luby 18] and others. For nonnegative real numbers a, fi, , we say that fi approxi-
mates a within ratio + e if a (1 + e)- < fi < a (1 + e). Let f be any function from problem
instances to real numbers. (The Ising partition function is an example of such a function.) A
randomised approximation scheme for f is a probabilistic algorithm which, when presented
with an instance x and a real number 6 (0,], outputs a number which, with high probability,
approximates f(x) within ratio (1 +). We shall take the phrase "with high probability" to
mean with probability at least 3/4. This is because a failure probability of 1/4 can be reduced
to any desired value 6 > 0 by performing only O(log 6-1) trials and taking the median of
the results [17]. (This claim is also justified in the following proof of Lemma 3.) Of course,
it is not enough just to obtain an accurate result with high reliability; the result must also be
obtained efficiently. Accordingly, we call an approximation schemefully polynomial if it runs

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1093

in time polynomial in -1 and the size of the problem instance x. The reader will appreciate
that a fully polynomial randomised approximation scheme, orfpras, embodies a strong notion
of efficient approximation.

With an eye to simplicity of presentation, we shall not concern ourselves with the errors
which arise through the inexact nature of computer arithmetic. Instead, we shall assume a
computational model in which real arithmetic is performed with perfect accuracy, and in which
arithmetic operations and standard functions, such as exp, are charged at unit cost. After all,
we are aiming only at an approximate evaluation of the partition function, and it will become
apparent that our technique does not rely on intermediate computations being carried out to
untoward accuracy. Again with simplicity in mind, we will take n, the number of sites, as the
size of the problem instance, even though the number of parameters to the model would be a
more reasonable measure from an information-theoretic point of view.

As we already mentioned, our approximation algorithm for Z is based on a sampling
procedure for subgraphs-world configurations. We must now be more precise about the prop-
erties of the sampling procedure. For a ferromagnetic Ising system (l,ij [Z), with i.ij and/z as
defined in (2) of the previous section, let S2 denote the set of subgraphs-world configurations,
i.e., the set of spanning subgraphs of the interaction graph ([n], E), and define the probabil-
ity distribution 7r over f2 by a’(X) w(X)/Yx, w(X’) w(X)/Z’, where w is the weight
function defined in (3). (Note that, since the system is ferromagnetic, w(X) > 0 for all X
so zr is a probability distribution.) We wish to formalise the notion of an algorithm which,
given a ferromagnetic system, selects a configuration from a distribution which is "close to"
r. A generator for subgraphs-world configurations is a probabilistic algorithm which takes
as input a ferromagnetic Ising system in the form (ij, l.l), plus a positive real tolerance 6, and
outputs an element of f2 drawn from a distribution p satisfying

IIp-yrll ,
Here II" denotes variation distance, i.e.,

lip rll Ip(X) yr(X)l max Ip(A) yr(A)l.
AC__

X6f2

It turns out to be possible to construct an efficient generator for subgraphs-world config-
urations, as the following theorem states.

THEOREM 2. There exists a generator for subgraphs-world configurations which, on
inputs (ij) and 6, runs in time boundedby apolynomial in n, lz

-1 andlog 6-1 Specifically,
the runtime of the generator is O(mZ/z-g(log 3-1 + m)), where m IEI is the number of
nonzero interactions.

Remarks. (i) The presence of/z- in the time bound implies that the generator is inefficient
for systems with a very small external field. This dependence on the field is inessential and
can be removed with a little extra work (see Theorem 10 of 5).

(ii) Efficient generators for combinatorial structures, of which the above is a particular
example, are discussed in a general framework in [27], [29].

The construction of a generator with the above properties, based on simulation of a
suitably defined Markov chain, is described and justified in detail in the next section. For
the moment we will simply assume Theorem 2 and concentrate on showing how samples
produced by the generator can be used to obtain an efficient approximation algorithm for the
partition function Z (V/j, B, fl). Our approach, which we now describe, is an instance of a
computational technique which will be employed repeatedly in this paper.

Suppose we want to estimate the value of some physical quantity associated with a ferro-
magnetic Ising system. The first step is to express the quantity as the expectation of a suitably

1094 MARK JERRUM AND ALISTAIR SINCLAIR

defined random variable over configurations in the subgraphs world. Then we can estimate
the quantity by sampling configurations at random, with the aid of the generator of Theorem
2, and by computing the sample mean.

More precisely, let f be a nonnegative real-valued function defined on the set S2 of
subgraphs-world configurations of a ferromagnetic Ising system. Viewing S2 as. a sample
space with probability distribution Jr(X) w(X)/Z’, the function f becomes a random
variable with expectation

E(f)= ; Z w(X)f(X).

It is a simple matter to get an estimate of I=(f) using the generator of Theorem 2: Con-
struct an independent sample {Xi of configurations, of size s, and compute the sample mean
S-1 i f(Xi). Provided the tolerance input to the generator is small, this will be an almost
unbiased estimator of]if(f). By making the sample size s large enough, we can achieve any
desired degree of accuracy with reasonable confidence. Moreover, we may drastically reduce
the probability that the estimator falls outside the acceptable range of accuracy by repeating
the entire process times and taking the median of the results.

The efficiency of such an experiment depends on how large the numbers s and must be
in order to achieve a specified accuracy with specified confidence. This in turn depends on the
variance of the random variable f, or more precisely on the quantity max(f)/Iz(f), where
max(f) denotes the maximum value of f on S2. The next lemma quantifies these effects; the
proof is straightforward and is left until the end of the section.

LEMMA 3. Let f be a nonnegative real-valued random variable defined on the set f2 of
subgraphs-world configurations ofaferromagnetic Ising system, and let , be real numbers
with 0 < <_ 1 and 0 < < 1/2. Then there is an experiment of the form described above
which uses a total of504-2[lg r/-lq max(f)/F_(f) samples from the generator, each with
input ()ij, I) and tolerance 6 l=(f)/8 max(f), and produces an output Y satisfying

Pr(Y approximates E(f) within ratio 1 +

Lemma 3 makes it clear that, whenever we employ the above technique, we will need
to ensure that the ratio max(f)/F.(f) is not too large for the random variable f under con-
sideration. In particular, our criterion for efficiency demands that the ratio be bounded by a
polynomial function of n, the size of the system.

We turn now to an explanation ofhow the technique can be applied to compute the partition
function Z(Vij, B, fl). Recall from Theorem of the previous section that Z AZ’, where
A is simple to evaluate directly. We therefore concentrate on computing Z’. Our first step is
to write Z’ explicitly as a function of # as follows:

Ln/2J

XE {i,j}6X k=O

Note that only even powers of/ need be included in the sum since the number of odd-degree
vertices in a subgraph X is necessarily even. We are thus viewing Z’ as a polynomial in
with coefficients

(8) Ck Z H)ij
X:lodd(X)l-2k {i,j}6S

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1095

In the ferromagnetic case all the Ck are positive, so Z’ (/z) is an increasing function of
Clearly the coefficients Ck actually depend on the)ij, and hence on the interactions V/j of

the system and on the parameter ft. However, in what follows we will regard these quantities,
and therefore also the coefficients, as fixed, and consider what happens when/z is varied. In
spins-world terminology, this corresponds to subjecting a system with fixed interactions and
at a fixed temperature to a varying external field. Our task is to evaluate the partition function
at a specified external field value B. By the above discussion, this is reduced to evaluating the
polynomial Z’ (/z) Y2 Cklz2k at the point/x tanh fl B.

Our starting point is the observation that the value of Z (/z) at/z 1 can be computed
directly. To see this, note from (7) and (8) that

[n/2J

k--0 X_E {i,j}X {i,j}E

We are now going to relate the desired value Z’(tanh fiB) to Z’(!) using the values of Z’(/z)
at certain intermediate points tanh fl B </x < 1.

The mechanism for relating the values of Z at two points/x /z0 and/z /x l, with
> #0 > //1 >-- O, is the following. Consider the random variable f(X) (/1//0) Idd(X)l

over configurations of the system at # =/x0. The expectation of f is given by

F-" (f) Z’(#o) cklzk lZ2 Zt

=0 /z0 Z’ (/x0)

(Here and in the sequel we will use notation such as ,0 (f) to indicate that the expectation
is taken with respect to a particular value of , in this case 0). Hence we can estimate the
quantity Z’()/Z’(0) using the sampling technique discussed earlier. By Lemma 3, this
process will be efficient provided the ratio max(f)/0 (f) is not too large. Clearly, this cannot
be guaranteed for arbitrary values of N0 and . However, if the values are reasonably close
together, then the ratio is bounded rather tightly, as we now show. First, note that certainly
max(f) 1. It is therefore enough to obtain a lower bound on the expectation ,0 (f). Such
a bound is provided by the next lemma, whose proof we defer to the end of the section.

LEMMA 4. Let o and be arbitrary real numbers in the range [0, 1] satising l <

o + n-1. Then the ratio Z’()/Z’(o) is bounded below by 1/10.
Lemma 4 suggests that we should be able to bootstrap the known value Z’ (1) to the desired

value Z (tanh fl B) by performing statistical experiments at a sequence of intermediate values
of N which are a distance n- apart. Specifically, let r < n be the natural number satisfying

n-r n-r-1
(10) > tanhflB

and define the sequence () for 0 k r + by

] (n-k)/n for 0kr;
(11) k / tanhflB for k=r+l.

Note that k [0, 1] and #k+l < k k+l + n-1. Hence by the above discussion we may
estimate the ratio Zt(k+l)/Zt(k) efficiently for each k. This is enough to yield an estimate
of Z’(tanh fl B), since we have

’(+)
(12) Z’(tanhflS) Z’(1) x

Z’(Nk)k=0

1096 MARK JERRUM AND ALISTAIR SINCLAIR

We are now in a position to give our approximation algorithm for the partition function Z.
We assume that the input consists of a ferromagnetic Ising system in the form V/j, B, fl), and a
positive real e (0, which specifies the desired accuracy. As usual, we set ij tanh fl V/j.

Step 1. Compute A (2coshflB)n 1--[{i,j}ECOSh[Vij, and Z’(1) I-I{i,jjeE(1 + ij).
Step 2. Define the sequence (/zk) for 0 < k < r + as in (10) and (11) above. For each

k 0, r in turn, do the following:

Let f(X) (lZk+l/lZk) Idd(x)l for each subgraphs-world configuration X, so
that i=,k (f) Z’(IZk+l)/Z’(lz). Using the technique of Lemma 3 applied to
the system at/z =/zg, with e/2n and r/ 1/4n, compute a quantity Y
satisfying

Pr(Y approximates Z’(lZk+l)/Z’(lz) within ratio + e/2n) >_ 1- 1/4n.

Step 3. Output the product

A x Z’(1) x I Yk.
k=0

THEOREM 5. The above algorithm is an fprasfor the partitionfunction Z ofaferromag-
netic Ising system.

Proof. The output of the algorithm is the product of the quantities A and Z’ (1), computed
exactly in Step 1, together with r + < n random variables Y arising from experiments in
Step 2. From (12) and the property of the Yk expressed in Step 2, it is immediate that the
product approximates Z(Vij, B, fl) within ratio (1 + :/2n)n < + e with probability at least
(1 1/4n) >_ 3/4. It remains only to show that the runtime of the algorithm is bounded by
a polynomial in n and -.

Steps 1 and 3 can clearly be executed in time O(n2). Now consider the operation of
Step 2 for a particular value of k. Appealing to Lemmas 3 and 4, we see that the process
of computing the estimate Y requires N 20160-2n [lg 4n] calls to the generator of
Theorem 2. Moreover, the tolerance supplied on each call is 6 /160n, and the value of
/z is never less than n- It follows from Theorem 2 that the runtime of each call is bounded
by q(n, -) for some polynomial q(., .). The total execution time of Step 2 is therefore
O(nNq(n, -)), which is a polynomial function of n and -1. The algorithm therefore
satisfies all the requirements of an fpras. [q

Remarks. (i) The statement of Theorem 2 actually gives an upper bound on the polyno-
mial q appearing at the end of the above proof. From this, it is easily seen that the overall
runtime ofthe fpras ofTheorem 5 is O(e-2m2n 11 log n(log(e-ln)+m)). Now wemay assume,
without loss of generality, that e > 2-m, since otherwise we can evaluate Z exactly by brute
force in time O(me -1). Hence the expression for the runtime simplifies to O (e-2m3nll log n).
(See also the remark following the proof of Theorem 7 at the end of the next section.)

(ii) Closer analysis reveals that the sequence of coefficients (c) of the polynomial ex-
pression (7) for Z’ is log-concave, i.e.,

Ck+lCk-1 C for k 1, 2 Ln/2J 1.

(The proof makes use of the ideas introduced in the proof of Theorem 7 of the next section.)
This is a surprising result in its own right, since naturally occurring log-concave sequences are
quite rare in combinatorics. It also suggests an alternative method for approximating Z: By
log concavity, for each k it is possible to choose a value of/z which assigns to configurations
with precisely k pairs of odd-degree vertices the largest aggregated weight. This in turn means

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1097

that we can read off all significant coefficients ck by sampling at appropriate values of/z, again
using Z’(1) as a reference value. (An analogous approach was used in [27], [16] to obtain
the coefficients of a polynomial related to matchings, or monomer-dimer configurations, in
a graph.) This method is both more complex and rather less efficient than the one presented
in Theorem 5. However, it does supply more detailed information about Z, in the form of
the coefficients of Z’. We have been unable to determine whether these quantities have any
inherent physical significance, so we will not present the alternative algorithm in detail here.

We close the section by providing the missing proofs of Lemmas 3 and 4.
ProofofLemma 3. Let Var(f) denote the variance of f, i.e., Var(f) I=(f2) I::(f)2.

The generator of Theorem 2 selects elements of f2 from a distribution p which is slightly dif-
ferent from 7r. Accordingly, define the mean and variance of f with respect to this distribution
by

F..’(f) E p(X)f(X);

Var’ (f) E p(X)f(X)2 E (f)2.
X6f2

Since the variation distance satisfies lip zr < 3, we have

(13)
II=(f) I=’(f)l _< max(f) (f)/8;

IVar(f) Var’(f)l < 33 max(f)2 3l=(f) max(f)/8.

Now let {X be an independent sample of size s produced by the generator, and let Y0
S-1 Ei f(Xi) be the sample mean. Clearly Y0 has expectation I::’ (f) and variance s-lVar (f).
Therefore, by Chebyshev’s inequality we have

(14)
9 Var’(f)

Pr (]Y0 I::’(f)] > l::’(f)) < 2 si::’(f)2"

But if]Y0 P’(f)l < l::’(f) then, from (13),

IYo E(f)l _< IY0 E’(f)l + IE’(f) E(f)l

(15)
< E’ (f) + E(f)

Note that this in turn implies that Y0 approximates I=(f) within ratio +. Moreover, applying
(13) again we have

Var’(f) Var(f) + P(f) max(f) P(f) max(f) 2max(f)
(16) < < <

7 E(f))2 E(f)7 E(f))2 (E’(f)2 (
where in the second inequality we have used the distribution-independent bound Var(f) <

E(f) max(f), valid for any nonnegative random variable f. Combining (15) and (16) with
(14), and choosing sample size s 72-2 max(f)/E(f), gives

18 max(f)
(17) Pr(Yo approximates E(f) within ratio +) <

2S E(f)

1098 MARK JERRUM AND ALISTAIR SINCLAIR

Now consider performing the above experiment an odd number times, independently, and
let Y denote the median of the resulting values of Y0. In view of (17), the probability that Y
fails to approximate I::(f) within ratio / is at most

i=(t+l)/2 i=(t+l)/2 Ik" "-] "
Taking 6[lg 0-1] + 1, this probability is bounded above by r/3 lg(4/3) < 1. The random
variable Y therefore satisfies the requirement of the lemma. The total number of samples
required from the generator is st, which is bounded above by 504 -2 [lg r/-l max(f)/F..(f)
as claimed.

ProofofLemma 4. We split the argument into two cases.
Case I./z0 > 3/4. In this case, we have

/Xl 4
-->1 >1
#0 n/z0 3n

-,[n/2J Ckl,l2k and all coefficients ck are positive,Therefore, since Z’(/z) z..,k=0

Z’(#I)
> (#___.1)

2Ln/2]

z’(tz0) tz0
> 1- _--- > -,

3n 9

assuming as we may that n >_ 2. (The problem is trivial otherwise.)
Case II./z0 < 3/4. This case is handled by appealing to the original spins-world expansion

of Z. First note from the definition (4) of Z’ that

Z’(/Zl) Z(Vij, BI,) (2coshflBo) >
Z(Vij, BI, fl)

(18)
Z’(#o) Z(Vij, Bo,/3)

x
2coshflB1 Z(Vij, Bo, fl)’

where fl > 0 is arbitrary and Bo, B1 are defined by /i tanh flBi. Note that B0 >
Moreover, the upper bound/0 -/Zl _< n-1 translates to a bound on B0 B1 via the inequality
tanh x tanh y > (x y)sech2x, valid for x > y > 0. We get

(19) fl(Bo- B1) < (Izo- lzl)/sechZflBo < 16/7n,

where we used the fact that tanh flBo --/z0 < 3/4 and sech2x tanh2 x. But from the
definition (1) of the partition function Z we have

Z(Vij, BI, fl)
> minexp (/3(B- Bo) o’)>exp(-nfl(Bo-B1))Z(Vij Bo ,6)- k[n]

which by (19) is bounded below by e-16/7 and hence by 1/10. Together with (18) this yields
the desired bound on Z’(lzl)/Z’(lzo).

4. An analysis of the subgraphs-world process. We shall assume that the reader is
familiar with the elementary theory of finite Markov chains in discrete time: An introduction
can be found, for example, in [10, Chap. XV].

Assume/ > 0. Taking our cue from the form of (4), we define the subgraphs-world
process, .JClsing, as follows. The state space, f2, of the Markov chain JCIsing is the set of all
spanning subgraphs X _c E; note that 121 2m, where m EI is the number of unordered

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1099

pairs {i, j with)ij O. For X, X’ 6 with X X’, the transition probability from X to
X’ is given by

1/2m if IXX’I- and

p(X,X’) w(X’)/2mw(X) if IX@X’I and

0 otherwise,

w(X’) >_ w(x);

w(X’) < w(X);

where X @ X’ denotes the symmetric difference of X and X’. The self-loop probabilities
p(X, X) are defined implicitly by complementation, so that p(X, X) Y.x,#x p(X, X’).
Thus, transitions in JClsing are perturbations in which a single edge is added to, or deleted
from a subgraph. Note that exactly m transitions are available from any state, and all transition
probabilities are bounded above by 1/2m. Hence the transition probabilities are well defined,
and the self-loop probabilities p(X, X) for each state X are bounded below by 1/2.

We pause to observe that the above chain is very easy to simulate. Suppose the current
state of the chain is X 6 fa. Then the transitions from X can be selected according to the
following model:

1. With probability 1/2 set X’ X, otherwise
2. select an edge e 6 E uniformly at random, and let Y X {e} (the symmetric

difference of X and e});
3. if w(Y) >_ w(X) then set X’ Y; if w(Y) < w(X) then with probability w(Y)/w(X)

set X’ Y, otherwise set X’ X.
It will be seen that this procedure correctly models the transition probabilities specified

earlier. It is worth remarking that there is no need to compute the weight functions w(X)
and w(Y) from scratch at each iteration; since Y and X differ by a single edge, the quotient
w(Y)/w(X) can be computed using just two multiplications.

The Markov chain .JClsing is irreducible (all states communicate via the empty state
0) and aperiodic (the self-loop probabilities are nonzero). Thus there-is a well-defined sta-
tionary distribution on f2 which is independent of the initial state. Define re f2 --+ I by
re(X) w(X)/Yx, w(X’) w(X)/Z’. We shall see presently that re is indeed the station-
ary distribution on f2. For X, X’ 6 f2 define q(X, X’) re(X)p(X, X’). We claim that q is
symmetric in its two arguments. If X X’ then there is nothing to prove. If IX @ X’[> 1,
then p(X, X’) 0 and hence q(X, X’) 0. Finally, it is straightforward to verify from the
definition of the transition probability p(X, X’) that

(20) q(X, X’) (2m) -1 min{re(X), re(X’)}, if IX @ X’I 1.

Since q is symmetric, the so-called detailed balance condition holds:

(21) re(X)p(X, X’) q(X, X’) zr(X’)p(X’, X).

Suppose, as is the case here, that the function p(., .) describes the transition probabilities of
an ergodic Markov chain. It is a fact [16, Lem. 2.1] that if there is any function re
IR satisfying detailed balance together with the normalisation conditionxre(X) 1,
then the Markov chain is (time-) reversible, and re is its stationary distribution. Thus the
stationary distribution of the Markov chain JClsing is indeed given by re(X) w(X)/Z’, as
claimed above, and we can use the chain to sample configurations X 6 f2 with probabilities
approximately proportional to w(X).

As explained informally earlier, if the Markov chain JClsing is to be the basis of an
efficient sampling procedure for configurations then it must be rapidly mixing, in the sense
that, if it is allowed to evolve from a suitable initial state, the distribution of its final state will

1100 MARK JERRUM AND ALISTAIR SINCLAIR

be very close to the stationary distribution after only polynomially many steps. Note that this
is a highly nontrivial requirement: since the number of states in the chain is exponentially
large, we are demanding that it converge after visiting only a tiny fraction of its state space.
Our argument that the chain is rapidly mixing is in two parts: First, in Theorem 6, we state
a general characterisation of the rapid mixing property in terms of a measure known as the
conductance; then, in Theorem 7, we estimate the conductance of JClsing.

For an ergodic reversible Markov chain, the conductance [27], [29] is defined by

x’ s

where the minimisation is over all subsets S of states with 0 < xes re(X) < 1/2. (Note that
0 < * < 1.) The conductance in some sense measures the rate at which the process can flow
around the state space: specifically, it provides a lower bound on the conditional probability
that the stationary process escapes from a small subset S of the state space in a single step,
given that it is initially in S. Thus a chain with large conductance is unlikely to "get stuck" in
any small region of the state space, so we might expect it to converge fast. This intuition is
captured in the following theorem.

THEOREM 6. Let be the conductance of an ergodic, reversible Markov chain with
stationary distribution yr and minx p(X, X) > 1/2. Let p(t) denote the distribution of the
state at time given that the initial state is Xo. Then the variation distance p(t) 7r satisfies

(1
r(x0)

(The requirement that minx p(X, X) > 1/2, i.e., that every state has a self-loop probability
of at least 1/2, is a technical device which removes periodicity; note that ./Clsing satisfies this

requirement by construction.)
Proof. The theorem is essentially a restatement of Theorem 3.4 of [29], to which the

interested reader is referred for details; we mention here only the necessary modifications.
The main difference stems from the fact that in the former result we used the stronger relative
pointwise distance (r.p.d.), rather than the variation distance, as a measure of deviation from
the stationary distribution. In similar fashion to the r.p.d., the variation distance at time may
be related, by elementary linear algebra, to the second eigenvalue)1 of the Markov chain: we
get

(22) lipt r
zr(X0)

(See, for example, Proposition 2 of [7], which presents a marginally stronger result, with

2/r(X0) replacing zr (X0) in the denominator. Note that the presence ofa self-loop probability
of 1/2 on every state ensures that all eigenvalues are nonnegative.) The bound in (22) differs
from that on the r.p.d, in Lemma 3.1 of [29] only in that rr (X0) replaces minx rr (X).

Now the main result of 3 of [29], Lemma 3.3, relates)1 to the conductance via the bound
.1 < 2/2, valid for an arbitrary reversible chain. It is easily seen from the proof of the
lemma that the marginally stronger bound

(23) ,k < 1- (I2

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1101

holds for chains in which all self-loop probabilities are at least 1/2. Putting (22) and (23)
together establishes the theorem. [3

Remarks. (i) The heart of the above proof is the eigenvalue bound (23). This is a discrete
analogue of Cheeger’s inequality for Riemannian manifolds [5]. Related bounds have been
observed by several authors; see, e.g., [8], 1], [23], [25].

(ii) Theorem 6 has a converse, which says that if a Markov chain is rapidly mixing then
its conductance cannot be too small; see, e.g., [23], [27], [28]. Thus the conductance provides
a characterisation of the rapid mixing property.

Theorem 6 allows us to investigate the rate of convergence of a reversible chain by
examining its transition structure, as reflected in the conductance. In particular, if we wish to
ensure a variation distance of at most then it is clear that -2(ln-1 + In zr(X0)-1) steps
suffice. Thus the rapid mixing property will generally follow from an inverse polynomial
lower bound on the conductance. Such a bound is available for the chain -/Clsing defined
above. Specifically, we have the following theorem.

THEOREM 7. The conductance ofthe Markov chain JClsing is bounded below by lza/4m.
The proof of Theorem 7 is the main content of this section. Before proceeding with it,

however, let us first use the result to verify our claim in Theorem 2 of the previous section
that an efficient generator for subgraphs-world configurations exists. This will complete the
validation of our approximation algorithm for the partition function.

ProofofTheorem 2. The generator operates as follows. Given as input a ferromagnetic
Ising system in the form ()ij, //), with 0 < /z < 1, and a tolerance 6 6 (0, 1], simulate the
associated Markov chain ./Clsing for 16m2/x-8(ln6- + m) steps, starting in state Xo 0
(i.e., the empty graph on vertex set [n]). Since ij < for all i, j, and z < 1, it is clear that
w(Xo) > w(X)for all configurations X. Hence zr(X0) > 2-m. Appealing to Theorem 6, we
conclude that the specified number of simulation steps is enough to ensure a variation distance
of at most 3. The theorem is therefore established. [3

Proof of Theorem 7. The proof rests on a path counting argument, similar to those em-
ployed in previous applications [27], 16] of the conductance bound. We present a preliminary
sketch map of the proof technique before considering the technical details which arise when
applying the path counting argument to the particular chain under consideration.

For each pair of states I, F 6 2, a canonical path from I (the initial state) to F (the final
state) is specified. The canonical path proceeds via a number of intermediate states using only
valid transitions of the Markov chain. Each canonical path is assigned a weight wtlich is the
product of the stationary probabilities at the initial and final states; thus the weight of the path
from I toF is r(l)rr(F), independent of the intermediate states in the path. A careful choice
of canonical paths is essential to secure a good bound on conductance.

Suppose it can be shown that, for each transition T Tt, the aggregated weight of
canonical paths which use transition T T’ is bounded above by bq(T, T’), where q is as in
(21). Consider any partition ofthe state space into two sets S and with Y-xs 7r(X) < 1/2.
Then, on the one hand, the total weight of canonical paths which cross the cut defined by S and

is at least YlS-F rr(l)r(F) rr(S)rr() > zr (S)/2. On the other hand, summing over
transitions T -- T’ with T 6 S and T’ 6 , we have that the total weight of canonical paths
which cross the cut is bounded above by b -s r’rs q(T, T’). Since S and represent
a general partition of the state space 2, it follows immediately that the conductance of the
Markov chain is bounded below by 1/2b.

It will be perceived that the principal barrier to applying the above idea is likely to lie
in obtaining a good value for the bound b. This is achieved using a combinatorial encoding
technique, as follows. For each transition T --+ T’, let cp(T, T’) denote the set of all pairs
(I, F) 6 S22 such that the canonical path from I to F includes the transition T --+ T. Fix

1102 MARK JERRUM AND ALISTAIR SINCLAIR

any particular transition T -+ T’. Then it turns out that we can define an injective map from
cp(T, T’) to the state space f2. Since the map is injective, any state U E f2 picks out at most
one canonical path, from I to F, say, which uses the transition T T’; the state U can be
thought of as an encoding of the canonical path. Moreover, the injective map can be chosen so
that the weight of the canonical path, namely, rc(I)rr(F), is roughly proportional to 7r(U), the
probability assigned to the encoding U by the stationary distribution. Since 7r is a probability
distribution, the sum of 7r (U) over all encodings U is at most one; this upper bound translates
to an upper bound on the total weight of paths using T T, and hence to a value for b.

All the above must now be specialised to the Markov chain .JCIsing. The first task is
to specify a canonical path for each pair I, F f2. View I and F as graphs with vertex set
[n]. Let A I @ F be the symmetric difference of I and F, and suppose that the graph A
has 2k vertices of odd degree. (The number of odd-degree vertices in a graph is necessarily
even.) Cover A with a collection C1, C2 Cr of assorted trails and circuits which are
pairwise edge disjoint, imposing the condition that the first k objects, C1, C2 Ck, are all
open trails (walks with no repeated edges) while the remainder, Ck+, C+2 Cr, are all
circuits (closed trails).

That this can be done with so few (open) trails follows from a simple induction on k. When
k 0, every vertex of A is of even degree, so each connected component of A is Eulerian and
can be covered by a single circuit. Now suppose k > 0 and is a vertex in A of odd degree.
The connected component of A containing must contain at least one other odd-degree vertex,
say, j. Connect and j by a trail, letting this be one of the trails in the required decomposition
of A. Deleting this trail from A yields a graph with 2(k 1) odd-degree vertices, which can
be covered by k trails (together with some number of circuits) by the induction hypothesis.

The covering of A by trails and circuits is not in general unique, and we assume that some
rule is employed to pick out a particular choice of C, C2,..., Cr. We further assume that
this rule also specifies a distinguished initial vertex for each trail or circuit, and a direction
for each circuit. In the case of a trail the initial vertex must be an endpoint of the trail; in
the case of a circuit the initial vertex may be arbitrary. The canonical path from I to F is
now obtained by unwinding the trails and circuits C, C2 Cr in sequence. Unwinding
Ci involves processing each edge of Ci in sequence, starting at the initial vertex and, in the
case of a circuit, following the assigned direction. Each processed edge, e, generates a single
transition on the path from I to F. If e is in F (and hence not in I) the transition involves
adding the edge e to the current state; if e is in I (and hence not in F) the transition involves
deleting the edge e from the current state. It is clear that this process defines a canonical path
of legal transitions from state I to state F.

The next task is to define the injective map (encoding) from the set of canonical paths
using a given transition to f2. Recall that cp(T, T’) denotes the set of all pairs (I, F) f22

such that the canonical path from I to F employs the transition T -- T’. Define the map
T--+T’ cp(T, T’) -- f2 by 17T_..T,(I F) I @ F @ (T t3 T’) for all (I, F) cp(T, T’).
The intention here is that the encoding should agree with I on the trails and circuits already
processed, and with F elsewhere.

We verify that r/T--, 7", is injective by demonstrating that I and F are uniquely determined
by U rlTT,(I, F). Indeed, given U, we can compute U @ (T T’) I @ F and hence the
uniquely defined covering C1, Ce Cr of I @F by trails and circuits. The edge e T@ T’,
which is added or deleted by the transition T -- T’, points out which trail or circuit, Ci, is
being unwound, and how far the unwinding of Ci has progressed. Starting at state T’, we
may complete the unwinding of Ci and successive trails/circuits to discover the final state F;
equally well, we may use the reverse process to recover the initial state I. So the map /T’is injective, as claimed.

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1103

The other property we require of the encoding is that its weight should be roughly pro-
portional to that of the encoded path. Precisely, we require of U r/T-,r, (I, F) that

(24) yr(U)q(T, T’) > (2m)-llz4yr(I)rc(F),

or, equivalently, multiplying through by (Z’)2 and using assertion (20),

(25) w(U)w(T) > lZ4W(I)w(F) and w(U)w(T’) > lz4w(l)w(F).

The verification of the left-hand inequality will be treated in detail below; the right-hand
inequality will then be shown to follow by symmetry.

For X 6 f2, write A(X) I-I{i,jlx .ij, so that w(X) A(X)/xI(x)l. To verify the
left-hand inequality of (25) it is enough to demonstrate separately that

(26) A(U)A(T) > A(I)A(F),

and

(27) Iodd(U)l + Iodd(T)l- Iodd(l)l- Iodd(F)l < 4.

(We used here the fact that 0 < /z < 1.) We deal first with (26), which is the more straight-
forward. From the construction of canonical paths we have I A F c_ T U T’ c_ I U F, while
the definition of U entails U @ (T U T’) I (9 F. It follows by elementary set theory from
these two observations that U VI (T t2 TI) I N F and U U (T U TI) I LJ F. Hence

A(U)A(T O T’) A(U 0 (T (3 T’))A(U (’/(T t2 T’)) a(I U F)A(I O F) A(I)A(F),

which, together with A (T T’) < A (T), implies (26).
We now turn to inequality (27). For 6 [n] define

ix(i) Xodd(U)(i) %- Xodd(T)(i) Xodd(1)(i) Xodd(F)(i),

where Xs denotes the characteristic function of a set S. Note that -2 < or(i) < 2. Inequality
(27) can be re-expressed as

Z or(i) <(28) 4.
i[n]

We shall argue that or(i) < 0 for all outside a small set of exceptions. In order to discuss
these exceptions, we give names to three vertices which have special significance. Denote by
s the initial vertex of the circuit which is in the process of being unwound when the transition
T -- T’ is made (s is undefined if the transition occurs on a trail). Denote by u and v
the endpoints of the edge e T @ T’ which is added or subtracted during the transition
T T’; vertex u is distinguished from v by being the first to be encountered in the direction
of unwinding. We shall see that the vertices s, u, and v are the only ones which can provide a
positive contribution to the sum in (28).

Consider first the conditions under which or(i) 2 can occur. It must be the case that
has even degree in both I and F, and odd degree in both U and T. Now it is a consequence
of the way canonical paths are constructed that a vertex which has even degree in both I and
F will generally have even degree in the intermediate configuration T; the only exceptions
are the vertex s (whose degree became odd when the unwinding of the circuit commenced)
and the vertex u (whose degree was made odd by the previous transition, and whose parity is

1104 MARK JERRUM AND ALISTAIR SINCLAIR

restored by the transition T --+ T’ itself). To summarise: The case c(i) 2 can occur only
when s or u.

Consider now the conditions under which or(i) 1 can occur. This case is ruled out,
with two exceptions, by simple parity considerations. Since I F U @ (T U Tt), the
value of or(i) must be even unless u or v. (These are the only points at which the
set T t_J T may differ from T.) Combining this observation with the previous analysis for
the case or(i) 2, we see that only three terms of the sum occurring in (28) can possibly be
strictly positive and that the sum itself cannot exceed 5. (The worst case is achieved by setting
u(s) 2, a(u) 2, and or(v) 1.) However, the sum cannot actually attain 5 on grounds
of parity: Each of the terms appearing on the left-hand side of (27) is necessarily even. This
completes the verification of (28), and hence of (27) and the left-hand inequality of (25). The
right-hand inequality of (25) follows by a symmetrical argument, with the roles of T and T’,
and u and v, interchanged.

Finally, summing (24) over all canonical paths which employ the transition T --+ T we
obtain the following upper bound on the total weight of canonical paths which use T T’:

y rc(1)rr(F) < y 2m/Z-47r(OTT,(I, F))q(T, T’) < 2m/z-aq T,
(I, F)cp(T. T’) (I, F)Ecp(T,

where the second inequality rests on the fact that rlr-,r, is injective. In the notation of the
sketch map presented at the beginning of the proof, b 2m/z-4. Therefore, the conductance
of .J/Clsing is bounded below by 1/2b =/za/4m, as claimed at the outset.

Remark. The main task in the proofofTheorem 7 is to estimate the "bottleneck" measure
b; this is then used to get a bound on conductance, and hence on the rate of convergence of
JClsing. In fact, b can be used directly to obtain a significantly sharper bound on the rate
of convergence; for the details, see [28]. Specifically, the runtime of the generator quoted in
Theorem 2 is reduced by a factor O (/z-a), which improves the runtime of the approximation
algorithm for the partition function (Theorem 5) by a factor of o(nn). Similar improvements
apply to the runtimes of our other algorithms that make use of the generator.

5. The mean energy and mean magnetic moment. Of greater immediate importance
to physicists than the partition function Z itself are the partial derivatives of In Z with respect
to/3 and B. The key quantities of interest are the mean energy ’ -0(ln Z)/O, and the
mean magnetic moment A//=/3- 0(ln Z)/0 B. As their names suggest, both of these can be
viewed in the spins world as expectations of the corresponding physical quantities.

There is no reason to suppose that an fpras for the partition function Z will directly
yield an fpras for these derivatives of In Z. However, we demonstrate in this section that
polynomial-time approximation algorithms for and A//do indeed exist. The construction
of these algorithms relies on the surprising fact that g and .AA can be viewed as expectations
of appropriately defined random variables in the subgraphs world. Although some technical
complications arise, it is possible to estimate these expectations more or less directly by
simulating the subgraphs-world process for a polynomially bounded number of steps.

The mean magnetic moment is slightly easier to work with and we treat it first. The main
result is preceded by a technical lemma, whose proof is deferred to the end of the section.
Recall that in the subgraphs-world distribution, each configuration X occurs with probability
w(x)/z’.

LEMMA 8. Suppose the configuration X f2 is randomly selected according to the
subgraphs-world distribution. Then:

(i) Pr(lodd(X)l > 0) </z2/2, provided Y ,ij > 1;

(ii) Pr(Iodd(X)l 2) >/z2/10, provided ij and/z < n-1.

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1105

THEOREM 9. There exists an fprasfor the mean magnetic moment =/3-10 (In Z)/0 B,
where Z is the partitionfunction ofaferromagnetic Ising system.

Proof. We shall express the quantity A// as an expectation in the subgraphs world by
differentiating the logarithm of the expansion given in Theorem with respect to B. Before
doing this, it is convenient to perform some preparatory computations. Since .M 0 when
B 0, we may assume that B > 0. Recall that w(X) A(X)/zIdd(X)l, where/z tanhflB
by definition, and A (X) is independent of B. Then

0_____ w(X) A (X)lodd(X)llzIdd(xl-1 (sechflB)2 fl8B

w(X)lodd(X)l(tanh B)-1 (sechflB)2

w(X)
2filodd(X)l
sinh 2/5 B

Furthermore, from the definition of A in (5),

0
In A n In cosh flB nfl tanh/3B.3B OB

With these identities in mind, we compute A//using the expansion of Theorem as the starting
point:

1 0 0 0
lnZ lnA lnZ’

3B fl 3B

O
n tanh fl B + -w(X)

1 2lodd(X)l
n tanh fl B + 7 w(X)

x sinh 2flB

Using, as before, the notation (f) (Z’)- -x w(X)f(X) to express the expectation of a
random variable f in the subgraphs world, the above identity can be written more compactly
as

2
(29) .M n tanh fiB + Elodd(X)].sinh 2fib

Note that to approximate .M within ratio +e it is enough, since both terms of (29) are positive,
to estimate I::[odd(X)l within ratio + e. We propose to do this by using the Markov chain

A4CIsing, analysed in 4, to provide a polynomial number of sample configurations X from
the subgraphs-world distribution, and returning the average of lodd(X)[over the sample. As
noted in the discussion preceding Lemma 3, this approach will yield an fpras for V/provided
the ratio max Iodd(X)l/l::lodd(X)l is bounded by a polynomial in n. Although such a bound
often holds, a more refined approach is necessary in certain circumstances. We proceed by
case analysis.

Case I. Y ij >-- 1. We identify two subcases, according to the size of
Case I(a). /z > n-1. In this range, we may estimate .h//by direct experiment. From

Lemma 8,

l=lodd(X)l >_ 2Pr(lodd(X)l > 0) >_/2 >_

1106 MARK JERRUM AND ALISTAIR SINCLAIR

while, clearly, max Iodd(X)l < n. Thus the ratio max Iodd(X)l/l::lodd(X)l is bounded above
by n3.

Case I(b). /z < n-1. Intuitively, the problem when/z is small is that a randomly sampled
configuration may, with high probability, satisfy Iodd(X)l 0; in this situation, very many
trials may be required to obtain a sufficiently accurate estimate of the expectation of Iodd(X)I.
The solution is to perform experiments at an increased value of/z, say/2, at which the even
Iodd(X)[> 0 occurs with sufficiently high probability. Since we shall be allowing/z to vary,
it is convenient, as before, to refine our notation to make the dependence on/z explicit. In
particular, !: (f) will denote the expectation of the random variable f when experiments are
undertaken with/z set to some revised value/2. The unsubscripted notation i:(f) will be
reserved for expectations with respect to the original value of/z.

Set/2 n -1 and define

/)
Iodd(X)l

f (X) Iodd(X)l

Straightforward manipulations yield the identity

Z’ (/2) I:: (f)(30) Ilodd(X)l--
Z’()

which relates the quantity we are attempting to estimate to the expectation of f at the revised
value of/x. Since Z’ (/2) and Z’ (/z) may be estimated by the techniques of 3, we concentrate
here on the estimation of i:: (f). From part (ii) of Lemma 8 we have Pr(]odd(X)l 2) _>
/22/10; this inequality allows the expectation of f to be bounded below:

/z
2

Pr(lodd(X)l 2) >_ -.
The maximum of f, meanwhile, satisfies the crude bound max(f) _< (///)2n. Thus the
ratio max(f)/;(f) is bounded above by 5n/-2 5n3. Case II. .ij < 1. In this rather
pathological case, the essential problem we face is that a randomly sampled configuration
may, with high probability, be the empty set. As before, we shall conduct experiments at an
artificially inflated value of/z and use (30) to relate the results of these experiments to the
value we are attempting to estimate. This time, however, we choose to work with/2 1.

Unfortunately, even with/2 set to 1, the highest possible value, it may still happen that
the empty configuration X 0 occurs with very high probability. We overcome this problem
by sampling from the distribution obtained by conditioning on the event X 0. With f as
before, and noting that/2 and f(0) O, we have

Ln/2/

I= (f) Z 2k/z2kprt (Iodd(X)l 2k)
k=O

Ln/2J

Pr(X 0) Z 2klz2kpri(ldd(X)l 2k IX 0).
k=l

Now Z’ (/2) I-I (1 +)l.ij), and hence

(31) Pr# (X 7 0)
z’02)

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1107

is easy to evaluate directly. It is enough, therefore, to estimate the expectation of f with
respect to the distribution of conditional probabilities, in which each nontrivial configuration
X : 0 occurs with ,probability (Z’(fi) 1) -1 1-Ili,jlx ij. This conditional distribution
may be sampled without recourse to Markov chain simulation, the direct method being as
follows. Start with X 0 and perform a sequence of rn trials, each trial determining whether
a particular edge is to be added to X. The probability governing each trial has one of two
values, depending on whether any of the previous trials have contributed an edge to X. Define
Pij ,ij (1 + ,,ij)-l, and suppose that we are about to decide whether to add a certain edge
{i, j} to X. If X 7 0, the edge {i, j} is added to X with probability pij; otherwise, the
edge is added to X with probability Pij[1--I (1 phg)] -1, where the product is over all
edges {h, k} whose fate is yet to be decided, including edge {i, j itself. It is straightforward
to verify that this procedure yields the required distribution. It only remains to verify that a
polynomially bounded number of sample configurations suffice to provide an accurate estimate
of the expectation of f. Again, we do this by demonstrating an upper bound on the ratio
between the maximum of f and the mean of f. Observe that

(32)

and

Z’(/2)-- H(1 + iij exp(.ij) <1-+-2Z)ij

(33) Pr# (Iodd(X) 2) > Z’(/2)
)ij,

where in (32) we used the fact that ex < + 2x in the range 0 < x < 1. Combining (31) and
(33), we obtain a lower bound on the probability of Iodd(X)l 2 conditional on X 7 0.

Pr(Iodd(X)l 2IX :/: O)-
Pr(Iodd(X)l 2)

Pr(X :/: O)

Z’(/2)

the final step here relies on (32). It follows immediately that the expectation of f with respect
to the conditional distribution is at least/z2. Using the crude bound max(f) < n#2, we see
that the ratio of the maximum to the mean of f is bounded above by n. This completes the
analysis of Case II.

We conclude by analysing the time complexity of the proposed approximation scheme
for A/[. The worst case is realised by Case I(b), where our method demands that the three
quantities appearing on the right-hand side of identity (30) be known with sufficiently high
accuracy. To obtain an fpras for .A4, it is enough to estimate each of these three quantities
within ratio + 6/4 and with failure probability 1/12. Setting 6/4 and 1/12 in
Lemma 3, we see that O (-2n3) samples from the generator suffice to estimate 1::9 (f) within
ratio / 6/4 and with failure probability 1/12. The production of each sample requires time
O(m2/2-8(log 6-1 "-1- m)), where 6-1 O(e-ln3). We may assume that e >_ 2-m; otherwise
there would be time enough to evaluate .M exactly using a brute force algorithm. With this
simplifying assumption, and noting that/2 n-1, the time to produce each sample is seen
to be O(m3n8), and the total time to estimate I::(f) is O(e.-Zm3n11). The overall execution
time for the algorithm is thus dominated by the time taken to estimate Z’(/z) and Z’ (/2) within
ratio / 6/4 and with failure probability 1/12; from Remark (i) following Theorem 5 this
dominant term is seen to be O(:-2m3n 11 log n). [3

1108 MARK JERRUM AND ALISTAIR SINCLAIR

We turn now to the mean energy . Up to this point, we have always sampled con-
figurations with/x set to some value which is at least n -1. In the sequel, we shall need to

sample configurations at smaller values of/z; at these values Theorem 2 no longer guarantees
an execution time for the sampling procedure which is polynomial in n. However, efficient
sampling is possible, even at/x 0.

THEOREM 10. There exists a generator for subgraphs-world configurations which, on

inputs ()ij, lz) and 3, runs in expected time bounded by a polynomial in n and log -l.
Specifically, the expected execution time of the generator is O(rn2nS(log- + m)).

Proof. The result for/x > n-1 follows directly from Theorem 2, so assume that/z < n-We employ the generator of Theorem 2 but with/z artificially boosted to/2 n-1, and
decreased to 3/10. To sample a configuration X from the distribution corresponding to
the original value of/z, perform a sequence of trials of the following form. First produce a
random configuration X using the generator of Theorem 2 (with the modified parameters);
then, with probability (/z//) Idd(x)l, declare the trial successful; otherwise, declare the trial a
failure. The sequence of trials is halted at the first successful trial, and the configuration X
produced by that trial is returned as the result.

The probability that a trial is declared successful is at least Pr (Iodd(X)l 0), which
by Lemma 4 (setting/x 0 and/z0 n-1) is at least 1/10. Thus the expected number of
trials required to generate a configuration is at most 10. It is straightforward to check that the
procedure described above, viewed as a generator with respect to the original value of/z, has
tolerance at most 10 3.

As in the case of the mean magnetic moment, the main result rests on a technical lemma,
whose proof is deferred.

LEMMA 11. Suppose B O, i.e., that there is no externalfield. If w(X) < 1/32nm2 for
all X 7 0, then Z’ x w(X) < m.

THEOREM 12. There exists an fpras for the (negation of the) mean energy -g
0 (In Z)/0, where Z is the partitionfunction ofaferromagnetic Ising system.

Proof. We shall assume that B 0, i.e., that there is no external field; the proof in the
general case introduces extra technical complications, but requires no new ideas. At the end
of the proof, we sketch the modifications required to deal with a nonzero external field.

When B 0 the partition function, Z, simplifies to Z A Yx w(X), where

A H cosh V/j,
{i,j}eE

w(X) H tanh flV/j,
{i,jIeX

and the sum is over all closed X

_
E. (A graph X is said to be closed if every vertex of X

has even degree.) Define

c Vij tanh fl V/j,
{i,j}6E

g(X) 2Vij/ sinh2flV/j,
{i,j}eX

and let f(X) c + g(X). Then

O--fi w X - H tanhfVij
{i,j}X

H tanhflV/j 2Vij/sinh2flVij
{i,j}eX {i,j}X

w(X)e,(x).

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1109

Using this identity, and starting from the expansion given in Theorem 1"- =/30--=(lnZ) =/8---=-lnA 8/3
lnZ’

{i,j}E

8
z, a w(X)

X

E vij tanh t3 vii + 7E w(X)g(X)
{i,j}E X

z--; w(X)(c + g(X)).
X

Thus, the mean energy can be expressed as an expectation: - I=(f). This expression for- immediately suggests that we attempt to estimate the mean energy by taking an average
of f(X) over some polynomially bounded set of sample configurations X. This basic idea
can be made to work, with a little refinement. As before, we proceed by case analysis.

Case I./3 V/j > for some pair i, j. The condition guarantees that the constant c is not
too small in relation to g(X), and hence that the ratio max(f)/l::(f) is not too large. This,
as we have seen, implies that I::(f) can be estimated by direct experiment. First note that the
existence of a pair i, j with/3 V/j > entails

3V/j 3
(34) c > Vij tanhflVij > >--.

4 4fl
Then observe that the inequality x/sinh x < 1, valid for x > 0, implies

m
g X E 2Vi / s nh 2fl Vi < E - <

{i,j}6X {i,j}6X

Thus max(f) c + max(g) < c + m/fl < c(1 + 4m/3), where the final step relies on (34).
Since (f) is certainly bounded below by c, it follows that max(f)/Iz(f) < + 4m/3 <

7m/3.
Case II./3 V/j < 1 for all i, j. To estimate I::(f) within ratio + it is enough, since c

is positive, to estimate I::(g) I::(f) c within ratio + . For simplicity, we shall, in the
sequel, work with g instead of f. Using the bounds 1/2 < x! sinh x < 1, valid for x in the
range 0 < x _< 2, we have 1/2fl < 2 Vij / sinh 2fl V/j < 1/fl, implying

(35) 1/2fl < g(X) < m/fl, for X -7/= 0.

Let C 0 be a closed subgraph which maximises w(C). Note that C is necessarily a cycle,
and can be found in polynomial time using a standard shortest paths algorithm. There are two
subcases, depending on the magnitude of w(C).

Case II(a). w(C) > 1/32nm2. In this subcase we may estimate I::(g) by direct experiment.
Since Z’ > w(O) + w(C) + w(C), it follows that

Pr(X 0)-
w(0)

< (1 + w(C))-1 <
Z Z 64nm2"

Combining this inequality with inequality (35), we obtain l::(g) > (1/2fl) Pr(X 0) >

1/128flnm2. Then a further application of (35) yields the required bound: max(g)/ff.(g) <
128nm3.

1110 MARK JERRUM AND ALISTAIR SINCLAIR

Case II(b). w(C) < 1/32nm2. The essential problem in this case is that we have no
lower bound on the expectation of g. The solution is to increase the expectation artificially by
adjusting the weight function w. Naturally, a new weight function induces a new probability
distribution on configurations, which in turn alters the expectation of g. It is therefore important
to adjust the weights systematically, so that it is possible to recover the expectation of g with
respect to the original distribution from the knowledge of the expectation of g with respect to
the new distribution.

The new weight function w is parameterised by a real number o in the range 0 _< o _< 1.
We define adjusted edge weights i(.)]7t which induce a new Weight function w"

wo(x)= FI .)= FI
{i,j}eX {i,j}eX

Note that the original weight function corresponds to setting oe 0, i.e., w(X) wo(X).
Note also that 0 <)vi(. < 1, so the new edge weights)Vi(.) correspond to a well-defined
subgraphs-world process; as a consequence, it is possible to sample configurations according
to the distribution which assigns probability w(X)/Z’ to configuration X, where Z’x w(X). Let !=(.) denote the expectation operator with respect to the new distribution,
i.e., I::(h) (Ztot) -1 x w(X)h(X).

Now fix oe so that w(C) 1/32nm2; the required value of oe is the solution to the
equation w(C)1- 1/32nm2, and lies in the range 0 < oe < 1. For any X 7 0, maximality
of C implies w(C) >_ w(X), which in turn implies w(C) w(C)- >_ w(X)1- w(X);
thus C remains a maximum weight nontrivial configuration under the new weight function

w. Now the quantity we wish to evaluate, namely, I=(g), can be written as an expectation
with respect to the new distribution:

l::(g) ; w(X)g(X) ; Z w(X)w(X)g(X)

(36) x x

Z’
l=,(w(X)g(X)).

Z’

Since Z’ and Z’ can be computed by the fpras of 3, we merely have to show that the
remaining factor I=(w(X)g(X)) can be approximated in polynomial time. As before, this
can be achieved by bounding the ratio of the maximum to the mean.

By maximality of C and inequality (35),

m
max(w(X) < w(C)-fi"

Also, by Lemma 11 and (35),

E,(w(X)’g(X)) >_
w(C)
(w(C)g(C))

w(C) w(c)
32rim 2/3 64flnm3"

Putting these inequalities together, we obtain

max(w(X)g(X))
< 64nm4.

I=(w(X)ag(X))

This completes the analysis of Case II(b).

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1111

It is this final case which determines the execution time of the proposed fpras for -g.
Consider the cost of evaluating the three factors appearing in (36), within ratio + /4 and
with failure probability 1/16. From 3, O(.-2m3n 11 log n) time suffices to obtain satisfactory
estimates for the factors Z’ and Z’. Setting /4 and r/ 1/16 in Lemma 3, we
see that O(.-2nm4) samples from the generator suffice to evaluate the remaining factor,
F_.(w(X)g(X)), within ratio + /4 and with failure probability 1/16. By Theorem 10, the
generation of each sample requires expected time O(m3nS). (As before, we are justified in
assuming that > 2-m.) Thus the expected time required to obtain a sufficiently accurate
estimate of F.(w(X)g(X)) is O(-2m7n9); it can be seen that this term dominates those
which arise in the other steps ofthe algorithm. Now set a definite upper bound on the aggregated
execution time of the generator which is 16 times the expected execution time. By this means
the quoted average case time complexity is converted into a worst case time complexity, at the
cost of introducing an additional failure probability of / 16. This additional failure probability
may be absorbed into the overall failure probability of 1/4 which the definition of fpras allows.

Finally, we sketch the modifications required to handle the case of nonzero external field,
i.e., B > 0. Starting with the general subgraphs-world expansion for Z, and differentiating
In Z with respect to/3, the mean energy -g can again be expressed as the expectation of an
appropriately defined random variable f (X). Naturally, the form of f is now more complex.
Lemma 11 continues to hold, but with 1/64n2m2 replacing 1/32nm2 as the upper bound on
w (X). The proof of Lemma 11 increases in technical complexity, but the main idea remains
as before. The complications arise from the fact that the maximum weight nontrivial subgraph
may be either a cycle (as before) or a single edge (previously excluded). The case analysis in
the proof of the theorem proceeds as before, but the upper bound on overall execution time
rises to O(-2m7nl). [3

In this section, we have presented fully polynomial randomised approximation schemes
for the first derivatives of In Z with respect to and B. The second derivatives of In Z also have
physical significance: C k/202(ln Z)/O2 is the specific heat, and 2, -/-102(ln Z)/OB2

the magnetic susceptibility. (Here, k denotes Boltzmann’s constant.) It is natural to ask
whether the techniques presented in this section can be extended to these quantities. With a
certain amount of computational effort, it is possible to express C and 2, as expectations of
appropriate random variables in the subgraphs world. Unfortunately, however, these random
variables are not necessarily positive, and the proof techniques of Theorems 9 and 12 are
therefore not applicable. At present, the question of the existence of an fpras for C and 2’
remains open.

We close the section by presenting proofs of the technical lemmas.

ProofofLemma 8. We demonstrate, by a simple mapping argument, that

(37) Pr(Iodd(X) 2) >_/z2pr(Iodd(X)l 0).

Let denote the set {X f2 Iodd(X)l 2k}. Associate with each configuration X f20
the set S(X) {X’ f2 IX’ @ XI

_
S21. It is straightforward to verify that the subsets

{S(X) X f20} are pairwise disjoint, and that Yx,es(x w(X’) > w(X)#e for all X f20.
(For X 0 we need the condition)ij >-- 1.) Thus -xeal w(X) > Ize Xeao w(X), and
(37) follows by dividing through by Z’.

It follows from (37) that Pr(Iodd(X)l > 0) > /xe/(1 +/ze) > /ze/2; this deals with the
first part of the lemma. Furthermore, Lemma 4 assures us that Pr(Iodd(X)l 0) > 1/10
whenever # < n-. Combining this observation with (37) yields the second part of the
lemma. [3

Proof ofLemma 11. Since B O, it is only the closed subgraphs X

_
E which have

nonzero weight: w(X) H{i,j}x ij. Let Xo, Xa, X2 Xs_ be an enumeration of the

1112 MARK JERRUM AND ALISTAIR SINCLAIR

closed subgraphs of E in order of nonincreasing weight; thus Xo 0, w(Xo) 1, and
w(X1) < 1/32nm2. For each edge e [i, j} E define l(e), the length of e, to be ln)ij.
Extend the length function to subsets of E by summation, so that (X) In w(X). (Clearly,
these "lengths" are merely weights which combine additively rather than multiplicatively.
Even so, they will prove to be a convenient notational and conceptual aid.)

Define L /(X1) -In w(X1). Let C (el, e2,..., er) be any circuit in E; here,
each ei {Vi-1, l)i} is an edge, and Ur 1)0. Define do 0, and dk -=1 l(ei) for
1 < k < r. Call a directed edge ek (Vk_l, vk) of C a pier if there exists an integer h with

d-i < hL/2 < d. We make two observations about piers. First, the circuit C is completely
determined by the start vertex v0 and the set of all piers. This is because the total length of
edges in C which form a span between two consecutive piers is strictly less than L/2. Thus,
the existence of two distinct spans between consecutive piers would imply the existence of a
circuit of length less than L, and hence of a nontrivial closed subgraph of weight greater than
e-L w(X1); this would contradict the assumption that X1 is maximal. Second, the total
number of piers in C is at most 2dr/L 21(C)/L. Intuitively, the role of piers is to provide
a compact encoding of circuits.

Now suppose ot > 0, and let X

E be a general closed subgraph with I(X) <

Decompose X into its connected components; each of these components is Eulerian and
hence can be regarded as a circuit with specified start vertex. Encode each component of X
as a sequence consisting of the start vertex of the circuit followed by the piers of the circuit in
sequence. Encode X itself by concatenating the codes for the various components; note that
X is completely determined by the code so formed. Since each connected component of X
has length at least L, the total number of vertices in the code (which is equal to the number of
components) is at most (X)/L or. Furthermore, the total number of directed edges in the
code (which is the total number of piers) is at most 21(X)/L 2or. These observations yield
an upper bound on the number of distinct codes for closed X with (X) < ot L. The number of
ways of selecting a sequence of at most ot distinct vertices is bounded by n; that of selecting
a sequence of at most 2or distinct directed edges by (2m)2; that of interleaving the vertex and
edge sequences by 23. Thus the number of distinct codes, and hence the number of closed X
with l(X) <otL, is bounded above by (32nm2).

Now consider the subsequence X0, X1, Xk-1, consisting of the k closed subgraphs
of greatest weight (i.e., shortest length), and let ot I(X_I)/L. Then the coding argument
implies (32nm) > k. On the other hand, from the definition of or, and using the bound on
w(X1) guaranteed in the statement of the lemma,

(32nm2) <
w(X1) W(Xk_I)

Combining these two inequalities we obtain w(X_l) <_ k-1, and hence

Z’-- tO(Xk_l) _< _<
k-1 k--1 k

By a well-known asymptotic result [21, p. 74], the latter sum is bounded by m for all sufficiently
large m; indeed it is enough that m > 3. The lemma holds trivially for m < 3.

6. Completeness results. In this paper we have restricted our attention to theferromag-
netic case of the Ising model; moreover we have contented ourselves with solutions which
are approximate only. The results of this section aim to justify these apparently limited goals.
Since we are concerned here with negative results, it will be an advantage to work with a
simplified version of the Ising problem.

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1113

INSTANCE: A symmetric matrix (V/j i, j E [n]) with entries in {- 1, 0, 4-1 }, and a natural
number,/3, presented in unary notation.

OUTPUT: The partition function

z z(v,) 2-(),

where H(r) -li,jlE Vjaiaj, and the sum is over E {-1, +1}n. (As
usual, E is the set of pairs {i, j} with V/j 0.)

We refer to the problem in this form as ISING. The main points to note are that the external
field is zero, and that powers of e have been replaced by powers of 2. The latter modification
merely amounts to a scaling of , and is made to avoid problems which would arise from the
introduction of real arithmetic. The restrictions imposed on the various quantities appearing
in an instance of ISING ensure that the output is a rational number whose numerator is a binary
integer with a polynomially bounded number of digits, and whose denominator is a certain
power of two. The output can thus be considered as a fixed-point binary number with an
explicit "binary point." Adopting this viewpoint, it is not difficult to locate ISING within the
class #P of combinatorial enumeration problems. (See Garey and Johnson’s book 12, p. 167]
for an explanation of #P and its completeness class.)

The two problems which form the starting point for the intractability results of this section
are MAXCUT:

INSTANCE: An undirected graph G and a positive integer b.
QUESTION: Is there a cut set in G of size b? That is to say, is there a partition of the vertex

set of G into two subsets such that the number of edges which span the two
subsets is at least b?

and the related #MAXCUT:
INSTANCE: An undirected graph G.
OUTPUT: The number of cut sets in G of maximum size.
The following is a slight extension of a known result.
LEMMA 13. MAXCUT is NP-complete, and #MAXCUT is #P-complete.
Proof. NP-completeness of MAXCUT is proved in [13]. The reductions used there are

not "parsimonious" [12, p. 169], and hence do not immediately imply #P-completeness of
#MAXCUT. As usual, however, the reductions (given in the proofs of Theorems 1.1 and 1.2 of
that paper) can be modified, without great difficulty, to yield parsimonious versions. For those
who wish to follow the argument in detail, the necessary modifications are presented below.

In [13, Thm. 1.1], new variables {ei < < m} should be introduced, and the definition
of the clause set S’ amended to read

S’ U (di V ei),
i=1

(ai (bi), (ci), (di), (ei),

(aiv bi), (ai v ci) (di v ei),

(-"ai V -"bi (ai V "Ci) (’di V -"ei

where each ellipsis stands for seven omitted disjunctions. Note that there are 26 clauses in S’
arising from the th clause, (ai v bi v ci), of S. If the th clause of S is satisfied, then there
is precisely one way to choose truth values for the variables di and ei so that 20 of these 26
clauses of S’ are satisfied. Conversely, if the th clause of S is not satisfied then, however di

1114 MARK JERRUM AND ALISTAIR SINCLAIR

and ei are chosen, at most 19 of the 26 clauses can be satisfied. Thus, setting k 20m, the
original proof goes through. Note that the reduction is now parsimonious.

In [13, Thm. 1.2], duplicate clauses should be removed by replacing each clause C
(ui /vi) by the seven clauses

(Ui V Ci), (-"Ui V Ci), (Ui V --’di), (-’ui V di), (ci v -’di), (-ci k/ di) and (ci v vi),

where C and di are new variables. For a given assignment to U and Vi, one must set C di
u in order to maximise the total number of satisfied clauses within these seven. Now, if C is
satisfied then all seven clauses may be satisfied; however, if C is not satisfied then at most six
of the clauses may be satisfied. The existing proof goes through with k set to k’ + 6q. Again,
the modified reduction is parsimonious.

The first theorem of the section presents evidence that our restriction to the ferromagnetic
case of the Ising model cannot be relaxed.

THEOREM 14. There can be no fpras for ISING unless RP NP.
RP is the class of decision problems which can be solved in polynomial time by a certain

type of randomised algorithm which is allowed one-sided errors. (See [2, p. 138] for a precise
definition.) It is widely conjectured that RP is strictly contained in NE Thus Theorem 14 can
be interpreted as strong evidence that no approximation algorithm exists for the Ising parti-
tion function in the nonferromagnetic, or "spin-glass" case. Indeed, the existence of such an
algorithm would imply, by virtue of Theorem 14, the existence of efficient randomised algo-
rithms for such hard problems as testing satisfiability of a Boolean formula and the Travelling
Salesman Problem.

Proof of Theorem 14. Let G ([n], E) be a graph and b a positive integer defining an
instance of MAXCUT. Construct an instance of ISING by setting/3 n, and V/j --1 when
{i, j} 6 E. (As usual, V/j 0 when {i, j} E.) Each spin-vector cr partitions In] into
two subsets, and hence defines a cut set of G: cut(a) {{i, j E cricrj -1 }. Note
that H(r) m 2]cut(o-)], where m IEI. Let N denote the number of spin vectors
r for which Icut(cr) k. Then the simplified partition function can be re-expressed as
Z m=0 N2t(z-m).

Note that if a cut set of size b exists in G then Z > 2/(2b-m) 2n(2b-m); in contrast,
if no such cut set exists, Z <_ 2n2(2b-2-m) 2-n2n(2b-m). Now the existence of an fpras
for ISING would imply that these two cases could be distinguished in polynomial time, with

1.failure probability at most , in other words, MAXCUT G BPE From this it would follow.m
since MAXCUT is NP-complete and BPP is closed under polynomial time reductions--that
NP

BPE However, the inclusion NP _c BPP entails RP NP [22].

Our final theorem states that ISING is a complete problem for the class #E Thus a poly-
nomial time algorithm which solves it exactly would yield similar algorithms for a range of
presumably intractable problems, such as counting the number of satisfying assignments of a
Boolean formula and counting optimal Travelling Salesman tours. We should therefore not be
too disappointed that we have obtained only approximation algorithms for the Ising problem.

THEOREM 15. ISING is #P-complete even when the matrix gij is nonnegative (i.e., even
in theferromagnetic case).

Proof. We present an easy polynomial-time (Turing) reduction from #MAXCUT. Let
G- ([n], E)be an instance of#MAXCUT. Set V/j +1 when {i, j} 6 E, and V/j 0 other-
wise. Note that H(r) 21cut(r)l m. With N as before we have Z -m=o Nk2(m-2k)
2mp(4-), where p(x) Nx is a polynomial of degree m. Suppose that the value of p
is known at the points/3 0, m, i.e., at x 1, 4-1,4-2, 4-m. Then the coefficients
of p can be recovered in polynomial time from these values by interpolation. Using Newton’s

APPROXIMATION ALGORITHMS FOR THE ISING MODEL 1115

formula, this process can be carried out using only rational arithmetic; moreover, the lengths
of the numerators and denominators all remain polynomially bounded. The leading (nonzero)
coefficient of p is twice the number of maximum cut sets in G. (Note that each bipartition of
[n] corresponds to a pair of opposite spin-vectors.) V]

Further completeness results related to the ones in this section can be found in [3], 15].

REFERENCES

N. ALON, Eigenvalues and expanders, Combinatorica, 6 (1986), pp. 83-96.
[2] J.L. BALCAZAR, J. DIAZ, AND J. GABARR0, Structural Complexity, Volume I, Springer-Verlag, Berlin, New York

1988.
[3] E BARAHONA, On the computational complexity of Ising spin glass models, J. Physics A, 15 (1982), pp.

3241-3253.
[4] K. BINOER, Monte Carlo investigations ofphase transitions and critical phenomena, in Phase Transitions and

Critical Phenomena, Volume 5b, C. Domb and M. S. Green, eds., Academic Press, London, 1976, pp. 1-
105.

[5] J. CHEEGER, A lower bound for the smallest eigenvalue of the Laplacian, in Problems in Analysis, R. C.
Gunning, ed., Princeton University Press, NJ, 1970, pp. 195-199.

[6] B. CIr’RA, An introduction to the Ising model, Amer. Math. Monthly, 94 (1987), pp. 937-959.
[7] P. DIACONIS AND D. STROOC:, Geometric bounds for eigenvalues of Markov chains, Ann. of Appl. Prob.,

(1991), pp. 36-61.
[8] J. DODZItK, Difference equations, isoperimetric inequality and transience of certain random walks, Trans.

Amer. Math. Soc., 284 (1984), pp. 787- 794.
[9] M. E. DYER, A. M. FRIEZE, AND R. KANNAN, A random polynomial time algorithm for approximating the

volume ofconvex bodies, J. ACM, 38 (1991), pp. 1-17.
10] W. FELLER, An Introduction to Probability Theory and Its Applications, Volume I, 3rd ed., John Wiley, NY,

1968.
[11] M.E. FISHER, On the dimer solution ofplanar Ising models, J. Math. Phys., 7 (1966), pp. 1776-1781.
12] M.R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-completeness,

Freeman, San Francisco, 1979.
13] M.R. GAREY, D. S. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete problems, Theoret. Comput.

Sci., (1976), pp. 237-267.
[14] E. ISING, Beitrag zur Theorie des Ferromagnetismus, Z. Phys., 31 (1925), pp. 253-258.
[15] M.R. JERRtM, Two-dimensional monomer-dimer systems are computationally intractable, J. of Statist. Phys.,

48 (1987), pp. 121-134.
16] M.R. JERRUM AND A. J. SINCLAIR, Approximating the permanent, SIAM J. Comput., 18 (1989), pp. 1149-1178.
17] M. R. JERRtM, L. G. VALIANT, AND g. g. VAZIRANI, Random generation of combinatorial structures from a

uniform distribution, Theoret. Comput. Sci., 43 (1986), pp. 169-188.
18] R.M. KARP AND M. LUBY, Monte-Carlo algorithmsfor enumeration and reliability problems, Proc. 24th IEEE

Symposium on Foundations of Computer Science, 1983, pp. 56-64.
19] E W. KASTELEYN, Dimer statistics and phase transitions, J. Math. Phys., 4 (1963), pp. 287-293.

[20] S. KIRKPATRICK, C. GELATT, AND M. VECCHI, Optimisation by simulated annealing, Science, 220 (May 1983),
pp. 671-680.

[21] D.E. KNUTH, The Art ofComputer Programming, Volume 1: Fundamental Algorithms, Addison-Wesley, New
York, 1975.

[22] KER-I Ko, Some observations on probabilistic algorithms and NP-hard problems, Inform. Process. Lett., 14
(1982), pp. 39-43.

[23] G. E LAWLER AND A. D. SOKAL, Bounds on the L spectrum for Markov chains and Markov processes: A
generalization of Cheeger’s inequality, Trans. Amer. Math. Soc., 309 (1988), pp. 557-580.

[24] W. LENZ, Beitrag zum Verstiindnis der magnetischen Erscheinungen infesten Kgrpern, Z. Phy., 21 (1920), pp.
613-615.

[25] B. MOHAR, lsoperimetric numbers ofgraphs, J. Combinatorial Theory, Ser. B, 47 (1989), pp. 274-291.
[26] G. E NEWELL AND E. W. MONTROLL, On the theory of the Ising model offerromagnetism, Rev. Modem Phys.,

25 (1953), PP. 353- 389.
[27] A. SINCLAIR, Algorithmsfor Generation and Counting: A Markov Chain Approach, Birkhiuser, Boston, 1993.
[28] Improved bounds for mixing rates of Markov chains and multicommodity flow, Combin. Probab.

Comput. 1(1992), pp. 351-370.

1116 MARK JERRUM AND ALISTAIR SINCLAIR

[29] A. J. SINCLAIR AND M. R. JERRUM, Approximate counting, uniform generation, and rapidly mixing Markov
chains, Inform. Comput., 82 (1989), pp. 93-133.

[30] D.J.A. WELSH, The computational complexity ofsome classical problemsfrom statistical physics, in Disorder
in Physical Systems, Oxford University Press, February 1990, pp. 307-321.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1117-1141, December 1993

1993 Society for Industrial and Applied Mathematics
001

MINIMAL NFA PROBLEMS ARE HARD*
TAO JIANG AND B. RAVIKUMAR

Abstract. Finite automata (FA’s) are of fundamental importance in theory and in applications. The following
basic minimization problem is studied: Given a DFA (deterministic FA), find a minimum equivalent nondeterministic
FA (NFA). This paper shows that the natural decision problem associated with it is PSPACE-complete. More generally,
let A -- B denote the problem of converting a given FA of type A to a minimum FA of type B. This paper also shows
that most of these problems are computationally hard. Motivated by the question of how much nondeterminism
suffices to make the decision problem involving an NFA computationally hard, the authors study the complexity
decision problems for FA’s and present several intractability results, even for cases in which the input is deterministic
or nondeterministic with a very limited nondeterminism. For example, it is shown that it is PSPACE-complete to

decide if L (M1) L (M2) L (M3), where M1, M2, and M3 are DFAs. These problems are related to some classical

problems in automata theory (such as deciding whether an FA has the finite power property), as well as recent ones

(such as determining the diversity of a given FA).

Key words, finite automation, minimization, NP-complete, PSPACE-complete

AMS subject classifications. 68Q15, 68Q45

1. Introduction. Regular languages and their generating devices, the finite-state ma-
chines, occupy a central place in theoretical computer science. Among the reasons for their
appeal are the elegant and diverse ways in which they can be characterized (e.g., in terms of
finite automata, regular expressions, two-way finite automata) and the nice structural prop-
erties they possess. Finite automata are easier to design and analyze than are other models
of computation. Yet they offer many challenging problems and provide insights into some
fundamental concepts in computation theory, such as nondeterminism. In fact, the notion of
nondeterminism was first introduced in automata theory by Rabin and Scott in their study of
finite automata [Ra59].

Among the central problems in this theory are the complexity of decision problems.
In a pioneering work Stockmeyer and Meyer [St73], [Me72] and Hunt, Rosenkrantz, and
Szymanski [Hu73], [Hu74], [Hu76] classified the complexity ofa number ofdecision problems
for finite automata. Their results indicate that these decision problems (with the exceptions
of finiteness and emptiness) are computationally hard when the input is a nondeterministic
finite automaton (NFA). Hunt and Rosenkrantz [Hu74] also presented meta-theorems from
which hardness results for a wide class of properties of NFA’s can be deduced. However,
very few hardness results involving deterministic finite automata (DFA’s) have been shown.
Of course, many decision problems involving DFA’s are efficiently solvable. But when they
are not efficiently solvable, proving hardness is considerably more difficult. One of the main
contributions of the present work is to establish such results.

Another popular area of study dating back to Myhill [My57], Nerode [Ne58], and Ra-
bin and Scott [Ra59] is the problem of minimizing a finite automaton or of converting one type

*Received by the editors January 11, 1991; accepted for publication (in revised form) March 22, 1992. An
extended abstract of this work was presented at the 18th International Colloquium on Automata, Languages and
Programming, Madrid, Spain, July 1991.

tDepartment of Computer Science and Systems, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
The research of this author was supported in part by a grant from the Science and Engineering Research Board,
McMaster University, and by Natural Sciences and Engineering Research Council of Canada operating grant OGP
0046613.

CDepartment of Computer Science and Statistics, University of Rhode Island, Kingston, Rhode Island 02881.
The research of this author was supported in part by National Science Foundation grant CCR-9111980.

1in this paper a problem is computationally hard if it is NP-hard or PSPACE-hard.

1117

1118 T. JIANG AND B. RAVIKUMAR

of automaton to a minimum-state automaton of another type (which we call. the minimum-
conversion problem). Some. well-known results of this kind are the following: (i) Every NFA
with n states can be converted to a DFA of size 2 [Ra59], and, in general, this bound cannot
be improved [Me71]. (Thus the problem of converting an NFA to a minimal equivalent DFA
is probably of exponential complexity.) (ii) Every DFA with n states can be converted to
a minimal equivalent DFA in O(n log n) time [Ho71]. This naturally raises the question,
How about NFA minimization? It readily follows from the work of Hunt, Rosenkrantz, and
Szymanski [Hu76] and of Stockmeyer and Meyer [St73] that NFA minimization is PSPACE-
hard for a binary alphabet and NP-hard for a unary alphabet. One problem that is conspicuously
absent in all of this study is the problem of converting a DFA to a minimal equivalent NFA.
This is one of the main problems studied here. Although the problem’s fundarnental nature is
sufficient to justify its study, we think that it has practical appeal as well. Regular languages
are used in many applications, and to optimize the space requirements we would like to store
the language in a succinct form. Since an NFA can offer exponential saving in space, it is of
interest to find a minimal equivalent NFA for a given DFA. Note further that an NFA is a good
representation of a regular language when the principal operation performed is a membership
test. A well-known application that uses this idea is presented in [Th68]. It was suggested by a
referee of this paper that an additional motivation for finding the minimal NFA equivalent to a
DFA comes from computational learning theory [Na91 since in the learning theory setting the
inferred machine can be an NFA. (On a related note, it is observed in [Tz89] that an equivalence
algorithm for the class of probabilistic finite automata leads to an efficient learning of that
class.) Unfortunately, as shown in Theorem 3.2 below, this problem is PSPACE-hard.

Our study was also motivated by a set of problems, some of which are related to the DFA-- NFA conversion problem stated above:
(i) Minimization of unambiguous finite automata (UFA’s). A UFA is an NFA in which

there is a unique accepting computation for every accepted string. UFA’s were first studied
by Mandel and Simon [Ma78] and by Reutenauer [Re77]. Steams and Hunt [St85] showed
that equivalence and containment problems are decidable in polynomial time when the inputs
are UFA’s. It is therefore of interest to know whether there is a polynomial-time algorithm for
minimizing a UFA. We show that UFA minimization is NP-complete.

(ii) Complexity of decision problems, such as equivalence, containment, and minimiza-
tion, when the NFA involved is structurally simple, e.g., reverse deterministic.

Two main contributions of this work (corresponding to 3 and 4, respectively) can be
summarized as follows:

(i) We provide a complete treatment of the complexity of minimal-conversion problems
involving various types of finite automata.

(ii) We prove results that substantially strengthen the previous results on the complexity
of decision problems related to NFA’s.

The conclusion that extremely weak forms of nondeterminism suffice to encode hard
problems provides motivation for reorienting the goal towards approximate minimization
problems and a careful study of heuristic methods. It should be observed that the only result
that establishes the hardness of an approximation problem in automata theory is the recent
result of Pitt and Warmuth [Pi89]. Our results also raise some complexity questions in classical
automata theory and about some recently developed notions in finite automata. For example,
by using the techniques presented in this paper it can be shown that the problem of determining
the exact rank of a finite automaton is PSPACE-hard. (See Salomaa [Sa81] for a definition
of the rank of a regular language.) The complexity of determining whether the rank is finite
remains open. The decidability of this well-known problem is a jewel presented in [Sa81].

2An NFA M is reverse deterministic if the reverse of M is deterministic.

MINIMAL NFA PROBLEMS ARE HARD 1119

This paper consists offour sections, not including this introduction and an appendix. In 2
we introduce the technical terms and the background needed for reading the rest of the paper.
In 3 we consider the problem of converting a given DFA to a minimal UFA and to a minimal
NFA. We show in Theorems 3.1 and 3.2 that these problems (more precisely, their decision
versions) are NP-complete and PSPACE-complete, respectively. In 4 our aim is twofold: in

4.1 we study the equivalence and containment problems involving DFA’s augmented by just
one nondeterministic operation (such as concatenation) and show that these problems are hard.
Note that this claim is stronger than the previously known result that one nondeterministic
state in the input automaton is sufficient to make a problem computationally hard. In 4.2 we
pursue another variation of the DFA --+ NFA conversion problem in which we require that the
resulting NFA be structurally simple. For illustration, a problem of this type may be stated
as follows: Inputs are a DFA M1 and an integer k. The question is, Are there DFA’s M2 and
M3 such that IM2I + IM3I _< k and L(M1) L(M2) L(M3)? In 5 we present some open
problems arising from our work. In the appendix we formally state the decision problems
introduced and studied in this paper (as well as those used in our reductions) in a standard
format.

2. Preliminaries. -We begin by introducing the technical terms and concepts from formal
languages, finite automata theory, and computational complexity. Our main goal here is to
introduce the necessary technical terms. We assume that the reader is familiar with fundamental
notions in the above topics, and we refer the reader to standard references, such as [Ho79] and
[Ga78], for unexplained terms.

This work is primarily concerned with two classes of finite-state acceptors--DFA, the
deterministic finite automata, and NFA, the nondeterministic finite automata, over a finite
alphabet (which is usually implicit). Our definitions of these are standard; we use a 5-tuple
(Q, E, 6, q0, F). But we will usually provide informal descriptions of machines and avoid
formalism whenever possible. The size of a machine M, denoted by IMI, is its number of
states. The conventional definition of DFA requires a DFA to be completely specified, i.e.,
a move must be defined for each pair of state and symbol. This forces us to include a dead
state in most of the DFA’s. (A dead state is a state from which no final state can be reached.)
One can also allow a DFA to have some unspecified moves. Such a DFA is called a partially
specified DFA. Although all of our results hold for both completely and partially specified
DFA’s, to simplify the presentation we will consider only partially specified DFA’s in this
paper. It is easy to see that all the proofs (possibly with some minor modifications) also work
for completely specified DFA’s. For partially specified DFA’s we can further assume without
loss of generality that each DFA considered consists of live states only. (A state is called live
if it is not dead.) For convenience, an NFA is assumed to be -free except in the proof of
Theorem 3.2, where we use -moves. (Note that the requirement that it be -free will not
increase the size of a minimal NFA.) We also study a less familiar class of finite automatam
UFA, the collection of unambiguous NFA’s [Ma78], IRe77], [St85]. In 3 we briefly describe
their significance.

We use the operations on languages in the usual sense. The standard ones are union,
intersection, concatenation, Kleene star, and reversal, denoted respectively by t3, A,., *, and
rev. As is customary, we drop the operator except where its absence could cause discomfort
in reading the expression. We also use the quotient operation (/) defined as follows: Let L be
a language and x a string. Then L/x is defined as

L/x {yly.x 6 L}.

3DFA, NFA, etc., denote the collection of machines and also an individual machine. The context will easily
resolve this ambiguity.

1120 T. JIANG AND B. RAVIKUMAR

It is well known [Ho79] that regular languages are closed under all these operations.
A DFA (or NFA or UFA) M is said to be minimum or minimal (we use these two terms

interchangeably) if there is no DFA with fewer than M] states accepting L (M).
The basic complexity theory notions used in this work are Turing machine (TM), NP-

completeness, PSPACE-completeness and polynomial-time many-one reductions, instanta-
neous descriptions (ID’s), halting TM, acceptance, and time and space complexities. We refer
the readers to [Ho79] for definitions of these terms. Throughout this paper a reduction means
a polynomial-time many-one reduction. We use the word hard in the technical sense that the
problem is NP-hard, PSPACE-hard, or intractable in some other sense. The problems studied
in this paper and the known hardness results used in the reductions are all listed in the appendix
in a format popularized by Garey and Johnson [Ga78].

3. Complexity offinding minimal NFA. In this section we study the minimal-conversion
problems. Let A and B be two classes of finite-state acceptors. For example, A may be the
collection of NFA, and B may be the collection of DFA. A -+ B denotes the problem of
converting a type-A finite automaton to a minimal type-B finite automaton. It is more con-
venient to state this as a decision problem: The input will be M, a type-A machine, and an
integer k (in binary). The decision question we want to answer is, Is there a k-state type-B
machine accepting L (M)? We will be primarily interested in the decision versions of the
minimal-conversion problems. Since all the results we present are (conditional) lower-bound
results (NP-completeness or PSPACE-completeness), they imply the same lower bound for
the optimization versions. Our study involves three important classes of finite-state acceptors,
namely, DFA, NFA, and UFA.

The two problems DFA -+ DFA and NFA -- DFA are classical. Hopcroft’s well-known
algorithm [Ho71 for the former problem runs in O(n log n) time. The latter problem is known
to have an exponential lower bound (on space and time), as is seen from the simple fact that the
minimal equivalent DFA of an n-state NFA can have 2 states [Me71]. The decision version
of the latter problem is also hard; it can be shown to be PSPACE-hard by using the fact that the
universe problem for NFA is PSPACE-hard [Me72]. In fact, the problem is NP-hard even over
a one-letter alphabet [St73]. Note that these claims hold even if we fix k 1. The problem
NFA --+ UFA also requires exponential space (and thus time) since there is an unavoidable
exponential blowup when NFA is converted to UFA [St85]. The exponential blowup holds
even in the case of a unary alphabet [Ra89]. The decision version of this problem is also
PSPACE-hard since the argument for NFA -- DFA holds in this case as well.

This leaves us with four basic problems: DFA -+ NFA, DFA -- UFA, UFA --, UFA, and
UFA -, DFA. We will study the decision versions of these problems, and we will show that
the first problem is PSPACE-complete and that the second and third are NP-complete. These
results hold for any alphabet of size at least 2. The unary case is studied in a companion work
[Ji90] (see 5 for some details regarding [Ji90]). Since UFA is exponentially more succinct
than DFA [St85], the fourth problem requires exponential space and time. Unfortunately, we
do not know the complexity of the decision version of this problem at the moment. (In fact,
we do not know whether it is in NP or PSPACE-complete.)

From now on A -- B denotes the decision version of the problem of converting a type-A
finite automaton to a minimal type-B finite automaton. We need the following lemmas in the
proofs of Theorems 3.1 and 3.2, where the claimed hardness results are proved. Our first two
lemmas are from [St85]. They are needed to prove that DFA -- UFA is in NP. For the sake of
completeness we will present a sketch of proof of these lemmas. In fact, our proof of Lemma
3.1 is simpler than the original proof.

LEMMA 3.1 (Stearns and Hunt [St85]). There is a deterministicpolynomial-time algorithm
for deciding whether the two given UFA, M1 and M2, are equivalent.

MINIMAL NFA PROBLEMS ARE HARD 1121

Proof (sketch). Since a polynomial-time algorithm for containment immediately implies
a polynomial-time algorithm for the equivalence problem, we concentrate on the former prob-
lem: Given M and M2, determine whether L(M) c_ L(M2). We show that the containment
problem reduces to the following proper-containment problem stated as follows: Given as
input two UFA’s M3, M4 such that L (M3) L (M4), determine whether the containment is
proper. (Reduction: Given M1 and M2, design a UFA M for L(M) 71L(M2). Note that M
can be obtained from M and M2 by using the standard construction [Ho79] in polynomial
time. Choose M4 M1. The reduction holds because the latter problem has a "yes" an-
swer if and only if the former has a "no" answer.) The ideas described so far are directly from
[St85]. Our simplification comes in the polynomial-time algorithm for the proper containment.
Stearns and Hunt developed this algorithm by using difference equations. We use the adja-
cency matrix representation A and B of M and M4, respectively. It can be observed that the
proper-containment problem has a "yes" answer if and only if the number of strings in L(M)
of length is exactly equal to the number of strings of length for each 1, 2 n -+- n2,
where n and n2 are the number of states in M3 and M4. The proof now follows from the fact
that the number of strings of length can be readily obtained from the matrix A i. A can be
computed fast by using the standard repeated-squaring technique.

LEMMA 3.2 (Stearns and Hunt [St85]). There is a deterministicpolynomial-time algorithm
that, given an NFA M as input, decides whether M is unambiguous.

Proof (sketch). Let L’ be the set of strings that can be derived by at least two distinct
accepting paths in M. It is easy to design an NFA M’ to accept L’ (from M) in polynomial
time. The claim follows from the fact that M is unambiguous if and only if L(M’) is empty
and that emptiness of an NFA can be tested in polynomial time. [

In the proof of Theorem 3.1 we will use a variation of the set basis problem, which has
been shown to be NP-complete by Stockmeyer [St76]. We call our problem the normal set

basis problem. The problem is stated below.
Let C and B be collections of finite sets. B is said to be a basis of C if for each c 6 C

there is a subcollection of B whose union is exactly c. B is said to be a normal basis of C
if for each c 6 C there is a pairwise disjoint subcollection of B whose union is exactly c.

The (normal) set basis problem is as follows: Given a collection C of finite sets and positive
integer k _<]C], decide whether C has a (normal) basis with cardinality at most k.

Since it is not obvious how the original proof of Stockmeyer in [St76] can be modified to
show the NP-completeness of the normal set basis problem, here we include an independent
proof of this result. Note that our proof will also show the NP-completeness of the set basis
problem.

LEMMA 3.3. The normal set basis problem is NP-complete.

Proof. Clearly, the normal set basis is in NE We show that it is NP-hard by transforming
the Vertex Cover problem to it. Let G (V, E), and k be an instance of the Vertex Cover
Problem, where V {Vl, v2 vn }. We design the collection C of sets as follows.

For each vertex vi, let ci {xi, yi }, 1, 2 n. Let (vi, vj) be in E with < j. We
define

c bi,j},i,j {Xi, ai,j,

C2i,j {YJ, bi,j, di,j},

Ci,j {Yi, di,j,

c4..
t,j {Xj, ei,j, ai,j},

c bi,j di ei, }.i,j {ai,j ,j, J

1122 T. JIANG AND B. RAVIKUMAR

Finally, we letC {cill < n}t_J{c,jt(vi, vj) E, < < 5}, and we let
s n + 41El -t- k. Obviously, C and s can be constructed from G and k in polynomial time.
We complete the proof by showing that G has a vertex cover of size at most k if and only if C
has a normal basis of cardinality at most s.

Intuitively, the idea behind the proof is as follows: To cover the set ci, the basis B must
contain either ci or both singleton sets {xi} and {yi }. Let V1 {vii both {xi} and {Yi} are in
B }. We can show for a fixed (vi, vj) E that at least four sets (in addition to sets ci, cj, {xi },
and {xj}) are necessary to cover the five sets i,j, 5, and that four sets (in addition
to sets ci, cj, {xi}, and {xj}) are sufficient if and only if at least one of vi or vj is in V1. Thus if
there is a vertex cover of size k, we choose the normal basis B as follows" For every vi in the
cover we include both {xi} and {Yi in B; otherwise, we include ci in B. Conversely, if there
is a normal basis of cardinality s, we will show that V1 (defined above) can be extended to a
vertex cover of size k.

Now we give the formal details. Let G have a vertex cover V1 of size k. We will show
that there is a normal basis B of size s. Define a collection of sets B as follows: For vi V
include both {xi} and {yi in B; else include {ci} in B. The number of sets included in B so far
is k + n. Let e (vi, vj) (where < j) be an arbitrary edge in G. Since V1 is a vertex cover,
either vi or vj (or both) is in V1. Assume, e.g., that vi is in V.. Include the sets {ai,j, bi,j},
{yj, bi,j, di,j }, {di,j, ei,j }, and {xj, di,j, ei,j} in B. (We omit the similar case corresponding to

vj B.) This completes the definition of B. Note that c,,j can be expressed as a union of
members of B as

c!l,j {Xi} ID {ai,j, be,j},
ci,j {Yi} 1.3 {di,j, ei,j},
c5.
,,j {ai,j, bi,j} U {di,j, ei,j}

and that the other two sets are members of B. Since the total number of sets included in B for
each edge is four, the cardinality of B is (k / n) + 41El s. From the foregoing argument it
is also obvious that B is a normal basis of C.

Conversely, suppose that there is a normal basis B of cardinality at most s n +41El -t- k.
We can assume without loss of generality that no proper subcollection of B is a normal basis.
We show that G has a vertex cover of size at most k. Define V’ {vii both {xi} and {Yi} are in
B }. Let V’l k’, The number of sets in B consisting of only xi and/or Yi is at least n + k’.
(This can be seen from the fact that B must have the subset ci for all such that vi V’.
Thus there are n k’ such sets, in addition to 2k singleton sets corresponding to i’s such that
vi V’.) Let E’

_
E be the set of edges covered by V’, i.e., E’ {(vi, vj)lvi or vj is in V’}.

The following observation can be easily shown:
Observation 3.1..For any e 6 E at least four sets of B (in addition to sets ci, cj, {xi }, and

{xj}) are required to cover the sets c 5. Further, at least five sets in addition tot,j’
sets ci, cj, {xi }, and {xj} are required to cover them if e E’.

Now the total number of sets needed to cover C is at least

n + k’ + 41E’I + 5(IEI- IE’I) n + k + 41El / (IEI- IE’I + k’- k).

Thus IEI IE’I _< k k’. Thus IEI IE’I / k’ _< k. We conclude the proof by showing
that there is a vertex cover V of size EI E’I / k" Add one of the end vertices of each edge
e 6 E- E’ to V’. This vertex cover is of size EI- E’I-t-k’ < k. 71

We now present the main results of this section.
THEOREM 3.1. The DFA -+ UFA problem is NP-complete.
Proof. It is easy to show, by using Lemmas 3.1 and 3.2, that the problem is in NP. Let M

and k be inputs. The nondeterministic algorithm will guess an NFA M’ with at most k states.

MINIMAL NFA PROBLEMS ARE HARD 1123

It will then check, by using Lemma 3.2, that M’ is unambiguous. Then, by using Lemma 3.1,
it verifies that they are equal and accepts.

To prove NP-hardness we reduce the Normal Set Basis problem to our problem. Let C
and s be an instance of the Normal Set Basis problem, where C {cl, c2 cn}. and ci

{a, a2 an; }. Construct a DFA M as follows" M is defined over an alphabet E {tit ci
for some i} U {bili 1, 2 n}. The state set of M is Q {q0, ql qn, qf}. The start
and accepting states are q0 and qf, respectively. The transition function 8 Q x E --+ Q is
defined as

8(q0, bi) qi, < < n,

8(qi, a) --qf, < < n, < j < ni.

Let k s / 2. We claim that C has a normal basis of cardinality s if and only if L (M)
is accepted by a k-state UFA. Suppose C has a normal basis of cardinality at most s. Let
r, r2 rs be a normal basis of C. The following is a description of a UFA M’ with at
most k states accepting L(M)" Let Q’ {q0, qf, s1 Ss} be the states of M’ where sj
corresponds to the basic set rj. To describe the transition function 8’ we first fix (arbitrarily) a
representation of each ci as a disjoint union of the basic sets. Say that each basic member in
this representation belongs to ci. Now we describe 8I"

sj 8’ (q0, bi iff rj belongs to Ci,

8’(sj, a) qf iff a rj.

It is easy to see that M’ is a UFA and that it accepts L (M).
To show the converse assume that L (M) can be accepted by a UFA M with k or fewer

states. Assume M’ is a minimal UFA. Let q be the starting of M’. Since L(M) contains a
finite set of strings of length 2, the states Q {q} can be partitioned as Q and Q2 such that
the only transitions in M’ are from q to states in Q and from the states of Q to those in
Q2. From the minimality of M it follows that Qel (if it is assumed that the instance is
nontrivial). For each state q 6 Q1 define a set Bq {alqf 8(q, a)}. It is easy to see that
the collection {Bq }, q Ql, is a normal basis of C of size at most k 2.]

The next corollary easily follows from Lemma 3.1 and Theorem 3.1.
COROLLARY 3.1. The UFA --+ UFA problem is NP-complete.
We next consider the DFA NFA problem and show that it is PSPACE-complete. We

prove this result by reducing the Universe Problem for Multiple DFA to the problem DFA
--+ NFA. The Universe Problem for Multiple DFA is the following: Given a collection of
DFA M1 Mn over a finite alphabet E, decide whether Ui L (Mi) E*. This problem is
readily seen to be PSPACE-complete by reduction from the Finite-State Automata Intersection
Problem, which was shown by Kozen [Ko77] to be PSPACE-complete. (All we need to do is
to complement the languages L (Mi) by interchanging the accepting and nonaccepting states.)

THEOREM 3.2. The DFA -- NFA problem is PSPACE-complete.
Proof This problem is in PSPACE since the equivalence problem for NFA’s is in PSPACE.

We show that it is PSPACE-hard by reducing the universe problem for multiple DFA to our
problem. Let DFAM Mn (over an alphabet E) form an instance ofthe universe problem.
(The answer to this instance is "yes" if Ui L(Mi) * and is "no" otherwise.) We want
to transform this to a DFA M and an integer k such that the answer to the universe problem
is "yes" if and only if some NFA with k or fewer states can accept L L(M). Intuitively,
the idea is as follows. We can assume that Mi are minimal. The alphabet over which L is
defined includes, in addition to the symbols of E, additional symbols bi,j, corresponding to
state qi,j of Mi, and ai, corresponding to the start state of Mi. M is chosen so as to accept

1124 T. JIANG AND B. RAVIKUMAR

the marked versions of the strings accepted by Mi ’s, where the marks correspond to states
of Mi’s. This ensures that any NFA accepting L must essentially possess all the states of

Mi’s. In addition, L includes E* and some additional strings used as enforcers. The enforcers
will be, chosen in such a way that an NFA N accepting L will require at least k states and
at most k + states, where k 4 + Yi mil Since all states of Mi’s are required to be
present in N, if [,.Ji L (Mi) E*, then with no additional state, N can accept all strings in E*.
The enforcers will make sure that neither the states of Mi’s nor the states needed to accept
the enforcer strings can be used for accepting *. Thus at least one more state is needed to

accept L.
We now present a formal proof. We assume with no loss of generality the following

properties of Mi: (i) Mi’s are minimal, (ii) for each L(Mi) is neither empty nor equals
*, and (iii) to {} is contained in [.-Ji L(Mi). Let ti be the number of states in Mi, let
Qi {qi,1 qi,ti be the state set of Mi, let qi,1 be the start state, and let F/ c_ Qi be the
accepting states of Mi. For a state qi,j let P(i, j) be defined as the set of strings accepted by
Mi if F/were redefined to be the singleton {qi,j}. More formally,

P(i, j) {w[3(qi,1, w) qi,j}.

Clearly, P(i, j) N P(i, k) 0 for j :fi k.
For each i, < < n, let ai be a new symbol, and for each i, j, <_ < n, <_ j < ti,

let bi,j be a new symbol. Let B {bi,jll <_ < n, <_ j < ti}. Let c, d, and f be three
additional new symbols. For each define a language P(i) as

ti

P(i) ai U[P(i, j)bi,j].
j=l

Also define

and

Q(i) {bi,1} u {xbi,jlx E, 3(qi,1, x) qi,j}

R ({c} U X)({d} U E)Z*(If} U B).

Finally, let

L U[P(i) tO aiL(Mi) t2 Q(i)] u X* u R,

and let k i ti +4. It is easy to show that a DFA accepting L can be constructed in polynomial
time, given Mi. To conclude the proof of Theorem 3.2 it suffices to prove Claim 3.2 below
which asserts that the reduction is correct. Before we prove this, we need some observations
concerning the languages defined above. In particular, we will establish a lower bound of k
and upper bound of k/ on the size of a minimal NFA accepting L (irrespective of whether the
answer to the original instance is "yes" or "no"). With this intention we describe (informally)
an NFA N’ with k + states accepting L. N’ is obtained by taking the machines Mi’s and
adding five more states q0, pl, p2, p3, and f. The start state is q0, and the accepting states
of N’ are the accepting states of Mi’s along with pl and f. The transitions include all the
original transitions of Mi ’s, with the following additions: qi,1 3’(qo,), and qi,1 3’(qo, ai),
3’(q0, a) 6 f for all a 6 E, Pl G 3’(qi’,j, bi,j), P2 3’(qo, c), P2 3’(qo, a) for all a 6 E,
P3 6 3’(p2, d), P3 6 3’(pz, a)for all a 6 , P3 6 3’(p3, a)for all a 6 E, and, finally,
Pl 6 8’(p3, f), pl 6 8’(p3, b) for all b 6 B. Figure 3.1 presents this NFA. Please note that

MINIMAL NFA PROBLEMS ARE HARD 1125

oO"

.. bnj

b21 e

d, Va Y_,

Fla. 1. NFA in the proofofTheorem 3.2. (N.B. Mi’s are given DFA’s, with all the arcs and only the additional
edges connecting Mi’s to the other states are shown.)

this figure omits most of the details of the internal structure of Mi’s and concentrates only on
the external connections, connecting Mi’s to the remaining five states.

Thus if N is a minimal NFA accepting L, IN] < k + 1. Let QN be the set of states of N,
let FN be the accepting states of N, and let q0 be the start state. Define S(i, j) as the set of
states p reachable following a string in ai P(i, j) such that some final state is reachable from
p via an arc labeled bi,j. More succinctly,

S(i, j) {q QNl(3(qo, w) q for some w ai P(i, j) and 3(q, bi,j) f3 FN =/= 0}.

Clearly, S(i, j) is nonempty for all pairs (i, j). We now prove the following claim:

1126 T. JIANG AND B. RAVIKUMAR

CLAIM 3.1. For (i, j) 7/: (i’, j’), S(i, j) CI S(i’, j’)
Proof. Suppose not. Then there is a u S(i, j) A S(i’, j’). We consider two cases.
Case 1: 7 i’. Clearly, there exist strings x and y such that u

6(qo, ai, y), and 6(u, bi,j) C) F 7/: 0. This implies that ai, ybi,j 6 L, a contradiction.
Case 2: i’. Clearly, j 7 j’. Let w be a string in P(i, j) such that u 8(q0, aiw).

Note that w P(i, j’) since P(i, j) CI P(i, j’) 0 for j 7 j’. It follows that ai wbi,j, L, a
contradiction. This concludes the proof of Claim 3.1.

From Claim 3.1 it follows that N must have at least nYi=I ti k 4 states. Also, in the
above proof our argument in Case implies that each state in S(i, j) is not reachable from any
state in S(i’, j’) if i’. Our next step is to show that N needs four more states in addition to
the k 4 established above. The need for these additional four states is established in (i)-(iv)
below:

(i) Clearly, the start state q0 is not in any S(i, j).
(ii) Consider the set of states Qc reachable from q0 on c. Clearly, Qc is not empty and is

different from each state in S(i, j).
(iii) The same argument is used for Qcd (the set of states reachable following cd from

q0). Note also that Qd Q 0.
(iv) Consider the set of states with an incoming arc labeled bi,j for some (i, j). This set

is nonempty and cannot overlap any of the states described above. Denote this set by Of.
Summarizing what we have shown so far, a minimal NFA accepting L will have at least

k states and at most k + states.
CLAIM 3.2. L(Mi) E* ifand only if L can be accepted by an NFA with at most k

states.

Proof (only if) We exhibit a k-state NFA accepting L: Simply remove the state f (and
all the transitions associated with it) from the NFA of Fig. 3.1. The resulting NFA is easily
seen to accept L.

(if) Suppose that a minimal NFA N accepting L has k states, Define .S(i, j), qo, Qc, Qcd,
and Qf as defined above for this N. It is easily seen that the state set of N is (-Ji,j S(i, j) tO
{q0} to QctO QcdtO Of. Also, IS(i, j)l for all and j, lOci 1, IQdl 1,and IQfl 1.
This is true because our lower bound of k in Claim 3.1 counted only one for each S(i, j) and
each of Q, Qcd, and Qf. By the definition of R, Qc and Qd cannot lead to a final state

following any string in E*. We also know from the argument presented above that a string in
E* can be accepted only by using some states in Ui,j S(i, j) tO {q0} tO Of.

The definitions of Q(i)’s and R restrict the states in [,.Ji,j S(i, j) that N can move to in
the first step on a symbol in E tO {}. Clearly, in the first step N can only move to S(i, 1) for
some on . On a symbol x 6 E, N can only move to some S(i, j), where qi,j 6(qi, 1, x).

Let Lof be the set of strings in E* accepted by using states q0 and Of only. Since N
cannot move to qo (Of) from qo (Of, respectively) on any symbol,

Lof c_ 52 tO {}.

For each let Li be the set of strings in E* accepted by using states in {q0} to j S(i, j).
For each S(i, j) let L(i, j) be the subset of E* accepted if S(i, j) is considered the start state.
Then for each

Li U{xL(i, j)lx 6 E to {}, N can move to S(i, j) on symbol x}.

The definition of S(i, j) means that if N can move to S(i, j) from q0 on aix, then
x P(i, j). Thus

MINIMAL NFA PROBLEMS ARE HARD 1127

aiL(Mi) ai U P(i, j)L(i, j)
J

ai Li.

Thus L L (Mi). Hence

L(N) N E* U Li U Lof

c_C_ U L(Mi) t_J Lof.

Since E* c_ L L(N) and Lof U {f} Ui L(Mi),

L(N) V X* X*

U L(Mi) LJ LOT
c_ U L(Mi).

That is, L (Mi) E*. This concludes the proof of Claim 3.2 and Theorem 3.2. [3

It is interesting to observe that the results of Theorems 3.1 and 3.2 and Corollary 3.1 hold
even when restricted to a binary alphabet. We sketch a proof of this result:

COROLLARY 3.2. The results ofTheorems 3.1 and 3.2 and Corollary 3.1 hold even when
the input DFA is defined over E {0, }.

Proof (sketch). The essential idea is to use a binary encoding in the above proofs. This
is very easy to do in Theorem 3.1 and Corollary 3.1. So we consider Theorem 3.2. Let the
alphabet over which L of Theorem 3.2 is defined be E’ and m IE’[. For convenience,
relabel the symbols of E’ as {a am}. We encode ai as 0 1. Formally, let h be the
homomorphism h (ai) 0 1. To complete the reduction we need to introduce some additional
enforcers. The following motivates the need for the enforcers. Consider a minimum NFA
N accepting L, and let qi --+ qj be a transition on symbol ak in N. This transition can be
realized in N’, the corresponding minimum NFA over the binary alphabet, by a chain of states
qi, Pi,1, Pi,2 Pik, qj as

0 0 0 0
qi Pi,1 Pi,2 -+ Pi,k ----> qj.

We want the new states Pi,1, Pi,2 Pi,k to be private states of qi, i.e., they should not be
shared by any other states of N. This can be achieved by introducing additional strings in
L’. For each let P(i) denote the language accepted N if qi were considered to be the only
accepting state. Define

L’ h(L) U (h(P(i))Om 1i+).

Then each state qi is forced to have m private states Pi,1, Pi,m Pi,m in N’. The following
claim, which we state without proof, completes the proof of the corollary:

CLAIM 3.3. i h(L(Mi)) h(E*) ifand only if L’ can be accepted by an NFA with at
most (m + 1)(INI + 1) states.

4. Complexity of finding minimal NFA’s of restricted types. Much effort has been
spent in classifying the complexity of decision problems for finite-state machines. The results

1128 T. JIANG AND B. RAVIKUMAR

of Stockmeyer and Meyer [St73], Hunt, Rosenkrantz, and Szymanski [Hu76], and others in-
dicate that the complexity of most of the fundamental decision problems (except membership,
emptiness, and finiteness) involving NFA’s are hard. A way to understand the nature of non-
determinism is to make the NFA as simple as possible and determine whether the decision
problems are still hard. Two well-known results of this kind are that of Stockmeyer and Meyer
[St73], who showed that the universe problem is coNP-complete even for a unary alphabet,
and that of Hunt, Rosenkrantz, and Szymanski [Hu76], who showed that the equivalence
problem is coNP-complete even for NFA’s with no loops. The former result, combined with
the existence of the normal form [Ch86] for unary NFA’s (see 1), implies that the universe
problem is hard even for NFA’s with only one nondeterministic state. We will present several
interesting hardness results on equivalence, containment, etc., in which the NFA involved will
be structurally very simple (such as the concatenation of two DFA’s).

Another collection of problems studied in this section is in keeping with the central theme
of this paper, namely, the complexity of finding optimal NFA’s equivalent to a given DFA.
Here we will require the resulting NFA to be of a special type. To give the flavor of these
problems, let us consider the Concatenation Equivalence problem: Given three DFA’s M1,
M2, and M3, decide whether L (M1) L (M2) L (M3). An analogous optimization problem
(which we call the Minimum Concatenation Generation problem) is the following: Given a
DFA M and an integer k, find two DFA’s M1, M2, if possible, such that MI / M2I < k
and L(M) L(M1) L (M2). It turns out that both of these problems are PSPACE-complete.
It follows that the presence of just one nondeterministic operation, such as concatenation,
makes the equivalence problem extremely hard. Of course, one can replace concatenation by
any other regularity-preserving operator Op (unary or binary) and study the Op Equivalence
problem and the Minimum Op Generation problem. We study these problems for all the
fundamental regularity-preserving unary and binary operations.

The Op Equivalence problems were motivated by the fact that when certain operations,
such as concatenation or Kleene star, are applied, the resulting languages require DFA’s with
exponentially more states than those of the DFA for the original language(s) [Ra89]. Thus the
standard method of converting to DFA and testing equivalence will not work. We are therefore
led to seek other methods to answer these decision questions or demonstrate that none is likely
to exist.

It should be remarked that the results presented in this section are not related to the
well-developed algebraic decomposition theory of which the central result is the Krohn-
Rhodes decomposition theorem [Gi68], [Ha66]. The fundamental difference between our
results and the classical decomposition theory is that in the latter theory the FA is required
to be decomposed into structurally simple automata (such as reset automata and permutation
automata), whereas we want the constituents to be simple in the sense of being small in size.

We now turn to technical details. The rest of this section is divided into two subsections.
In 4.1 we study the complexity of the Op Equivalence problem for Op 6 {U, N,.,., rev}. In
4.2 we study Minimum Op Generation problems for the same operators.

4.1. Equivalence problems. In this subsection we will study the Minimum Op Equiv-
alence problem for Op 6 {U, f),.,., rev}. It is easy to see that this problem is decidable in
polynomial time for union and intersection since we can efficiently find a small DFA accepting
L(M1)Op L(M2) for Op 6 {U, fq}. Thus the problem is reduced to equivalence testing of two
DFA’s, which has an almost linear time algorithm [Ho79]. The problem is more interesting
for Op rev. It is easy to see that the minimum DFA accepting L(M)rev can be exponen-
tially larger than M [Ra89], and so the conversion method is not efficient. Nevertheless, the
problem can be shown to be in P. Given DFA’s M1 and M2, we want to determine whether

MINIMAL NFA PROBLEMS ARE HARD 1129

L(M1) L(M2)rev. We design an NFA M3 from M2 by reversing its arcs and renaming the
starting and accepting states. (If M2 has more than one accepting state, we introduce a new
start state and an e arc from it to every accepting state of M1, and we remove e-moves by using
the standard algorithm [Ho79].) It can be easily seen that M3 accepts L(M2) and that M3,
although nondeterministic, is unambiguous. Now the polynomial-time algorithm of Steams
and Hunt [St85] for equivalence testing of UFA’s decides the answer to the original problem
with inputs M1 and M3. This leaves us with two basic operations: concatenation and Kleene
star. It is known that both operations can blow up the number of states in minimum DFA
exponentially [Ra89], and so the conversion method leads to an exponential-time algorithm.
We show in Theorems 4.1 and 4.2 below that both the problems are PSPACE-complete. These
results are surprising and differ from the known results in that all known hard decision problems
involve NFA’s or an unbounded number of DFA’s (e.g., Kozen’s result on the Finite Automata
Intersection Problem [Ko77]). We have the following theorem:

THEOREM 4.1. The Concatenation Equivalence (CE) problem is PSPACE-complete.

Proof. CE is easily seen to be in PSPACE. In what follows we will show its PSPACE-
hardness. The proof is by reduction from the Linear-Space Acceptance problem [Ga78]. Let
M be a fixed (one-tape) deterministic linear-bounded automaton (Turing machine), and let
w be an input to M. The question is, "Does M accept w?" We show how to transform (in
polynomial time) this instance to three DFA’s M1, M2, and M3 such that M does not accept w
if and only if L(M1) L(M2) L(M). Let]w[n 1. Let F be the work-tape alphabet,
let Q be the set of states, and let F be the set of accepting states of M. Let and $ be the left
and right end markers on the tape. Let # be a special symbol in F. We assume without loss
of generality that in any accepting computation M writes a # on every tape square (including
the two end squares) and enters an accepting state. Assume further that M makes at least two
moves on every input. Let S F U Q.

Informally, the idea behind the proof is as follows. Let INV be the set of invalid
computations of M on input w. Thus INV is either S* (if w q L(M)) or S* with the
exclusion of exactly one string (namely, the valid computation of M on w, if to L(M)).
We show that R defined as R t rev(INVw the reverse of the set of invalid computations,
can be expressed as R L1 L2 for two regular languages L1 and Lz, both of which can
be accepted by "small" DFA’s. Let us describe L1 and L2 informally. Note that the reverse
of the valid computation of M on input w is of the form w’ ll)revlF)rev ID where---m

[IDi[n for each i, the start and the final ID are correct, and the successive ID’s in the list
yield the preceding ID. Thus for a string w’ to be in R one of the following conditions should
hold: (i) the start of accepting ID is bad, or (ii) it is not true that IDj - IDj+ for some j.
Since condition (i) can be easily handled, let us concentrate on (ii) in this informal outline.
Suppose that --(IDj k- IDj+I) and that the position of mismatch is t. Let w’ X x2, where
[x[n t. (We set this length to n rather than to since we consider the reverse string.)
Now the position of mismatch occurs in x2 at a position that is a multiple of n. Thus a small
DFA that counts modulo n can locate the mismatch by using a small buffer (of constant number
of bits). The formal details are slightly more complicated in that the compatibility checking
may require matching three symbols of IDi with three symbols of IDi+l (when a state symbol
is involved in the mismatch). We should further handle the starting and accepting ID’s. Now
we present the formal details.

For strings ala2a3 and blb2b3 (where ai, bi S) we say that aa2a3 := blb2b3 if (i)
al, a2, a3 6 S Q and a2 b2 or (ii) a2 G Q and aaza bb2b. Thus = is simply
an extension of - for strings of length three to include the identity relation. We now define

1130 T. JIANG AND B. RAVIKUMAR

language L as

LI {xlx S*, Ixl n 3}.

L2 is defined as the set of strings x over S satisfying one of the following properties:
(i) The leading three symbols are not all in {#} U F.
(ii) ID0 is not a suffix of x.
(iii) Let x XOX Xm where each X E So There exists a such that 0 < tn <_ m n 2

and it is not true that X(t+l)nX(t+l)n+lX(t+l)n+2 XtnXtn+lXtn+2,
Note that there are DFA’s with O(n) and O(n2) states recognizing L and L2, respectively,

and that these DFA’s can be designed in polynomial time. The claim follows from the fact
that L(M) L(M2) S* if and only if M does not accept w.

Observe that what we have shown is stronger than the claim of Theorem 4.1 in that the
proof holds when M3 accepts E*. It is easy to modify the above proof to show that the
following problem is PSPACE-complete" Inputs are DFA’s M1 and M2 over an alphabet E
such that L(M)and L(M2). The question is, "Is L(M). L(M2) L0-- {xlx
X*, Ixl > 2}?" This stronger result is needed to prove the next result. We use the name SCE
to denote this problem.

THEOREM 4.2. The Kleene Star Equivalence (KSE) problem is PSPACE-complete.
Proof. This problem is easily seen to be in PSPACE. To prove its PSPACE-hardness we

reduce SCE to KSE. SCE’s instance is specified by two DFA’s M1 and M2 such that L (M)
and L(M2). The question to be answered is whether L(M1) L(M2) Lo {xlx
E*, Ix[> 2}. We will transform this (in polynomial time) to an instance of KSE. Let the input
size of the instance of SCE be n MI / [M21. Let # be a new symbol not in , and let
r- u {#1.

Define the following languages:

L1 #L(M1),

L2-- L(M2)#,

L3 (E+#E*#E *) U (E*#E*#E+),

L4 1-’*#I"*#1-’*#I-’*,

L L1 U L2 U L3 U L4,

L6 {e} U L U L2 U L U L4 U (#Lo#).

We now make the following claims:
(i) L5 and L6 can be accepted by DFA’s M3 and M4, both of size O(n), and these DFA’s

can be constructed from M and M2 in time linear in n.

(ii) L L6 and L6 L (#L0#) (L 1L2).
The proof of (i) is obvious. For the proof of (ii) let w L. We will show that w L6.

We will consider mutually exclusive and collectively exhaustive possibilities for w.
Case 1: w does not contain any #. Clearly, w L6.
Case 2: w has exactly one occurrence of #. In this case to E L U L2, and so to L6.
Case 3: w has at least three occurrences of #. Then w L4, and so w L6.
Case 4: to has exactly two occurrences of #, and w either begins or ends with a symbol

in E. In this case w L3, and so w E L6.
Case 5: w has exactly two occurrences of #, and w starts and ends with #. Note that this

case occurs only when w 6 L L2. (This is why we require that neither M nor M2 accept
e.) Thus to 6 L1. L2

#Lo# c__ L6.

MINIMAL NFA PROBLEMS ARE HARD 1131

This argument further implies that L6 L consists of exactly the set of strings of the
form #z#, where z L1 L2. This proves (ii).

The reduction is complete with M3 and M4 forming the instance of KSE. We conclude
the proof by observing that L(M) L(M2) L0 if and only if L L6.

We briefly remark on the complexity of containment problems. In our setting the con-
tainment questions are of two types: Is L(M1)Op L(M2)
L(M1)Op L(M2)? for input DFA’s M, M2, and M3. Both problems are easily seen to be
solvable in polynomial time for Op union, intersection, or reversal. The last result follows
from the result of Steams and Hunt [St85] that containment is decidable in polynomial time for
UFA’s. Recall that containment problems involving (general) NFA’s are hard [Hu76] since the
universe problem is essentially the containment question "Is N* _c L (M)?", given M as input.
The same argument carries over to concatenation since M actually accepts N* in Theorem 4.1.
Thus the following problem is PSPACE-complete: Decide whether L(M3) c_ L(M1). L(M2)
for given DFA’s M1, M2, and M3. However, the inclusion in the other direction is easily seen
to be decidable in P"

RESULT 4.1. There is apolynomial-time algorithmfor deciding whether L (MI L(M2)

L (M), given DFA’s M1, M2, M3 as inputs.

Proof. Note that the above containment is equivalent to L (M1) L (M2) L(M) 0.
We can efficiently design NFA’s accepting L(M1). L(M2) and L(M). We can design an NFA
(whose size is the product of the sizes of the two NFA’s) accepting the intersection of these
languages. Finally, we can test the emptiness of the language accepted by an NFA by using
the reachability algorithm.

Similarly we can show the following"
RESULT 4.2. There is a polynomial-time algorithm for deciding whether L(M1)*

L (M2), given DFA’s M1 and M2 as inputs.
Result 4.3 below follows from Result 4.2.
RESULT 4.3. Thefollowing problem is PSPACE-complete:
INSTANCE Two DFA’s M1, M2.
QUESTION: Is L(M2)

L(M1)*?

Proof. If there is a polynomial-time algorithm for this problem, then, in conjunction with
Result 4.2, it will yield a polynomial-time algorithm for KSE that will imply that PSPACE
P.

4.2. Minimization problems. In this section we present results on the complexity of
Minimum Op Generation problems for all of the operations considered in 4.1, namely, union,
intersection, concatenation, Kleene star, and reversal. We show that the problems are NP-
complete for union and intersection and that they are PSPACE-complete for concatenation
and Kleene star. We also present a pseudo-polynomial-time algorithm for reversal. The latter
result implies that the diversity-based representation of a regular language can be obtained
from a given DFA M in time polynomial in n]M] and D, the diversity [Ri87]. (Here D is
assumed to be in unary.)

THEOREM 4.3. The Minimum Union Generation (MUG) and Minimum Intersection Gen-
eration (MIG)problems are NP-complete.

Proof We will prove the result only for MUG since the NP-completeness of MIG readily
follows from that of MUG by complementation. MUG is clearly in NE We prove its NP-
hardness by reduction from the Minimum Inferred DFA problem [Go78]. Let I] be a finite
alphabet, let S, T 6 I2" be two finite sets of strings (called the positive and negative samples,
respectively), and k an integer form an instance of the Minimum Inferred DFA problem. The
question is, "Is there a DFA with at most k states such that M accepts every string in S and
none in T?" (We do not care about the behavior of M on other strings.) We say that such an

1132 T. JIANG AND B. RAVIKUMAR

M is consistent with S and T. We assume without loss of generality that S (3 T 0. Let # be
a new symbol not in E. For a regular language L let size(L) denote the size of the minimum
DFA accepting L. Let rn k + size(T N S).

Define the following languages:

L1--T,

Lz Tf-)S,

L3 (L2#m)+

L4 L 1#m,
L5 L3 U L4.

(recall the definition of rn above),

"We prove the following claims:
CLAIM 4.1. Let L be a language. Then

size(L#m) size((L#m)+) --rn 4- size(L).

Proof. Let M be the minimum DFA accepting L. A DFA M’ accepting L# can be
designed by adding a #-tail of length m to M and by letting 3 (f, #) P0 for every final state

f of M, where P0 is the first state in the #-tail. Clearly, L(M’) (L#m), so size(L#m) <

size(L) 4- m. To prove the reverse inequality let M’ be the minimum DFA accepting L#
We can obtain a DFA M from M’ by removing all states having an incoming #-arc. We
would have removed exactly m states in this process, and so [M[M’I rn and the claim
follows. We can also show that size((L#m)+) size(L#m). This concludes the proof of
Claim 4.1. F]

CLAIM 4.2. L 1# (L2 U L(M’))# for any DFA M’ consistent with S and T.
Proof Since S (3 T 0, S c T. Thus

LI--T
(T n S) U (T n S)

:TNSUS

L2US.

Observe that S c L (M’) _c T and that L2 U L (M’) L1. We have

L1#m (L2 U S)#

C_ (L2 U L(M’))#

L1#m (since L2 U L(M’) c_ L1).

This concludes the proof of Claim 4.2.
Now we present the reduction. Let M be the minimum DFA accepting Ls. The instance

of MUG to which S, T, k has been transformed is M, 3m. Let n IS] + IT] + k be the
size of the instance of the Minimum Inferred DFA problem. It is easy to see that M can be
constructed from S, T, and k in time bounded by a polynomial in n. The correctness of the
reduction is stated as tle next claim.

CLAIM 4.3. There is a k-state DFA consistent with S and T ifand only if L (M) L5 is
the union ofL(M) and L(Mz) for two DFA’s M1 and M2 such that IMI 4- IMzl _< 3m.

MINIMAL NFA PROBLEMS ARE HARD 1133

Proof (only if) Suppose that there is a k-state DFA M’ consistent with S and T. Let M1
be the minimum DFA accepting L3, and let M2 be the minimum DFA accepting L(M’)#m.
We show that M1 and M2 satisfy our requirements. First we show that [MI[+ [M2[< 3m. By
Claim 4.1,]M2[k + rn and [MI[size((Lz#m)+) size(L2) + m. Thus IMp] + lm2l
k + rn + size(L2) + rn 3m. Next we show that L(M1) L) L(M2) Ls.

L(M1) O L(M2) (Lz#m)+ LA (L(M’)#m)
(Lz#m)+ O (L2#m) U (L(M’)#m) (since L2#m c_ (Lz#m)+)
(L2#m)+ U (L2 L) L(M’))#
(L2#m)+ LJ (LI#m) (by Claim 4.2)

L30L4

(if) Suppose L5 can be expressed as the union of L(M) and L(M) for some DFA’s M
and M such that MI / Mel _< 3m. We can assume without loss of generality that both
L(M) and L(M2) are nonempty. (If not, let L(M) 0. Then L(M2) Ls, and we can
show that 1MI must be at least me.) We further assume that M and M2 are minimized. We
then make the following claim.

CLAIM 4.4. Either (i)L(M)

_
S# and L(M2) L3 or (ii)L(M2) D__ S#m and

L(M)-- L3.
Proof. Informally, the idea behind the proof can be outlined as follows. Since L(MI)

L(M2) Ls, the two DFA’s M and M2 should collectively have a #-tail (a sequence of m
#-arcs ending at some state with no outgoing arc) and a #-waist (a sequence ofm #-arcs ending
at some state with at least one outgoing arc). Since L(M) and L(M2) are nonempty, both
must contain either a #-tail or a #-waist. But if one of them contains both a #-tail and a #-waist,
then [MI[/ Mz[will exceed 3m. Thus exactly one of them contains a #-tail and the other
contains a #-waist. We can then show that the DFA containing the #-tail must accept every
string in S# and that the DFA containing the #-waist must accept the language L3.

Formally, a #-tail is defined as a sequence of states q, q2 qm such that (i) ((qi, #)
qi+l for 1, 2 m and (ii) qm has no outgoing arc. A #-waist is defined as a sequence
of states q, q2 qm such that the following conditions hold: (i) for all 1, 2 m 1,
((qi, #) qi+l and (ii) qm has at least one outgoing arc. Claim 4.4 is an easy consequence of
the following observations, which we state without proof:

Observation 4.1. Mi must contain a #-tail or a #-waist (or both).
Observation 4.2. IfeitherM or M2 contains both a #-tail and a#-waist, then M [+]M2 >

3m.
Observation 4.3. If Mi contains the #-tail, then L (Mi)

_
S#m. (To prove this observation,

note that L2 f-) S . Thus the DFA containing the #-waist does not accept any string in S# .)
Observation 4.4. If Mi contains the #-waist, then L(Mi) L3.
This concludes the proof of Claim 4.4.
Suppose M2 contains the #-tail (the other case is identical). Then S# c_ L(M2)

_
L4,

i.e., S c_ L(M2)/# C_ L1 T. Thus L6 defined as L6 L(M2)/#m is a regular language
consistent with S and T.

The rest of the proof of Theorem 4.3 is aimed at showing that a k-state DFA accepting
L6 can be designed from M2 by removing the #-tail from it. We do this by showing that the
size of M2 is at most m / k.

CLAIM 4.5. M2 < m + k.

Proof Observe that]Mz[_< 3m + [MI]. We also note that IMp[> size(L3). (This
is true because L(Ma) L3 and M is minimized.) Hence

1134 T. JIANG AND B. RAVIKUMAR

IMll size(L3)

size((L2#m)+)
m + size(L2)

--2m-k

(by Claim 4.1)

(by definition of m).

Thus [Mzl _< 3m (2m k) m + k. [3

Thus the DFA M accepting L6 L(M2)/#m has at most k states since all states in
the #-tail of M2 have been removed. This concludes the proof of Claim 4.3 and
Theorem 4.3. U

We next consider concatenation and Kleene star. We show that the problems correspond-
ing to both of these operations are PSPACE-complete. We need the following lemma in the
proofs of Theorems 4.4 and 4.5.

LEMMA 4.1. For every sufficiently large positive integer n there is a regular language L
over {0, such that (i) the minimum DFA accepting L3 is ofsize at least n2 but at most O(n2)
and (ii) L3 can be expressed as L4 L5 such that L4 and L5 can be accepted by DFA’s ofsize
at most n.

Proof. LetL3 {xlylx e (0+1)*,]yl 21ogzn}. The claim follows since L L4.Ls,
where L4 (0 -+- 1)*1 and L5 is the set of all strings of length 2 log2 n. We omit the easy
proof that conditions (i) and (ii) are satisfied. q

THEOREM 4.4. The Minimum Concatenation Generation problem (MCG) is PSPACE-
complete.

Proof MCG is easily seen to be in PSPACE. In what follows we will prove its PSPACE-
hardness by reducing CE to MCG in polynomial time. (Recall that CE was shown to be
PSPACE-complete in Theorem 4.1.) Let M1, M2, M3 be three DFA’s forming an instance of
the CE problem. We may assume without loss of generality that L(M3) E* and that MI
and M2 are minimal. Let n IM11 + [Mz I, let L L (M), and let L2 L (M2). Let 0 and
be two new symbols not in E. Let L3, L4, and L5 be as in Lemma 4.1, and let # be another

new symbol.
Now let

L (LI#L3#L2) U (L#L4 L2) U (L Ls#L2) U ,*.

Let M be the minimum DFA accepting L. It can be shown that [MI (R)(n 2) and that M
can be constructed from M1 and M2 in polynomial time. The reduction is complete with M
and k 3n forming an instance of the MCG problem. We complete the proof by establishing
the correctness of the reduction:

CLAIM 4.6. L L2 * ifand only ifthere exist DFA’s N1, N2 such that L(N1) L(N2)
L and IN1] + IN21 < k.

Proof. (only if) Let L(N) L(#L4 U {}), let L(N2) (Ls#U {})L2, and choose N
and N2 to be minimal. It is easy to show that NI < n + 2 and that INz] < n + 2 log2 n + 1,
so that NI + iNz] < 2n + 2 log2 n + 3 < 3n for large enough n.

(if) It is easy to see that if L(NI) contains any string in E*#(0 + 1)+#, then L(N2) can
only have strings over E. Thus one of the following must be true" (i) L (Ni) c_ E* for either

or 2 or (ii) L(N) (E*#(0 + 1)*) U E* and L(N2) __c ((0 + 1)*#E*) U E*.
Suppose that (i) is true and that L(N1) __c E* (the proof for L(N2) E* is identical).

We can show in this case that IN21 > if2 (n2)" The idea is to note that we can get a DFA for L3
from N2 by removing some (but not adding any) states. We omit the details.

Thus (ii) must be true. Let

MINIMAL NFA PROBLEMS ARE HARD 1135

L6 L(N1) f’) *,

L7 L(N2) f3 *.

Then clearly L6. L7]*. Also,

L6. (L(N2) A ((0 + 1)*#E*)) L1. Ls#L2,

(L(NI) (E*#(0 + 1)*)) L7 Ll#L4 L2.

Since neither L4nor L5 is empty, it follows that L6 L1 and L7 L2. Thus L1.L2
This concludes the proofs of Claim 4.6 and Theorem 4.4

We next consider Kleene star. The Minimum Kleene Star Generation (MKSG) problem is
also PSPACE-complete. The proof is similar to that ofTheorem 4.2, but it is more complicated.

THEOREM 4.5. The Minimum Kleene Star Generation problem is PSPACE-complete.
Proof The reduction is from SCE. Let the instance of SCE be M1 and M2 (over alphabet

E) such that L(M1) and L(M2) do not contain e. Recall that we want to decide whether
L(M1). L(M2) Lo {xlx E*, Ix[>_ 2}. Let n [Mll + IMzl.

Let 0, 1, and # be new symbols not in E, and let 1-’ {0, 1, #} U E. Let L3, L4, and L5
be as in Lemma 4.1. Note that L5 is finite.

We now define the following new languages:

L6 L(M2). L4,

L7 #L(M1),

L8 Ls#,

L9 F* (O + F*,

L lO F+#F+,
L ll (#Lo" L4) U (L(M2) L3#) LJ (#Lo" L3#),

L 12 L6 U L7 (3 L8 U L9 LI L 10,

L13 L t_) L7 U L8 t.) L9 U LlO O Lll.

We state and prove the following claims about these languages:
CLAIM 4.7. If L(M1) L(M2) LO, then L’12 L 13.

CLAIM 4.8. The minimum DFA M accepting L 13 has at least f2 (n 2) states, and it can be
designed in polynomial time.

CLAIM 4.9. There is a DFA M with 25n states that accepts L 12.

Proof of Claim 4.7. Suppose L(M1). L(M2) L0. Then it can be observed that
L 13 L7 L6 t.J L6. L7 L7 L6. L8, and so it follows that L2

L 13. The reverse inclusion

is more complicated. Let w 6 L2. We will show that w 6 L 13. We have to consider many
cases. (Assume that w - e.)

Case 1: w contains three or more occurrences of #. Then w 6 L 10, and so w 6 L 13.

Case 2: w 6 L, i.e., w was obtained by repeated use of L6 alone. Then obviously
wL13.

Case 3: w has a substring in L9 or L10. In this case it is easily seen that w L9 or
to L 10 and hence in L 13.

If none of these cases applies, then w should satisfy the following conditions: (a) to

begins or ends with a # symbol, (b) to has at most two occurrences of #, and (c) w (L6 U
L7 LJ L8)* L. Now it is easy to see that w should be in LTL L*6L8 k.J L7LL8. Since

LvL*6 U L6L t L7LL8 c_ Lll

L13, the claim follows.

1136 T. JIANG AND B. RAVIKUMAR

ProofofClaim 4.8. The lower bound on the size of M follows from the observation that
a DFA for L3 can be obtained from a DFA for L 3 by removing (but not adding) states. We
leave out the easy proof that M can be designed in polynomial time. q

We omit the proof of Claim 4.9.
The reduction is complete with the DFA M for L 13 and k 25n forming the instance of

the MKSG problem. Obviously the reduction can be carried out in polynomial time, as noted
in Claim 4.8. We prove the correctness of the reduction:

CLAIM 4.10. L(M) L(M2) Lo ifand only ifthere is a DFA M with k states such that
L3 L(M)*.

Proof. (only if) This readily follows from the observations made above. One choice of
M is the DFA of Claim 4.9.

(if) This is more involved. We outline a sketch of the proof. Since neither L (M2) nor L4
contains e, it is easy to see that

L(M) N (E* t_J (0 + 1)*) 0,

L(M) f) (E+. (0 + 1)+) L6,

L(M) f-I (#E*) Z7,

L(M) (’/(#E*. (0 + 1)*) LT. L6,

L(M) A ((0 + 1)*#) L8,

L(M) A (Y;*(0 + 1)*#) Z6 Z 8.

Let L 14 L (M) (#I2" (0 + 1)*#), and let L 15 be obtained by homeomorphically erasing
the symbols of E to {#} from L 4. More formally, let h 1-" --+ 1-’* be defined as h (a) a for
a E U {#}, h(a) e if a 6 12 to {#}. Then let L15 h(L14).

Clearly, L 5 c L3. In fact, we can show that L 13 C L3. (Otherwise, it follows that there
is a k-state DFA accepting L since we can obtain a k-state DFA for L by suitably removing
some (and not adding any) states from M.) Moreover, one can show that L3 L 13 is infinite.
(Otherwise, one can still construct a k-state DFA for L3 by removing states from M.)

Let x be a string in L3 L13 such that x is longer than all strings in Ls. Note that
x 6 (0 + 1)+. Clearly,

(#Lo. x#) c__ L9 c_. L a L(M)*.

It is easy to see that (again note that L6

12+ (0 -+- 1)+)

(#Lo x#) L(M)* f3 (#Lo x#)

((L7 L6" L8) f) (#Lo. x#)) to (L7 L8 (#Lo. x#)) tO (L 14 f’) (#Lo. x#))

((L7 L6 Ls) f3 (#Lo. x#)) to (L7 L8 f3 (#Lo. x#))

(since L 14 O (#L0 x#))
((#Z(ml). L(M2). L4" L5#) f’) (#Lo" x#)) U ((#L(M1). Ls#) f3 (#Lo" x#)).

Since x is longer than all strings in Ls,

(#L(M). Ls#) (#Lo. x#) 0.

Thus (#L(M1). L(M2). L4. Ls#)A(#Lo.x#) (#Lo.x#). That is, L(M). L(M2) Lo.
This completes the proofs of Claim 4.10 and Theorem 4.5. [3

We conclude 4.2 with the Minimum Reversal Generation (MRG) problem. The problem
is to find, given a DFA M and an integer k, whether there is a DFA M’ with at most k states

MINIMAL NFA PROBLEMS ARE HARD 1137

such that L(M) L(M’)rev or, equivalently, L(M)rev L(M’). Let Mrev denote the reverse
ofM obtained by using the standard algorithm (see the beginning of 4.2). It is easy to see that
if M1 is deterministic, then M[ev is unambiguous. Thus the above problem is a special case of
the problem of converting a UFA to a minimum DFA left open in 3. We show that the MRG
problem has a pseudo-polynomial-time algorithm, i.e., it has a polynomial-time algorithm if
the input k is bounded by a polynomial in n the size of M or, equivalently, if k is presented in
unary. Note, as remarked in 3, that the more general problem of finding whether there is a
k-stage DFA equivalent to a given NFA is NP-hard even if k is fixed.

The MRG problem can be stated in terms of diversity of a finite automaton as defined in
[Ri87]. Let M be a DFA. Two strings x and y are defined as equivalent (with respect to M) if
for all states q, 6 (q, x) is an accepting state if and only if 3 (q, y) is. This equivalence relation
induces a partition of E*, and the number of equivalence classes induced is called the diversity
of M. If L(M1) L (M2), then the diversity of M1 is equal to the diversity of L (M2), so that
we can define the diversity of a regular language L as the diversity of DFA accepting L. It
has been observed by Young and Angluin [Sc88] that the diversity of a regular language L is
the size of the minimum DFA accepting Lrev. Thus the MRG problem can be restated as the
problem of finding, given k and a DFA M, whetherthe diversity of L (M) is bounded by k.

THEOREM 4.6. There is a pseudo-polynomial-time algorithmfor the MRG problem.
Proof. Let M, a DFA, and integer k be given as inputs. Let M1 Mrev. We apply the

standard algorithm for converting an NFA to a DFA by subset construction [Ho79] to M’ with
the condition that it produce only live subsets. We apply this algorithm on M’ until the number
of states generated exceeds k. In this case the algorithm outputs "no." If the conversion is
complete with k or fewer subsets generated, the output is "yes." Clearly, the algorithm runs
in time bounded by a polynomial in k +]M]. It is also clear that the "yes" answer of the
algorithm is correct. We show that the "no" answers are also correct by showing that the
resulting DFA produced by the subset construction method is, in fact, minimal when applied
to a reverse deterministic NFA.

Let M be a DFA with states Q {q, q2 qn}. Define L(qi) as the set of strings
accepted by M is qi is considered as the start state and if there is no other change in M. In
the same way define P(qi) as the set of strings accepted by M is qi is considered the only
accepting state with no other change in M. Let M1 be the resulting DFA when the subset
construction method is applied to Mrev. The states of M are named by the subsets of Q. Let
T1, T2

_
Q be two states of M. We observe that L (Ti) can be expressed as

L(T/)- U p(q)rev 1 2
qTi

Since M is a DFA, P(q), P(q2) P(q,,) are pairwise disjoint. It follows that T :/: T2
implies L(T) =/= L(T2). This concludes the proof.

5. Conclusions. The complexity of decision problems for various types of language-
generating mechanisms has been a favorite area of research since the pioneering work of Cook
[Co71] and Karp [Ka72]. Such problems have many applications, including text editing,
data storage and retrieval, and parsing. The problem of converting one type of finite-state
automaton to an optimal finite automaton of another type is a fundamental one. Our main
contribution is to complement the classical work of [Ra59], [Me71], [Me72], [St73], [Hu76]
by showing that DFA -- NFA and other related problems are hard.

Our results in 4 reveal that even the weakest forms of nondeterminism can render a
decision problem intractable. These results substantially strengthen the known hardness results
in which the input machines are generally assumed to have unrestricted nondeterminism.
Although our proofs use the classical technique ofreduction, the reductions and the connections

1138 Y. JIANG AND B. RAVIKUMAR

we have established are new; they may find wider applications in the study of other related
problems.

In a companion paper [Ji90] we study the DFA --+ NFA problem over a unary alphabet.
It turns out that this problem is hard even in this special case. However, the evidence of
hardness we can provide is weaker than that for the standard ones, such as NP-hardness and
PSPACE-hardness. The result can be stated more precisely as follows: A unary cyclic DFA is
a DFA over a unary alphabet, in which the states form a simple cycle. A unary cyclic language
is a regular language accepted by a unary cyclic DFA. The main result of [Ji90] is, "[The]
DFA --+ NFA problem, when the input is a unary cyclic DFA, is in NP but not in P unless
every language in NP can be accepted by a deterministic Turing machine operating in n O(logn)

time." Whether this problem is NP-complete remains an interesting open question.
Our work has settled most of the fundamental questions in the proposed area of study.

Yet there are some questions that are not resolved. Some of them are stated below:
(i) Can the study in 4 be generalized to an arbitrary regularity-preserving operation?

Such a study should be able to state qualitatively what makes, for example, the minimum Op
equivalence problem easy for Op rev but hard for Op

(ii) Is the Minimum Reverse Generation problem NP-complete when k is presented in
binary?

(iii) What is the complexity of the decision version of UFA --+ DFA? Is it NP-complete?
PSPACE-complete? (Clearly, there is an exponential increase in the size when a UFA is
converted to a DFA, even when the input is restricted to a unary alphabet [Ra89].)

(iv) What is the complexity of converting DFA to an approximately optimal NFA? More
specifically, let nsize(L) be the number of states in the minimal NFA accepting L, and let k
be a fixed integer. The problem is as follows: Given a DFA M accepting a language L and
given an integer k, design an NFA accepting L with at most (nsize(L)k) states.

Appendix. We present below a list of significant decision problems relevant to this paper.
This includes our new results as well as the known problems that we use in our reductions as
candidates. We present them in the format used in the appendix of the book by Garey and
Johnson [Ga78], which has become quite standard at present for stating decision problems.
For each problem we also cite the section and the result where it appears. When presenting
the results from other published work, we also cite the original reference, along with its use
in our work.

Normal set basis
INSTANCE: Collection C of subsets of a finite set S and positive integer k _< [CI.
QUESTION: Is there a collection B of subsets of S with [B[_< k such that for each

c E C there is a pairwise disjoint subcollection of B whose union is
exactly c?

Remark. The problem is NP-complete, as shown in Lemma 3.3. Stockmeyer [St76]
earlier showed that the Set Basis problem is NP-complete.

Universe problem for multiple DFA
INSTANCE: A collection of DFA’s M1 Mn over a finite alphabet .
QUESTION: Is Ui L(Mi) E*?
Remark. The problem is PSPACE-complete. The proof readily follows from the next

result. This result is used in the proof of Theorem 3.2
Finite automata intersection (Theorem 3.2)
INSTANCE: A collection of DFA’s MI Mn over a finite alphabet E.
QUESTION: Is (’]i L(Mi) 0?
Remark. The problem is PSPACE-complete [Ko77]. This result is used in the above

problem.

MINIMAL NFA PROBLEMS ARE HARD 1139

3.3.

Vertex cover
INSTANCE: A graph G (V, E) and a positive integer k _<
QUESTION: Is there a vertex cover of size k or less for G, that is, a subset V’

_
V

such that VI _< k and, for each edge/u, v) E either u or v (or both)
belongs to V’?

Remark:. The problem is NP-complete [Ka72]. This result is used in the proof of Lemma

DFA --+ NFA (UFA)
INSTANCE: A DFA M and an integer k.
QUESTION: Is there an NFA (UFA) with k (or fewer) states accepting L(M)?
Remark. The problem is PSPACE-complete, as shown in Theorem 4.2. The problem

remains PSPACE-complete when the alphabet is binary. The unary case is partially solved in
[Ji90]. In Theorem 4.2 the problem DFA --+ UFA is shown to be NP-complete.

Linear space acceptance
INSTANCE: A linear space-bounded deterministic Turing machine M and a string to.

QUESTION: Is w L (M)?
Remark. The problem is PSPACE-complete [Ka72]. This result is used to prove Theorem

Concatenation equivalence (CE)
INSTANCE: DFA’s M, M2, and M3.
QUESTION: Is L(M1). L(M2) L(M3)?
Remark. The problem is PSPACE-complete, as shown in Theorem 4.1. This result has

been used to derive a PSPACE-completeness result in Theorem 4.4.
Strong concatenation equivalence (SCE)
INSTANCE: DFA’s M1, M2.
QUESTION" (Is L(M1). L(M2) {xlx 2", Ix[>_ 2}?) Is L(ml). L(M2) L(M)?
Remark. The problem is PSPACE-complete, which follows by a minor modification of

the proof of Theorem 4.1. This result is used to prove a PSPACE-hardness result in Theorem
4.5.

Kleene star equivalence (KSE)
INSTANCE: DFA’s M1 and M2.
QUESTION: Is L(M1)* L(M2)?
Remark. The problem is PSPACE-complete, as shown in Theorem 4.2. The reduction is

from SCE.
Minimum inferred DFA [Go78]
INSTANCE: Finite alphabet I, two finite subsets S, T

_
;*, and a positive integer k.

QUESTION: Is there a k-state DFA that accepts a language L such that S

_
L and

TcN*-L?
Remark. The problem is NP-complete [Go78]. This result is used to prove Theorem 4.3.
Minimum Op generation (Op union, concatenation, Kleene star, or reversal)
INSTANCE: DFA M and an integer k.
QUESTION: Are there DFA’s M1 and M2 (DFA M1 if Op is unary) with

[mll + IM21 < k (Imp] < k) such that L(M)OpL(M2) L(M)?
(Op(L(m)) L(M)?)

Remark. The problems are NP-complete for union and intersection, PSPACE-complete
for concatenation and Kleene star, and solvable in pseudo-polynomial time for reverse.

Acknowledgments. We are very grateful to Wing Ning Li for once again bringing the
DFA -+ NFA problem to our attention. We thank Ed McDowell for carefully reading the

1140 Y. JIANG AND B. RAVIKUMAR

manuscript and suggesting improvements and for pointing out an omission in Theorem 4.1.
We thank Larry Stockmeyer for sending us the technical report [St76]. We thank the three
anonymous referees, whose valuable suggestions improved the presentation of this paper.

REFERENCES

[Ch86] M. CHROBAK, Finite automata and unary languages, Theoret. Comput. Sci., 47 (1986), pp. 149-158.
[Co71] S. Coo:, Complexity of theorem proving procedures, in Proc. 3rd Annual ACM Symposium on Theory of

Computing, Association for Computing Machinery, New York, 1971, pp. 151-158.
[Ga78] M. GAREY AND O. JOHNSON, Computers and Intractability: A Guide to NP-Completeness, Freeman, San

Francisco, 1978.
[Gi68] A. GINZBURG, Algebraic Theory ofAutomata, Academic Press, New York, 1968.
[Go78] E. GOI.D, Complexity of automaton identification from given data, Inform. and Control, 37 (1978), pp.

302-320.
[Ha66] J. HARTMANIS AND R. STEARNS,Algebraic Structure Theory ofSequentialMachines, Prentice-Hall, Englewood

Cliffs, NJ, 1966.
[Ho71 J. HOPCROFT, An n log n algorithmfor minimizing the states in afinite automation, in The Theory ofMachines

and Computations, Z. Kohavi, ed., Academic Press, New York, 1971, pp. 189-196.
[Ho79] J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages and Computation, Addison-

Wesley, Reading, MA, 1979.
[Hu73] H. HUNT, On the time and tape complexity of languages, in Proc. 5th Annual ACM Symposium on Theory

of Computing, Association for Computing Machinery, New York, 1973, pp. 10-19.
[Hu74] H. HUNT AND D. ROSENKRANTZ, Computational parallels between regular and context-free languages, in

Proc. 6th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1974, pp. 64-74.

[Hu76] H. HUNT, D. ROSENKRANTZ, AND Y. SZYMANSKI, Oft the equivalence, containment and covering problemsfor
the regular and context-free languages, J. Comput. System Sci., 12 (1976), pp. 222-268.

[Ji90] T. JIANG, E. McDowEII, AND B. RAVIKUMAR, The structure and complexity of minimal NFA’s over unary
alphabet, Internat. J. Found. Comput. Sci., 2 (1991), pp. 163-182.

[Ka72] R. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher, eds., Plenum, New York, 1972, pp. 85-103.

[Ko77] D. KOZEN, Lower boundsfor natural proofsystems, in Proc. 18th Annual IEEE Symposium on Foundations
of Computer Science, IEEE Computer Society, Washington, DC, 1977, pp. 254-266.

[Ma78] A. MANDEL AND I. SIMON, Onfinite semi-groups ofmatrices, Theoret. Comput. Sci., 5 (1978), pp. 183-204.
[Me71 A. MEYER AND M. FISCHER, Economy of description by automata, grammars andformal systems, in Proc.

12th Annual IEEE Symposium on Switching and Automata Theory, IEEE Computer Society, Washington,
DC, 1971, pp. 188-191.

[Me72] A. MEYER AND L. STOCk:MEYER, The equivalence problem for regular expressions with squaring requires
exponential space, in Proc. 13th Annual IEEE Symposium on Switching and Automata Theory, IEEE
Computer Society, Washington, DC, 1972, pp. 125-129.

[My57] J. MYHILL, Finite automata and the representation of events, Tech. Report WADD TR-57-624, Wright
Patterson AFB, OH, 1957, pp. 112-137.

[Na91] B. NATARAJAN, Machine Learning, A Theoretical Approach, Morgan-Kaufmann, San Mateo, CA, 1991.
[Ne58] A. NERO,)E, Linear automaton transformations, Proc. Amer. Math. Soc., 9 (1958), pp. 541-544.
[Pi89] L. PITT AND M. WARMUTH, The minimum consistent DFA problem cannot be approximated within any poly-

nomial, in Proc. 21 st Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1989, pp. 421-432.

[Ra59] M. RABIN AND D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop., 3 (1959), pp.
114-125.

[Ra89] B. RAVIKUMAR AND O. IBARRA, Relating the type of ambiguity to the succinctness of their representations,
SIAM J. Comput., 18 (1989), pp. 1263-1282.

[Re77] C. REUTENAUER, Propridtds arithmdtiques et topologiques de sdries rationelles en variables noncommutatives,
Thse troisibme cycle, Universite de Paris VI, Paris, 1977.

[Ri87] R. RIVEST AND R. SCHAPIRE, Diversity-based inference offinite automata, in Proc. 28th Annual’ IEEE Sympo-
sium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1987, pp. 78-87.

[Sa81 A. SALOMAA, Jewels ofFormal Language Theory, Computer Science Press, New York, 1981.

MINIMAL NFA PROBLEMS ARE HARD 1141

[Sc88] R. SCHAPIRE, Diversity Based Inference on Finite Automata, master’s thesis, MIT Laboratory for Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1988; Tech. Report MIT/LCS/TR-413,
1988.

[St85] R. STEARNS AND H. HUNT, On the equivalence andcontainmentproblemsfor unambiguous regular expressions,
regular grammars andfinite automata, SIAM J. Comput., 14 (1985), pp. 598-611.

[St73] L. STOCKMEYE AND A. MEYEI, Wordproblems requiring exponential time (preliminary report), in Proc. 5th
Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York,
1973, pp. 1-9.

[St76] L. STOCKMEYEr, Set Basis Problem is NP-Complete, Report RC-5431, IBM T. J. Watson Research Center,
Yorktown Heights, NY, 1976.

[Th68] K. THOMPSON, Regular expression searching algorithm, Comm. ACM, 11 (1968), pp. 419-422.
[Tz89] W. TZENG, The equivalence and learning ofprobabilistic automata, in Proc. 30th Annual IEEE Symposium

on the Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1989, pp. 268-273.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1142-1162, December 1993

() 1993 Society for Industrial and Applied Mathematics
002

AN O(m log n)-TIME ALGORITHM FOR THE MAXIMAL PLANAR SUBGRAPH
PROBLEM*

JIAZHEN CAIt, XIAOFENG HANt, ArqD ROBERT E. TARJANt

Abstract. Based on a new version of the Hopcroft and Tarjan planarity testing algorithm, this paper develops an
O (m log n)-time algorithm to find a maximal planar subgraph.

Key words, algorithm, complexity, depth-first-search, embedding, planar graph, selection tree

AMS subject classifications. 68R10, 68Q35, 94C15

1. Introduction. In [15], Wu defined the problem of planar graphs in terms of the fol-
lowing four subproblems:

P1. Decide whether a connected graph G is planar.
P2. Find a minimal set of edges the removal of which will render the remaining part of

G planar.
P3. Give a method ofembedding G in the plane in case G is planar.
P4. Give a description of the totality ofpossible planar embeddings ofG in the plane in

case G is planar.
Linear-time algorithms for P1, P3, and P4 have been known for a long time. The first

linear-time solution (which we call the H-T algorithm) for problem Pl(the planarity-testing
problem) was given by Hopcroft and Tarjan [7] in 1974 using depth-first-search (DFS) trees.
In 1976 a P-Q tree solution for P1 based on an earlier algorithm given by Lempel, Even, and
Cederbaun [11] was proved to have a linear-time implementation partly by Even and Tarjan
[4] and partly by Booth and Lueker]. The P-Q tree approach is conceptually simpler, but
its implementation is more complicated than that of the H-T algorithm. Linear-time solutions
for P3 and P4, also based on P-Q trees, were given by Chiba et al. [2] in 1985.

Wu 15] gave an algebraic solution for all four problems. He proved that a graph is planar
if and only if a certain system of linear equations is solvable. In case the graph is planar, an
actual embedding can be obtained by considering another system of quadratic equations. His
solution is elegant, but his algorithm takes O(m2) time on an m-edge graph.

Recently, Jayakumar, Thulasiraman, and Swamy [9] studied problem P2 (the maximal
planar subgraph problem). For the special case in which a biconnected spanning planar
subgraph is given, their algorithm runs in O(n2) time and O(mn) space on a graph with n
vertices and m edges. For more general situations, their algorithm runs in O (mn) time. Their
algorithm is also based on P-Q trees. Note that not every biconnected graph has a biconnected
spanning planar subgraph (see Fig. 1).

In this paper we give an O(m log n)-time and O(m)-space solution to P2. For sparse
graphs (i.e., graphs with m O (n l+’), where e < 1), it beats the algorithm of Jayakumar,
Thulasiraman, and Swamy even in the special case when a biconnected spanning planar
subgraph is given. Independent of our work, Di Battista and Tamassia [3] claimed an O(log n)-
time-per-operation solution to the problem of maintaining a planar graph under edge additions.

*Received by the editors June 5, 1989; accepted for publication (in revised form) April 1, 1992.
tCourant Institute, New York University, New York, New York 10012. This work of this author was partly

supported by Thomson-CSF/DSE and by National Science Foundation grant CCR90-02428.
tDepartment of Computer Science, Princeton University, Princeton, New Jersey 08544.
NEC Research Institute, 4 Independence Way, Princeton, New Jersey, 08540. This author’s research at Princeton

University was partially supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science),
a National Science Foundation Science and Technology Center, grant NSF-STC88-09648, and Office of Naval
Research contract N00014-87-K-0467.

1142

FINDING A MAXIMAL PLANAR SUBGRAPH 1143

FIG. 1. A biconnected graph that does not have a biconnected spanning planar subgraph.

Their algorithm also solves the minimal planar subgraph problem in O(m log n) time. Their
method is much more complicated than ours, however, as it is designed to solve a more general
problem. Recently, Kobayashi, Masuda, Kashiwabara 10] showed that if a Hamiltonian tour
of the graph is given, then P2 can be solved in linear time. We show that this result can be
easily derived from our algorithm as a special case.

The maximal planar subgraph problem is closely related to the planarity-testing problem.
In fact, a graph is planar if and only if it is the maximal planar subgraph of itself. Our solution to
the maximal planar subgraph problem is based on the H-T algorithm. But for our purpose, we
need to modify the algorithm. The main difference is that our version of the algorithm admits
a more general ordering than the original H-T algorithm does in processing the successors of
each tree edge. Also, the H-T algorithm processes one path at a time, while our algorithm
processes one edge at a time. In this sense, our algorithm is a more recursive version of the
H-T algorithm.

For the above reason, many of our lemmas and theorems are similar, but not identical, to
those in [7]. Instead of referring the readers to [7] for the proofs, we find it more convenient
and accurate to supply all main proofs in this paper.

The rest of this paper is organized as follows. Section 2 gives preliminary definitions.
Section 3 is a new version of the H-T planarity testing algorithm, which leads to our maximal
planar subgraph algorithm in 4. Section 5 is a summary.

2. Preliminaries. Consider an undirected graph Go (Vo, E0) with edge set Eo and
vertex set V0. Let n IWol and m IEol. We can draw a picture G of Go in the plane as
follows: For each vertex v 6 Vo, we draw a distinct point v’; for each edge (u, v) 6 Eo, we
draw a simple arc connecting the two points u’ and v’. We call this arc an embedding of the
edge (u, v). For brevity, we will sometimes identify graphs with their pictures thus drawn on
the plane. If no arcs of G cross each other, then we call G a planar embedding, or simply
an embedding of Go. If Go has an embedding, then we say that Go is planar.

The following facts are important to our discussion.
OBSERVATION 1. Let C be a simple closed curve in the plane as in Fig. 2; let a be a point

inside C and b be a point outside C. Then any curve that joins a and b crosses C.
OBSERVATION 2. Let G1 be the undirected graph represented by Fig. 3, in which P is a

path joining the two vertices a and b on cycle C. Then in any embedding ofG l, all the edges
ofpath P are on the same side of the cycle C (either inside or outside).

OBSERVATION 3. Let G2 be the undirected graph represented by Fig. 4, in which a, a2,

b, and b2 arefour distinct vertices that appear in order on C. Then in any embedding of G2,
the two paths P and P2 are on opposite sides of the cycle C.

1144 CAI, HAN, AND TARJAN

C C

a

FIG. 2 FIG. 3

al

a2

a
2

FIG. 4 FIG. 5

OBSERVATION 4. Let G3 be the undirected graph represented by Fig. 5, in which a, cl,

c2, and b are vertices that appear in order on C, and c and c2 may be the same. Then in any
embedding of G3, the two subgraphs P and P2 are on opposite sides of the cycle C.

All four observations above are intuitively obvious and follow from the Jordan Curve
Theorem [6], [14].

A depth-first-search (DFS) [7] will convert the undirected graph Go (V0, E0) into a
directed graph G (V, T, B), where V is the set of DFS numbers of vertices in V0, T is the
set of tree edges, and B is the set of back edges. Each edge of Go is converted into either a
tree edge or a back edge. All the tree edges form a DFS forest. If [a, b] is a tree edge, then
a < b. If [a, b] is a back edge, then b < a, and there is a tree path in T from b to a. In either
case, a is called the tail of [a, b], and b is called the head of [a, b]. The union of T and B will
be denoted by E.

For notational convenience, we will frequently identify undirected graphs with their DFS
representations. Since we are interested only in graphs with no isolated vertices, we will
represent graphs with their edge sets.

We define successors for both vertices and edges. If [a, b] is a tree edge, then b is a
successor of a. If [a, b] is a tree edge and [b, c] is any edge, then [b, c] is a successor of [a, b].
Back edges have no successors. We also define descendants and ancestors for both vertices
and edges. A descendant of vertex (respectively, edge) x is defined recursively as either x
itself or a successor of a descendant of x. If y is a descendant of x, then x is an ancestor of y.

Let e [a, b] E. Let Y be the set of vertices y such that for some x, [x, y] is a back
edge and also a descendant of e. If Y is not empty, we define lowa (e) to be the smallest
integer in Y, and lowz(e) to be the second smallest integer in Y tO {n 4- }. Otherwise, we
define low (e) lowz(e) n 4- 1. The two mappings low and low2 can be computed in
O (m) time during the depth-first-search on Go [7]. If a is not the root of a DFS tree, and
low (e) > a, then a is an articulation point of G [12].

FINDING A MAXIMAL PLANAR SUBGRAPH 1145

We define the function 4 on E as follows. If e [a, b] is any edge in E, then,

2 lowl(e) iflowz(e) > a
4(e)

2 low1 (e) / otherwise.

We arrange the successors of each tree edge in increasing order on their q values. This
ordering can be computed in O(m) time using a bucket sort [7]. If el ek are the successors
of e ordered this way, we will call ei the ith successor of e for k.

As in [7], for e [a, b], we define S(e), the segment of e, to be the subgraph of G that
consists of all the descendants of e. We use ATT(e) to denote the set of back edges [c, d] in
S(e) such that d is an ancestor of a, including a itself. Each back edge in ATT(e) is called
an attachment of e.

For any edge e [a, b], we define cycle(e) as follows: If e is a back edge, then cycle(e)
{e} U {e’ e’ belongs to the tree path from b to a}; if e is a tree edge and low (e) > a, then
cycle(e) {}; otherwise, cycle(e) cycle(el), where el is the first successor of e. We use

sub(e) to denote the subgraph S(e) t3 cycle(e). It is easy to see that if cycle(e) is not empty,
then the vertex low (e) is always on cycle(e). Also, if low (e) > a, then sub(e) S(e); if

low (e) < a, then sub(e) S(e) {e’ e’ belongs to the tree path from low1 (e) to a}.
Figure 6 illustrates some ofthese definitions, where low (e) 1; lot02 (e) 2; cycle(e)

{[1, 2], [2, 3], [3, 4], [4, 5], [5, 6], [6, 7], [7, 8], [8, 1]}; S(e) contains all the edges inthe graph
except[l, 2], [2, 3], [3, 4]; sub(e) is the whole graph; ATT(e) {[8, 1], [9, 3], [12, 1], [14, 2],
[13, 4]}.

10

tree edge- back edge

S
S

S

14 - 13

7

S

S
S

s
S

S

S

FIG. 6

3. Planarity testing. As explained in [7], a graph is planar if and only if each of its
biconnected components is planar. Also, a graph of one edge is always planar. Thus, we need
only consider how to test the planarity of biconnected graphs with more than one edge. Let
G (V, T, B) be a DFS representation of such a graph. Then T forms a single tree with only

1146 CAI, HAN, AND TARJAN

one tree edge leaving the root. Call this tree edge e0. Since sub(eo) is the whole graph, we
can determine the planarity of G with a procedure that can determine the planarity of sub(e)
for all e in G.

We say that an edge e is planar if sub(e) is planar. To determine the planarity of an edge
e, we consider two cases. If e is a back edge, then sub(e) cycle(e), which is always planar.
Otherwise e is a tree edge having at least one successor. In this case we first determine the
planarity of each of its successors. If all these successors are planar, then we determine the
planarity of e based on the structure of its attachments. The details follow.

3.1. Structure of attachments. The planarity of an edge e [a, b] directly depends on
the structure of its attachments. Since we assume that G is a biconnected graph with more
than one edge, then low1 (e) _< a, and both ATT(e) and cycle(e) are not empty. If e is planar,
then we can partition the edges of ATT(e) into blocks as follows. We put two back edges
of ATT(e) in the same block if they are on the same side of cycle(e) in every embedding of
sub(e). Two blocks B1 and B2 of ATT (e) interlace if they are on opposite sides of cycle(e)
in every embedding of sub(e). Each block Bi of ATT(e) can interlace at most one other
block, since two attachments of e that cannot be embedded on the same side of cycle(e) as Bi
must be in the same block.

The back edge on cycle(e) is the only attachment of e that will not be embedded on either
side of cycle(e). By convention, this back edge forms a block by itself, called the singular
block of e, which does not interlace other blocks of ATT (e).

In Fig. 6, ATT(e) consists of four blocks: B {[8, 1]}, B2 {[12, 1], [14, 2]}, B3
{[9, 3}, and B4 {[13, 4]}. B is singular. B2 and B3 are interlacing.

If e’ [u, v] is an attachment of e, then low(e) <_ v < a. If low(e) < v < a, then
we say that e’ is normal. Otherwise we say that e’ is special. A block of attachments of e
is normal if it contains some normal attachment of e. Otherwise we say that it is special. In
Fig. 6, B1 and B4 are special, and other blocks are all normal. We say that sub(e) is strongly
planar with respect to e if e is planar and if all the normal blocks of ATT (e) can be embedded
on the same side of cycle(e). If sub(e) is strongly planar (with respect to e), then we say that
e is strongly planar. We have the following lemma.

LEMMA 1. Let ei be the th successor of e, where > 1. Then ei is strongly planar ifand
only if the subgraph S(ei) U cycle(e) is planar.

Proof. = If ei is strongly planar, then there is an embedding of sub(ei) such that all its
normal blocks are on the same side of cycle(ei). Thus we can add cycle(e) to the other side
of cycle(ei) to get an embedding of S(ei) U cycle(e).

:= If S(ei) cycle(e) is planar, then in any embedding of S(ei) cycle(e), all the normal
blocks of ATT(ei) must be on the same side of cycle(ei).

Note that in an embedding of S(ei) cycle(e), the special blocks of ei do not have to be
on the same side of cycle(ei). (See Fig. 7.)

We will represent a block of back edges H {Ibm, a], [b2, a2] [bt, at]} by a list
K [a, a2 at], where al _< a2 _< _< at. Frequently, we will identify blocks with
their list representations. Define first(H) first(K) a, andlast(H) last(K) at.
If K is empty, we define first(H) first(K) n + 1, and last(H) last(K) O. We
can further organize the blocks of ATT (e) as follows: If two blocks X and Y interlace, we put
them into a pair [X, Y], assuming last (X) > last (Y); ifa nonempty block X does not interlace
any other block, we form a pair [X,]]. Let [X1, Y] and [X2, Y2] be two pairs of interlacing
blocks. We say IX1, Y] < IX2, Y2] if and only if last(X) <_ min(first(X2), first(Y2)).

We say a list of interlacing pairs [ql qs] is well ordered ifq < < qs. Empty lists
or lists of one pair are well ordered by convention. We will see that all the interlacing pairs of
ATT (e) can be organized into a well-ordered list [pl Pt]. We call this list att(e).

FINDING A MAXIMAL PLANAR SUBGRAPH 1147

cycle(
cycle(e)

FG. 7. The two special attachments d’ and d" of ei can be on different sides ofcycle(ei), although they are on
the same side ofcycle(e).

In Fig. 6, att(e) [Pl, P2, P3], where pl [[1],]], P2 [[3], [1, 2]], and P3
[[4],]].

3.2. Computing att(e). Now we are ready to compute att (e). The planarity of e will be
decided at the same time.

Consider any edge e [a, b]. If e is a back edge, then its only attachment is e itself.
Therefore art (e) [[[b],]]]. Otherwise, let e e be the successors of e in increasing
order by their tp values. We first recursively compute art (ei) for each successor ei of e. Then
we compute att (e) in the following four steps.

ALGORITHM 1.
Step 1. For 1... k, delete all occurrences of b appearing in blocks within att (ei).

Because these occurrences appear together at the end of the blocks that are contained in the
last pairs of att (ei) only, a simple list traversal suffices to delete all these occurrences in time
0 (k+ number ofdeletions). After this, initialize att (e) to be att (el).

Step 2. For 2 k, merge all the blocks of att (ei) into one intermediate block Bi.
See Fig. 8.

FIG.

1148 CAI, HAN, AND TARJAN

According to Lemma 1, this step can be done for a given value of only if the normal
blocks of att (ei) do not interlace. (If a pair of normal blocks of att (ei) interlace, the graph is
not planar, and the computation fails.) To merge the blocks for a given value of i, we traverse
the list of pairs att(ei), concatenating blocks to form Bi. Initially, Bi is empty. To process
pair [X, Y], if X and Y are both normal, the computation fails, since the graph is not planar.
Otherwise, we concatenate Y and X onto the end of Bi in order and continue. In case Y is a
special block, we know that Y has only attachments ending in loWl (ei), since b was deleted
from all blocks of att (ei) in Step 1. Thus the correct ordering of attachments is maintained
by this process. This step takes O(1 + number ofblocks in att(ei)), resulting in one block for
each i.

Step 3. Merge blocks in att (e). (See Fig. 9.)

low (e)

e

le(e)

e

tow (e 2 (e)

F6. 9

By Observation 3, all blocks D in att(e) with last(D) > lowl(e2) must be merged into
one block B1. (If any two of these blocks interlace, the graph is not planar, and the computation
fails.) This is achieved by merging from the high end of att (e). The time is O (1+ reduction
in number of blocks). This step turns att (e) into a list of pairs pl < _< Ph with only Ph
possibly having a block D with last(D) > lowl (e2). Note that low (e2) is the lowest among
the vertices low (e2) lOWl (e).

Step 4. For 2 k, add blocks Bi into att (e).
To process Bi, consider the highest pair P [X, Y] of att (e). Consider three subcases"

i. If Bi cannot be embedded on either side of cycle(e), then the computation of att (e)
fails.

ii. If Bi interlaces X only, then merge Bi into Y by concatenating their ordered list
representations. Next, switch X and Y if last (X) < last(Y).

iii. If Bi interlaces neither X nor Y, then add [Bi,]] to the high end of att(e); P :=
[Bi, []].

By Lemma 2, testing whether Bi interlaces X or Y takes O (1) time. Also by this lemma, it
is not possible that Bi interlaces Y only, since last(X) >_ last(Y). (See
Fig. 10.) [3

LEMMA 2. In Step 4, Bi and D can be embedded on the same side ofcycle(e) ifand only
iflowl (ei) > last(D), where D X or D Y.

Proof :: Assume low (ei) < last(D). Then there must be a path P1 in S(ei) from b to

loWl (ei) containing some back edge in Bi, and another path P2 in S(e) U... S(ei-1) from

FINDING A MAXIMAL PLANAR SUBGRAPH 1149

e(e)

B cannot be embedded in
either side of cycle (e)

cycle(e)

interlaces X only 8 interlaces
neitherX nor Y

(e)

FIG. 10. (a) Bi cannot be embedded in either side ofcycle (e)" (b) Bi interlaces X only" (c) Bi interlaces neither
X nor Y.

a vertex w on cycle(e) to last(D) containing some back edge in D but no edge on cycle(e).
We consider two cases (see Fig. 11). If w > b then, by Observation 3, P1 and P2 cannot be
embedded on the same side of cycle(e). If w b, then the first edge on P2 is ej for some
< j < i, which implies > 2 and dp(ej) <_ dP(ei). Consequently, lowl(ej)lowz(ej) <

b < lowl(ei) < last(D) < b, which implies that lowz(ej) < b. If low(ej) < lowl(ei),
then there must be an undirected simple path P3 between last(D) and low (ej) containing
back edges in D but no edges on cycle(e). By Observation 3 again, P1 and P3 cannot be
embedded on the same side of cycle(e). If lowl(ej) lowl(ei), then lowz(ei) < b (recall
low2(ej) < b). By Observation 4, S(ei) and S(ej) cannot be embedded on the same side of
cycle(e). All of the above cases imply that Bi and D cannot be embedded on the same side
of cycle(e).

b b b

eo

W

P P

7
low (ei)’,../cycle (e) lw (ej)/cycle (e) lOW (ei) e)

w > b w = b and w b and
low (ei) > low (e./) low 1(ei) = low 1(e))

FIG. 11. (a) w > b; (b) w b and low (ei > lowl (ej)" (c) to b and lowl (ei lowl (ej).

= See the proof of Lemma 4 in the next section.
THEOREM 1. (i) Algorithm computes att (e) successfully ifand only if e is planar.
(ii) If e is planar, then Algorithm 1 computes att (e) correctly.
Proof. For the proof see the next section.

1150 CAI, HAN, AND TARJAN

3.3. Correctness. In the following proofs, unless stated otherwise, we will use att (e) to
mean the list att (e) computed by Algorithm 1. But we will prove that this art (e) correctly
implements the art (e) defined in 3.1.

During the presentation of Algorithm 1, we explained that two nonempty blocks form
a pair within att (e) only if they cannot be embedded on the same side of cycle(e), and the
computation of att (e) fails only when e is not planar. Also, we can see that the singular block
of e is not merged with any other block. To prove Theorem 1, we still have to show that the
following assertions are true:

(1) If computation of att (e) succeeds, then e is planar.
(2) If any two nonempty, nonsingular blocks of att(e) do not form a pair, then these

blocks can be embedded on the same side as well as on different sides of cycle(e).

(3) art(e) is well ordered.

We first prove (3), using the following lemma.

LEMMA 3. The list ofpairs art (e) computed by Algorithm is well ordered.

Proof. We prove this lemma by induction on the number of descendants of e. If e has no
successor, then e is a back edge, and the lemma is trivially true. Now assume that e is a tree

edge with successors el e in increasing order by b value, and that att(e) att(e)
are all well ordered. After Steps and 2 are executed, att(el) att(e) are still well
ordered. Thus, art(e) is well ordered when it is initialized to att(el). In Step 3, only blocks
in the highest pairs of att (e) are merged, and therefore art (e) is still well ordered after the
merge. Then consider the moment in Step 4 just before Bi is added to att (e). Assume att (e)
is well ordered at this moment. Let P [X, Y] be the last pair of att(e). We need only
consider the two cases in which the computation does not fail.

1. last(Y) < lOwl(Bi) < last(X). Then Bi is merged with Y. If P is the only
pair in art(e), then art(e) is well ordered by definition. Otherwise, let Q [X, Y1] be
the pair next to P. Then we have Q < P before merge. We need only to show that this
is still true after the merge. If 2, then Step 3 guarantees that first(Be) lOWl (e2) >

max(last(Xl), last(Y1)). If/ > 2, then Bi-1 is contained in either X or Y. Since first(Bi)
lOWl (ei) > lOWl (ei-1) first(Bi_l) > min(first(X), first(Y)), then merging Bi into Y
does not change the value of min(first (X), first (Y)). Thus, after merging Y and Bi, we
still have Q < P.

2. lOWl (Bi) >_ last(X). Then [Bi,]] becomes the last pair of art(e). Since last(X) <

lOWl (ei) first(Bi) in this case, we have P < [Bi,]].
Thus, art (e) is still well ordered after each Bi is added, 2... k. Therefore art (e) is

well ordered after Step 4. [3

Next we prove the if part of Lemma 2: In Step 4 of Algorithm 1, if low1 (ei) > last(D),
then Bi and D can be embedded on the same side of cycle(e), where D X or D Y.

Proof. Consider an embedding of sub(e) before Bi is added. Let atti be the current value
of att(e). Assume, without loss of generality, that X is embedded on the left-hand side of
cycle(e) in this embedding. Let h last(X). Then h max{last(Z) Z is a block in atti},
and there is a face F on the left cycle(e) in the current embedding of sub(e) such that the tree

path from h to b is on the boundary of F. See Fig. 12. Thus, if loWl (Bi) >_ last(X), then Bi
can be embedded in F. Similarly, let h’ max{last (U) U is a block in atti embedded on
the right-hand side of cycle(e)}. Then there is a face F’ on the right of cycle(e) in the current

embedding of sub(e) such that the tree path from h’ to b is on the boundary of F’. According
to the proof of Lemma 3, if lOwl(Bi) > last(Y), then lowl(Bi) >_ h’ also. Therefore Bi can
be embedded in F’ in this case. [3

FINDING A MAXIMAL PLANAR SUBGRAPH 1151

e(e)

FIG. 12

Then we prove the following lemma that implies the assertions (1) and (2). We say that
a set W of blocks of att (e) is consistent with respect to e if for all X, Y 6 W, neither [X, Y]
nor [Y, X] is in att (e).

LEMMA 4. IfAlgorithm does notfail, and D1 and D2 are two disjoint consistent sets of
nonsingular blocksfrom att (e), then there is an embedding ofsub(e) such that blocks of D1
are on one side ofcycle(e) and blocks of D2 are on the other side ofcycle(e).

Proof The lemma is trivially true if e has no successors. If e has successors, let el e
be the list of successors of e in increasing order by their 4 values. Assume that the lemma
holds for each of these successors. We want to construct an embedding of sub(e) such that
D1 and 02 are embedded on different sides of cycle(e).

If W is a set of blocks, then a W-attachment is an attachment contained in some block
of W. Forj 1,2, let D {X IX, Y] or [Y,X] is a pair in att (e) and Y Dj}.
Let H1 {X (IX, Y] is a pair in att(e)) and (X and Y are not in D1 U D2)}, and let

He Y [X, Y] is a pair in att (e) and (X and Y are not in D1U O2) }. Let C1 D1UDUH1,
and C2 De U Dt U H2. For j 1, 2, let Kj {X X is a block in sub(el) containing some
Cj-attachment}. Then K1 and K2 are two disjoint consistent subsets of blocks of sub(el).

Initially, we construct an embedding of sub(el) such that K and K2 are on different sides
of cycle(e). As a result, those Cl-attachments and C2-attachments contained in sub(el) are
on different sides of cycle(e) (which is cycle(el)). This embedding exists by the induction
hypothesis. Take this embedding to be the initial embedding of att (e). Then for 2 k,
we add sub(el) to this embedding one by one as follows.

Since the normal blocks of att (ei) do not interlace, we can, by induction, find an embed-
ding of sub(ei) such that all of its normal blocks are embedded on the same side of cycle(ei).
We call this embedding Ei, and its mirror image E. Let Bi, P, and [X, Y] be the same as
in Step 4 of Algorithm 1. Assume, without loss of generality, that X is embedded on the
left-hand side of cycle(e). Consider the following two cases.

Case 1. last(Y) < lowl(ei) < last(X). Then Bi is merged with Y. According to
Lemma 2, one of Ei or E can be embedded on the right of cycle(e). If Bi contains any
C1-attachment, then X contains some C2-attachment; if Bi contains any C2-attachment, then
X contains some Cl-attachment. In any case, Cl-attachments and C2-attachments are still on
different sides of cycle(e) after Bi is embedded.

Case 2. lOWl (ei) > last(X). Again by Lemma 2, one of Ei or E, say, Ei, can be
embedded on the left of cycle(e), and the other, E, can be embedded on the right of cycle(e).
One of these two choices will result in an embedding such that Cl-attachments are on one side
of cycle(e), and C2-attachments are on the other side.

1152 CAI, HAN, AND TARJAN

When all the Bi’s are added, we get an embedding of sub(e) such that D1 is on one side
of cycle(e), and D2 is on the other side of cycle(e). This is true because every Dl-attachment
is a Cl-attachment, and every Dz-attachment is a C2-attachment.]

This completes the proof of Theorem 1, and establishes that the list att (e) computed by
Algorithm has the properties discussed at the end of 3.1.

Let e, ei, Bi, atti, X, Y, and h’ be the same as in the above proofs. Let L {Z [Z, U]
is a pair in atti}, R {U [Z, U] is a pair in atti}, and h2 {last(U) U is a block in
R }. Then it is easy to see that h’ > h2. According to Lemma 4, there exists an embedding of
sub(e) (before adding Bi) such that L is embedded in one side of cycle(e) and R is embedded
in the other side. According to the proof of Lemma 2, loWl (ei) >_ last(Y) if and only if
lowl (ei) >_ h2. Therefore we also have the following corollary.

COROLLARY 1.1. Bi cannot be embedded in either side of cycle(e) if and only if
lotOl (ei) < h2.

Corollary 1.1 gives a test of whether Bi can be added to atti without referring to the top
pair of atti. This is useful in our maximal planar subgraph algorithm, where we need to test
whether B2 can be added to att (e) before Step 3 is performed.

3.4. Data structure and running time. As suggested in [7], we can implement blocks
as linked lists. An interlacing pair of blocks can be represented as a record containing two
pointers to the two linked lists representing these two blocks. Then art (e) can be represented
as a linked list of such records. In this way, the time cost for Step is O(k+ number of
deletions). The cost for Steps 2, 3, and 4 is O(k+ reduction in number of blocks). The
cumulate expense of executing these steps over the whole graph is O (m). The initial DFS in
which low1 values are computed takes time O(m). Arranging the successors in increasing
order by b value for all tree edges takes O(m) time using a bucket sort. Thus the whole
algorithm runs in O(m) time. It is well known that any O(m)-time algorithm for planarity
testing can be implemented in O (n) time, since m O (n) for a planar graph [7].

3.5. A modification to Algorithm 1. Consider Step 4 ofAlgorithm 1. Lemma 2 requires
that the successors of each tree edge be ordered by b values. Maintaining this ordering causes
difficulties in solving the maximal planar subgraph problem. Fortunately, we can modify
Algorithm so that it requires only the lOWl ordering of the successors of each tree edge.

Let e [a, b] be a tree edge, and el ek be the list of its successors in increasing order
by low values. Still define cycle(e) cycle(e). Then Steps 1, 2, and 3 can be performed
with respect to this ordering without any modification.

Next we want to merge B2 Bk into art (e) in that order. In general, successors ordered
by low values may not be ordered by b values. Consequently, there may be some < _< k
such that q(e/-1) > dP(ei). But if this happens, we know that low (e/-1) lotol(ei) and
low2(ei) > b. If 2, Lemma 2 still applies, and we can merge B2 into att (e) as before.
Otherwise, the following lemma says that we do not have to merge Bi into art (e) at all.

LEMMA 5. Iffor some 2 < <_ k, lowl (e/-1) lowl (ei), low2(ei) > b, and ei isplanar,
then G is planar ifand only if G S(ei) ix planar.

Proof. The only if part is trivial, so we just prove the if part. Consider an embedding Ei
of Gi G S(ei). Under the condition of the lemma, ei has no normal attachments. Since ei
is planar, then ei is strongly planar. Also, b and low (ei) are the only two vertices shared by
S(ei) and Gi. Therefore S(ei) can be embedded in any face of fi whose boundary contains
the two vertices b and low (ei).

Let P be the tree path cycle(ei_) N cycle(e) and let C be the closed curve cycle(el_l) t2

cycle(e) P. Then C contains edges from both S(ei-1) and Gi S(ei-1). By Observation
2, P is on one side of C. Call this side of C $1, and the other side $2. Let U be the set of

FINDING A MAXIMAL PLANAR SUBGRAPH 1153

faces in $2 whose boundaries contain edges from S(ei-1) only, and let W be the set of faces
in $2 whose boundaries contain edges from Gi S(ei-1) only. Then faces in U and faces
in W do not share common boundaries. Thus, within $2 there must be some face F whose
boundary contains edges from both S(ei-1) and Gi S(ei-1), and therefore contains at least
two vertices common to S(ei-1) and Gi S(ei-1). But all the vertices common to S(ei-1)
and Gi S(ei-1) are on P, and among them only b and low1 (ei-) are on the boundary of
$2. Therefore these two vertices must be on the boundary of F. Thus we can embed S(ei) in
F to get an embedding of G.

Therefore, under the conditions ofLemma 5, in deciding the planarity of G, we can ignore
its subgraph S(ei). Since the condition lowl(ei_l) low(ei) and lotoz(ei) >_ b is implied
by low (ei-) <_ low (ei) and (ei-) > cP(ei), we can modify Step 4 as follows.

Step 4’. Addblocks B2 Bk intoatt (e) in that order, assuming loWl (el) < low (e2)
< lowl(ek). Initially, let j and 2. To process Bi, we consider two cases. If j

or (ej) <_ (ei), we do the same thing as in Step 4, and then let j i; otherwise, we do
nothing.

The list att (e) computed by the modified algorithm may not contain all the attachments
of e. Some attachments may be omitted by Step 4’, because their existence does not affect the
planarity of the whole graph G.

4. The maximal planar subgraph problem. Now we consider the maximal planar sub-
graph problem: Find a minimal set of edges whose deletion results in a planar graph. The
resulting graph is called a maximal planar subgraph of G. We can always find a maximal

planar subgraph of G by deleting back edges only, since all the tree edges form a forest, which
is planar.

We will not assume that the input graph is biconnected, since deletion of back edges may
turn a biconnected graph into a graph with articulation points. But, without loss of generality,
we can assume that the input graph is connected. Thus the tree edges of G form a single tree
with root r. Let t ts be the tree edges leaving the root. If s 1, then sub(t) is the
whole graph G. If s > 1, then r is the only vertex common to sub(t) sub(ts). Thus, to
find a maximal planar subgraph of G, we can just find a maximal planar subgraph for each of
the subgraphs sub(t) sub(ts), and then simply put these subgraphs together. Therefore,
what we need is a procedure that can find a maximal planar subgraph of sub(e) for any given
edge e of G.

4.1. Maximal 1-planar subgraphs. We cannot build a maximal planar subgraph of
sub(e) by simply putting together the maximal planar subgraphs of sub(el) sub(e),
and deleting those back edges causing failure in Algorithm 1. The reason is that, after
these edges are deleted, it may turn out that some other edges, which we deleted for making
sub(el) sub(e) planar, would not have had to be deleted at all. We avoid this difficult
situation by constructing such maximal subgraphs $1, S of sub(e) sub(e) so that
they can be used to construct a planar subgraph S of sub(e) without further deletion of edges.
Two measures are taken for this purpose. First, those back edges in sub(ei) that can cause
failure in Steps 3 or 4 of Algorithm are deleted before a maximal subgraph of Si is recursively
computed. Second, the information where blocks of sub(ei) are allowed to interlace is passed
to the recursive call that computes Si, so that when the returned Si is merged to sub(e). Step 2
ofAlgorithm can also be performed successfully without deletion. Since the planar subgraph
S of sub(e) computed by our algorithm may be used to build a larger planar subgraph of G
in the same way as we use S, $2 Sk to build S, we also need to know where in S blocks
are allowed to interlace. This approach leads naturally to the concept of l-planar subgraphs,
which is a generalization of the concept of strongly planar subgraphs.

1154 CAI, HAN, AND TARJAN

Consider an edge e [a, b] and a vertex on the tree path from loWl (e) to a. An
attachment [u, v] of e is 1-normal if lOWl(e) < v < I. A block of attachments is 1-normal
if it contains some/-normal attachment. Let D be the list representation of a nonempty
block of attachments. Define second(D) to be the second smallest element in the set Ix
x D} U{n+ 1}, and define second([]) n + 1. Then D is/-normal if and only if
lowl(e) < first(D) < or second(D) < 1. The two mappings first and second can be
maintained during the computation of att (e) in O (1) time for each modification to att (e).

We say that the subgraph sub(e) is l-planar if e is planar and the/-normal blocks of att (e)
do not interlace (cf. Fig. 13, where (a) is/-planar, but (b) is not). Edge e is 1-planar if sub(e)
is/-planar.

e(e) cycle(e)

(a) Co)
FIG. 13

If H is a subgraph obtained from sub(e) by deleting back edges only, then we can define
the/-planarity for H (with respect to e) in the same way as we did for sub(e). We will talk
about/-planar subgraphs of sub(e) in this sense. An/-planar subgraph of sub(e) is maximal
if it can be obtained from sub(e) by deleting a minimal set of back edges.

Consider edge e [a, b]. According to our definition, e is planar if and only if e is

lowl (e)-planar, and e is strongly planar if and only if e is a-planar. Therefore, if we can find
a maximal/-planar subgraph of sub(e) for any with low1 (e) <_ < a, then we can compute
a maximal planar subgraph of sub(e).

The following is an outline of our maximal/-planar subgraph algorithm, where is a

given integer with low (e) <_ < a and remains fixed during the processing of an edge. Let
e [a, b], and consider three cases:

Case 1. e is a back edge. Assign [lib],]] to att (e), and return.
Case 2. e is a tree edge with no successors. Assign to att (e), and return.
Case 3. e is a tree edge with successors el ek, among which el has the smallest lowl

value. We construct a sequence G1 Gk of/-planar subgraphs of sub(e) such that G1 is
a maximal/-planar subgraph of sub(el) and low (el) remains unchanged; Gk is a maximal
/-planar subgraph of sub(e); and each gi, < <_ k, is obtained from Gi-1 by adding to it a
strongly planar subgraph Si of sub(ei), where ei is some successor of e not contained in Gi-1.
During the construction, we compute att (e) using the modified version of Algorithm 1. We
describe below in rough terms how we compute Si.

select an edge ei with the smallest loWl value from successors of e not contained
in Gi-1;

while there exists a maximal strongly planar subgraph of sub(ei) whose addition
to Gi-1 destroys its/-planarity do

FINDING A MAXIMAL PLANAR SUBGRAPH 1155

delete some attachments from sub(el);
if the deletion changes the lotOl value of ei then

select a possibly new edge ei with the smallest low1 value from
successors of e not contained in Gi-l;

end if;
od;
recursively construct a maximal strongly planar subgraph of sub(ei) without
changing loWl (ei) further. We take this subgraph as Si.

In the procedure sketched above, lines 1, 4, 5, 6, and 8 guarantee that subgraphs Si are
generated in increasing order by new low1 values of the corresponding successors. For each
< <_ k, once Si is computed, no edges will be deleted further from it. There are still two

questions remaining to be answered: how the testing in line 2 can be done without constructing
a maximal strongly planar subgraph of sub(ei), and how the attachments are chosen so that
the deletion in line 3 makes the set of deleted edges minimal. These two questions are closely
related and will be explained together in the next section.

Remark. In Algorithm 1, we do not need the concept of/-planarity, since our purpose is
to check the planarity of G. If some interlacing blocks of sub(e) are found not to fit in the
whole graph after returning from several levels of recursive calls, we simply declare that the
graph is not planar. But if we want to construct a maximal planar subgraph of G, then it is
too late to delete edges efficiently by that time. Therefore we use the parameter to pass the
information where blocks of sub(e) are allowed to interlace, to the recursive calls, so that the
correct edges are already deleted during the processing of sub(e).

The need to generalize to/-planarity arises in the following way in the algorithm sketched
above. To compute a maximal planar subgraph of the input graph, the recursive calls that
construct Si for 2 k must construct maximal strongly planar graphs. Within one of
these recursive calls, the initial second-level recursive call (to construct a maximal b-planar
subgraph of sub(eil), where eil is the first successor of edge el) and more deeply nested
recursive calls of the same kind construct maximal/-planar subgraphs for general values of I.

4.2. Algorithm for deleting back edges. Let e [a, b], and consider the while loop in
the procedure sketched above. If lOWl(ei) >_ b, then b is the only vertex common to sub(ei)
and G- sub(ei). In this case, we can apply the maximal planar subgraph to sub(el) separately,
and do not have to consider the effect on the whole graph. Next we consider the case when

loto1 (ei) < b. Assume that sub(ei) is made strongly planar by deleting some back edges.
Suppose that the lowl value and the low2 value of ei are not changed by these deletions. We
want to see whether the union of sub(el) and Gi-1 is/-planar.

As in planarity testing, let Bi be the block of attachments obtained by merging att(ei);
let atti be the current value of art (e); let Bj be the last block merged into atti by Step 4’; let

hi max{last(Z) [Z, U] is a pair in atti} and h2 max{last(U) [Z, U] is a pair in
atti}. (Initially, we set j and art(e) art(el) after removing all the occurrences of b
from att(e).) Finally, let h3 max{last(Z) Z is an/-normal block of atti}.

The two variables hi and h2 can be maintained in O(1) time per modification to art(e) by
maintaining two lists L and R (as suggested in [7]), where L is the ordered list of nonempty
blocks X such that IX, Y] is a pair in art(e), and R is the ordered list of nonempty blocks
Y such that IX, Y] is a pair in att(e). If BL and Bn are the highest blocks of L and R,
respectively, then h last(BL) and h2 last(Bt). Lists L and R also let h3 be maintained
easily. If e is a back edge, h 0 from its definition. If e is a tree edge, we get the initial
value ofh from the computation of att(e), and modify it in O(1) time for each modification
of att (e). The details will not be discussed here.

1156 CAI, HAN, AND TARJAN

By Lemma 5, in case that ei is strongly planar, sub(ei) can affect the planarity of G only
if any of the following conditions holds:

(a) j 1, i.e., no block Bj has been merged into att (e) yet,
(b) lowl (ej) < loWl (ei), or

(c) low2 (ei < b.
If any of these conditions is true, we consider two additional cases:
1. The union of sub(ei) and Gi-1 is not planar. By Corollary 1.1, this happens if and

only if low1 (ei) < h2.
2. The union of sub(ei) and Gi-1 is planar, but not/-planar. Then Bi is /-normal,

and it interlaces an /-normal block of atti. We know that Bi is /-normal if and only if

lowl (el) < lowl (ei) < or low2(ei) < 1. Also, it is easy to see that Bi interlaces an/-normal
block of atti if and only if loWl (ei) < h3.

This means, under the conditions (a), (b), or (c), that the union of sub(ei) and Gi-1 is not
/-planar if and only if any of the following conditions holds.

(i) loto1 (ei) < h2.
(ii) lOWl (el) < lOWl (ei) < min{h3, l}.
(iii) lowz(ei) < and lowl(ei) < h3.

Therefore, if any of the conditions (i), (ii), and (iii) holds, some back edge has to be deleted
to change either the lowl value or the low2 value of el. Such testing and deletion can be
done even before making sub(ei) strongly planar. For this purpose, we combine the above
conditions ((a) or (b) or (c)) and ((i) or (ii) or (iii)) into two groups according to whether they
involve lowa(ei):

Condition AA.
(j and lowl(ei) < h2), or

(lOWl (ej) < loWl (ei) < h2), or

(lowl (ej) < lowl (ei) < min{h3, 1}).
Condition BB.
(low2(ei) < b and lOWl (ei) < h2), or

(low2(ei) < b and loWl (e) < low (ei) < min{h3, I}), or

(low2(ei) < and low (ei) < h3).
It can be checked that condition ((a) or (b) or (c) and (i) or (ii) or (iii)) is equivalent to

condition (AA or BB).
If Condition AA is true, we can make it false only by changing the value low (ei). In this

case, we delete all the back edges of sub(ei) entering the vertex lowl (ei). After the deletion,
we choose a possibly new ei with the smallest lowl value.

If Condition AA is false, then we test Condition BB. If the result is true, we know that
low(ei) lowl(ej). This is because lOWl(ei) < lowz(ei), which means that BB implies
that low (ei) < h2 or loWl (ei) < min{h3, 1}, from which it follows that lowl (ej) lowl (ei);
otherwise AA would be true. (We have loWl (ej) <_ lowl (ei) by the ordering of the successors
of e.) To make Condition BB false, we can change the value of either low (ei) or lowz(ei).
If we choose to change low2(ei) consistently, then at least one of the back edges [u, v] of
sub(ei) with v low (ei) will survive. But if we choose to change low (ei), it may happen
that all the attachments in ATT (ei) f’) ATT (e) are eventually deleted and that the resulting
graph is not maximal. Therefore, in this case we choose to delete all the back edges [u, v] of
sub(ei) with v low2 (ei) (see Fig. 14).

We test and delete repeatedly as described above until we find an edge ei that does not
satisfy AA or BB. Then we can construct Si recursively from sub(ei) and merge it into Gi-1.

FINDING A MAXIMAL PLANAR SUBGRAPH 1157

low (e cle (e)

FIG. 14. The edge ei satisfies condition BB. Ifwe choose to delete dI, then d will also be deleted later because

of Condition AA, and the resulting graph will not be maximal.

Since no edge is added to sub(ei) during the construction of Si, conditions AA and BB remain
false after the construction. Thus, the resulting graph G will be planar, and no/-normal

blocks will interlace.
To see that the deleted set of back edges is minimal, let [u, v] be an edge deleted by the

above algorithm, and add it back to Gi. If [u, v] was deleted because of Condition AA, then
loWl (ei) v now, and Condition AA is true again. If [u, v] was deleted because of Condition
BB, then lowz(ei) v now, and Condition BB is true again. Notice that, in the latter case,
the low value of ei has remained unchanged since the deletion of [u, v]. In either case, Gi
will not be/-planar.

4.3. Data structures and running time. In the algorithm described above, we need
to select repeatedly an unprocessed successor of e with the smallest low value, and the

low values of tree edges are constantly changing. Therefore we maintain a heap [13] based
on lOWl values of the unprocessed successors of the tree edge e currently being processed.
Since the algorithm is recursive, we actually maintain simultaneously a heap of unprocessed
successors for each tree edge along the path to the currently active tree edge. The total size
of all such heaps is O (m). The initialization of all these heaps takes a total of O (m) time.
When the low value of some element in a heap increases, we modify the heap accordingly.
It is important to note that any two edges in active heaps are unrelated; thus deletion of a

single attachment "can modify the low1 value of only a single such edge. It follows that the
total number of modifications to and deletions from heaps is O (m). The time for the heap
operations is O(logn) time per operation, for a total of O(m logn) time. (Since rn < n2,
logm O(logn).)

We also need a data structure for the back edges of sub(e) so that the following operations
can be done efficiently:

1. delete an attachment [u, v] of e with v lOWl (e) or v low2(e);
2. maintain the low and low2 values of e;
3. split the data structure into several pieces, one for each successor of e.

One easy solution that meets these requirements is the selection tree [8]. To represent a
set of edges E0 as a selection tree To, we store edges of E0 inside the leaves of To from left to
right in increasing order (by DFS number) of their tails. Edges with the same tail are ordered
arbitrarily. Each internal node w of To has two children w.lchild and w.rchild. Let Sw be
the set of edges stored in the leaves of the subtree rooted at w; let lb min{x [x, y] 6 Sw
and rb max{x [x, y] 6 Sw}; let low min{y [x, y] 6 Sw}, and low2 --min({y
[x, y] Sw lY low} tO {n + 1}). Then the four values lb, rb, lowl, and low2 are stored in

1158 CAI, HAN, AND TARJAN

the four fields w.lb, w.rb, w.lOwl, and w.low2 of w, respectively. If w is a leaf storing the
edge [x, y], then w.lb x, w.rb x, w.loWl y, and to.loto2 n + 1. The values in each
internal node can be computed from the values in the children (in constant time).

In the following discussion, we will refer to a tree by its root. Let rl and r2 be two selection
trees representing the two disjoint sets of edges E1 and E2. If ul _< u2 for all [ul, vl] E E
and [u2, v2] E E2, then we can merge rl and r2 to get the selection tree for E1 U E2 in O(1)
time:

procedure merge(rl, r2);

begin if rl null then

return r2"

end if;

if r2 null then

return rl"

end if;

r := newnode();

r.lchild rv
r.rchild :: r2"

r.lb :: r.lb;

r.rb := r2.rb;

r.lowl := min{rl.lOwl r2.lowl };

r.low2 := min({rl.lowl, r2.1ow, rl.lOW2, rz.low2} {r.lowl });

return r;

end;

Let r be a selection tree representing a set of edges E0. To split E0 into two sets E1
{[u, v] Eolu < Ux and E2 {[u, v] Eolu > Ux }, we split r with respect to ux as follows:

procedure split(r, Ux);

begin if Ux < r.lb then

return [null, r]"

elseif U > r.rb then

return Jr, null]"

else [rl, rr] := [r.lchild, r.rchild];

if U < rt .rb then

[rll, rl2] split(rl, Ux);

return [rt, merge(rl2, rr)]"
else [rr, rr2] :-- split(rr, Ux)"

return [merge(rl, rrl), rr2]"

end;

end if;

end if;

The height of any tree that results from splitting a tree r can be no greater than the height
of r. To select and delete an edge [x, v] from a tree r, where v {r.low, r.low2}, we do the
following:

procedure delete(r, v);

begin if r is a leaf then

mark the back edge stored in r as ’deleted’;

return null;

else [rl, rr] := [r.lchild, r.rchild];

if v rl.lowl or v rl.low2 then

FINDING A MAXIMAL PLANAR SUBGRAPH 1159

else

end if;

return merge(delete(rl, v), rr);

return merge(rl, delete(rr, v));

end if;

end;

Assuming the input graph G is connected, we know that all the tree edges form a tree.
Let the root be one. For technical reasons, we add a dummy edge e0 [0, to the tree edges.
To get a maximal planar subgraph of G, we just construct a 0-planar subgraph of sub(eo), and
then delete e0 from it. Initially, we construct a balanced selection tree tree(eo) to store all the
back edges of G. The height of this tree is O (log n). The time and space needed to initialize
tree(eo) are both O(m).

When we begin to construct a maximal/-planar subgraph for a tree edge e, we first split
tree(e) into several pieces tree(el) tree(e), where el ek are the successors of e
not marked as ’deleted.’ For each such successor ei, tree(ei) is a selection tree representing
the set of back edges in sub(ei), and can be obtained as follows. If ei is a back edge, then
tree(ei) consists of a single edge, and can be constructed in O(1) time. If ei is a tree edge, let

ei [b, ci], and let ni be the number of descendants of ci. It is well known that a back edge
[u, v] is a descendant of ei if and only if ci <_ u < ci + ni. Then we can use the procedure
split to get tree(ei) from tree(e) in O(log n) time. Since there are at most n tree edges in G,
the splitting takes O (n log n) time for the whole algorithm. After each split, the total size of
the trees is still O (m).

To select and delete an attachment Ix, v] of ei, where v {lOWl(ei),low2(ei)}, we
execute delete(tree(ei), v), which takes O(log(n)) time. There can be at most O(m) such
invocations of delete, so the total cost for executing delete is O(m log n). Given the selection
tree tree(ei), the values dp(ei), lOWl (ei), and low:2(ei) can be computed from tree(ei) in O(1)
time: If tree(ei) is null, we just set these values to n + 1; otherwise, they can be computed
from tree(ei).low and tree(ei).low2. Thus, the total cost of selection tree operations is
O (m log n).

We have mentioned that the total cost of heap operations is also O (m log n). The other
costs of the algorithm are the same.as in planarity testing. Thus the total cost of our maximal
planar subgraph algorithm is O(m log n).

4.4. The eornplete algorithm. Now we summarize our maximal planar subgraph algo-
rithm. We take a connected undirected graph as input, and convert it into a DFS representation
G (V, T, B). At the same time, we compute the two mappings succ and N, where, for
each e T, succ(e) gives the successor edges of e in increasing order of their heads, and for
each v V, N(v) gives the number of descendants of v. We assume that there is a dummy
edge e0 [0, 1] such that succ(eo) gives the list of tree edges leaving the root. The whole
preprocessing takes O (m) time.

We summarize the maximal/-planar subgraph algorithm below.

procedure Iplanar(e, /);

begin let e [a, b];

if e B then

return [[[b], []]];
end if;

if e has no successors then

return [];
end if;

let el e be the successors of e not marked as ’deleted’;

1160 CAI, HAN, AND TARJAN

split tree(e) into tree(el) tree(ek);

organize el ek into a heap based on their lowl values, with the smallest one on the top;

let el be the edge on the top of the heap;
delete el from the heap;

att(e) := lplanar(el, /);
delete all the occurrences of b from the top blocks of att (e);

j:=l;

:= 2;

while heap is not empty do

let ei be the edge on the top of the heap;
if lowl (ei >_ b then

delete ei from the heap;

dummy := Iplanar(ei, b);

elseif Condition AA is true then

v :-- tree(ei).lowl;

while v tree(ei).lowl do

tree(ei) := delete(tree(ei), v);

end while;

if ei is a back edge then

delete ei from heap;
else modify heap;
end if;

elseif Condition BB is true then

v :-- tree(ei).low2;

while v tree(ei).lowe do

tree(ei) := delete(tree(ei), v);

end while;

else delete ei from the heap;

att(ei) := lplanar(ei, b);

merge blocks of att (ei) into one block Bi;

delete all the occurrences of b from the top’blocks of att (ei);

if 2 then

perform Step 3 of Algorithm 1;

end if;

merge Bi into att(e) as described in Step 4t;
/:=/+l;

end;

end if

end while;

return art (e)"

The procedure Iplanar(e, l) implicitly constructs a maximal/-planar subgraph of sub(e)
by deleting a minimal set of back edges. The parameter specifies where the blocks of att (e)
are not allowed to interlace in the resulting subgraph, so that this subgraph can be used to
build a larger planar subgraph without further deletion when we process the predecessor of
e. For the initial call where e e0, we have 0, meaning that we need to construct
a maximal planar subgraph of sub(eo). In the recursive calls for the successors of e, the
values are determined as follows. Since no/-normal blocks are allowed to interlace in sub(e),
then no/-normal blocks are allowed to interlace in sub(el) either. Thus the recursive call of
lplanar for el (line 1) has the same parameter as for the edge e. The remaining calls for

FINDING A MAXIMAL PLANAR SUBGRAPH 1161

e2 e (line 5) just construct maximal strongly planar subgraphs, therefore they have b as
their values. Thus when we merge blocks at line 6, no normal blocks of att (ei) interlace.
At line 7, we merge all normal blocks of att (e) above lowl (e2) into one block; at line 8, we
merge Bi into sub(e). Because of the deletions at lines 3 and 4, these steps can be performed
successfully (without any further deletion). At line 2, sub(ei) is detected to be a biconnected
component and is processed separately.

To compute a maximal planar subgraph, we simply do the following:
1. Organize B into a selection tree tree(eo);
2. Execute lplanar(eo, 0).

Then T U B B’ gives a maximal planar subgraph of G, where B’ is the set of back edges
deleted by the procedure delete in the preceding algorithm.

Remark. The procedure lplanar can be greatly simplified if we know that all the tree
edges of G are on a same cycle. In this case, the low1 values need not be dynamically
maintained: if e [a, b] is a back edge, then low (e) b; otherwise lOWl (e) 1. The low2
values, which are used only for testing condition BB when > 1, need not be maintained
either, since for > 1, ei is a back edge. As a result, the selection trees are no longer useful,
and the heaps storing the successors of tree edges can be replaced by lists precomputed as in
Algorithm 1. With these simplifications, our algorithm gives the following result, which is
first reported in 10] by Kobayashi, Masuda, and Kashiwabara: A maximal planar subgraph
can be constructed in linear time provided that a Hamiltonian tour of the graph is given.

5. Summary. The problem of drawing graphs in the plane arises naturally in circuit
layout. Since finding a maximum planar subgraph is NP-complete [5], a maximal planar
subgraph seems to be a reasonable approximation. Because planarity testing can be done
in linear time, it is easy to solve the maximal planar subgraph problem in O(mn) time:
Start with a graph H with no edge; for each edge of the input graph G, add it to H if the
resulting graph is planar, and reject it otherwise. The resulting graph H will be a maximal
planar subgraph of G. However, a better solution seemed to be hard to find for a long
time. Jayakumar, Thulasiraman, and Swamy [9] even made the conjecture that "no maximal
planarization algorithm of complexity better than O (mn) will be possible." Our O (m log n)
solution disproves this conjecture, as does the method of Di Battista and Tamassia [3].

We have assumed that the input graph to our algorithm is connected. For a more general
graph, we can find a maximal planar subgraph by applying our algorithm to each of its
connected components.

Aeknowledgrnent. We thank the referees for their careful and invaluable comments on
the earlier versions of this paper.

REFERENCES

[1] K.S. BoorH AND G. S. LtJEKER, Testingfor the consecutive ones property, interval graphs, and graph planarity
using PQ-tree algorithms, J. Comput. System Sci., 13 (1976), pp. 335-379.

[2] N. CHIBA, T. NISHIZEKI, S. ABE, AND T. OZAWA, A linear algorithmfor embedding planar graphs using PQ-trees,
J. Comput. System Sci., 30 (1985), pp. 54-76.

[3] G. DI BATTISTA AND R. TAMASSIA, Incremental planarity testing (extended abstract), in Proc. 30th Annual IEEE
Symposi.um on Foundations of Computer Science, 1989, pp. 436--441.

[4] S. EVEN AND R. E. TARJAN, Computing an st-numbering, Theoret. Comput. Sci., 2 (1976), pp. 339-344.
[5] M. GAREY AND D. JOHNSON, Computers and Intractability, W. H. Freeman, San Francisco, 1979.
[6] D. HALL AND G. SPENCER, Elementary Topology, John Wiley, New York, 1955.
[7] J. HoPCROVr AND R. TARJAN, Efficient planarity testing, J. ACM, 21 (1974), pp. 549-568.
[8] E. HOROWITZ AND S. SAHNI, in Fundamentals of Data Structure, Computer Science Press, Rockville, MD, 1983.

1162 CAI, HAN, AND TARJAN

[9] R. JAYAKUMAR, K. THULASIRAMAN, AND M. N. S. SWAMY, O(n2) algorithmsfor graphplanarization, IEEE Trans.
CAD, 8 (1989), pp. 257-267.

10] N. KOBAYASHI, S. MASUDA, AND T. KASHIWABARA, Algorithms to obtain a maximal planar Hamilton subgraph,
IEICE Transactions E74, 4 (1991), pp. 657-664.

11] A. LEMPEL, S. EVEN, AND I. CEDERBAUN, An algorithm for planarity testing of graphs, in Theory of Graphs,
International Symposium, Rome, Italy, July, 1966, pp. 215-232.

[12] R. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., (1972), pp. 146-160.
13] Data Structures andNetworkAlgorithms, Society for Industrial and Applied Mathematics, Philadelphia,

PA, 1984.
[14] W.T. THRON, Introduction to the Theory ofFunctions ofa Complex Variable, John Wiley, New York, 1953.
[15] W. Wu, On the planar imbedding of linear graphs, J. Systems Sci. Math. Sci., 5 (1985), pp. 290-302.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1163-1175, December 1993

() 1993 Society for Industrial and Applied Mathematics
003

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS*

ODED GOLDREICHt, HUGO KRAWCZYK, AND MICHAEL LUBY

Abstract. Pseudorandom generators (suggested and developed by Blum and Micali and Yao) are efficient de-
terministic programs that expand a randomly selected k-bit seed into a much longer pseudorandom bit sequence that
is indistinguishable in polynomial time from an (equally long) sequence of unbiased coin tosses. A fundamental
question is to find simple conditions, as the existence of one-way functions, which suffice for constructing pseudoran-
dom generators. This paper considers regular functions, in which every image of a k-bit string has the same number
of preimages of length k. This paper shows how to construct pseudorandom generators from any regular one-way
function.

Key words, pseudorandom generators, one-way functions, cryptography, randomness, complexity theory

AMS subject classifications. 11K45, 11T71, 68Q99, 94A60

1. Introduction. In recent years, randomness has become a central notion in the theory of
computation. It is used heavily in the design of sequential, parallel, and distributed algorithms,
and is, of course, crucial to cryptography. Once so frequently used, randomness itself has
become a resource and economizing on the amount of randomness required for an application
has become a natural concern. It is in this light that the notion of pseudorandom generators
was first suggested and the following fundamental result was derived: the number of coin
tosses used in any practical application (modeled by a polynomial time computation) can be
decreased to an arbitrarily small power of the input length.

The key to the above informal statement is the notion of a pseudorandom generator
suggested and developed by Blum and Micali [BM] and Yao [Y]. A pseudorandom generator
is a deterministic polynomial time algorithm that expands short seeds into longer bit sequences,
such that the output ensemble is polynomially indistinguishable from the uniform probability
distribution. More specifically, the generator (denoted G) expands a k-bit seed into a longer,
say 2k-bit, sequence so that for every polynomial time algorithm (distinguishing test) T, any
constant c > 0, and sufficiently large k

IProb[T(G(X)) 1]- Prob[T(X2k)= 111 < k-c,

where Xm is a random variable assuming as values strings oflength m, with uniform probability
distribution. It follows that the strings output by a pseudorandom generator G can substitute
the unbiased coin tosses used by any polynomial time algorithm A, without changing the
behavior of algorithm A in any noticeable fashion. This yields an equivalent polynomial time
algorithm, A’, which randomly selects a seed, uses G to expand it to the desired amount, and
then runs A using the output of the generator as the random source required by A. The theory

*Received by the editors April 20, 1989; accepted for publication (in revised form) July 1, 1992. A preliminary
version of this paper was presented at the IEEE 29th Annual Symposium on Foundations of Computer Science, 1988.

Department of Computer Science, Technion, Haifa 32000, Israel. This author was supported by grant 86-00301
from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

;Department of Computer Science, Technion, Haifa 32000, Israel. Present address, IBM T. J. Watson Research
Center, E O. Box 704, Yorktown Heights, New York 10598.

International Computer Science Institute, 1947 Center Street, Berkeley, California 94704-1105, and Department
of Mathematics, University of California, Berkeley, California 94720. A large portion of the author’s research
contribution to this work was done while visiting the Computer Science Department of the Technion. At the time, the
author was a faculty member at the University of Toronto. This author’s research was partially supported by Natural
Sciences and Engineering Research Council of Canada operating grant A8092, by a University of Toronto grant, by
National Science Foundation grant CCR-9016468, and by grant 89-00312 from the United States-Israel Binational
Science Foundation (BSF), Jerusalem, Israel.

1163

1164 GOLDREICH, KRAWCZYK, AND LUBY

of pseudorandomness was further developed to deal with function generators, and permuta-
tion generators, and additional important applications to cryptography have emerged [GGM],
[LR]. The existence of such seemingly stronger generators was reduced to the existence of
pseudorandom (string) generators.

In light of their practical and theoretical value, constructing pseudorandom generators
and investigating the possibility of such constructions is of major importance. A necessary
condition for the existence of pseudorandom generators is the existence of one-way functions
(since the generator itself constitutes a one-way function). On the other hand, stronger versions
of the one-wayness condition were shown to be sufficient. Before reviewing these results, let
us recall the definition of a one-way function.

DEFINITION 1. A function f {0, }* {0, }* is called one-way if it is polynomial time
computable, but not "polynomial time invertible." Namely, there exists a constant c > 0 such
that for any probabilistic polynomial time algorithm A, and sufficiently large k

Prob[A(f(x), k) ’ f-l(f(x))] > k-, (*),

where the probability is taken over all x’s of length k and the internal coin tosses of A, with
uniform probability distribution.

(Remark. The role of lk in the above definition is to allow Algorithm A to run for time
polynomial in the length of the preimage it is supposed to find. Otherwise, any function that
shrinks the input by more than a polynomial amount would be considered one-way.)

1.1. Previous results. The first pseudorandom generator was constructed and proved
valid by Blum and Micali, under the assumption that the discrete logarithm problem is in-
tractable on a nonnegligible fraction of the instances [BM]. In other words, it was assumed
that exponentiation modulo a prime (i.e., the 1-1 mapping of the triple (p, g, x) to the triple
(p, g, g mod p), where p is prime and g is a primitive element in Z), is one-way. Assuming
the intractability of factoring integers of the form N p.q, where p and q are primes
and p =- q _= 3 mod 4, a simple pseudorandom generator exists [BBS], [ACGS]. Under
this assumption the permutation, defined over the quadratic residues by modular squaring, is
one-way.

Yao has presented a much more general condition, which suffices for the existence of
pseudorandom generators; namely, the existence of one-way permutations [y].2

Levin has weakened Yao’s condition, presenting a necessary and sufficient condition for
the existence of pseudorandom generators [L]. Levin’s condition, hereafter referred to as one-
way on iterates, can be derived from Definition by substituting the following line instead of
line(*)

(gi, < < kc+Z)Prob[A(fi)(x), k) f-l(fi(x))] > k-c,

where f(i)(x) denotes f iteratively applied times on x (as before the probability is taken
uniformly over all x’s of length k). Clearly, any one-way permutation is one-way on its iterates.
It is also easy to use any pseudorandom generator in order to construct a function that satisfies
Levin’s condition.

Levin’s condition for the construction of pseudorandom generators is somewhat cumber-
some. In particular, it seems hard to test the plausibility of the assumption that a particular

1A slightly more general result, concerning integers with all prime divisors congruent to 3 mod 4, also holds
[CGG].

2In fact, Yao’s condition is slightly more general. He requires that f is 1-1 and that there exists a probability
ensemble I-I, which is invariant under the application of f and that inverting f is "hard on the average" when the
input is chosen according to rI.

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1165

function is one-way on its iterates. Furthermore, it has been an open question whether or not
Levin’s condition is equivalent to the mere existence of one-way functions.

1.2. Our results. In this paper, we consider "regular" functions, in which every element
in the range has the same number of preimages. We show how to construct pseudorandom
generators from any regular one-way function.

DEFINITION 2. A function f is called regular if there is a function rn (.) such that for every
n and for every x 6 {0, 1}n the cardinality of f-l(f(x)) f-! {0, 1} is m(n).

Clearly, every 1-1 function is regular (withm (n) 1, Yn). Our mainresult is the following
theorem.

MAIN THEOREM. If there exists a regular one-way function, then there exists a pseudo-
random generator.

A special case of interest is of 1-1 one-way functions. The sufficiency of these functions
for constructing pseudorandom generators does not follow from previous works. In particular,
Yao’s result concerning one-way permutations does not extend to 1-1 one-way functions.

Regularity appears to be a simpler condition than the intractability of inverting on the
function’s iterates. Furthermore, many natural functions (e.g., squaring modulo an integer)
are regular and thus, using our result, a pseudorandom generator can be constructed assuming
that any of these functions is one-way. In particular, if factoring is weakly intractable (i.e.,
every polynomial time factoring algorithm fails on a nonnegligible fraction of the integers)
then pseudorandom generators do exist. This result was not known before. (It was only
known that the intractability of factoring a special subset of the integers implies the existence
of a pseudorandom generator.) Using our results, we can construct pseudorandom generators
based on the (widely believed) conjecture that decoding random linear codes is intractable,
and on the assumed average case difficulty of combinatorial problems as subset-sum.

The main theorem is proved essentially by transforming any given regular one-way func-
tion into a function that is one-way on its iterates (and then applying Levin’s result [L]).

It is interesting to note that not every (regular) one-way function is "one-way on its
iterates." To emphasize this point, we show (in Appendix A) that from a (regular) one-
way function we can construct a (regular) one-way function, which is easy to invert on the
distribution obtained by applying the function twice. The novelty of this work is in presenting
a direct way to construct afunction that is one-way on its iteratesfrom any regular one-way
function (which is not necessarily one-way on its iterates).

1.3. Subsequent results. Recent results of Impagliazzo, Levin, and Luby [ILL] and
Hastad [HI, inspired by the current work, has resolved the problem of equivalence of existence
of one-way functions and pseudorandom generators, in the affirmative. However, in light of
the inefficiency of their construction, some of the ideas presented in the current work may be
useful in future attempts to construct more efficient pseudorandom generators from one-way
functions.

2. Main result.

2.0. Preliminaries. In the sequel, we make use of the following definition of strongly
one-way function. (When referring to Definition 1, we shall call the function weak one-way
or simply one-way.)

DEFINITION 3. A polynomial time computable function f {0, }* -+ {0, 1 }* is called
strongly one-way if for any probabilistic polynomial time algorithm A, any positive constant
c, and sufficiently large k,

Prob[A(f(x), Ik) e f-i(f(x))] < k-c,

1166 GOLDREICH, KRAWCZYK, AND LUBY

where the probability is taken over all x’s of length k and the internal coin tosses of A, with
uniform probability distribution.

THEOREM (Yao [Y]). There exists a strong one-way function if and only if there exists
a (weak) one-way function. Furthermore, given a one-way function, a strong one can be
constructed.

It is important to note that Yao’s construction preserves the regularity of the function.
Thus, we may assume without loss of generality, that we are given a function f, which is
strongly one-way and regular.

For the sake of simplicity, we assume f is length preserving (i.e., for all x,]f(x)l Ixl).
Our results hold also without this assumption (see 2.6).

Notation. For a finite set S, the notation s 6R S means that the element s is randomly
selected from the set S with uniform probability distribution.

2.1. Levin’s criterion" A modified version. The proof of the Main Theorem relies on
the transformation of a function, which is one-way and regular into a function, which satisfies
a variant ofLevin’s one-way on iterates condition. The modified condition relates to functions,
which leave the first part of their argument unchanged. It requires that the function is one-way
on a number of iterates, which exceeds the length of the second part of its argument. (Levin
requires that the function is one-way on a number of iterations exceeding the length of the
entire argument.)

More precisely, we consider functions F(., .) defined as

F(h, x) (h, Fo(h, x)).

That is, F applies a function F0 on its arguments and concatenates the first argument h to this
result. We prove the following condition.

LEMMA 1. A sufficient condition for the existence of a pseudorandom generator is the
existence ofafunction F of theform

F(h, x) (h, Fo(h, x)),

such that F is strongly one-wayfor Ix / iterations.
Before proving Lemma 1, let us recall the Blum-Micali scheme for the construction of

pseudorandom generators [BM]. This scheme uses two basic elements: the first, a (strongly)
one-way function f, and the second, a Boolean predicate b(.) called a "hard-core" of the
function f. (Roughly speaking, a Boolean function b(.) is a hard-core predicate of f if it is
polynomial time computable, but no polynomial time probabilistic algorithm given f(x), for
randomly selected x, can compute the value of b(x) with a probablility significantly better
than .) A pseudorandom generator G is constructed in the following way. On input x (the
seed), the generator G applies iteratively the one-way function f(.) on x for t(= poly(Ixl))
times (i.e., f(x), f(2)(x) f(t)(x)). In each application of f, the predicate b(f(i)(x)) is
computed and the resultant bit is output by the generator; that is, G outputs a string of length
t. Blum and Micali show that the above sequence of bits is unpredictable when presented
in reverse order (i.e., b(f(t) (x)) first and b(f() (x)) last), provided that the Boolean function
b(.) is a hard-core predicate on the distribution induced by the iterates f(i), 0 <_ < t. The
unpredictability of the sequence is proved by showing that an algorithm, which succeeds to

predict the next bit of the sequence with probability better than one-half can be transformed
into an algorithm for "breaking" the hard-core of the function f. Finally applying Yao’s
Theorem [Y] that unpredictable sequences are pseudorandom, we get that the above G is
indeed a pseudorandom generator.

The crucial ingredient in the proof of Levin’s condition, as well as of our modified version,
is the existence of a hard-core predicate for any (slightly modified) one-way function. A recent

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1167

result of Goldreich and Levin [GL] greatly simplifies the original proof in [L]. This result
states that any function f’(x, r) (f(x), r), where Ixl Irl has a hard-core predicate for
the uniform distribution on r and any distribution on x for which f is strongly one-way. This
hard-core predicate is the inner product modulo 2 of r and x (viewed as vectors over Z2).

Finally, we recall the following notable property of pseudorandom generators: in order
to have a generator that expands strings to any polynomial length, it suffices to construct a
generator that expands strings of length k into strings of length k + 1. This generator can be
iteratively applied for polynomially many times without harming the pseudorandomness of
its output [GrM]. We now prove Lemma 1.

Proof ofLemma 1. Note that F(i) (h, x) (h, F(o i) (h, x)). Thus, the condition in the
lemma implies that Fo(h, x) is hard to invert for Ixl / 1 iterations even when h is given to the
inverter. We construct the following generator, G, which expands its input by one bit. Let s
be the seed for G, so that s (F, h, x), where Ixl n, ro rn), and for all i, Ire[n.
Then, we define

G(s) G(F, h, x) (, h, bo bn),

where 0 n, bi is the inner product modulo 2 of ri and F(oi)(h, X). (We denote

F0() (h, x) x.)
We claim that this generator is pseudorandom. This is proved by noting that the output

string is unpredictable. This is true for the f and h part as they were chosen as truly random
strings. For the other bits, this is guaranteed by the Goldreich-Levin result and the fact that

F0 is hard to invert for n + iterations (even when h is given to the inverter). [3

2.2. Main ideas. We prove the Main Theorem by transforming any regular and (strongly)
one-way function f into a new strongly one-way function F for which the conditions ofLemma
hold.

The following are the main ideas behind this construction. Since the function f is strongly
one-way, any algorithm trying to invert f can succeed only with negligible probability. Here
the probability distribution on the range f is induced by choosing a random element from
the domain and applying f. However, this condition says nothing about the capability of an
algorithm to invert f when the distribution on the range is substantially different. For example,
there may be an algorithm that is able to invert f if we consider the distribution on the range
elements induced by choosing a random element from the domain and applying f twice or
more (see Appendix A). To prevent this possibility, we "randomly" redistribute, after each
application of f, the elements in the range to locations in the domain. We prove the validity
of our construction by showing that the probability distribution induced on the range of f by
our "random" transformations (and the application of f) is close to the distribution induced
by a single application of f.

The function F we construct must be deterministic; and therefore, the "random" redistri-
bution must be deterministic (i.e., uniquely defined by the input to F). To achieve this, we use
high-quality hash functions. More specifically, we use hash functions that map n-bit strings to
n-bit strings, such that the locations assigned to the strings by a randomly selected hash func-
tion are uniformly distributed and n-wise independent. For properties and implementations
of such functions, see [CW], [J], [CG], [Lu]. We denote this set of hash functions by H(n).
Elements of H(n) can be described by bit strings of length n 2. In the sequel, h(6 H(n)) refers
to both the hash function and to its representation.

2.3. The construction of F. We view the input string to F as containing two types
of information. The first part of the input is the description of hash functions that implement

1168 GOLDREICH, KRAWCZYK, AND LUBY

the "random" redistributions, and the other part is interpreted as the input for the original
function f.

The following is the definition of the function F:

F(ho ht(n)-l, i, x) (ho ht(n)-l, +, hi(f(x))),
where x 6 {0, }n, hj H(n), 0 < < (n) 1. The function (n) is a polynomial in n, and
+ is defined as (i + 1) mod (n).

The rest of this section is devoted to the proof of the following theorem.
THEOREM 2. Let f be a regular and strongly one-way function. Then the function F

defined above is strongly one-wayfor t(n) iterations on strings x of length n.
Our Main Theorem follows from Theorem 2 and Lemma by choosing (n) > n.
Let h0, hi ht(n)-I be t(n) functions from the set H(n). For r t(n), let gr

be the function gr fhr-lfh-2f.., hof acting on strings of length n, let Gr(n) be the set
of all functions g, let g be gtn, and let G(n) be the set of such functions g. From the above
description of the function F it is apparent that the inversion of an iterate of F boils down to
the problem of inverting f when the probability distribution on the range of f is gr (x), where
x GR {0, 1}n. We show that, for most g G(n), the number of preimages under g for each
element in its range is close (up to a polynomial factor) to the number of preimages for the
same range element under f. This implies that the same statement is true for most g 6 G(n)
for all r (n). The proof of this result reduces to the analysis of the combinatorial
game that we present in the next subsection.

2.4. The game. Consider the following game played with M balls and M cells, where
(n) << M < 2n. Initially, each cell contains a single ball. The game has (n) iterations. In

each iteration, cells are mapped randomly to cells by means of an independently and randomly
selected hash function h 1 H(n). This mapping induces a transfer of balls so that the balls
residing (before an iteration) in cell cr are transferred to cell h (r). We are interested in bounding
the probability that some cells contain "too many" balls when the process is finished. We show
that after (n) iterations, for (n) a polynomial, the probability that there is any cell containing
more than some polynomial in n balls is negligibly small (i.e., less than any polynomial in n
fraction).

We first proceed to determine a bound on the probability that a specific set of n balls is
mapped after (n) iterations to a single cell.

LEMMA 3. Theprobability, over ho, h ht(n)-I 1 H(n), that a specific set ofn balls
is mapped after (n iterations to the same cell is boundedabove by p(n (n (n /M]n- 1.

Proof. Let B {ba, b2 bn be a set ofn balls. Notice that each execution ofthe game
defines for every ball bi a path through t(n) cells. In particular, fixing t(n) hash functions
ho, hi htn)-, a path corresponding to each bi is determined. Clearly, if two such paths
intersect at some point, then they coincide beyond this point. We modify these paths in the
following way. The initial portion of the path for bi that does not intersect the path of any
smaller indexed ball is left unchanged. If the path for bi intersects the path for bj for some
j < i, then the remainder of the path for bi is chosen randomly and independently of the other
paths from the point of the first such intersection.

Because the functions hi are chosen totally independently of each other and because each
of them has the property of mapping cells in an n-independent manner, it follows that the
modified process just described is equivalent to a process in which a totally random path is
selected for each ball in B. Consider the modified paths. We say that two balls bi and bj join if
and only if their corresponding paths intersect. Define merge to be the reflexive and transitive
closure of the relation join (over B). The main observation is that if ho, h htn-I map
the balls of B to the same cell, then ba, b2 bn are all in the same equivalence class with

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1169

respect to the relation merge. In other words, the probability that the balls in B end up in the
same cell in the original game is bounded above by the probability that the merge relation has
a single equivalence class (containing all of B). Let us now consider the probability of the
latter event.

If the merge relation has a single equivalence class, then the join relation defines a con-
nected graph, which we call the join graph, with the n balls as vertices and the join relation
as the set of edges. The join graph is connected if and only if it contains a spanning tree.
Thus an upper bound on the probability that the join graph is connected is obtained by the
sum of the probabilities of each of the possible spanning trees, which can be embedded in
the graph. Each particular tree has probability at most (t(n)/M)n-1 to be embedded in the
graph since (t (n)/M is an upper bound on the probability of each edge to appear in the graph).
Multiplying this probability by the (Cayley) number of different spanning trees (nn-2 cf. [E,
2.3]), the lemma follows. 1

A straightforward upper bound on the probability that there is some set of n balls, which
are merged, is the probability that n specific balls are merged multiplied by the number of
possible distinct subsets of n balls. Unfortunately, this bound is worthless as (if). p(n) > 1.
(This phenomenon is independent of the choice of the parameter n.) Instead, we use the
following technical lemma.

LEMMA 4. Let S be a finite set, and let FI denote a partition of S. Assume we have a
probability distribution on partitions of S. For every A S, we define XA (I-l) if A is
contained in a single class of the partition I-I and XA(I-I) 0 otherwise. Let n and n’ be
integers such that n < n’. Let p(n) be an upper bound on the probability that XA 1, for
any subset A c_ S of size n. Let q (n’) be the probability that there exists some B c_ S such
that BI n’ and X 1. Then

q (n’) <
ISI). p(n)

Proof. For B c_ S we define (FI) if B is exactly a single class of the partition
FI and (FI) 0 otherwise. Fix a partition FI. Observe that every B, IBI _> n’, for which
(FI) 1, contributes at least (nn’) different subsets A of size n for which XA 1. Thus, we
get that

(n) _<
B_S, IBI>n’ A_S, IAI=n’

XA (FI).

Dividing both sides of this inequality by (’), and averaging according to the probability
distribution on the partitions FI, the left-hand side is an upper bound for q(n’), while the
right-hand side is bounded above by (InSl) p(n)/(’). q

Remark. Lemma 4 is useful in situations when the ratio p(n)/p(n’) is smaller than
(ISI n n’ n). Assuming that n’ << ISI, this happens when p(n) is greater than ISl -n,
Lemma 3 is such a case; and thus, the application of Lemma 4 is useful.

Combining Lemmas 3 and 4, we get the following theorem.
THEOREM 5. Consider the game playedfor (n) iterations. Then, the probability that

there are 4t (n) n2 + n balls, which end up in the same cell, is bounded above by 2-n.
Proof. Let S be the set of M balls in the above game. Each game defines a partition of

the balls according to their position after (n) iterations. The probability distribution on these

1170 GOLDREICH, KRAWCZYK, AND LUBY

partitions is induced by the uniform choice of the mappings h. Theorem 5 follows by using
Lemma 4 with n’ 4t (n) n2 -+- n and the bound p(n) of Lemma 3. (We also use the fact that
M < 2 and the binomial bound (n’ n) > (n’/n 1)n.) q

2.5. Proof of Theorem 2. We now apply Theorem 5 to the analysis of the function
F. As before, let G(n) be the set of functions of the form g fhtn-lf...hof. The
functions h hj are hash functions used to map the range of f to the domain of f. We
let h0 ht(n)-I be randomly chosen uniformly and independently from H(n), and this
induces a probability distribution on G (n). Denote the range of f (on strings of length n) by
R(n) {Zl, z2 za4}. Let each zi represent a cell. Consider the function h as mapping
cells to cells. We say that h maps the cell zi to the cell zj if h(zi) f-l(zj), or in other words
f(h(zi)) zj. By the regularity of the function f, we have that the size of f-1 (zi) (which we
have denoted by m (n)) is equal for all zi R (n); and therefore, the mapping induced on the
cells is uniform. It is now apparent that g 6R G (n) behaves exactly as the random mappings
in the game described in 2.4; and thus, Theorem 5 can be applied to obtain the next lemma.
(Notice that g 1 G(n) means choosing t(n) functions h0 ht(n)-I H(n) and putting
g-- fhtn)-l f hof.)

LEMMA 6. There is a constant co, such that for any constant c > 0 and sufficiently
large n

Prob [3z with [g-l(z)[> nC. m(n)] <
nC,

where g G (n).
Note. The constant co depends on the degree of (n). More precisely, we need nC >_

4t(n). n2 + n (see Thm. 5).
Let us denote by G’(n) the set of functions g 6 G (n) such that for all z in the range of

f, lg-l(z)l < nC re(n). By Lemma 6, G’(n) contains almost all of G(n). It is clear that if
g 6 G’ (n), then for all z in the range of f and for all r (n) the function gr defined
by the first r iterations of g satisfies Ig-l(z)l < nc m(n).

LEMMA 7. For any probabilistic polynomial time algorithm A, for any positive constant

c and sufficiently large n andfor all r (n),

Prob(A(gr, z) f-l(z)) < n -c,
where gr Gr(n) andz gr(x),x 1 {0, 1}.

Proof. We prove the claim for r (n), and the claim for r t(n) follows
in an analogous way. Assume to the contrary that there is a probabilistic polynomial time
algorithm A and a constant CA such that Prob(A(g, z) f-(z)) > n -CA where g 1 G(n)
and z g(x), x 1 {0, }.

By using A, we can demonstrate an Algorithm A’ that inverts f, contradicting the one-
wayness of f. The input to A’ is z f(x), where x 6n {0, 1}n. A’ chooses g 1 G(n) and
outputs A (g, z). We show that A’ inverts f with nonnegligible probability. By assumption
there is a nonnegligible subset G"(n) of G’ (n) such that, for each g 6 G"(n), A succeeds with
significant probability to compute a y 6 f-l(z), where z g(x) and x 6 {0, }. Since
g 6 G’(n), for all z in the range of f the probability induced by g on z differs by at most a
polynomial factor in n from the probability induced by f. Thus, for g 6 G"(n), A succeeds
with significant probability to compute a y 6 f-l(z), where z f(x) and x 6R {0, }n. This
is exactly the distribution of inputs to A’, and thus A’ succeeds to invert f with nonnegligible
probability, contradicting the strong one-wayness of f. q

The meaning ofLemma 7 is that the function f is hard to invert on the distribution induced
by the functions g, r (n), thus proving the strong one-wayness of the function F
for (n) iterations. Theorem 2 follows.

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1171

2.6. Extensions. In the above exposition, we assumed for simplicity that the function f
is length preserving, i.e., x 6 {0, 1}n implies that the length of f(x) is n. This condition is
not essential to our proof and can be dispensed with in the following way. If f is not length
preserving, then it can be modified to have the following property: For every n, there is an n’
such that x 6 {0, 1}n implies that the length of f(x) is n’. This modification can be carried
out using a padding technique that preserves the regularity of f. We can then modify our
description of F to use hash techniques mapping n’-bit strings to n-bit strings. Alternatively,
we can transform the above f into a length preserving and regular function f by defining
f(xy) f(x), where Ixl n, lYl n’- n.

For the applications in 3, and possibly for other cases, the following extension (referred to
as semiregular) is useful. Let {fx }xe{0,l. be a family ofregular functions, then our construction
can still be applied to the function f defined as f(x, y) (x, fx (y)). The idea is to use the
construction for the application of the function f, while keeping x unchanged.

Another extension is a relaxation of the regularity condition. A useful notion in this
context is the histogram of a function.

DEFINITION 4. The histogram of the function f {0, }* --+ {0, }* is a function histf
N x N N such that histf(n, k) is the cardinality of the set

{x {0, 1}n /log2 If-l(f(x))ll k}.

Regular functions have trivial histograms: Let f be a regular function such that for all x 6

{0, 1}n, If-l(f(x))l m(n). The histogram satisfies histf(n, k) 2n for k Llog2(m(n))J
and histf(n, k) 0 otherwise. Weakly regular functions have slightly less dramatic his-
tograms.

DEFINITION 5. The function f is weakly regular if there is a polynomial p(.) and a
function b(.) such that the histogram of f satisfies (for all n)

2(i) histf(n, b(n)) >_ pn
2(ii) Yk=bn+l histf(n, k) < n.p2

Clearly, this definition extends the original definition of regularity. Using our techniques, one
can show that the existence of weakly regular strongly one-way functions implies the existence
of pseudorandom generators. Details follow.

Observe that if the b(n)th level of the histogram contains all of the 2 strings of length n,
then we can apply a similar analysis as done for the regular case. The only difference is that
we have to analyze the game of 2.4 not for cells of equal size, but for cells that differ in their
size by a multiplicative factor of at most two. Similar arguments hold when considering the
case where the b(n)th level of the histogram contains at least 1/p(n) of the strings and the
rest of strings lie below this level (i.e., histf(n, k) 0, for k > b(n)). Note that the "small"
balls of low levels cannot cause the cells of the b(n)th level to grow significantly. On the
other hand, for balls below level b(n) nothing is guaranteed. Thus, we get that in this case the
function F we construct is weakly one-way on its iterates. More precisely, it is hard to invert
on its iterates for at least a 1/p(n) fraction of the input strings. In order to use this function
for generating pseudorandom bits, we have to transform it into a strongly one-way function.
This is achieved following Yao’s construction [Y] by applying F in parallel on many copies.
For the present case, the number of copies could be any function of n, which grows faster than
c. p(n) log n, for any constant c. This increases the number of iterations for which F has to
remain one-way by a factor equal to the number of copies used in the above transformation.
That is, the number (n) of necessary iterates increases from the original requirement of n +
(see 2.1) to a quantity that is greater than c p(n) n logn, for any constant c. Choosing
this way the function (n) in the definition of F in 2.3, we get F, which is one-way for the
right number of iterations.

1172 GOLDREICH, KRAWCZYK, AND LUBY

Finally, consider the case in which there exist strings above the b(n)th level When
considering the game of 2.4 we want to show that, also in this case, most of the cells of the
b(n)th level do not grow considerably. This is guaranteed by condition (ii) in Definition 5.
Consider the worst case possibility in which in every iteration the total weight of the "big"
balls (those above level b(n)) is transferred to cells of the b(n)th level. After t(n) iterations,
this causes a concentration of big balls in the b(n)th level having a total weight of at most
t(n) 2n/(n p(n))2 Choosing t(n) 7p(n)n2 this weight will be at most 2n/(2p(n)).
But then one-half of the weight in the b(n)th level remains concentrated in balls that were
not affected by the big balls. In other words, we get that the function F so constructed is
one-way for t(n) iterations on 1/(2p(n)) of the input strings. Applying Yao’s construction,
as explained above, we get a function F, which satisfies the criterion of Lemma and is then
suitable for the construction of pseudorandom generators.

Further Remarks.
1. The denominator in condition (ii) of Definition 5 can be substituted by any function

growing faster than c. p2 (n) n, for any constant c. This follows from the above analysis and
the fact that the construction of a hard-core predicate in [GL] allows extracting log n secure
bits with each application of the one-way function.

2. The entire analysis holds when defining histograms with polynomial base (instead of
base 2). Namely, histf(n, k) is the cardinality of the set

{x 6 {0, 1} LlOgQ(n)If-l(f(x))ll k},

where Q(n) is a polynomial.

3. Applications: Pseudorandom generators based on particular intractability as-
sumptions. In this section, we apply our results in order to construct pseudorandom gener-
ators (PRGs) based on the assumption that one of the following computational problems is
"hard on a nonnegligible fraction of the instances."

3.1. PRG based on the intractability of the general factoring problem. It is known
that pseudorandom generators can be constructed assuming the intractability of factoring
integers of a special form [Y]. More specifically, in [Y] it is assumed that any polynomial
time algorithm fails to factor a nonnegligible fraction of integers that are the product of
primes congruent to 3 modulo 4. With respect to such an integer N, squaring modulo N
defines a permutation over the set of quadratic residues mod N; therefore, the intractabi!ity of
factoring (such N’s) yields the existence of a one-way permutation [R]. It was not known how
to construct a one-way permutation or a pseudorandom generator assuming that factoring a
nonnegligible fraction of all the integers is intractable. In such a case, modular squaring is a
one-way function, but this function does not necessarily induce a permutation. Fortunately,
modular squaring is a semiregular function (see 2.6), so we can apply our results.

Assumption IGF (Intractability of the General Factoring Problem): There exists a con-
stant c > 0 such that for any probabilistic polynomial time algorithm A and sufficiently
large k

Prob [A (N) does not factorize N] > k-C,

where N 6R {0, }k.
COROLLARY 8. The IGF assumption implies the existence ofpseudorandom generators.
Proof. Define the following function f(N, x) (N, x2 mod N). Clearly, this function

is semiregular. The one-wayness of the function follows from IGF (using Rabin’s argument
[R]). Using an extension of Theorem 2 (see 2.6) the corollary follows. 71

Subsequently, J. (Cohen) Benaloh has found a way to construct a one-way permutation
based on the IGF assumption. This yields an alternative proof of Corollary 8.

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1173

3.2. PRG based on the intractability of decoding random linear codes. One of the
most outstanding open problems in coding theory is that of decoding random linear codes. Of
particular interest are random linear codes with constant information rate, which can correct
a constant fraction of errors. An (n, k, d)-linear code is an k-by-n binary matrix in which the
bit-by-bit XOR of any subset of the rows has at least d ones. The Gilbert-Varshamov bound
for linear codes guarantees the existence of such a code provided that k/n < He(d/n),
where H is the binary entropy function [McS, Chap. 1, p. 34]. The same argument can be
used to show (for every > 0) that if k/n < He((1 +) d/n), then almost all k-by-n
binary matrices constitute (n, k, d)-linear codes.

We suggest the following function f {0, }* -- {0, }*. Let C be an k-by-n binary
matrix, x {0, 1}, and let e E _c {0, 1}n be a binary string with at most [(d 1)/2/
ones, where d satisfies the condition of the Gilbert-Varshamov bound (see above). Clearly,

E can be uniformly sampled by an algorithm S running in time polynomial in n (i.e., S
{0, }poly(n) ___.> E’). Let r 6 {0, }poly(n) be a string such that S(r) E’. Then,

f(C, x, r) (C, C(x) + S(r)),

where C(x) is the code word of x (i.e., C(x) is the vector resulting by the matrix product
xC). One can easily verify that f just defined is semiregular (i.e., fc(x, r) C(x) + S(r) is
regular for all but a negligible fraction of the C’s). The vector xC / e(e S(r)) represents a
code word perturbed by the error vector e.

Assumption IDLC (intractability of decoding random linear codes). There exists a
constant c > 0 such that for any probabilistic polynomial time Algorithm A and sufficiently
large k

Prob [A(C, C(x) + e) 7 x] > k-c,

where C is a randomly selected k-by-n matrix, x 6R {0, }k and e 6R E’.
Now, either Assumption IDLC is false, which would be an earth-shaking result in coding

theory, or pseudorandom generators do exist.
COROLLARY 9. The IDLC assumption implies the existence of pseudorandom

generators.
Proof. The one-wayness of the function f follows from IDLC. Using an extension of

Theorem 2 (see 2.6) the corollary follows. [3

3.3. PRG based on the average difficulty of combinatorial problems. Some combi-
natorial problems, which are believed to be hard on the average, can be used to construct a
regular one-way function and hence be a basis for a pseudorandom generator. Consider, for
example, the Subset-Sum Problem.

Input. Modulo M, MI n, and n + integers ao, a an of length n-bit each.
Question. Is there a subset I

n} such that isi ai =- a0(mod M)?

Conjecture. The above problem is hard on the average, when the ai ’S and M are chosen
uniformly in [2n-1 2n 1].

Under the above conjecture, the following weakly regular function is one-way

fss(al,a2 an, M,I)-- (al,a2 an, M,(ieaimodM))..
Appendix A. One-way functions, which are not one-way on their iterates, Assuming

that f is a (regular) one-way function, we construct a (regular) one-way function f, which is

1174 GOLDREICH, KRAWCZYK, AND LUBY

easy to invert on the distribution obtained by iterating f twice. Assume for simplicity that f
is length preserving (i.e., If(x)l Ixl). let Ixl lYl and let

f(xy) 0lyt f(x).

Clearly, f is one-way. On the other hand, for every xy {0, 1}en, f(f(xy)) O f(On) and
on f(o n) f-l (on f(on)).

Acknowledgments. We are grateful to Josh (Cohen) Benaloh, Manuel Blum, Leonid
Levin, Richard Karp, Charles Rackoff, Ronny Roth, and Avi Wigderson for very helpful
discussions concerning this work.

The first author wishes to express special thanks to Leonid Levin and Silvio Micali for
the infinite number of discussions concerning pseudorandom generators.

[ACGS]

[BBS]

[BM]

[cw]
[CG]
[CGG]

[DH]

[El
[GGM]

[GKL]

[GL]

[GrM]

[GM]
[H]

[ILL]

[J]

[L]

[L2]

[Lu]

[LR]

[McS]

[R]

REFERENCES

W. ALEXI, B. CHOR, O. GOLDREICH, AND C. P. SCHNORR, RSA and Rabinfunctions: Certain parts are as
hard as the whole, SIAM J. Comput., 17 (1988), pp. 194-209.

L. BLUM, M. BLUM, AND M. SHU3, A simple secure unpredictable pseudo-random number generator,
SIAM J. Comput., 15 (1986), pp. 364-383.

M. BLUM AND S. MICALI, How to generate cryptographically strong sequences ofpseudo-random bits,
SIAM J. Comput., 13 (1986), pp. 850-864.

J. CARTER AND M. WEGMAN, Universal classes of hashfunctions, JCSS, 18 (1979), pp. 143-154.
B. CHOR AND O. GOLDREICH, On the power of two-point sampling, J. Complexity, 5 (1989), pp. 96-106.
B. CHOR, O. GOLDREICH, AND S. GOLDWASSER, The bit security of modular squaring given partial fac-

torization of the modulos, Adv. Cryptology Crypto 85 Proceedings, H. C. Williams, ed., Lecture
Notes in Computer Science, 218, Springer-Verlag, 1985, pp. 448-457.

W. DIFFIE AND M. E. HELLMAN, New directions in cryptography, IEEE Trans. Inform. Theory, IT-22, Nov.
1976, pp. 644-654.

S. EVEN, Graph Algorithms, Computer Science Press, New York, 1979.
O. GOLDREICH, S. GOLDWASSER, AND S. MCALI, How to construct randomfunctions, J. Assoc. Comput.

Mach., 33 (1986), pp. 792-807.
O. GOLDREICH, H. KAWCZYK, AND M. LUBY, On the existence ofpseudorandom generators, Proc. 29th

IEEE Symposium on Foundations of Computer Science, 1988, pp. 12-24.
O. GOLDREICH AND L. A. LEVIN, A hard-core predicatefor any one-wayfunction, Proc. 21st Symposium

on Theory of Computing, 1989, pp. 25-32.
O. GOLDREICH AND S. MICALI, The Weakest Pseudorandom Bit Generator Implies the Strongest One,

manuscript, 1984.
S. GOLDWASSER AND S. MICALI, Probabilistic encryption, JCSS, 28 (1984), pp. 270-299.
J. HASTAD, Pseudo-random generators under uniform assumptions, Proc. 22nd Symposium on Theory of

Computing, 1990, pp. 395-404.
R. IMPAGLIAZZO, L. A. LEWN, AND M. G. LUBY, Pseudo-random generationfrom one-wayfunctions, Proc.

21 st Symposium on Theory of Computing, 1989, pp. 12-24.
A. JOE, On a set ofalmost deterministic k-independent random variables, Ann. Probab., 2 (1974), pp.

161-162.
L. A. LEWN, One-wayfunction andpseudorandom generators, Combinatorica, 7 (1987), pp. 357-363; a

preliminary version appeared in Proc. 17th Symposium on Theory ofComputing, 1985, pp. 363-365.
,Homogeneous measures andpolynomial time invariants, Proc. 29th IEEE Symposium on Foun-

dations of Computer Science, 1988, pp. 36-4 1.
M. LuBY, A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput., 15

(1986), pp. 1036-1054.
M. LUBY AND C. RACKOFF, How to constructpseudorandom permutationsfrom pseudorandomfunctions,

SIAM J. Comput., 17 (1988), pp. 373-386.
E J. MCWILLIAMS AND N. J. A. SLOANE, The Theory ofError Correcting Codes, North-Holland Publishing

Company, Amsterdam, 1977.
M. O. RABIN, Digitalized Signatures andPublic Key Functions as Intractable as Factoring, MIT/LCS/TR-

212, 1979.

ON THE EXISTENCE OF PSEUDORANDOM GENERATORS 1175

[RSA]

IS]

[Y]

R. RIVEST, A. SHAMIR, AND L. ADLEMAN, A method for obtaining digital signatures and public key
cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.

A. SHAMIR, On the generation ofcryptrographically strong pseudorandom sequences, ACM Trans. Com-
put. Systems, (1983), pp. 38-44.

A. C. YAO, Theory and applications oftrapdoorfunctions, Proc. of 23rd IEEE Symposium on Foundation
of Computer Science, 1982, pp. 80-91.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1176-1198, December 1993

1993 Society for Industrial and Applied Mathematics
004

A GENERALIZED SUFFIX TREE AND ITS (UN)EXPECTED ASYMPTOTIC
BEHAVIORS*

WOJCIECH SZPANKOWSKI

Abstract. Suffix trees find several applications in computer science and telecommunications, most notably in

algorithms on strings, data compressions, and codes. Despite this, very little is known about their typical behaviors.
In a probabilistic framework, a family of suffix trees--further called b-suffix trees--built from the first n suffixes of
a random word is considered. In this family a noncompact suffix tree (i.e., such that every edge is labeled by a single
symbol) is represented by b 1, and a compact suffix tree (i.e., without unary nodes) is asymptotically equivalent to

b -- c as n -- x. Several parameters of b-suffix trees are studied, namely, the depth of a given suffix, the depth of
insertion, the height and the shortest feasible path. Some new results concerning typical (i.e., almost sure) behaviors

of these parameters are established. These findings are used to obtain several insights into certain algorithms on

words, molecular biology, and universal data compression schemes.

Key words, generalized suffix trees, algorithms on words, data compression, height, shortest path, typical depth
and depth of insertion, probabilistic models, mixing condition, R6nyi’s entropy

AMS subject classifications. 68Q25, 68P05

1. Introduction. In recent years, there has been a resurgence of interest in algorithmic
and combinatorial problems on words due to a number of novel applications in computer
science, telecommunications, and most notably in molecular biology (cf. [40]). In computer
science and molecular biology, many algorithms depend on a solution to the following problem:
given a word X and a set of arbitrary b + suffixes $1 Sb+l of X, what is the longest
common prefix of these suffixes (cf. [2], [3], [9], [12], [42]). In coding theory (e.g., prefix
codes) one asks for the shortest prefix of a suffix Si, which is not a prefix of any other suffixes

Sj, < j < n of a given sequence X (cf. [34]). In data compression schemes, the following
problem is of prime interest: for a given "data base" subsequence of length n, find the longest
prefix of the (n + 1)st suffix Sn+l which is not a prefix of any other suffixes Si (1 < < n)
of the data base sequence (cf. [25], [43], [44]). And last but not least, in molecular sequences
comparison (e.g., finding homology between DNA sequences), one may search for the longest
run of a given motif (cf. 16], 17], [40]), a unique sequence or the longest alignment (cf. 13],
[40]). These, and several other problems on words, can be efficiently solved and analyzed
by a clever manipulation of a data structure known as a suffix tree (cf. [2], [27], [41]). In
literature, other names have been also coined for this structure, and among these we mention
here position trees, subword trees, directed acyclic graphs, etc. (cf.]).

Suffix trees find a wide variety of applications in algorithms on words including: the
longest repeated substring (cf. [41]), squares or repetitions in strings (cf. [3]), string statistics
(cf. [3]), string matching (cf. [9], [42]), approximate string matching (cf. 12], [9], [42]) string
comparison, compression schemes (cf. [25]), implementation of the Lempel-Ziv algorithm,
genetic sequences, biologically significant motif patterns in DNA (cf. [9], [40]), sequence
assembly (cf. [9]), approximate-overlaps (cf. [9], [40]), and so forth. It is fair to say that
suffix trees are the most widely used data structure in algorithms on words. Despite this,
very little is known about their behaviors in a probabilistic framework. Recently, Chang and
Lawler (cf. [9]) used some elementary property of suffix trees to design a superfast algorithm

*Received by the editors March 26, 1992; accepted for publication (in revised form) July 2, 1992. A preliminary
version of this paper was presented at the Combinatorial Pattern Matching conference in Tucson, Arizona, 1992.
This research was supported in part by National Science Foundation grants CCR-8900305, CCR-9201078, and NCR-
9206315 and INT-8912631, in part by Air Force Office of Scientific Research grant 90-0107, North Atlantic Treaty
Organization grant 0057/89, and grant R01 LM05118 from the National Library of Medicine.

Department of Computer Science, Purdue University, West Lafayette, Indiana 47907.

1176

A GENERALIZED SUFFIX TREE 1177

for the approximate string matching problem. In our opinion, any further development in
this direction requires better understanding of the behavior of suffix trees in a probabilistic
framework.

In general, a suffix tree is a digital tree built from suffixes ofa given word X; therefore, it fits
into the subject of digital search indexes (cf. [23]). A digital tree stores n strings $1 Sn
built over a finite alphabet E. In such a tree, every edge is labeled by a symbol (or a set
of symbols) from the alphabet E and leaves (called also external nodes) contain the strings.
The access path from the root to the external node is a minimal prefix information contained
in the leaf (for more details, see [14] and [23]). If the strings {$1 Sn} are statistically
independent and every edge is labeled by a single symbol from E, then the resulting digital
tree is called a regular (or independent) trie (cf. [1], [14], [23]). If all unary nodes of a trie are
eliminated, then the tree becomes a PATRICIA trie (cf. [14], [23], [37]). Finally, if an external
node in a regular trie can store up to b strings (keys), then such a tree is called a b-trie. As
mentioned above, a suffix tree is a special trie in which the strings $1, Sn are suffixes of
a given sequence X. Note that in this case the strings are statistically dependent!

As in the case of regular tries, there are several modifications of the standard suffix tree. In
a noncompact suffix tree--called also spread suffix tree and position treeach edge is labeled
by a letter from the alphabet E. If all unary nodes are eliminated in the noncompact version
of the suffix tree, then the resulting tree is called compact suffix tree (cf. [2]). Gonnet and
Baeza-Yates 14] coined a name PAT for such a suffix tree to resemble the name PATRICIA
used for compact tries. Hereafter, we adopt this notation.

In this paper, we additionally introduce a family of suffix trees parametrized by an integer
b > 1 such that b 1 corresponds to a noncompact suffix tree and b --+ c is asymptotically
equivalent (as n --+ cxz) to PAT. A tree in such a family is constructed from the noncompact
suffix tree by eliminating all unary nodes b levels above the fringe (bottom) of the tree. To
simplify analysis, however, we shall modify this definition and assume that external nodes of
b-suffix trees can store up to b suffixes. Note that such a suffix tree corresponds to a b-trie.
Therefore, we coin a term b-suffix trees for them. These trees are useful in several applications,
but more importantly, b-suffix trees form a spectrum of trees with noncompact suffix trees
(b 1) at one extreme and compact suffix trees (b -+ cxz as n --+ cx) at the other extreme (cf.
Fig. 1). This allows us to assess some properties of PAT trees in a unified and substantially
easier manner (e.g., compare [37], where PATRICIA tries are analyzed).

We offer a characterization of b-suffix trees in probabilistic framework, namely a word
X over which the suffix tree is built represents a stationary mixing (ergodic) sequence. This
sequence is assumed to be of infinite length (for bounded words see Rem. 2(iv), 2). We
shall analyze the following parameters of b-suffix trees: the typical depth Db, the depth of
a particular suffix, say mth one, Lb(m), the depth of insertion L, height Hn, and the
shortest feasible path Sn). The typical depth represents the length of a path from the root to a
randomly selected external node in a suffix tree; the depth of insertion is the depth of a newly
inserted suffix; the height and the shortest feasible path are the longest and shortest path to an
available node.

These parameters are most often used in the analysis and design of algorithms on words.
For example, the typical depth DPnAT for the PAT tree built from the string P$T, where P and
T are the pattern and the text, respectively, is.used by Chang and Lawler [9] in their design
of an approximate string matching algorithm. On the other hand, the depth of insertion L1

and the depth of a given suffix Ln1 (m) of a noncompact suffix tree are of prime interest-to
the complexity of the Lempel-Ziv universal compression schemes (cf. [15], [25], [43]-[44]),
and Ln) is responsible for a dynamic behavior of many algorithms on words. Furthermore, the

1178 WOJCIECH SZPANKOWSKI

(a) (b)

(c) (d)

FIG. 1. Suffix trees builtfrom the first six suffixes of= 0101101110... (a) noncompact suffix tree; (b) 2-suffix
tree; (c) 3-suffix tree; and (d) compact suffix tree.

height and the shortest path indicate how balanced a typical suffix tree is; that is, how much
one has to worry about worst-case situations.

Ourmain results can be summarized as follows. For a b-suffix tree built over an unbounded
word X, we prove that the normalized height Hb) / log n, the normalized shortest feasible path
S(nb) / log n, and the normalized depth of the mth suffix (m fixed) L(nb) (m) / log n, almost surely
(a.s.) converge to some explicit constants that depend on characteristics ofthe underlying prob-
abilistic model. The most interesting behavior reveals that the normalized depth of insertion
L(b) / log n converges in probability (pr.) to a constant but not almost surely (a similar behavior
shows the typical depth D(b)). More interestingly, the almost sure behavior of a compact suffix
tree can be deduced from the appropriate asymptotics of b-suffix trees by taking b --+ x as
n --> xz. More precisely, ifwe append superindex PAT to the appropriate parameters of a com-
pact suffix tree, then we can prove that limn_ HnPAT / log n limb_ limn_ H(nb) / log n,
and in a similar fashion for Snb), Dnb) and Lnb). Note that the iterative limit above cannot be
interchanged. Indeed, for example limn_ limb Hnb) 1. It is worth mentioning that all
these results are obtained in a uniform manner by a technique that encompasses the so-called
string-ruler approach (cf. [19], [30]) and mixing condition technique. Our method, however,

A GENERALIZED SUFFIX TREE 1179

parallels, on several instances, Pittel’s profound analysis of independent tries, and this research
was inspired by the seminal paper of Pittel [30]. The details are discussed in-3.

Asymptotic analyses of suffix trees are very scanty in literature, and most ofthem deal with
noncompact suffix trees, i.e., b 1. To the best of our knowledge, there are no probabilistic
results on b-suffix trees (b > 1) and compact suffix trees. This can be easily verified by
checking 7.2 of the book by Gonnet and Baeza-Yates [14], which provides an up-to-date
compendium ofresults concerning data structures and algorithms. The average case analysis of
noncompact suffix trees was initialized by Grassberger 15], and Apostolico and Szpankowski
[4]. For the Bernoulli model (independent sequence of letters from a finite alphabet) the
asymptotic behavior of the height was recently obtained by Devroye, Szpankowski, and Rais
11], and the limiting distribution of the typical depth in a suffix tree is reported in Jacquet
and Szpankowski [19]. Szpankowski [38] extended some of these results to a more general
probabilistic model (still for b 1). Heuristic arguments were used by Blumer, Ehrenfeucht,
and Haussler [6] to show that the average number of internal nodes in a suffix tree is a linear
function of n, and a rigorous proof of this can be found in 19]. Finally, Shields [34] recently
established the almost sure behavior of the external path length of a noncompact suffix tree in
the Bernoulli model and the Markovian model. Some related topics were discussed by Guibas
and Odlyzko in [16] and [17].

This paper is organized as follows. In the next section, we formulate our main results
and present several consequences of them. In particular, we intuitively explain why compact
suffix trees can be considered as limiting b-suffix trees when n --+ cx. We also provide four
applications of our results to data compression and pattern matching problems. Namely: (i)
we settle two conjectures of Wyner and Ziv regarding the almost sure behavior of the repeated
pattern and the size of the data base sequence in the universal data compression scheme (cf.
[38]); (ii) we provide some information concerning the almost sure behavior of the block
length in the Lempel-Ziv parsing algorithm (cf. [25], [44]); (iii) we present some complexity
results regarding the Chang-Lawler pattern matching algorithm (cf. [9]); and finally (iv), we
estimate the typical length of a unique subsequence of a given sequence (cf. [13]). Finally, 3
contains all formal proofs and presents some new results of combinatorics on words.

2. Main results and their consequences. In this section, we formally define b-suffix
trees and introduce several parameters of these trees that are widely used in the complexity
analysis of algorithms on words and data compression schemes. Next, we present all of our
main results. We delay most of the proofs to the next section. Finally, we discuss some
consequences of our findings.

2.1. Definitions and probabilistic models. A suffix tree is a trie built from suffixes of
an (unbounded) sequence {X}1 of symbols from an alphabet E of size V. More precisely,
let X XlX2X3 then the ith suffix Si of X is Si xixi+l By Sn we denote a
digital tree built from the set $1, $2 Sn of the first n suffixes of X. In such a tree, which
we further call a noncompact suffix tree, every edge is labeled by a single symbol from the
alphabet E. Figure l(a) shows a noncompact suffix tree built from the first six suffixes of
X 0101101110 A compact suffix tree called PAT tree (cf. 14]) is constructed from the
noncompact version by eliminating all unary nodes (cf. Fig. 1 (d)). It is characterized by the
fact that an edge in such a tree is labeled by a substring of X (cf. [2], [27], [41]).

In this paper, we consider a family of suffix trees called b-suffix trees. A tree in such a
family has no unary nodes in all b levels above the fringe level ofthe corresponding noncompact
suffix tree. Note that a noncompact suffix tree coincides with 1-suffix tree, and a compact
suffix tree corresponds to b -- cxz as n --+ cxz. For the purpose of our analysis, however, a
modified definition of b-suffix trees is more convenient. Hereafter, by a b-suffix tree we mean
a trie builtfrom thefirst n suffixes ofX that can store up to b suffixes in an external node. We

1180 WOJCIECH SZPANKOWSKI

denote such a suffix tree as Sn(b). This definition is illustrated in Fig. (b) and (c). It is easy
to note that if in a b-suffix tree we replace every external node by a complete binary tree with
b nodes, then the latter definition of b-suffix tree corresponds to the former one.

Hereafter, we analyze several parameters of b-suffix trees that are formally defined below.
The relevance of these parameters to the analysis and design of algorithms on words and data
compression schemes was already discussed in the Introduction.

DEFINITION 1. TREES PARAMETERS
(i) The mth depth L(nb) (m) is the length of a path from the root of the b-suffix tree ..n(b) to

the extemal node containing the mth suffix.
(ii) The typical depth D(nb) is the depth of a randomly selected suffix, that is,

(2.1) Pr{D(b) < k}-- Pr{Lb(m) < k}
m--1

(iii) The height H(nb) is the length of the longest depth, that is,

(2.2) Hn(b max {L(nb(m)}.
l<m<n

(iv) The shortestfeasible path S(nb) is the length of the shortest path from the root to an
available (feasible) node, that is, a node that is not in the tree $(b but whose predecessor node
(either an internal node or an external node) is in S(b). In other words, s(b) is the shortest path
to all external nodes and all internal nodes that have degree smaller than the size V of the
underlying alphabet.

(v) The shortest depth g(nb is the length of the shortest path from the root to an external
node. (Clearly, S(nb < g(nb.)
(Another parameter of interest not studied in this paper is the external path length E(nb) which
is the sum of all depths, that is, E(nb Y=I L(b (m).)

For the purpose of this analysis, we present below another representation of the above
tree parameters. We start with the following definition.

DEFINITION 2. SELF-ALIGNMENTS
For suffixes S1, $2 Sn, the self-alignment Cil...ib+ between b+ suffixes, say Si

Sib+l, is the length of the longest common prefix of all these b + suffixes.
Then, the following relationships are easy to establish (cf. [4], [36])

(2.3a) L(nb (ib+l) max {Ci...ib+ + 1,
l<il ib<n

(2.3b) n(nb) max {Cil...ib+ -+- 1,
l<il ib+l <n

(2.3c) L(nbl max {Ci,...ib,n+l} + 1,
l<il ib<n

(2.3d) g(nb)= min {L(nb)(ib+l)} min max {Ci...ib+}q-1.
l<ib+l <n l<ib+l <n l<il ib<n

In passing, we note that for a stationary (infinite) ergodic sequence {Xk }, the self-alignment
Cil...ib+ does not depend explicitly on il ib+l but rather on the differences dk i+1 ig.
So, we also write C1, l+d l+d +...+rib.

Our plan is to investigate the behavior of a random b-suffix tree in a general probabilistic
framework. We could only assume that {X}=I is a stationary ergodic sequence of symbols
generated from a finite alphabet E, but this is too strong for our purpose. Therefore, we adopt
the following two weaker probabilistic models.

A GENERALIZED SUFFIX TREE 1181

(A1) MIXING MODEL. The sequence {Xk}_ satisfies the so-called mixing condition
[5], that is, there exist two constants 0 < Cl _< c2 and an integer d such that for all
-cxz < m < m + d _< n the following holds

(2.4a) ClPr{Jt}Pr{B} _< Pr{jt/3} _< c2Pr{Jt}Pr{B}

with 4 -_m and/3 6 3rm+d where 9rm is a a-field generated by {Xk}= for
m<n.

In some statements of our results, we need a stronger form of the above mixing condition,
which are defined in sequel.

(A2) STRONG MIXING MODEL. The sequence {X}k_ satisfies the so-called strong c-

mixing condition if (2.4a) is replaced by

(2.4b) (1 ot(d))Pr{flt}Pr{B} <_ Pr{.4B} < (1 + ot(d))Pr{A}Pr{B},

where the function ot (d) is such that ot (d) -- 0 as d -+

In words, model (A1) says that the dependency between {Xk}=_ and k}=m+d is
rather weak (note that when the sequence {X} is independently and identically distributed,
then Pr{4/3} Pr{.A}Pr{B}). Assumption (A2) says that this dependency is weaker and
weaker as d becomes larger. The "quantity" of dependency is characterized by ot (d).

Finally, for compact suffix trees (i.e., PAT trees) we need one more assumption, which
strengthens (A2).

(P) CONTRACTIVE MIXING MODEL. Let COi G] for < < n, and define the probability
P(col COn) Pr{X1 COl Xn COn}. Then, for PAT trees we shall require
the following condition

(2.5) P(COl COn) --< PP(COl COn-l)

for some0<p< 1.

Under (A 1), which is stronger than plain stationarity and ergodicity of Xk }, we can define
some parameters needed for the formulation ofour results. First of all, let X, (Xm, Xn)
for m < n, and let for every n > the nth order probability distribution for {X be

P(X) Pr{X xk, < k < n,x .A}.

Then, the entropy of {X} is defined in a standard manner as (cf. [5])

h lim
n--+cxz n

Elogp-l(x)

The next three parameters are well defined under our assumption (A1) (cf. [10], [30]).
DEFINITION 3. RINYI’S ORDER ENTROPY. For -ec < b < cx, define the bth order Rdnyi

entropy as

(2.6) hbl lim
log(E{pb(x)})-I

lim
n---x (b + 1)n n--c

In particular, we set

log (yx7 pb+I (x)) -1/(b+l)

hi lim hbl and h3 lim h(2b).
b-- -oe b-x

1182 WOJCIECH SZPANKOWSKI

Note that by the inequality on means [28], we can equivalently express the last two parameters
as follows
(2.7a)

hi lim
n--+ oo

(2.7b)

max{log p-1 (X), P(X) > O}
lim

n n-->x

log(l/min{P(X’), P(X’) > 0})

h3 lim
min{log P-I(X), P(X) > O}

lim
log(1/max{P(X), P(X’) > 0})

as already defined in Pittel [30]. Note also that h3 < hb) < h < hi. (Actually, the Rdnyi
entropies are defined as (b + 1)/b. h2), but it is more convenient for us to use definition (2.6).)

Remark 1.
(i) Bernoulli model. In this widely used model (cf. [4], [6], [9], [11], [16], [17], [23],

[31], [36], and [37]), symbols from the alphabet I2 are generated independently, that is,
P(X) pn (X). In particular, the th symbol from the alphabet 12 is generated according
to the probability Pi, where < < V and YS=I pl 1. Then, h y/V=l pi log pl
([5]), and the R6nyi entropies become h log(1/Pmin), h3 1og(1/Pmax), and hb)

1/(b+l) log(1/P,) where Pmin minl<i v{Pi} Pmax maxl<i<v{Pi} and Pb y/V=l pb+l
The probability Pb can be interpreted as the probability of a match of b + strings in a given
position (cf. [36]).

(ii) Markovian model. In this model (cf. [18], [21], [30], [34]), the sequence {X} forms a
stationary Markov chain, that is, the (k+ 1)st symbol in X depends on the previously selected
symbol, and the transition probability becomes Pi,j Pr{X+I j 6 121X 6 12}.
Clearly, P(X) P(X1)Pr{X21X1}... Pr{XnlXn-1 }. It is well known (cf. [5]) that the entropy

Vh can be computed as h Yi,j=l YfiPi,j log Pi,j, where i is the stationary distribution of
the Markov chain. The other quantities are a little harder to evaluate. Szpankowski [36] and
Pittel [30] for b 1, evaluated the height of a regular tries with Markovian dependency, and
show that the bth order R6nyi entropy h) is a function of the largest eigenvalue 0 of the matrix

vPI+I] P o P... o P, where P {Pi,j }i,j=l is the transition matrix of the underlying Markov
chain and represents the Schur product of b + matrices P (i.e., elementwise product). More
precisely, h) ! (b + 1). log 0- 1. With respect to h and h3 we need a result from digraphs
(cf. Romanovski [33], Karp [22]). Consider a digraph on 12 V} with weights equal
to log Pi,j, where i, j 6 12. Define a cycle C {o91,092 coy, col for some v < V
such that O) G 12, and let g(C) ZiV=l log(po;,o;+) (with o9v+1 o91) be the total weight
of the cycle C. The quantities mine {e (C) /v and max {e (C) /v are known as the minimum
and maximum cycle mean, respectively. Karp [22] showed how to compute them efficiently.
Clearly, hi minc{e(C)/ICI} and h3 maxc{e(C)/ICI}.

2.2. Formulation of main results. Now, we present our first main result concerning the
typical height and the shortest path, which is further used to prove our next findings. The
proof of Theorem is delayed till 3, except part (ii) regarding PAT trees, which is a simple
consequence of part (i), and it is proved in Remark 2 (iii) below. For the reader’s convenience,
we recall that we write Xn -- /3 (pr.) for a sequence of random variables Xn and a constant

/3 if for every > 0 the following holds: limn-.Pr{IXn/fl 11 > } 0; and similarly
X --+/3 (almost surely) if for every > 0 we have limN Pr{sup>N IX,/fl > } 0.
A sufficient condition for the almost sure convergence can be obtained from the Borel-Cantelli
lemma (cf. [5]). In particular, the following suffices for (a.s.)" -=0 Pr{lXn/a- II > } < oo.

THEOREM 1. Let {X} be a stationary ergodic sequence satisfying the strong or-mixing
condition as in (A2) together with hi < oo and h2 > O.

A GENERALIZED SUFFIX TREE 1183

(i) b-SUFFIX TREES. Fix b. Then

(2.8a) lim
sb) ml (a.s.)

n log n h

(2.8b) lim
g(b) __1 (pr.)

n- log n h

provided

(2.9) ct(d) O(npd)

for some constants 0 < p < and fl > O. For the height H(nb) we have

(2.10) lim
H(nb)

n--+cx3 log n h b)

provided the mixing coefficient c (d) fulfills thefollowing

(2.11) Z ct2(d) < cx.
d=0

(ii) COMPACT SUFFIX TREE. Almost sure behavior ofPATfollowsfrom the (a.s.) behavior

of b-suffix trees by taking in (2.8) and (2.10) the limit as b --+ xz, that is,

SnPAT nnPAT(2.12) lim (a.s.) lim ,
n--.cx3 log n hi n--+cx3 log n h3

provided (P) holds together with condition (2.9) for Sn
PAT and condition (2.11) for nnPAT,

respectively.
Our next main results deal with the depths Dnb), Mb), Lb(m) (for fixed m), and the

depth of insertion Lb. The proof of Theorem 2 is presented in 3.3 except part (iii), which is
discussed in Remark 2 (ii).

THEOREM 2. Let {X be a stationary ergodic and mixing sequence in the strong sense

of (A2), and let (2.9) hold too. Assume also that < b < cxz.
(i) CONVERGENCE IN PROBABILITY. For h < cx3 and m fixed, we have

(2.13) lim L(nb)(m)-- lim
L(nb)

lim
D()

n- log n n-, log n n-, log n h
(pr.).

The same holdsfor the compact suffix tree provided (2.5) in (P) isfulfilled (i.e., we may take
b - cx in the above).

(ii) ALMOST SURE CONVERGENCE. Let, in addition, the probability P (Bn) of "bad states"
in the Shannon-McMillan-Breiman Theorem (more precisely: in the so-called asymptotic
equipartition property) [5] be summable (cf 3.3), that is,

(2.14) P(Bn) <
n=l

Then, forfixed m

lim
L(b)(m)

(a.s..)(2.15)
no log n h

1184 WOJCIECH SZPANKOWSKI

The above is true alsofor the compact suffix tree provided (2.5) in (P) is satisfied.
(iii) ALMOST SURE OSCILLATIONS. As in (ii) we assume strong mixing condition (2.4b)

together with hl < X and h2 > O. Then,for b < cxz we have thefollowing result concerning
the depth of insertion and the typical depth

(2.16a) lim inf
Lnb) ml (a.s.) lim sup

Lnb)
,--, log n h --, log n h’"

(2.16b) lim inf
D(nb) ml (a.s.) lim sup

Db)
n- n log n h --’ log n h(

For the compact suffix tree, (2.16a) and (2.16b) hold with hb replaced by h3, that is, we
formally obtain almost sure behaviorfor PAT by taking b -- cxz and assuming (2.5) of (P).

Remark 2.
(i) How restrictive are conditions (2.9) and (2.14)? Let us first deal with (2.9). Note that

(2.9) holds in many interesting cases including the Bernoulli model and the Markovian model.
Naturally, (2.9) is true for the Bernoulli model since in this case or(d) 0. In the Markovian
model, it is known (cf. [5]) that for a finite state Markov chain the coefficient or(d) decays
exponentially; that is, for some c > 0 and p < 1 we have t(d) cpd, as needed for (2.9).
Regarding (2.14), we know that it holds at least for the Bernoulli and Markovian models but
generally not for all ergodic stationary sequences (cf. 10]). We believe that (2.14) is included
in (2.9). In passing, we also note that condition (2.5) holds in both of the models above.
In the Markovian model, however, one needs the additional assumption that all transition
probabilities are positive and strictly smaller than one.

It should be mentioned, however, that condition (2.9) probably cannot be improved. This
is due to recent results of Shields [34] who proved that the normalized external path length
En1/n log n converges almost surely to 1/h in the Bernoulli and Markovian models. But, the
author of [34] also constructed an ergodic stationary (non-Markovian) sequence for which the
external path length Enb) does not converge even in probability. The same construction can
be used to show nonconvergence results for other tree parameters considered in this paper.
Hence, some kind of restrictions for the mixing coefficient ot (d) is necessary.

(ii) How do we prove part (iii) ofTheorem 2? One can view the behavior of Lnb (m) and

Lnb as a surprise. The main reason for the oscillation of Lnb is a "tiny" unbalance in the
height and the shortest feasible path discovered in Theorem 1. The almost sure behavior of

Lnb) (m) is guaranteed by the fact that it is a nondecreasing sequence. In passing, we note that
the only b-suffix tree that has (a.s.) limit for the depth of insertion Lnb) is the PAT tree with
the symmetric alphabet (i.e., pi 1/V for _< _< V). Indeed, in this case by Theorem 2
(iii) limn_ LPnAT/log n log V (a.s.).

To prove formally Theorem 2 (iii) for L(nb) we argue as in Pittel [30] (cf. [38]). Provided

Theorem is granted, we note that almost surely L(nb H(nb) whenever "’n+4(bl > H(nb)’ which
happens infinitely often (a.s.) since H(nb -- cx (a.s.), and {X} is an ergodic sequence. This
establishes the lim sup part of L(nb. For the lim inf of L(b) we consider the shortest feasible
path s(b) and repeat the above arguments. The same is true for the typical depth D(nb since
it represents the length of a randomly selected extemal node, so g(nb < D(nb < H(nb. But,
S(nb g(nb infinitely often; hence, (2.15) follows from Theorem 1, too. Note that g(,,b is not a
monotone sequence, the property needed to estimate the almost sure convergence of S(nb (for
more details see 3.1).

(iii) Compact suffix tree as a limit of b-suffix tree. We prove now results for PAT trees
provided the corresponding results for b-suffix trees are true (see 3). We are not able to

A GENERALIZED SUFFIX TREE 1185

prove in general that for any parameter (appropriately normalized) of b-suffix tree, say P(nb)
its corresponding parameter PPAT of the PAT tree can be obtained as a limit when b tends to
infinity as n -- x. However, we conjecture that there exists a sequence an o(n) (e.g., in
the case of parameters discussed in this paper we have a log n) such that

(2.17a) lim PnPAT/an-- lim lim P(nb)/an
n---x b--+x n-- cx

(The condition an o(n) seems to be important since the above does not hold for the size
of b-suffix trees, i.e., number of internal nodes, which grows asymptotically as n/h while for
the PAT tree the size is O(n); e.g., for the binary alphabet the size is n 1. However, we can
easily give a formal proof of this fact for every parameter discussed in this section. We first
consider all parameters except the height. Using the Sample Path Theorem of the stochastic
dominance relationship [35], we can prove that Pnb is a decreasing sequence with respect to
b. Hence, in particular,

p PaT Pn(1)
(2.17b) lim < lim

n--+cx3 log n n log n

This immediately establishes the upper bound part of (2.17a) for the above parameters (ex-
cluding the height). For the height HnPar, following Pittel [30] we note that the event

{HnPAv > k + b} implies that there exists a set of b suffixes such that all of them share
the same first k symbols. In other words, the event {HnPAT > k + b} implies {H(nb) > k}.
Therefore,

nnPAT n(nb)
(2.17c) lim < lim lim

n--+x log n b--+cxz n-+cx: log n h3

This completes the upper bound in (2.17a).
For the lower bound, we use condition (2.5) of (P). We need a separate discussion for every

parameter. Following Pittel [30], for the height and the shortest path we argue as follows. We
try to find a path in a suffix tree such that its length is (a.s.) asymptotically equal to log n! h3
and logn/hl, respectively. But this is immediate from (2.7a) and (2.7b), and Pittel’s [30]
Lemma 2. For the depth, we consider a path for which the initial segment of length O (log n)
is such that all nodes are branching (i.e., no unary nodes occur in it). Naturally, such a path
after compression will not change, and the depth in the compact suffix tree is at least as large
as the length of this path. Copying our arguments from 3 and using Pittel [30], we establish
that almost surely such a path is at least log n/h, which completes the lower bound arguments
in the proof for the depth. The details are left for the interested reader.

Despite our formal proof, it is important to understand intuitively why a compact suffix
tree can be considered as a limit of b-suffix trees as n -- cx. There are at least three reasons
supporting this claim: (1) b-suffix trees do not possess unary nodes in any place that is b levels
above the fringe of the noncompact suffix tree (cf. Fig. 1); (2) unary nodes tend to occur more
likely at the bottom of a suffix tree, and it is very unlikely in a typical suffix tree to have unary
nodes close to the root (e.g., in the Bernoulli model the probability that the root is unary node
is equal to ZY=I P); (3) on a typical path the compression is of order of O(1). For example,
comparing the depth of regular tries and PATRICIA we know that EDnP EDnr O (1) [36],
[37], but for the height we have EHP EHnr log n [30], and therefore, we can expect
trouble only with the height. This is, in fact, confirmed by our analysis.

(iv) Finite strings. In several computer science applications (cf. [1]-[3], [9], [12]) the
string {X}=I has a finite length n, and is terminated by a special symbol that does not
belong to the alphabet E, e.g., X$ with $ E. Most of our results, however, can be directly

1186 WOJCIECH SZPANKOWSKI

applied to such strings. Let sn, H,, and Dn denote the shortest feasible path, the height, and
the depth in a suffix tree (b-suffix tree or compact suffix tree) built over such a finite word,

1, but the other two parameters have exactlyrespectively. Then, it is easy to see that s

the same asymptotics as for the infinite string case, that is, H’n/log n 1/hb) (a.s.) and
Df/log n 1/h (pr.) under hypotheses of Theorems and 2. Indeed, assume for simplicity
b and define new self-alignments Cij as Cij min{Cij, n i, n j }, where Cij is the
self-alignment between the and j suffixes for the infinite string {X}=a. But, our analysis
reveals that only the last O(log n) suffixes may have any impact on the self-alignments Ci’j.
Hence, building a suffix tree from the first n’ n O (log n) suffixes will lead to the same
asymptotics as for an infinite string. Details are left to the interested reader.

2.3. Applications and further discussions. Theorems and 2 find several applications
in combinatorial problems on words, data compression, and molecular biology. In general, our
findings can be used widely in problems dealing with repeated patterns and other regularities
on strings. As an illustration, we solve some problems on words using Theorem 2. Two of
them deal with data compression, and the others concern pattern matching. The first data
compression example solves the conjecture ofWyner and Ziv [43] and was already reported in
Szpankowski [38] while here we present some further extensions. The second one identifies
the (a.s.) behavior of the block length in the well-known parsing algorithm of Lempel and Ziv
[25].

PROBLEM 1. Wyner-Ziv conjecturefor data compression schemes. The following idea is
behind most data compression schemes. Consider a "data base" sequence of length n, which
is known to both the sender and the receiver. Instead of transmitting the next L symbols (not
in the data base), the sender can "look backward" into the data base and verify whether these

L symbols have already appeared in the data base. If this is the case, then the sender transmits
only the location of these Ln symbols in the data base and the length of Ln. More precisely,
let the data base be represented by a subsequence {X}= of a stationary ergodic sequence

cx vn+l+L for all{X}=I. For every n, let L be the smallest integer L > 0 such that X+c
-n+l

<_ m <_ n. Wyner and Ziv [43] asked about almost sure behavior of L. The authors of [43]
proved that L log n/ h in probability (pr.), and they conjectured that this can be extended to
the almost sure (a.s.) convergence. Szpankowski in [38] showed that the parameter Ln is equal
to the depth of insertion L(n1) in a noncompact suffix tree (b 1). Hence, the convergence
in probability of Ln/log n is demonstrated in Theorem (i). But our Theorem 2(iii) settles
the Wyner-Ziv conjecture in the negative (in the so-called right domain asymptotics; see for
details [38]), and we know that Ln/log n does not converge (a.s.) but rather oscillates between

(1)1/hi and 1/h2

In the same paper, Wyner and Ziv [43] considered another quantity, namely, Ne that can
be defined as the smallest N such that X XNN+e-1 (i.e., the word of length is found for
the first time in a data base of size Ne). Using the suffix tree representation of the sequence
{Xk

Ne}k=l one can express Ne in terms of the depth of the associated suffix tree. Indeed, Ne is
the size of a suffix tree for which the depth of the first suffix is equal to , that is, in our notation

(1)LUe (1) . But, by (2.15) of Theorem 2(ii), we have g/log Ne --+ / h (a.s.); hence,

log Ne
lim h (a.s.)

provided (2.9) holds. This settles in the positive the second conjecture of Wyner and Ziv [43]
for the Markovian model. (See also [29].)

PROBLEM 2. Block length in the Lempel-Zivparsing algorithm. The heart of the Lempel-
Ziv compression scheme is a method of parsing a string {X}=I into blocks of different

A GENERALIZED SUFFIX TREE 1187

words. The precise scheme of parsing the first n symbols of a sequence {X}kC__l is com-
plicated and can be found in [25]. The main idea of the parsing is to divide the sequence
into pairwise distinct blocks such that each block that occurs in the parsing has already been
seen somewhere to the left (overlapping is allowed as in Grassberger [15]). For example,
for {X} 110101001111... the parsing looks like (1)(10)(10100)(111)(1...), that is, the
first block has length one, the second block length is two, the next one is of length five since

X25 X, and so on. In Fig. 2, we show how to perform the parsing using a sequence of
noncompact suffix trees (cf. 15]). Note that the length of a block is a subsequence of depth of

(1) More precisely, if en is the length of the nth block in the Lempel-Ziv parsinginsertions Lm,
algorithm, then Fig. 2 suggests the following relationship gn L (1) For example, in Fig.

we have g0 L0"(1) 1, el L (1)1 2, 12 L(1)e0+e, L1) 5, and 3 L1+2+5 3, and
so forth. To obtain (a.s.) behavior of the block length n, we note that

L ,- log(n-)
lim

n
lim Yk=o ek ,= ,

(2.18)
n-, log n n-+cxz log (-f-:0 e) log n

We first estimate the second term in (2.18). One immediately obtains

log (--I g) log (-n=0 L(n) (m))
1 < < -- (a.s.),

log n log n

where the right-hand side of the above is a direct consequence of a result concerning the
external path length E(1) proved in Shields [34] (in fact, a slight extension of our proof of
Theorem 2 (ii) leads to the same result). Then, by (2.18) (cf. also [38]) we obtain the following
corollary.

n 2 n 3 n-4

FIG. 2. Firstfour suffix trees used to parse the sequence X 110101O01111

COROLLARY 3. Let {Xk}kl be a strongly mixing stationary sequence as in (A2) with the
mixing coefficient o(d) satisfying (2.9) and (2.14). Then almost surely

’n ’n< lim inf < lim sup <
hi n---,oe log n n--+oe log n h1)

1188 WOJCIECH SZPANKOWSKI

provided h < (x and h1) > 0.
We conjecture that the lim sup and lim inf are attained at /h1 and / h (a.s.), respectively.

PROBLEM 3. String matching algorithms. Recently, Chang and Lawler [9] demonstrated
how to use PAT trees to design practical and still efficient algorithms for approximate string
matching algorithms. They formulated several conclusions based on a heuristic analysis of
PAT trees under the symmetric Bernoulli model. Our Theorems and 2 immediately generalize
results of [9] to a more general probabilistic model and additionally provide stronger results.
For example, consider the exact string matching algorithm (cf. 2.3 in [9]) in which we search
for all occurrences of the pattern string P of length m in the text string T of length n. The
heart of the Chang-Lawler algorithm is an analysis of dm,n that is the length of a substring
of the text T, which is not a substring of the pattern P. This can be verified by building
a compact suffix tree for P, and then comparing substrings of T with suffixes of P. But
then, one may observe that dm,n is equivalent to the typical depth DPnAT in such a suffix tree,
and therefore, dm,n (1/h) log m (pr.). This further implies that the complexity Cn of the
algorithm becomes Cn O(n/(hm) log m) (pr.), which is a stronger version of the Chang-
Lawler result for a more general probabilistic model. In passing, we note that our findings
can be also used to estimate the time-complexity for the Knuth-Morris-Pratt algorithm [24]
and the Boyer-Moore algorithm [7]. Several other approximate string matching algorithms
can be analyzed in a similar manner. The reader is referred to Apostolico and Szpankowski
[4] for more algorithmic examples.

PROBLEM 4. A molecular biology problem: Rare subsequences. Biologists often need a
(shortest) subsequence of a sequence {X}= (e.g., DNA or RNA) that determines (identifies)
uniquely this sequence or that occurs very rarely in the underlying sequence. Sometimes, they
also need to find the shortest subsequence, which does not occur in the sequence (cf. [13]).
(In fact, biologists allow gaps, but we will not treat this case here.) These problems can be
solved with a clever use of the suffix tree data structure (no gaps are allowed!). We illustrate
here only how our result can be used to solve the latter problem. Call the shortest subsequence
that does not occur in the underlying sequence as Un. A question arises regarding what is the
typical length of Un and how to construct Un. It should be clear that the length of Un cannot
be too short (e.g., single characters or pairs of characters occur too often!). If one builds a
noncompact suffix tree of {X},=, then certainly all subsequences up to level s(occur in
{X} since the suffix tree is a complete tree up to this level. Hence, the length of Un should
be equal to snl, and (a.s.) its length is asymptotically equal to (1/h) logn. Moreover, Un
can be discovered by taking any subsequence that leads to the closest "hole" in the associated
suffix tree.

Finally, we would like to offer some remarks regarding further implications and general-
izations of our results.

Remark 3.
(i) Convergence in distributions. In this paper, we deal only with the almost sure conver-

gence. One may ask about the limiting distribution of L(nb, Hn(b, and so forth. At this time, we
have very limited knowledge about the limiting distribution of the above parameters. In fact,
only the typical depth in the Bernoulli model of noncompact suffix tree (b 1) was analyzed
in the past. Jacquet and Szpankowski [19] proved that the distribution Ff(x) of the typical
depth in independent tries and the distribution Fff (x) of the typical depth Dn(1) in suffix trees,
do not differ too much. More precisely, in [19] it is proved that for large n there exist such

3> land >0that

(2.19) (1)IF[(FnS(l O
n’/

A GENERALIZED SUFFIX TREE 1189

This establishes similarities between a trie and a noncompact suffix tree. Therefore, using
well-known results for independent tries (cf. [31]), it is easy to show that for an asymmetric
alphabet E, the normalized depth(D1) EOl))/varO1 converges in distribution to the
standard normal distribution A/’(0, 1) with mean and variance as below

(2.20a) log n + V + - P1 (log n) + 0

R h2

(2.20b) var D(n1
h t)logn+C+P2(logn)+O -for some > 0, where R y/v=l p/2 log Pi, and P(x), P2(x) are fluctuating periodic

functions with small amplitudes, and an explicit formula for the constant C can be found in
[37]. In the symmetric case, the variance becomes

(2.20c) var D(n + + 0
6 log2 V -7

Moreover, in the symmetric case the distribution of D() is no longer asymptotically normal,
but rather resembles one of extreme distribution. More precisely, in this case we have (cf.
[31)

(2.20d) lim sup IPr{Dn < x} exp(-nV-X)l 0.
n---x

We conjecture that the same type oflimiting distributions can be obtained in the Markovian
model. The is due to the fact that (2.19) seems to hold in the Markovian case. If so, we can
apply the recent result of Jacquet and Szpankowski 18] regarding the limiting distribution of
the depth for the Markovian model of independent tries. Furthermore, one may investigate the
limiting distribution for the height and the external path length. We conjecture that b-suffix
trees do not differ too much from b-tries in the sense of (2.19), and therefore, the limiting law
for the height can be obtained from the one for b-tries (cf. [31]) and so on.

The compact suffix tree is more intricate. Only very recently some results regarding
limiting law for the depth in PATRICIA have been obtained (cf. [32]). Using this result,
Jacquet, Rais, and Szpankowski [20] proved that the limiting distribution for the depth in PAT
tree under an asymmetric Bernoulli model is asymptotically normal. There is, however, no
result regarding the limiting law of the height. These seem to be difficult problems.

(ii) How well is a suffix tree balanced? In the worst case, a suffix tree may degenerate,
and the worst-case height can be as much as n. But, our analysis indicates that this happens
very, very rarely. In fact, our Theorem 2 shows that the typical depth of a suffix is equal to

(1/h) log n (pr.). The best balanced tree built over n external nodes is a complete tree (cf.
]), and the depth for every external node in such a complete tree is equal to logv n. We note

that for the symmetric alphabet a typical shape of suffix tree resembles that of a complete tree
since the depth Dnb) with high probability is equal to logv n and almost surely is not greater
than Hb (1 + 1/b) logv n but not smaller than S logv n. Such a tree can be called
highly balanced (in a probability sense), and, as our analysis shows, there is no need, in most
practical cases, for additional rebalancing of this tree in order to assure a nice behavior in the
worst case, as is done in AVL-tree and other balanced trees.

3. Analysis and proofs. We first present a formal proof of Theorem concerning the
height Hb) and the shortest feasible path Snb). Then, we establish parts (i) and (ii) of Theorem

1190 WOJCIECH SZPANKOWSKI

2 for the typical depth D(b) and the depth of the mth suffix L(b) (m). We remind the reader that
Theorem 2 (iii) was already proved in Remark 2 (ii), and the compact suffix tree was discussed
in Remark 2 (iii). Therefore, hereafter, we fix b < or. Also, for simplicity of presentation
we drop the upper index b in the notation of the tree parameters (e.g., we write Hn instead of

Throughout the proof we use a technique that encompasses the mixing condition and
another technique called the string-ruler approach that was already applied by Pittel in his
seminal paper [30], and extended by Jacquet and Szpankowski [19] (cf. [38]). The idea of the
string-ruler approach is to measure a correlation between words by another nonrandorn word
w belonging to a set of words)A;. Usually, we deal with fixed length rulers w where k is
the length of the string-ruler. Let)A; be the set of all strings w, that is,]A; {w Z
wl k}, where wl is the length of w. We write w to mean a concatenation of g strings
w from 42, and if X,+ w then we denote P(w) P m+(X). Finally, we adopt the
following rule regarding sums over a set of string-rulers: if f(w) is a function of w, then

w f(w) YwW f(w), where the sum is over all strings w of length k.
The usefulness of the string-ruler approach stems from the fact that we can express the

self-alignment Ci ib+ in terms of w. The following lemma is of prime importance to the
analysis of suffix trees and other combinatorial structures on words.

LEMMA 4. Let dl db and k be such that

(3.1) do -0 <_ dl <_ <_ di <_ k <_ di+l <_ <_ db.

Define d as the greatest common divisor of {di b}i=1’ that is, d gcd(dl db). Then, the
self-alignment Cl,l+d l+d+...+db satisfies

(3.2a)

d(W "gJ-d)b-iPr{Cl,l+d i+dl+...+db >-- k}- P Wcl
]+d++di

lad

p w(db/l-i)LJ / /1-i

where -d is a prefix of wd, and Ix is the floorfunction. Two cases are ofparticular interest,
namely" (i) if k < d < <db, then

(3.2b) Pr{C,+d, +d,+...+db > k} Z P(wb+l);

(ii) ifdi < < d < k, then

dl +"’+db
(3.2c) Pr{Cl,l+ ++...+ >_ k}-P w 1+ d

Proof It is illustrative to start with b 1. In this case, it is well known [26] that for
any pair of suffixes S1 and Sl+d there exists a word wd such that the common prefix Zk of
length k of S1 and SI+d can be represented as Zk wd Then (3.2) (in fact (3.2c)) is a
simple consequence of the above. The above rule is easy to extend to b suffixes. Let Zg be the
common prefix of length k of the following b suffixes S1, SI+d S+dl+...+d }. To avoid
heavy notation, we consider three cases separately. If k <_ dl < <_ db, then all suffixes are
separated by more than k symbols, so certainly there exists a word w such that Z wb+l,
which further implies (3.2b). Let us not consider the case dl _< < db <_ k; that is, there
are mutual overlaps between any two consecutive suffixes. Then, there must exist a word Wd

A GENERALIZED SUFFIX TREE 1191

of length d gcd(dl db) such that Z w[dk/dJ+(dl+’"+db/d)’d, which leads to (3.2c).
The general solution (3.2a) is a combination of the above two cases.

Finally, in the proof below we often use another representation for the bth order R6nyi
entropy, namely (we drop the index b according to our convention), under assumption (A1)
we have

pb+llog (}-w. (Wn))
(3.3) h2 lim

n--+x (b + 1)?’/

Indeed, the above is a simple consequence of the weak mixing condition (2.4a) of (A1) and
the fact that b is fixed.

3.1. Height of b-suffix trees. We now prove Theorem (i) formula (2.10) concerning
the (a.s.) behavior of the height. We discuss separately the upper and the lower bounds for
the convergence in probability. Finally, (a.s.) convergence is established.

Upper bound. We start with the representation (2.3b) for the height Hn. By Boole’s
inequality, the tail of the height distribution can be bounded from above by a sum of marginal
distributions of the self-alignments. In other words, using Lemma 4 we have

Pr{Hn > k} Pr{ max {Cl,l+dl l+d,+...+b} > k}
<d db <n

_< Pr{Cl,l+dl l+dl+...+db > k}
dl=l db=l

< n kinb-i P w -d
’Vd

The last sum can be estimated as follows

--dllObk-i) (A) cb-i p(wk)pb+l-i (wk)

<_(B) cb-i , pb+l (W)

where the first inequality (A) comes from the strong mixing condition of assumption (A1),
///a is a subset of all words of length k (i.eand the fact that the set of words of the form wa

1/V). The inequality (B) is a consequence of the well-known inequality on means (cf. [28]).
So, finally for some constant c, we have

(3.4) Pr{H >k}<_c()kinb-i+l(Epb(wk)) (b+l-i)/(b+l)

i=I

Now, let k l(1 + e) logn/h2J. Then, definition (2.6), identity (3.3), and the above
prove the following upper bound

Pr .{ Hn logn}
b

()> (I ’-- (:) h2 < C kinb+l-i
i=I

n(l+e)(b+l-i)

c
n_)b c(1 + e)b logb n

< w(k +
n nh2

1192 WOJCIECH SZPANKOWSKI

This completes our arguments for the upper bound of the height for the convergence in prob-
ability. The (a.s.) convergence will be established after the proof of the lower bound.

Lower bound. The lower bound is more intricate. The idea, however, is quite simple.
At first, we construct another b-suffix tree with height that is smaller than in the original
b-suffix tree, but which resembles independent tries (i.e., strings stored in such a suffix tree
are less correlated than in the original b-suffix tree). Secondly, we apply the second moment
method [36] to the modified suffix tree. The second moment method gives a sharp lower
bound for Pr{Hn > k}. In particular, using this method, we prove that Pr{Hn > k} --+ for
k [(1)2 lognJ.

To fulfill this plan, we start with a construction of the modified b-suffix tree. We partition
the sequence X’ into rn parts each composed of k consecutive symbols followed by a gap of
size d. Therefore, the size of each part is k + d and rn In! (k + d)/. In the following, we
assume that k O(logn) as well as d O(logn); hence, rn O(n/logn). We define new
strings Y(1) Y(m) as Y(i) yi(k+d).... X(i-i)(k+d)+l- "ik+(i-1)d+l where means deletion,
that is, Y(i) is the ((i 1)(k + d) + 1)st suffix of {Xk} with a gap of length d between the
(ik + (i 1)d + 1)st symbol and the (i(k + d))th symbol. For example, the first string Y(1)
consists of the first k symbols followed by all symbols after the (k + d)th symbol (the first
gap between k + and k + d is omitted). The second string Y (2) starts at position k + d +
and continues for the next k symbols after which the next d symbols of the second gap are
eliminated, and then the strings expand up to infinity. We build a b-suffix tree out of these
rn strings Y (1) Y (m). We denote such a b-suffix tree as 7-m since for a typical sequence
Xk these rn strings resemble independent keys in a b-trie; that is, they are weakly dependent
on their first k symbols.

We denote by Hm the height of the modified b-suffix tree 7-m. Certainly, this height is
stochastically smaller than the height Hn in the original tree. This can be proved formally by
the Sample Path Theorem [35]. As a simple consequence of this fact, we have

(3.5) Pr{Hn >k}> Pr{Hm >k} for rn<n.

We estimate the probability {Hm > k} by the second moment method (cf. [8], [36]). We
need some additional notation. Let (il, i2 ib+l) be a b + dimensional vector, and
defineasetDasD={i" <ij <rnforl <j <b+l}.LetalsoD2=DxD,whichwe
additionally partition into two sets D12 and D2 such that

(3.6) D1e {(i, j) (i ib+l) f3 (jl jb+) 0},

and D22 contains the other pairs (i, j) of D2. Now, let us define an event Ai {Ci >_ k},
where we use Ci as a short notation for the self-alignment Ci, ib+l. Note that Pr{Hm > k}
Pr{UiDAi}. Then, the second moment method asserts that (cf. [8])

(3.7) Pr{Hm > k} Pr{U Ai} >
(-iD Pr{Ai})2

iD]iD Pr{Ai} + -.(i,j)eD Pr{Ai f3 Aj}

We will show that for k /(1 e)2 lognJ the right-hand side of (3.7) tends to one, hence

log n} -- as n --+ x which is the desired inequality.also by (3.5) Pr{Hn > (1 e)E
We must now evaluate the terms in the right-hand side of (3.7). Using the strong

mixing condition of (A2) and arguing as in the upper bound case, we immediately show that
for k O(logn) (cf. [38])

(mb- o(bb))(1-ot(dn))bEpb(w) < Pr{Ai} < (mb --o(mb))(1 +ot(dn))bEpb(w),
i6D

A GENERALIZED SUFFIX TREE 1193

where the length of the gap dn is explicitly shown to be a function on n. The probability
Pr{Ai fq Aj} is more difficult to estimate. However, on the set D12, suffixes of Tm do not
coincide; hence, we have (cf. [38])

Pr{AifqAj) < (1 +ot(dn))2b+lE2pb(w).
(i,j)6D

In the set D2, there exists at least one pair of suffixes that is the same for and j. For
example, if (1, 5) and j (1, 6), then Pr{Ai (q Aj} -]wk p(w3), since the first suffix
is common to and j. In general, the following is true:

Pr{Ai fq Aj} P(wb+l) <(A) C1 Z e2b+l(uok)

(B) C1 pb+l (W) Cl (E pb (tOk))2-1/(b+l)

where (A) follows from the strong mixing conditions, and (B) is a consequence ofthe following
known inequality (cf. [21], [36])

e>r == Z pe(w) < pr (Wk)
1/r

logn]Putting everything together, the inequality (3.7) becomes for k /(1)

n(b+l)(l_
Pr{Hm > k} >

mb+l(1 _ot(dn))b 4- [1 O(m-1)] (1 + ol(dn))2b+l

(1 (d.))

-1

Substituting m (R)(n/logn) and dn (R)(log n), we finally obtain
(3.8)

Pr Hm < (1-6)221ogn <cl
log,+ n log n
n(+l 4-C2 4- c3(2b 4- 1)bc2 (log n) 4- O(ot3(dn)),

which proves the lower bound for Hm, and hence, by (3.5) also for our original b-suffix tree.
In summary, the upper bound (3.5) and the above lead to the following:

(3.9) Pr { Hn
logn h2

log n
>e _<Cl

n
+c2ot2(logn)-+0

for some constants cl and C2. This proves Hn/log n 1/h2 (pr.).
Almost sure convergence. The rate of convergence in (3.9) does not yet warrant the

application of the Borel-Cantelli lemma to prove almost sure convergence. But due to the
log n is a slowly increasing function of n, wefact that Hn is nondecreasing in n and an

can establish (a.s.) convergence for the height. Indeed, as in [11] (cf. also [38]), we note
that Hn > an infinitely often (i.o.) if n2r > a2r-1 (i.o.) in r, and similarly Hn < an (i.o.)
if n2r < a2r+l (i,Oo)o But the latter events hold indeed infinitely often due to (3.9) and the
Borel-Cantelli lemma since

(3.10) Pr
r=O

O2rzk
log(2r+l) h2

1194 WOJCIECH SZPANKOWSKI

provided

Eot2(r) < .
r--0

This completes the proof of Theorem 1(i) concerning the height H(b) of a b-suffix tree.

3.2. The shortest feasible path of b-suffix trees. For the upper bound we use the fact
that sb) is nonincreasing in b; that is, Sn(b) _< Sn(). Note that the first Sn levels of any suffix tree
are "filled" with internal nodes (i.e., there is no "hole" in the tree up to this level). In other
words, up to the level sn a suffix tree resembles a complete tree. This fact was used in [38]
(cf. [30]) to establish the following bound

(3.11) Pr Sn
(> (l+)-llogn _<

n"
This upper bound holds also for b-suffix trees since the parameter h does not depend on b.

The rest of this section is devoted to the lower bound for Sn(b). As in the case of the height,
we drop hereafter the upper index b in the notation of the shortest feasible path. We proceed
as in the case of the lower bound for the height; that is, we define the modified suffix tree

7-m composed of rn weakly dependent strings Y (1) Y (m), which are defined precisely in

3.1. Again, by the Sample Path Theorem we conclude that the shortest feasible path Sm in 7"m
is stochastically smaller than the shortest feasible path sn in the original b-suffix tree, which
implies the following

Pr{sn < k} < Pr{sm < k}.

To estimate the probability Pr{sm < k} in the modified tree 7-m, we need some more
notation. Let Pmin(k) minow{P(w)} and Ci(w) be the length of the longest prefix of
the word w and the b + suffixes belonging to (i ib+). We assume that 6 D,
where D is the set of all (b + 1)-tuples from the set m}. Note now that {Sm < k}
implies that there must exist a word w 6 142 such that for all 6 D the self-alignment Ci is
smaller than k; that is, Ci < k. Using the strong or-mixing condition of (A2) we have

Pr{sm < k} < E Pr{N[CI(w/) < k]} < E(1 + ol(dn))mb(1 P(w))m’

Wk iD ")k

< (1 -ql-ol(dn))mb y(1 b Vk bCPmin(k))mb < (1 + ot(dn))mb (1 (k))mb.Pmin

log n] and m (R) (n/ log n) while dn (R) (log n). Then,Now, let k L(1 e)

Pr sn < (1-e)ll logn _< (1 +ot(logn))mexp(--nb/2/logbn);

and therefore, together with condition (2.9), this leads to the lower bound of the form

(3.13) Pr Sn < (1 e)l 1ogn < cn exp(--neb/2/logb n).

The upper bound (3.11) and the lower bound (3.13) establish the convergence in proba-
bility of the shortest feasible path sn in a b-suffix tree. The almost sure convergence can be

A GENERALIZED SUFFIX TREE 1195

derived in an identical manner as for the height since S is nondecreasing in n, and for n s2
with some fixed s we can apply the Borel-Cantelli lemma (cf. also [38]).

The proof for the shortest depth gn is simple. Since sn < fin, we need only an upper bound.
Clearly, a result for b suffices for the proof. Note that either s or, in the same
branch (where s is located) there are two suffixes, say numbers one and two, with common
prefix of length greater than gn. Hence,

Pr{n > k} _< Pr{sn > k} + Pr{C1,2 > k}.

Then, (3.12) and the bound for the self-alignment derived in 3.1 (just above (3.4)), for
log n] lead to the following estimate

Pr(gn > k} < + nh2(l+e)/hl,

which completes the proof of Theorem 1.

3.3. The typical depth in b-suffix trees. In this section, we prove Theorem 2(i) and
2(ii). We start with the convergence in probability (pr.) for the depth of insertion Ln. This
will also prove the convergence in probability for the typical depth Dn and the depth of a
given suffix Ln (m), since all of these quantities are asymptotically equally distributed. The
last assertion is easy to prove. Roughly speaking, it must hold in the suffix tree 7-m defined in
3.1, at least when (2.9) takes place. Indeed, consider for example Dn and Ln. In "m the next
inserted suffix is "almost" independent of the previous suffixes stored already in Tm. Hence,
it randomly selects an external node which implies that Lm and Dm are distributed in a similar
manner. But, as it is easy to see, the typical depths and depths of insertion in 7-m and T are
asymptotically equally distributed. Details are left to the interested reader.

The idea of the proof in this section is quite different from the one discussed before, and it
resembles Pittel’s proof [30] of the convergence in probability of the depth in an independent
trie. It is based on counting, and it is quite typical for the information theory community. For
the convenience of the reader, we briefly review the asymptotic equipartition property (AEP)
[5], [43], which is a direct consequence of the Shannon-McMillan-Breiman theorem [5]" For
a stationary and ergodic sequence {Xk}=l, the state space yn can be partitioned into two

sets, namely, "good states" set Gn and "bad states" set B, such that for Xf Gn andfor
sufficiently large n we have P(X) > e for any e > O, and P(B) <_ e. Moreover, the
nth order probability distribution of Xf
where h is the entropy.

We concentrate on Ln. Define and event An such that

(3.14a) An= {X" lLn/logn-1/hl

For Theorem 2 (i) it suffices to prove that Pr{An} --+ 0 as n -- zxz. Also, for some el > 0 and

no >_ n we define another event (i.e., set of "good states")

(3.14b) Gno {X" n-1 log P-I(X)- hi < elh, n > no}.

We partition An to obtain

(3.15a) P(An) < Pr{An and Gn0 and Ln < 6 logn} + Pr{Ln > 6 logn} + P(Bno),

where > 1/h2 and

(3.15b) Bno sup{X" In-1 log P-(X)- hi > elh,
n>no

>no}.

1196 WOJCIECH SZPANKOWSKI

By AEP, we have limn0--,o P(B,,o) 0. In addition, from the proof of the upper bound for
the height Hn we know that Pr{Ln >_ 81ogn} _< c/n-l/h2 for 8 > 1 hence, the second
probability in the above also tends to zero.

In view of the above, we can now deal only with the first term in (3.15a), which we denote
for simplicity by P1 (AnG,). This probability can be estimated as follows

(3.16a) Pl(AnGn) <_ ZPr{Ln =r; Ilog(p-l(x))/r-hl < 51h, r >_ r/0}= e(nr),
rECn rECn

where

(3.16b) C={r’lr/logn-1/hl >e/h and r <logn}.

Note that in (3.16) we restrict the summation only to "good states" represented by G. There-
fore, for a word Wr Gn we have with high probability

(3.17) Cl exp{-(1 + el)hr} _< P(wr) <_ C2 exp{-(1 el)hr}.

The next step is to estimate the probability Pr{L r}. But the event {Ln r} takes
place if: (i) there exists an (i ib, n) and Wr- such that Ci Wr- (call this event

Fn); and (ii) for all other j (jl jb, n) : i, and all Wr, we have Cj =/: Wr (call this event
F). Then,

(3.18) Pr{Ln r} < cnb , p(FI,, C’l F2n).

Now, we are in position to prove Theorem 2(i). We first establish the upper bound. Set
r > (1 + e)logn b /nb(l+)(1-el)-. Hence, by the right-hand side of (3.17) we have P(Wr_I) <_
But, using the mixing conditions of (A1) we have P (Fin) < cP (Wr) P (Wrb_l), and this together
with the above leads to (for e’ < (1 el) e)

c
(3.19) P(n r) <

and therefore, by (3.16) and the fact that the cardinality of C is smaller than log n, we have
P(A,) < clogn/n as needed for the upper bound.

Now we consider the lower bound. We apply here the same approach as adopted in the
previous lower bounds. So, let Tm be the suffix tree built from the strings Y (1) Y(m)
as defined before. In particular, the depth of a given suffix, say the first one, Lm (1) in Tm is
bounded from above by the depth Ln (1) in the original b-suffix tree. Then,

< Pr Lm<(1-e)
h

since L and L, (1) have asymptotically the same distribution.
Now, we pick up the derivation at (3.18) in which the first nb should be replaced by mb.

We estimate the probability p(Fln F2,,) as follows. Using the strong c-mixing condition of
(A2), we have

P(Fm 0 F2m) <_ cP(wr)P(wbr_l)(1 -t- ot(dn))mb (1 p(wbr))mb.
log n.Let now r < (1)-h--, hence, by the left-hand side of (3.17) and (3.18) and the same

argument as in the lower bound for the shortest feasible path, we finally obtain in (3.16a) for
m 0 (r//log n)

(3.21) P(nr) < cexp(--nb/2/ logb n)

A GENERALIZED SUFFIX TREE 1197

provided (2.9) holds.
Putting everything together, we note that the cardinality ofthe set C,, in (3.16b) is bounded

from above by 3 logn; hence, by (3.19) and (3.21), our estimate (3.15) becomes

(3.22) P(An) <_ clogn exp(-n’//log’ n) + n + P(B,o),

which suffices for the proof of Theorem 2(i).
To complete the proof of Theorem 2, we need to establish the almost sure convergence

for the depth L(m). But this is an immediate consequence of the fact that the depth L(m)
is a nondecreasing sequence in n. The formal proof is along the same lines as for the height,
and is omitted. This completes the proof of Theorem 2 and the entire analysis.

In passing, we note that a slight extension of the above proof will directly lead to Shields’s
result concerning the external path length, namely, En(b) / n log n / h (a.s.) for Bernoulli
and Markovian models.

Acknowledgment. I thank two referees for detailed comments that led to an improvement
of the presentation in this paper. I also thank Dr. Pavel Pevzner for pointing out reference
[22]. And last but not least, I am grateful to Professor Boris Pittel for numerous discussions
concerning this research.

REFERENCES

A. V. AHO, J. E. HOt’CROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, 1974.
[2] A. AIOSTOLICO, The myriad virtues ofsuffix trees, Combinatorial Algorithms on Words, Springer-Verlag, ASI

F12 (1985), pp. 85-96.
[3] A. APOSTOLICO AND E P. PREPARATA, Optimal off-line detection of repetitions in a string, Theoret. Comput.

Sci., 22 (1983), pp. 297-315.
[4] A. Ar’OSTOLCO AND W. SZr’ANKOWSIL Self-alignments in words and their applications, J. Algorithms, 13

(1992), pp. 446-467.
[5] P. BILNGSLF>,’, Ergodic Theory and Information, John Wiley & Sons, New York, 1965.
[6] A. BLUMER, A. EHRENrUCHT, AND D. HAUSSLE,Average size ofsuffix trees andDAWGS, Discrete Appl. Math.,

24 (1989), pp. 37-45.
[7] R. BOYER AND J. MooE, Afast string searching algorithm, Comm. ACM, 20 (1977), pp. 762-772.
[8] K. L. CHUNG AND P. ERDOS, On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc., 72

(1952), pp. 179-186.
[9] W. CHANG AND E. LAWLER, Approximate string matching in sublinear expected time, Proc. 1990 FOCS, St.

Louis, MO, 1990, pp. 116-124.
10] I. CsIszAAND J. KORNER, lnformation Theory: Coding Theoremsfor Discrete Memoryless Systems, Academic

Press, New York, 1981.
[11] L. DEvoYE, W. SZ’ANKOWSKI, ANO B. RAS, A note on the height ofsuffix trees, SIAM J. Comput., 21 (1992),

pp. 48-53.
12] Z. GALIL ANO K. PAdre, An improved algorithmfor approximate string matching, SIAM J. Comput., 19 (1990),

pp. 989-999.
13] P. GILHAM AND H. L. WEITH, personal communications.
14] G.H. GONNET AND R. BAEZA-YATES, Handbook ofAlgorithms andData Structures, Addison-Wesley, Reading,

MA, 1991.
15] P. GRASSBERGER, Estimating the information content of symbol sequences and efficient codes, IEEE Trans.

Inform. Theory, 35 (1991), pp. 669-675.
[16] L. GUIBAS AND A. ODLYZKO, Periods in strings, J. Combin. Theory Set. A, 30 (1981), pp. 19-43.
[17] L. GUIBAS AND A. ODLYZKO, String overlaps, pattern matching, and nontransitive games, J. Combin. Theory

Ser. A, 30 (1981), pp. 183-208.
18] P. JACQUET AND W. SZPANKOWSKI, Analysis ofdigital tries with Markovian dependency, IEEE Trans. Inform.

Theory, 37 (1991), pp. 1470-1475.
19] Autocorrelation on words and its applications: Analysis of suffix trees by string-ruler approach, J.

Combin. Theory, Ser. A, to appear.

1198 WOJCIECH SZPANKOWSKI

[20] E JACQUET, B. RAIS, AND W. SZPANKOWSKI, Compact Suffix Trees Resemble PATRICIA Tires: Limiting Distri-
bution ofDepth, CSD-TR-92-048, Purdue University, West Lafayette, IN, 1992.

[21] S. KARLIN AND E OST, Counts of long aligned word matches among random letter sequences, Adv. in Appl.
Probab., 19 (1987), pp. 293-351.

[22] R. KARP, A characterization of the minimum cycle mean in a digraph, Discrete Mathematics, 23 (1978), pp.
309-311.

[23] D. KNUTH, The Art of Computer Programming. Sorting and Searching, Vol. III, Addison-Wesley, Reading,
MA, 1973.

[24] D. KNUTH, J. MORRIS,AND V. PRATT, Fastpattern matching in strings, SIAM J. Comput., 6 (1977), pp. 323-350.
[25] A. LEMPEL AND J. Zlv, On the complexity offinite sequences, IEEE Inform. Theory, 22 (1976), pp. 75-81.
[26] M. LOTIAIRE, Combinatorics on Words, Addison-Wesley, Reading, MA, 1982.
[27] E.M. McCREIGI-IT, A space economical suffix tree construction algorithm, J. Assoc. Comput. Mach., 23 (1976),

pp. 262-272.
[28] G. HARDY, J. E. LITTLEWOOD, AND G. POLYA, Inequalities, Cambridge University Press, MA, 1989.
[29] D. ORNSTEIN AND B. WEISS, Entropy andData Compression Schemes, IEEE Trans. Inform. Theory, 39 (1993),

pp. 78-83.
[30] B. PITTEL, Asymptotic growth ofa class ofrandom trees, Ann. Probab., 18 (1985), pp. 414-427.
[31 ,Paths in a random digital tree: Limiting distributions, Adv. in Appl. Probab., 18 (1986), pp. 139-155.
[32] B. R,IS, P. JACQUET, AND W. SZPANKOWSKI, Limiting distribution for the depth of PATRICIA tries, SIAM J.

Discrete Math., 6 (1993), pp. 197-213.
[33] L. V. ROMANOVSKI, Optimization of stationary control of a discrete deterministic process, Cybernetics, 3

(1967), pp. 52-62.
[34] P. SHIELDS, Entropy and prefixes, Ann. Probab., 20 (1992), pp. 403-409.
[35] D. STOYANA, Comparison Methodsfor Queues and Other Stochastic Models, John Wiley & Sons, Chichester,

1983.
[36] W. SZPANKOWSKI, On the height ofdigital trees and related problems, Algorithmica, 6 (1991), pp. 256-277.
[37] Patricia tries again revisited, J. Assoc. Comput. Mach., 37 (1991), pp. 691-711.
[38] Asymptotic properties of data compression and suffix trees, IEEE Trans. Inform. Theory, (1993), to

appear.
[39] (Un)Expected behavior of typical suffix trees, Third Annual ACM-SIAM Symposium on Discrete

Algorithms, Orlando, FL, 1992, pp. 422-431.
[40] M. WATERMAN, Mathematical Methodsfor DNA Sequences, CRC Press, Inc., Boca Raton, FL, 1991.
[41] P. WEINER, Linear Pattern Matching Algorithms, Proc. 14th Annual Symposium on Switching and Automata

Theory, 1973, pp. 1-11.
[42] U. VISI-IKIN, Deterministic sampling---A new techniqueforfastpattern matching, SIAM J. Comput., 20 (1991),

pp. 22-40.
[43] A. WYNER AND J. ZIV, Some asymptotic properties of the entropy of a stationary ergodic data source with

applications to data compression, IEEE Trans. Inform. Theory, 35 (1989), pp. 1250-1258.
[44] J. Zv AND A. LEMPEL, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory,

23, 3 (1977), pp. 337-343.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1199-1217, December 1993

1993 Society for Industrial and Applied Mathematics
OO5

FINDING THE HIDDEN PATH:
TIME BOUNDS FOR ALL-PAIRS SHORTEST PATHS*

DAVID R. KARGERt, DAPHNE KOLLERt, ArI STEVEN J. PHILLIPS

Abstract. The all-pairs shortest-paths problem in weighted graphs is investigated. An algorithm--the Hidden-
Paths Algorithm--that finds these paths in time O(m*n + n log n), where m* is the number of edges participating
in shortest paths, is presented. The algorithm is a practical substitute for Dijkstra’s algorithm. It is argued that m*
is likely to be small in practice since m* O(n log n) with high probability for many probability distributions on

edge weights. An (ran) lower bound on the running time of any path-comparison-based algorithm for the all-pairs
shortest-paths problem is also proved. Path-comparison-based algorithms form a natural class containing the Hidden-
Paths Algorithm, as well as the algorithms ofE. W. Dijkstra [Numer. Math., (1959), pp. 269-271] and R. W. Floyd
[Comm. ACM, 5 (1962), p. 345]. Lastly, generalized forms of the shortest-paths problem are considered, and it is
shown that many of the standard shortest-paths algorithms are effective in this more general setting.

Key words, all-pairs shortest paths, weighted graphs, lower bound, path comparison, algorithm, random graphs

AMS subject classifications. 68R10, 05C85

1. Introduction.

Oh what a peaceful life is theirs
Who worldly strife and noise have flown
And follow the hidden path from cares
Which none but the wise of the world have known.

Fray Luis de Leon, c. 1527-1591

Let G be a weighted directed graph with n vertices and m edges. The all-pairs shortest-
paths problem is to find a shortest path between each pair of vertices in G.

Our contributions to this problem lie in three areas. In 2 we present a new algorithm
for all-pairs shortest paths, called the Hidden-Paths Algorithm, which works on graphs with
nonnegative edge weights. Let an edge be called optimal if it is a shortest path, and let m*
be the number of optimal edges in the graph. The Hidden-Paths Algorithm runs in time
O(m*n + n2 log n) if we use a Fibonacci heap 12] to implement a priority queue; the running
time increases to O(m*n log n) if a standard heap is used instead. The algorithm operates by
running Dijkstra’s single-source shortest-paths algorithm [7] in parallel from all nodes in the
graph, where information gained at one node is used to reduce the work done at other nodes.
Our algorithm is practical and simple to implement. Is is also likely to be fast in practice
because it is known [14], [18], [26] that m* O(n logn) with high probability when the
input graph is the complete graph with edge weights chosen independently from any of a large
class ofprobability distributions, including the uniform distribution on the real interval [0, or
the uniform distribution on the range n2 }. The Hidden-Paths Algorithm is also useful
when the graph has (possibly negative) integer edge weights. Such a graph can be reweighted
by using an o(mn) run-time scaling algorithm for single-source shortest paths (see for example,
Gabow and Tarjan [15], Goldberg [16]) before applying the Hidden-Paths Algorithm. If the
edge weights are polynomial-sized integers, the combined running time of Goldberg’s scaling
algorithm and the Hidden-Paths Algorithm is O(m*n + n2 log n + V/-m log n).

Our second contribution is a new lower bound, given in 3. Many algorithms for the
all-pairs shortest-paths problem use the edge-weight function only in comparing the weights

*Received by the editors September 3, 1991; accepted for publication (in revised form) July 22, 1992. This
research was supported by a National Science Foundation Graduate Fellowship and by National Science Foundation
grants CCR-8858030-03 and CCR-9010517. Parts of it were performed while D. Koller was at IBM Almaden
Research Center, San Jose, California. A preliminary version of this paper appeared in the Proceedings of the IEEE
32nd Annual Symposium on Foundations of Computer Science, 1991, pp. 560-568.

Department of Computer Science, Stanford University, Stanford, California 94305.

1199

1200 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

of paths in the graph. We call such algorithms path-comparison based, and we prove that on
directed graphs any path-comparison-based algorithm requires f2 (mn) time in the worst case
(in the worst case m* m). The idea of the lower bound is to construct a weighted directed
graph with (R)(mn) directed paths. If an algorithm 4 fails to examine any path, we show how
to modify the weight function so that the unexamined path is optimal, without 4 detecting
the change. The directed graph we use is acyclic, so that the lower bound holds even for this
restricted class of directed graphs.

In proving the lower bound we show that any path-comparison-based algorithm requires
f2(mn) time even to verify the output of an all-pairs shortest-paths algorithm. Thus in the
path-comparison model verification is as hard as finding the paths. We also show a lower
bound of S2 (n 3) for verifying that the edge weights of a graph satisfy the triangle inequality.
These lower bounds also hold for randomized path-comparison-based algorithms.

Finally, we investigate generalized shortest-paths problems in which the weight of a path
is not necessarily the sum of the weights of its edges. For example, one might define the
weight of a path to be the maximum of the weights of its edges. In 4 we show that many
all-pairs shortest-paths algorithms work, even for generalized path-weight functions, in their
normal time bounds. We also extend our lower-bound proof to show an f2 (mn) lower bound
on the running time of any algorithm that solves the all-pairs shortest-paths problem for certain
generalized path-weight functions.

Previous work. The most widely known algorithms for the all-pairs shortest-paths prob-
lem are those of Floyd [9] and of Dijkstra [7]. Floyd’s algorithm works by dynamic program-
ming and runs in time tO (n3). On graphs with nonnegative edge weights Dijkstra’s algorithm
for the single-source shortest-path problem can be run from each vertex (as noted by Johnson
[21]), resulting in a running time of (R)(mn + n2 logn) if Fibonacci heaps [12] are used to
implement priority queues. A variant of Dijkstra’s algorithm developed by Spira [30] has
an expected running time of O(n2 log2 n) if the edge weights are independently and iden-
tically distributed random variables. Bloniarz [3] provided an algorithm with an expected
running time of O(n2 log n log* n). Another algorithm, developed by Frieze and Grimmet
[14], achieves an expected running time of O(n2 log n), but it is suitable only for random
graphs. All of these algorithms are path-comparison based, so that by the lower bound of 3
they have a worst-case running time of f2 (mn). Fast algorithms exist for special cases of the
all-pairs shortest-paths problem, e.g., for cases in which the graph is unweighted [8] or planar
[10].

Other researchers have looked at shortest paths from the perspective of matrix multiplica-
tion. Fredman [11] showed that O(n5/2) comparisons between sums of edge weights suffice
to solve the all-pairs shortest-paths problem. He used this fact to do preprocessing and pro-
duced an algorithm that runs in time o(na(loglogn / log n)l/3). Fredman’s algorithm was
simplified and the running time was decreased slightly by Takaoka [32]. For the important
special cases in which the graph is unweighted or the edge weights are bounded integers, the
algorithms of Alon, Galil, and Margalit [1] and of Seidel [29] use fast matrix multiplication
to find all-pairs shortest distances very quickly. For example, Seidel’s algorithm finds all-
pairs shortest distances in an unweighted undirected graph in time n log n, where o9 is the
exponent of matrix multiplication (the current bound is o9 < 2.376, due to Coppersmith and
Winograd [5]). Alon, Galil, Margalit, and Naor [2] showed how to extend these algorithms to
find the paths, rather than just the distances, with a polylogarithmic slowdown. These results
for matrix-based algorithms should be contrasted with the lower bound in 3; such algorithms
are not path-comparison based, since they perform comparisons involving sums of weights
of edges that do not form a path. The use of such comparisons distinguishes the algebraic

FINDING THE HIDDEN PATH 1201

decision tree model from the path-comparison-based model. It is surprising that one must
allow such comparisons in order to improve on the (n 3) bound.

An algorithm similar to the Hidden-Paths Algorithm, with the same time bound, has been
developed independently by McGeoch [27]. A variant of our algorithm has been developed
independently by Jakobsson [20] as a transitive closure algorithm. Both of these algorithms
require more complex data structures than those used by the Hidden-Paths Algorithm.

Lower bounds on the computational complexity of the all-pairs shortest-paths problem
have been proved in some other models. Kerr [22] has shown that if the permissible opera-
tions are addition and minimum in a straight-line computation, any algorithm requires (n 3)
running time. Regarding algebraic decision tree complexity, Spira and Pan [31 showed that
f2 (n 2) comparisons between sums of edge weights are necessary for solving the single-source
shortest-paths problem.

Generalized weight functions have been studied extensively in various contexts, and
standard algorithms have been extended to work in generalized settings (see, for example,
Frieze [13]). In particular, the all-pairs shortest-path problem has been studied in arbitrary
semirings, generalizing the semiring of reals with minimum and addition (see Zimmerman
[34] for a survey and further references). This generalization provides a common framework
for such problems as the construction of regular expressions for the languages accepted by
finite automata 19]. Lengauer and Theune [25] extended standard algorithms to a yet more
general framework. Knuth [23] generalized the notion of paths to allow for compound edges,
extending Dijkstra’s algorithm to apply to derivations in context-free grammars.

2. The Hidden-Paths Algorithm. In this section we describe the Hidden-Paths Algo-
rithm, which solves the all-pairs shortest-paths problem in a directed graph G (V, E) with
nonnegative edge weights. In order to present our algorithm we need to make the following
definitions.

2.1. Preliminary definitions. We use (Ul,/,/2 Uk) to denote a path from Ul to u
that goes through the vertices ua, u_. The symbol (u - v) denotes some path from
u to v (which may be the edge (u, v) if it exists). The symbol (u , v , w) denotes the
concatenation of the paths represented by (u v) and (v w), and (u, v w) denotes the
concatenation of the edge (u, v) to the path (v w). The length of a path (u u) is

I(u,..., u)l k- 1.

Let (u, v)II denote the weight of the edge (u, v). We extend the weight function by setting
(u,)II ec for any (u, v) (E and by setting (u, u)II 0, so that (u, v)II is defined for

all pairs u, v. The weight of a path (ul uk) is
k-1

II(u, u)ll II(u/,
i=1

DEFINITION 1. A path (u ---, v) is optimal if for any other path (u -,-,’ v), (u -, v)II _<
II(u "’ v)ll.

DEFINITION 2. An edge is optimal if it is an optimal path between its endpoints.
DEFINITION 3. The number of optimal edges in G is denoted by m*(G).
FACT 2.1. An edge is optimal ifand only if it participates in some shortest path.
Note that in an unweighted graph each edge is optimal, and so m* m and our algorithm

provides no improvement.
DEFINITION 4. The distance d(u, v) between two vertices u and v is the weight of an

optimal path between them.

1202 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

2.2. Description of the algorithm. The Hidden-Paths Algorithm presented in this sec-
tion finds a shortest path between every pair of vertices in a.directed graph. Essentially, it
runs Dijkstra’s single-source shortest-paths algorithm in parallel for all points in the graph.
The different single-source threads are integrated in a way that permits the use of intermediate
results from one thread to reduce the work done by another. There is a similarity here to the
all-pairs min-cut algorithm of Gomory and Hu 17], which uses the information gained during
one min-cut computation to speed up the other computations. In a sense, the Hidden-Paths
Algorithm discovers the hidden "shortest-path structure" of the graph by pruning away the
unnecessary edges. We note that the algorithm actually constructs each path in reverse order,
by adding edges to the tail of the path. This facilitates forward traversal on the constructed
paths. It is simple to modify the algorithm to construct the paths in the form typically used in
Dijkstra’s algorithm. Here we give an intuitive description of the Hidden-Paths Algorithm; a
precise presentation can be found in Figs. and 2.

For each vertex v a list ES of the optimal edges directed into v that have been found so far.
A path array P, which for every pair u, v describes the current best path from u to v.
Each entry P[u, v] consists of

first The first vertex on this path (other than u itself).
weight The weight of the path.
heaptr A pointer to the heap entry for this path, if one exists.
A heap H of pointers to candidate paths that appear in the path array, ordered by weight.

FIG. 1. Data structures maintained by the Hidden-Paths Algorithm.

Initialize
Initialize the heap of pairs u :/: v ordered by the weight (u, v)II.
For all u, v

Set P[u, v].weight := [l(u, v)II.
Set P[u, v].heaptr to point to appropriate heap entry.

For all v set ES to be empty.

While (heap not empty and weight of top item - cxz) do
Step Remove the top element (u v) from the heap.
Step 2 If (u v) is an edge, then

Add (u, v) to E*.
For each w, Update(u, v, w).

Step 3 For all edges (t, u) 6 E*
Update(t, u, v).

Procedure Update(x, y, z):
If P[x, y].weight + P[y, z].weight < P[x, z].weight, then

Set P[x, z].weight := P[x, y].weight + P[y, z].weight.
Set P[x, z].first := y.
Change the priority of x, z in the heap to P[x, z].weight.
Modify P[x, z].heaptr accordingly.

FIG. 2. The Hidden-Paths Algorithm.

The Hidden-Paths Algorithm maintains a heap containing, for every two vertices u - v,
the best path from u to v found so far. The heap is ordered according to path weight. It is

FINDING THE HIDDEN PATH 1203

initialized to contain for each pair u :/: v a path of weight (u, v)II (recall that if (u, v) (E,
then (u, v)II oo). The path at the top of the heap is always an optimal path.

At each iteration the algorithm removes a path, say, (u -. v), from the top of the heap (a
delete-min operation). This is an optimal path from u to v. This path is now used to construct
a set of new candidate paths. If a new candidate path (x - z) is shorter, it replaces the current
best path from x to z in the heap. This maintains the optimality of the path at the top of the
heap.

The complexity of the algorithm is a function of the number of candidate paths created,
and so we do not want to create too many. If (u --.+ v) is an edge, then the candidate paths
are all those paths of the form (u, v w). If (u v) is a path that is not an edge, then
the candidate paths are all those of the form (t, u v), where (t, u) is an optimal edge that
has already been found. Note that in the construction of candidate paths the edge is always
concatenated to the tail.

The following theorem shows that constructing this limited set of candidate paths suffices
for finding a shortest path between each pair of vertices in the graph. The analysis in 2.3
shows that the resulting complexity is O(m*n + n2 log n).

Before we state the theorem it is convenient to make one more definition.
DEFINITION 5. For any two paths p and q, p -< q if (lip[I, [p[) < ([[ql[, [q[) according

to lexicographic order.
THEOREM 2.2. The Hidden-Paths Algorithm finds an optimal path between every con-

nected pair of vertices in the graph. Furthermore, it discovers them in order of increasing
weight.

Proof. Let Opt be the set of optimal paths found so far. We prove the theorem by induction
on the size of Opt. The inductive hypothesis is that at the beginning of each iteration, when p
is the item at the top of the heap, the following hold:

1. p is an optimal path.
2. Opt contains an optimal path between each pair of vertices of distance less than p 11.
3. For each pair of vertices u and v for which an optimal path has not yet been found the

heap contains a path of minimal weight among those of the form (i) the edge (u, v)
and (ii) paths having the form (u, w v) for (u, w) and (w -, v) in Opt.

The inductive hypothesis holds trivially at the beginning of the first iteration, since at that
time p is the shortest edge in the graph, Opt is empty, and the heap contains all the edges.
The construction of candidate paths in Steps 2 and 3 of the algorithm (see Fig. 2) ensures that
condition 3 always holds at the beginning of an iteration.

It remains to prove that when p (u v) is the item on top of the heap, conditions
and 2 hold for p. This can be false only if there exists an optimal path r (w y), such that
r < p 11, and no optimal path from w to y has been placed in the heap. Condition is violated

if w u and y v; condition 2 is violated otherwise. Let r be a smallest such path according
to -<. Since all edges were placed in the heap during the initialization step, r must be a path
of length at least two. Assume r (w, x y). It is clear that (w, x) -< r and (x -- y) -< r

and that both are necessarily optimal. By our choice of r some optimal path (x ,-- y) must
have been placed in the heap. The edge (w, x) was placed in the heap during initialization
and was never replaced by a shorter path. Since I](x "’ y)ll II(x " y)ll _< Ilrll < Ilpll, the
path (x .-’ y) must have already been deleted from the heap and placed in Opt. Similarly,
the edge (w, x) must also be in Opt. Therefore, by condition 3 of the inductive hypothesis the

1A minor optimization is to consider only vertices w such that (v w) has already been discovered to be
optimal. The algorithm remains correct, and fewer arithmetic operations are performed. An extra field opt in the path
array P can be used to mark whether or not a path has already been found to be optimal.

1204 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

TABLE
Running time of the Hidden-Paths Algorithm.

Operation No. of ops Cost for std. heap Cost for Fib. heap

Create O(n2) O(n2) O(n2)
Priority change O(m*n) O(m*n logn) O(m*n)
Delete-min O(n2) O(n log n) O(n log n)
Total O(m*n logn) O(m*n + n logn)

path (w, x ,-,’ y), whose weight is equal to Ilrll, must have been constructed as a candidate
path, and thus a path from w to y of no greater weight must be in the heap. This path is an
optimal path from w to y, contradicting the assumption that no such path was placed in the
heap.

2.3. Analysis of running time. Let us count the number of operations used by the algo-
rithm. In the initialization step a heap of size O(n2) is created; it is clear that the cost of the
other operations in this step is subsumed by the cost of the heap operations. The While loop
is iterated at most n (n 1) times since in each iteration an optimal path is found. Therefore,
the algorithm executes at most n (n 1) delete-min operations in Step 1.

It remains to count only the time taken by Steps 2 and 3. Note that in each of these steps
the calls to Procedure Update subsume all other operations. It therefore suffices to count calls
to Procedure Update. We amortize the calls over the edges of the graph. In Step 2 charge
the O(n) calls to the edge (u, v). In Step 3 charge a call to Update(t, u, v) to the edge (t, u).
Observe that in either case it is an optimal edge that is being charged. We claim that, in fact,
only O (n) updates are charged to any edge. This is clear for Step 2 since no edge is removed
from the heap more than once. For Step 3 note that at most n optimal paths (u v) are
found leaving any particular vertex u and that Procedure Update is called only when (u v) is
such an optimal path. Since only optimal edges are charged and each is charged O(n) updates,
the total number of updates charged is O(m*n). Procedure Update requires a constant number
of primitive operations plus at most one priority change operation.

The complexity of the algorithm depends on the implementation of the heap (see Table 1).
If a standard heap implementation is used, the time for a priority change operation is O (log n)
and we get a total complexity of (R)(m*n log n). If Fibonacci heaps (described in 12]) are used,
priority change operations take constant amortized time, and we therefore get a complexity of
(n2 log n + m’n).

The Hidden-Paths Algorithm is also very simple and easy to implement, and it thus
provides a practical substitute for Dijkstra’s algorithm.

2.4. Extensions and refinements. The Hidden-Paths Algorithm can easily be trans-
formed to one that finds the k nearest pairs of vertices in the graph. The revised algorithm will
initialize the heap to contain only the actual edges in the graph. Then, when candidate paths
are compared to existing paths (in Procedure Update), the algorithm will sometimes have to
do an insert operation rather than a priority change operation. The algorithm terminates when
Opt[reaches k. Because at most k2 candidate paths are created, the running time of this
algorithm (when Fibonacci heaps are used) is O (m + k log n + k2).

The Hidden-Paths Algorithm requires that the graph have nonnegative edge weights.
However, in the case of an integer edge-weight function several scaling algorithms (such as
Gabow and Tarjan [15] and Goldberg [16]) transform the weight function into a nonnegative
weight function, which induces the same shortest-paths structure on the graph. We can solve
the shortest-paths problem on such graphs by first using one of these algorithms to make

FINDING THE HIDDEN PATH 1205

the edge weights positive and then applying the Hidden-Paths Algorithm. Let -N, N > 0,
be the weight of the smallest (most negative) edge in the graph. The combined running
time of Goldberg’s scaling algorithm and the Hidden-Paths Algorithm is O(m*n + n2 log n +
/m log N). Thus the Hidden-Paths Algorithm may also improve on the O(mn) upper bound
in graphs with negative edge weights.

Although Fibonacci heaps have a better asymptotic running time than do standard heaps,
they may be undesirable in applications because of their greater complexity. It is therefore
useful to point out cases in which the Hidden-Paths Algorithm can be used with regular heaps
without increasing the asymptotic complexity. This can happen if not every candidate path
created necessitates a priority change operation. We show below that this situation occurs
when the edge weights in the graph are small integers. Such graphs are an interesting special
case that can occur frequently in practice.

LEMMA 2.3. Let (u v) be a nonedge candidate path in the heap. Let a be the weight
of the longest optimal edge in the graph. Then

II(u v)ll d(u, v) + a.

Proof. This is clear if (u v) is optimal. On the other hand, a nonoptimal path
(u v) (u, w v) can become a path in the heap only if at some stage of the algorithm
(u, w) and (w v) are in Opt but no optimal u, v path is in Opt. The edge (u, w) is optimal,
and therefore (u, w)II -< a. Since (w -, v) is optimal and in Opt and since optimal paths are
discovered in increasing order, we conclude that

II(w v)ll _< d(u, v).

Therefore,

(u v)II (u, w)II / (w v)II _< a + d(u, v). 1

THEOREM 2.4. If the edge weights are integers and a is the largest weight ofan optimal
edge, then there can be at most (a + 1)n2 priority changes and the Hidden-Paths Algorithm
has a running time of O(an2 log n + m’n) when an ordinary heap is used.

Proof. We will prove that for any pair of vertices u and v the entry for u, v in the heap
can be modified at most a + times. The original entry for u, v in the heap is the edge, (u, v).
This entry can be replaced only by a nonedge path (u v). By Lemma 2.3, (u v)II is at
most d(u, v) + a. By integrality the priority of (u, v) can then be decreased at most a times.
Overall, there can be at most a + priority change operations for the pair u, v.

In fact, an even better bound can be achieved if we modify the algorithm slightly. The
modified algorithm is similar to Dial’s implementation [6] of Dijkstra’s algorithm. Note that
if the maximum edge weight is a, the weight of any optimal path is at most a (n 1). Rather
than using a heap to store candidate paths, we can use an array of size a(n 1) + 1. Paths
of weight w will be kept in a bucket at index w of the array. Initially, only edges are inserted.
Later, each time a candidate path (u ,- v) improves the path from u to v we remove the
old path from the array and insert the new path at index (u v)[I. Rather than iteratively
deleting entries from the heap, we traverse the array from index 0 to index a (n 1). As before,
each path we encounter as we traverse the array will be an optimal path. Also as before, we
construct O(m*n) candidate paths. Thus the total running time of this modified algorithm is
O(an + m’n).

If space is a concern, it can be conserved in the following fashion. It is easy to prove, by
using the techniques of Lemma 2.3, that if p is the path at the top of the heap, then there is no

2It actually suffices that the weights of the optimal edges be small integers.

1206 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

nonedge path of weight exceeding Pll + a in the heap. It follows that at any given time we
need use only a + buckets of our array to store candidate paths. Therefore, our array can be
mapped onto a circular array of size a 4- such that no collision of buckets ever takes place.
It follows that only a 4- space is needed to store the buckets. If a O(n2), it follows that
the space used is no more than that needed in the heap implementation; if, in addition, the
diameter by weight of the graph is O(m*n) (and certainly if a O(m*)), then the running
time of the algorithm remains O(m*n).

Another easy consequence is the following:
LEMMA 2.5. If (u v) is a nonedge nonoptimal candidate path in the heap, then

(u v)II 2 d(u, v).

Proof. As in Lemma 2.3, the path (u -- v) (u, w -- v) can be placed in the heap
only if (u, w) and (w v) are both found before any optimal u, v path. This implies that

II(u, w)ll d(u, v),

II(w v)ll d(u, v)

and therefore that

II(u v)ll II(u, w)ll + II(w v)ll 2 d(u, v). U

This shows that at any stage in the algorithm any nonedge path in the heap has at most
twice the optimal weight. This property is useful for "anytime" applications, which might
require the algorithm to be stopped in the middle of execution with good intermediate results.

Finally, we note that the Hidden-Paths Algorithm considers some unnecessary candidate
paths. One possible improvement, which was also developed independently by Jakobsson
[20], creates only candidate paths of which every subpath is optimal. More specifically, a path
p (u, v w, t) is made a candidate path if and only if (u, v - w) and (v w, t) are
already known to be optimal. This will clearly reduce the number of candidate paths formed,
but there does not seem to be a simple expression for the reduced running time achieved by
this algorithm. More complex data structures are required, but it is still possible to achieve a
running time of (R) (c 4- n2 log n), where c is the number of candidate paths formed.

2.5. m* in a random graph. To predict the behavior of the Hidden-Paths Algorithm in
practice, we need to study the quantity m* for typical graphs. It is easy to construct graphs for
which m* O(n), while m is (R)(n2). It is also easy to construct graphs for which m* m.
In this section we note that for a large class of probability distributions on random graphs,
m* O(n log n) with high probability.

Consider a distribution F on nonnegative edge weights, which does not depend on n, such
that F(0) 0 and F’ (0) exists and is positive. In particular, the uniform distribution on [0, 1]
and the exponential distribution with mean) both satisfy these conditions. The work of Frieze
and Grimmet [14] implies that m*(G) O(n log n) with high probability. In particular, they
proved the following result:

THEOREM 2.6 (Frieze and Grimmet). Let G be a complete directed graph whose edge
weights are chosen independently according to F. Consider the set S of edges defined by
placing (v, w) in S if and only if it is one of the p shortest edges originating at v, where
p min{n 1, 20 log2 n}. Then with probability O(n-1), S contains every optimal edge
in G.

FINDING THE HIDDEN PATH 1207

Hence, under the conditions of the theorem, m*(G) O(n log n) with probability
O(n -1) (and therefore E[m*(G)] O(n log n)). Similar results were derived in a different
context by Luby and Ragde [26]. Hassin and Zemel [18] proved a similar theorem (with
a different constant) for both directed and undirected graphs, when the edge weights are
uniformly distributed. The constant factors given by these analyses are small. In fact, empirical
studies by McGeoch [27] indicate that when the edge weights are uniformly distributed m* (G)
grows approximately as 0.5n In n + 0.3n. Furthermore, Theorem 2.6 holds for some discrete
edge-weight distributions, for instance, if the edge weights are integers chosen uniformly and
independently from the range n2.

COROLLARY 2.7. Ifthe edge weights ofG are chosen independently according to F, then
with high probability the running time ofthe Hidden-Paths Algorithm is 0 (n2 log n).

This time bound is an improvement over earlier algorithms by Spira [30] and by Bloniarz
[3], and it matches the performance of the algorithm of Frieze and Grimmet. However, the
Hidden-Paths Algorithm can be effectively used in any situation in which m* is significantly
less than m, whereas the algorithm of Frieze and Grimmet is designed specifically for random
graphs.

3. A lower bound. Many algorithms for the shortest-paths problem use edge weights
only to compute and compare the weights of paths. We therefore define a version of the
decision tree model that captures this behavior.

DEFINITION 6. A path-comparison-based all-pairs shortest-paths algorithm 4 accepts as
input a graph G and a weight function. The algorithm 4 can perform all standard operations.
However, the only way it can access the edge weights is to compare the weights oftwo different
paths.

We can think of a path-comparison-based algorithm as being given only the graph and a
black-box path-weight comparator. The path weights can be accessed only through the black
box. The algorithm must output a reasonable encoding of the shortest paths in G.

It should be noted that the algorithms of Floyd, Dijkstra, Spira, Bloniarz, and Frieze
and Grimmet, as well as the Hidden-Paths Algorithm, all fit into this path-comparison-based
model. On the other hand, Fredman’s o(n 3) algorithm [11] is not path-comparison-based
because it adds weights of edges that do not form a single path. This algorithm conforms to
the more general algebraic decision tree model.

We show a lower bound of f2(mn) on the running time of any path-comparison-based
algorithm running on a graph with n vertices and m edges. For simplicity we first show
a lower bound of f2(n3) on the running time of any path-comparison-based shortest-paths
algorithm running on a certain graph of (n2) edges. We then show how the construction
can be modified to yield a lower bound of f2 (mn) for a graph with m edges, where on these
graphs m m*. An obvious modification allows us to construct graphs with arbitrary values
of m* and m (m* < m), for which f2 (m’n) time would be required.

To show the f2 (n 3) lower bound we construct a directed graph of 3n vertices on which
any path-comparison-based shortest-paths algorithm must perform f2 (n 3) comparisons. The
directed graph G has f2 (n 3) paths. We show that if 4 fails to examine one of these paths, then
we can modify the weight function to make that path optimal without 4 being able to detect
the change.

The graph G is a directed tripartite graph on vertices ui, vj, and wk, where i, j, and k
range from 0 to n 1. The edge set for G is {(ui, vj)} U {(vj, wk)} (see Fig. 3). Therefore,
the only paths are individual edges and paths (ui, vj, wk) of length two.

3We require that the output have no information about path weights. For example, the weighted graph itself is
not a reasonable encoding of the solution.

1208 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

d U b
u v

FIG. 3. Graph used in the lower bound.

To define the weight function we work in base n + notation generalized to allow negative
digits. Define

The edge weights are

and thus

[at aO]b ai bi.
i=0

II(ui, v#)ll --[1, 0, i, 0, j, 0, 0]n+l,

II(vj.,w,)ll [0, 1, 0, k, 0, -j, 0]n+l

II(ui, vj, w)ll [1, 1, i, k, j, -j, 0]n+l.

Note that we allow negative digits to appear in the numbers. The standard positive-digit
representation of these numbers would require that a carry be taken from the next number to

FINDING THE HIDDEN PATH 1209

the left. This does not affect the correctness of the upcoming proofs. The following lemma is
an immediate consequence of the definitions:

LEMMA 3.1. Let < denote the lexicographic ordering on tuples of integers, with the
leftmost integer being the most significant. For all i, j, j’, k, k’ the following hold:

1. II(ui, vj)ll < II(ui,, vj,)ll ifand only if (i, j) < (i’, j’);
2. II(pj, Wk)ll < II(vf, Wk,)l ifand only if (k,-j) < (U,-f);
3, II(vj, w)ll < II(ui, vj,)ll;
4. II(u/,, vj,)ll < II(ui, Uj, w)ll;
5. II(ui, vj, w)ll < II(u/,, vj,, w,)ll ifand only if (i, k, j) < (i’, k’, j’).

Proof. The proof is immediate from the base n + notation. For example, item 3 follows
from the fact that (vj, w)ll

It follows that the unique optimal path from ui to wk goes through v0 and has weight
1, 1, i, k, 0, 0, 0]n+l. Define L to be the set of optimal paths.

Consider providing (G, II) as input to A, and suppose that A runs correctly. It must
therefore output the set of optimal paths L. Suppose further that a nonoptimal path p*
(ui,, vj,, wk,) with j* > 0 was never one of the operands in any comparison operation
performed by A. We define a weight function I1" I1’ in which p* is the unique shortest
path from ui, to wk,, but the ordering by weight of all the other paths remains the same. If
we run 4 on (G, I1’), all path comparisons not involving p* give the same result as they
did when I1" was used. Therefore, since A never performed a comparison involving p*
while running on II, we deduce that 4 still outputs L, which is now incorrect. If A never
examined an optimal path (ui,, vo, wk,), we can apply the above construction with j* 1.
The algorithm will then fail because the only comparison that has a different result is between
(Ui*, V0, Wk*) and (Ui*, Vl, Wk*), which by hypothesis was not performed.

The weight function II" [1’ is II" with the following modifications (in Fig. 3 the edges
with modified weights are marked by thicker lines). For all j _< j* we decrease the weight of
the edge (ui., vj)"

[[(ui,, j) I1’ [1, 0, i*, 0, 0, j, j]n+l.

We also decrease the weight of the edge (vj., wk.)"

II(vj,, w,)ll’ [0, 1, 0, k*, 0,-j*,--n]n+l.

Thus

II(ui,, vj,, w,)ll’ [1, 1, i*, k*, 0, 0, j* nln+l < II(ui*, v0, w,)ll’,

LEMMA 3..2. In G the conditions ofLemma 3.1 continue to holdfor I1" II’, except that the
single path p* (ui,, vj,, w,) directly precedes (ui,, vo, wk,) in the ordering. Thus under

I1" I1’ the path p* is optimal.
Proof. We show the conditions of Lemma 3.1 one at a time. Clearly, we need only

consider comparisons for which one or both operands have changed, i.e., only comparisons
between operands involving i*, j*, or k*.

1. The four most significant digits of the base n + 1 representation of the weights remain
unchanged, and the three least significant digits still increase with j.

2. Only (vj,, w,)II has changed, and only by n, but the edge whose weight was closest
differed by n + 1.

3. The two most significant digits are unchanged.
4. This also is enforced by the two most significant digits.

1210 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

5. If i’ or k - kf, the inequality is enforced by the four most significant digits. It is
also simple to verify that for each and k, (ui, j, w)II increases with j (with the
exception of (ui,, Uj*, ll)k*)). [-]

We have therefore proved the following:
THEOREM 3.3. There exists a directedgraph of 3n vertices on which anypath-comparison-

based shortest-paths algorithm must perform at least n /2 path-weight comparisons.
Note that since all edge weights are polynomial in n, the input graph G is not hard merely

because unusually large edge weights increase the input size. Because the graph constructed
is a directed acyclic graph, the lower bound holds even for this restricted class of graphs.

We now adapt the above proof to show an f2(mn) lower bound for graphs of m edges.
Let m > 4n, and assume without loss of generality that 2n divides m. We perform the same
construction as before, but of the middle vertices we use only vo Vm/2n_l, connecting
each of them to all the vertices ui and wk. This requires m edges and creates mn/2 two-edge
paths. We also use the same weight function as before, restricted to the edges we include.

THEOREM 3.4. There exists a directed graph with 2n + m/2n vertices and m edges,
on which any path-comparison-based shortest-paths algorithm must perform at least mn/4
path-weight comparisons.

COROLLARY 3.5. Ifm f2 (n), then there exists a directed graph G with n vertices and
m edges on which any path-comparison-based shortest-paths algorithm mustperform f2 (ran)
path-weight comparisons.

For m f2 (n log n) this lower bound is tight since it matches the upper bound achieved
by Dijkstra’s algorithm.

We can in fact show that even the shortest-paths verification problem requires f2 (ran) time
for path-comparison-based algorithms. A verification algorithm ,A accepts as input a graph, a
weight function (which we again think of as a black-box comparator), and an encoding L that
describes, for each pair of vertices, a path between them. Note that the standard description
of shortest paths can be encoded in O(n2) space, so that the input size imposes no nontrivial
lower bound. The algorithm ,A accepts its input if and only if each path in L is a shortest path.

To show the lower bound, we use the same construction as before. We let L be the shortest
paths under II, i.e., L {(ui, vo, 113k) i, k 0 n 1}, and provide (G, II, L) as
input to .A. If ,4 accepts using fewer than mn comparisons, we use the same modification as
before and pass (G, I1’, L) to A, which will incorrectly accept this modified input.

COROLLARY 3.6. Anypath-comparison-based algorithmfor verification ofshortestpaths
requires time f2 (mn) on G.

Ifwe add edges fromeach ui to each wk (thus producing S2 (n2) edges) and set (ui, vo)II
(ui, vo, w)II, we can similarly deduce the following:

COROLLARY 3.7. Any path-comparison-based algorithm for verifying that the edge
weights satisfy the triangle inequality requires time (n3) on graphs ofn vertices.

The construction ofTheorem 3.4 can be applied to randomized algorithms for the shortest-
paths problem. For example, suppose that the expected number of comparisons performed by
such an algorithm is o(mn). Then the probability that a randomly selected path is checked by
the algorithm approaches 0 as n goes to cx). Thus if we take the graph G and select a single
path (ui,, vj,, wk,) uniformly at random and apply the I1" I1’ construction, the algorithm detects
our modification with probability approaching 0. We thus have the following theorem.

THEOREM 3.8. If a randomized path-comparison-based shortest-paths algorithm per-
forms o(mn) expected comparisons on graphs with m edges and n vertices, then there is a
weighted graph on which the algorithm will almost surelyfail to be correct.

The following corollaries are randomized counterparts of Corollaries 3.6 and 3.7:

FINDING THE HIDDEN PATH 1211

COROLLARY 3.9. Any randomized path-comparison-based shortest-paths verification
algorithm must perform f2 (mn) expected comparisons.

COROLLARY 3.10. Any randomized path-comparison-based algorithmfor verifying that
all edge weights satisfy the triangle inequality must perform f2 (n 3) expected comparisons.

We conjecture that the lower bounds in this section also hold for path-comparison-based
algorithms running on undirected graphs, but this remains to be proved.

4. Generalized weight functions.

4.1. Definitions and basic properties. Many shortest-paths algorithms, in fact, solve a
much more general problem. In particular, we consider the following generalized shortest-
paths problem: Given a graph G and a generalized weight function]]. that maps every path
p to a weight IIpll in some totally ordered set (with the ordering denoted by _<), find for each
pair of vertices a path between them of minimum weight. To make this problem tractable we
impose restrictions on the weight function.

DEFINITION 7. Consider a weight function II:
It is monotonic if for all u, v, w

II(v w)ll II(v ’ w)ll == II(u v w)ll II(u v ’ w)ll,

and similarly for (u v)II (u ’ v)II.
It is nonnegative if for all u, v, w

(u v w)II max(ll (u v)II, (v w)II).

It is acyclic if for all v the empty path from v to v, denoted v -- v, is optimal.
It is inductive if there exists a concatenationfunction f such that for all u, v, w

II(u v w)ll f(llu vii, IIv wll).

The standard path-weight function is monotonic and inductive. It is acyclic if there are no
negative weight cycles. It is nonnegative if all path weights are nonnegative. An example of
a monotonic, nonnegative, inductive, nonstandard weight function is one that assigns to every
path a weight equal to the weight of the maximal edge on the path. Solving single-source
shortest paths under this weight function is referred to as the bottleneck path problem in [33].

In the literature on generalizing shortest paths to semirings (see [34]) the semiring axioms
imply both inductiveness and monotonicity of the weight function. Frieze 13] considered a
narrower class, which essentially consists of monotonic, acyclic, inductive weight functions
over the reals. Lengauer and Theune [25] studied extensions of the shortest-paths problem to
situations in which the path weights are only partially ordered; this allowed them to deal with
certain nonmonotonic weight functions.

FACT 4.1. Any nonnegative weightfunction is also acyclic.
Proof. Let v be any vertex, and let (v - v) be any cycle. Then

I(vv)ll II(vvv)ll

>_ max(ll v ,- v II, v v II) (by nonnegativity)

Therefore, (v v) is optimal.

1212 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

FACT 4.2. If is monotonic and acyclic, then any path can be trimmed, by removing
cycles, to obtain a simple path ofsmaller or equal weight.

Proof. If a path p contains a cycle, replace the cycle with the appropriate empty path,
which by acyclicity has no greater weight than the cycle; by monotonicity this replace-
ment does not increase the weight of the path. Continue this procedure until no cycles
remain. [

FACT 4.3. Under a monotonic and acyclic weightfunction, any connectedpair ofvertices
is connected by a simple optimal path.

Proof. If two vertices are connected, the set of simple paths between them is nonempty
and finite and thus must contain some path of minimal weight. By Fact 4.2 this path is also
shorter than all nonsimple paths between these vertices, and this path is thus optimal. l

FACT 4.4. The shortestpaths underany monotonic acyclic weightfunction can be encoded
in the standard manner in 0 (n2) space.

Proof. In the (u, v) entry store the first edge on any minimal-length shortest path from u
to v.

We argue that monotonicity is the major defining characteristic of the shortest-paths
problem because it ensures that the shortest path between two vertices can be constructed
from other shortest paths. The property of acyclicity is also important since it ensures that
a simple optimal path exists between every pair of connected vertices. We shall therefore
restrict our attention to monotonic acyclic weight functions.

The following definition will be used in our extension of the Hidden-Paths Algorithm to
generalized weight functions.

DEFINITION 8. A path is taut if every edge in it is optimal. A weight function is taut if
every connected pair of vertices is connected by a taut optimal path.

LEMMA 4.5. Any monotonic and acyclic weightfunction is taut.

Proof. Define a nonoptimal edge (u, v) to be strongly nonoptimal if there is no taut
optimal path from u to v, i.e., if every optimal path from u to v contains a nonoptimal edge.
For the lemma to be false there must be some pair of vertices all of whose optimal paths
contain a strongly nonoptimal edge. Otherwise, using the monotonicity condition, we could
take a path containing no strongly nonoptimal edge and replace each nonoptimal edge with a
taut optimal subpath, thus producing a taut optimal path. It therefore suffices to prove that no
strongly nonoptimal edges exist.

Assume that there exists some strongly nonoptimal edge (u, v). By the same argument as
above, an edge is strongly nonoptimal if and only if every optimal path between its endpoints
contains a strongly nonoptimal edge. Since by Fact 4.3 there exists an optimal path between
every pair of connected vertices, we can construct an infinite sequence of edges {(u, v)
(u0, v0), (ul, vl), (u2, v2) such that (ui+, vi+) is a strongly nonoptimal edge contained

in some optimal path (ui i, ui+, Vi+l i vi) from ui to vi. Since the set ofedges is finite, we
have that (ui, vi) (ui+k, vi+k) for some i, k. Now observe that by induction on j and by using

i+1 i+j-1 i+j-1 i+1the monotonicity condition, (u ui+ ui+j, ui-t-j /)i+1 " vi)
is an optimal path. In particular, this is true for j k. Since ui+k ui, this means we
have an optimal path of the form (ui ui, vi . vi). By the conditions of monotonicity and

acyclicity this implies that (ui , ui, vi , vi) (ui, vi) must be optimal, contradicting the
fact that (b/i, Vi) is strongly nonoptimal. S

4.2. Algorithms. An algorithm for a generalized shortest-paths problem receives as input
the graph and a black box for the weight function. We assume that the black box takes
constant time to compute the weight of any path. Many path-comparison-based shortest-paths

FINDING THE HIDDEN PATH 1213

algorithms also work for generalized weight functions. We consider here Floyd’s algorithm,
Dijkstra’s algorithm, and the Hidden-Paths Algorithm.

THEOREM 4.6. Floyd’s algorithm works on any monotonic and acyclic weightfunction.
Proof. Recall that Floyd’s algorithm iteratively finds for each the best path between

every pair of vertices u, v that uses (except for the endpoints) only the first vertices in the
graph. It does this by comparing, at stage i, the best path that uses only the first vertices
with all paths of the form (u w , v), where w is the ith vertex and both (u -, w) and
(w v) use only the first vertices.

The proof is by induction on i. The inductive hypothesis is that after stage the algorithm
has found for every pair of vertices u, v a best path among those using only the first vertices.
Note that once an optimal path is found, it is never replaced.

The base case, 0, is obvious. Assume that the inductive hypothesis holds for stage
1, and let w be the th vertex. Let u, v be a pair of vertices for which any best path that

uses only the first vertices uses the vertex w. Let this path be (u -- v) (u w , v).
By Fact 4.2 any cycle in a path can be eliminated without increasing the weight of the path,
so that we may assume that neither (u w) nor (w v) contains w as an interior point. In
other words, the paths (u w) and (w v) use only the first vertices. By the inductive
hypothesis, by the end of stage Floyd’s algorithm found a best path (u --,’ w) among all
the paths from u to w using only the first 1 vertices. Therefore,

II(u ’ w)ll _< II(u

Similarly, the algorithm found a path (w ,-’ v) such that

II(w ’ v)ll II(w v)ll.

Using monotonicity, we deduce that

II(u +’ w ’ v)l II(u w ’ v)ll II(u w v)ll.

Therefore, in phase Floyd’s algorithm finds a path from u to v that is optimal among paths
using only the first vertices.

At the conclusion of stage n the algorithm has found for each pair u, v a path that is best
among those using all vertices, i.e., an optimal path. q

Note as well that Floyd’s algorithm can be used to verify the acyclicity of a path-weight
function since it will find a cycle that is better than an empty path if such a cycle exists.

THEOREM 4.7. Dijkstra’s algorithm works on any monotonic nonnegative weightfunc-
tion.

Proof. Dijkstra’s algorithm is run from a single source vertex s and can be thought of as

maintaining a set Opt of optimal paths (s ,- v) from s to some of the other vertices in the
graph. Let V (Opt) denote the set of endpoints of paths in Opt. At each iteration the algorithm
adds to Opt a path (s -,-, u, v) that minimizes {ll(s "’ u, v)ll (s .,.,’ u) Opt, (u, v)
E, v V (Opt) }. It suffices to show by induction that the path (s -, u, v) is in fact an optimal
path. To show this, consider some other path from s to v, (s -- x, y -, v), where (x, y) is the
first edge on the path such that x V (Opt) and y V (Opt). Such an edge must exist since
s V (Opt) and v

_
V (Opt). Since x V (Opt), there exists an optimal path (s ,,.0’ x) Opt.

Then
II(s x, y v)[[_> (s - x, y)II (by nonnegativity)

>_ (s ---0 x, y)[[(by monotonicity)

>_ (s ,-# u, v)[[(by choice of u, v).

1214 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

Thus (s ’ u, v)II is in fact optimal, as desired. [;

THEOREM 4.8. The Hidden-Paths Algorithm works on any monotonic nonnegative weight
function.

Proof. We modify the inductive hypothesis in the proof of Theorem 2.2 as follows:
1. If p is the item at the top of the heap, then p is an optimal path.
2. Opt contains a taut optimal path between each pair of vertices of distance less than

IIPlI.
3. For each pair of vertices u and v for which an optimal path has not yet been found,

the heap contains a path of minimal weight among those of the form (i) the edge
(u, v) and (ii) taut paths having the form (u, w v) for (u, w) and (w ,- v) in Opt.

An examination of the proof shows that the nature of the weight function is used only in
the proof of conditions and 2. Assume one of them to be false, and let r (x -, w) be
a minimal (under -<) taut path such that no optimal path from x to w has yet been placed in
the heap. As before, r cannot consist of a single edge, and so assume that r (x, y w).
Because of nonnegativity (x, y) -< r and (y w) -< r. Therefore, d(y, w) < Ilrll. If
d(y, w) < Ilrll, then by the minimality of r and Lemma 4.5 there exists an optimal path
(y --.’ w) in Opt. If d(y, w) Ilrll, then (y -- w) is taut and optimal and we can again
deduce by the choice of r and the definition of -< that an optimal path (y ,-.’ w) must already
be in Opt. The edge (x, y) -< r and is optimal by the tautness of r, and it must therefore also
be in Opt. But then (x, y --’ w), which because of monotonicity is also an optimal path from
x to w, must have been placed in the heap. This contradicts the assumption that no optimal
path from x to w has been found.

4.3. Lower bounds. The lower bound in 3 can be adapted to the situation of generalized
weight functions. We show a lower bound for the class of monotonic nonnegative weight
functions, even on undirected graphs.

THEOREM 4.9. Any algorithm for solving the generalized shortest-paths problem for
arbitrary monotonic nonnegative weightfunctions requires f2 (mn) path-weight queries.

Proof. We consider a modified version of the construction from 3. Use the same graph
G with middle vertices vo Vm/2n-1 but with undirected edges, and let be defined as
follows:

(v, v)II 0 for all vertices v,

]l(ui, j)ll 2,

II(j, w)II 2,

(b/i, /)j, LUk) 4.

All other paths have length 5. Suppose as before that some path (Ui*, l)j,, LOk*) does not have
its weight queried. Change the weight of this path to be 3. It is simple to verify that the
modified weight function remains monotonic and nonnegative.]

This lower bound can also be extended to the case of inductive weight functions studied
in 13]. To do this, assign to each edge e in the graph a unique weight Ile[I. We are then free
to assign arbitrary weights to paths of length 2 because each such path contains a different
pair of subpath weights. Our concatenation function is defined by the weights we want to
assign to these length-2 paths. To assign weight o9 to the path (u v w), set f(llu
v II, v w II) co. We can now proceed almost exactly as in the previous case. Assign
weights n2 to the individual edges. Assign weight 4n2 to all paths of length 2, and
weight 5n2 to all other paths (so that f(4n2, y) f(x, 4n2) 5n2). If any path of length 2

FINDING THE HIDDEN PATH 1215

is not examined, change the weight of this path to 3n2. It is trivial to verify that these weight
functions are inductive (as well as nonnegative and monotonic). We have proved the following
theorem:

THEOREM 4.10. Any algorithm that solves the generalizedshortest-pathsproblemfor arbi-
trary monotonic nonnegative inductive weightfunctions requires f2 (mn) path-weight queries.

Note that Theorem 4.9 holds true even when the weight function is restricted to take
integer values in a bounded range. It is easy to see that Theorem 4.10 requires unbounded
edge weights.

Corollaries parallel to Corollaries 3.6 and 3.7 also hold. Thus any subcubic solution to
the standard shortest-paths problem must take advantage of more specific properties of path
weights than monotonicity, acyclicity, nonnegativity, and induction.

5. Conclusion. We have produced a new algorithm, the Hidden-Paths Algorithm, and we
have identified a new measure m’rathe number of edges that participate in shortest paths. The
Hidden-Paths Algorithm runs in time O(m*n / n2 log n). The following question arises: Are
there finer measures of the shortest-paths difficulty of a graph? In particular, the Hidden-Paths
Algorithm essentially runs in time proportional to the number of candidate paths formed. The
improved algorithm mentioned in 2.4 forms fewer such paths than does the Hidden-Paths Al-
gorithm. Is there a simple measure for this quantity? We conjecture that no path-comparison-
based algorithm for all-pairs shortest paths can perform fewer path-weight comparisons than
does the improved algorithm.

The expected value of m* has been shown to be significantly less than m in the case of
independent, uniformly distributed edge weights. This suggests that there are many situations
in which the Hidden-Paths Algorithm will be significantly faster than Dijkstra’s algorithm.
One can think of the optimal edges as forming a certificate of the shortest-path structure of
the graph, which must be revealed. The philosophy of the Hidden-Paths Algorithm is thus
similar to that of recent algorithms for connectivity [4], [28] that work by first finding a sparse
subgraph (or certificate) with the same connectivity.

We have shown a lower bound of f2 (mn) on the running time of path-comparison-based
algorithms for all-pairs shortest paths. It is of particular interest that the construction and
verification algorithms have the same worst-case complexity. Compare this to the situation
for the minimum spanning tree problem, where there is a linear-time algorithm to verify a
minimum spanning tree [24], although no algorithm is known that finds one in linear time.
The comparison-based lower bound shows that any improvement in the worst-case complexity
of shortest-paths algorithms, such as Fredman’s o(n 3) algorithm, must take advantage of the
numerical aspects of the problem in addition to the ordering of path weights.

The obvious open problem arising from the lower bound is to extend the construction to
the case of undirected graphs. Another goal would be to decrease the gap in the algebraic
decision tree complexity, between Spira and Pan’s f2 (n2) lower bound and Fredman’s O(n5/2)
upper bound. Also, our lower bound would be strengthened if we could show that it held for
all graphs of a certain structure and varying weights, rather than for a single graph.

Finally, in 4 we introduced the notion of a generalized weight function and defined some
natural properties of such functions. We showed that the f2(mn) lower bound also holds
for a certain class of generalized weight functions, even for undirected graphs. It would be
interesting to find tighter classes of weight functions for which the lower bound still holds. We
have shown that many existing all-pairs shortest-paths algorithms make little use of numerical
properties of path weights and hence work even for generalized weight functions. These
algorithms are all path-comparison based. We feel that there is a strong connection between
the algorithmic property of being path-comparison based and the ability of an algorithm to
work on generalized weight functions. Further work on this topic could lead to a better

1216 D.R. KARGER, D. KOLLER, AND S. J. PHILLIPS

understanding of how properties of a path-weight function affect the complexity of graph
algorithms and what properties of the standard weight function allow the path-comparison
based lower bound to be circumvented.

Acknowledgments. We thank M. Luby and C. McGeoch for pointing out references to
work on expected shortest-path lengths in graphs with random edge weights.

REFERENCES

N. ALON, Z. GAI.II, AND O. MARGALIT, On the exponent ofthe allpairs shortestpathproblem, in Proceedings of
the 32nd Annual Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, 1991, pp. 569-575.

[2] N. ALON, Z. GALIL, O. MAIGALIT, AND M. NAOI, Witnessesfor Boolean matrix multiplication andfor shortest
paths, Tech. Report RJ 8744, IBM, White Plains, NY, 1992.

[3] P.A. BIONIAZ, A Shortest-Path Algorithm with Expected Time O(n log n log* n), Tech. Report 80-3, Depart-
ment of Computer Science, State University of New York, Albany, NY, 1980.

[4] J. CHERIYAN AND R. THURIMELLA, Algorithmsfor parallel k-vertex connectivity and sparse certificates, in Pro-
ceedings of the 23rd ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1991, pp. 391-401.

[5] D. COPIESMITI4 AND S. WNOGIAO, Matrix multiplication via arithmetic progressions, J. Symbolic Comput.,
9 (1990), pp. 251-280.

[6] R.B. DAI, Algorithm 360: Shortest pathforest with topological ordering, Comm. ACM, 12 (1969), pp. 632-
633.

[7] E.W. DIJKSTRA, A note on two problems in connection with graphs, Numer. Math., (1959), pp. 269-271.
[8] T. FEDEl AND R. MOTWANI, Clique partitions, graph compression and speeding-up algorithms, in Proceedings

of the 23rd ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1991, pp. 123-133.

[9] R.W. FIoYD, Algorithm 97: Shortest path, Comm. ACM, 5 (1962), p. 345.
10] G.N. FREDERICKSON, Planar graph decomposition and all pairs shortest paths, J. Comput. Mach., 38 (1991),

pp. 162-204.
[11] M. L. FIZDMAN, New bounds on the complexity of the shortest path problem, SIAM J. Comput., 5 (1976),

pp. 83-89.
12] M.L. FREDMANAND R. E. TARJAN, Fibonacci heaps and their uses in improved network optimization algorithms,

J. Assoc. Comput. Mach., 36 (1986), pp. 596-615.
[13] A. FlIZz,Minimum paths in directed graphs, Oper. Res. Quart., 28 (1977), pp. 339-346.
14] A.M. FlIEZF AND G. R. GIIMMF.r, The shortest-path problemfor graphs with random arc-lengths, Discrete

Appl. Math., 10 (1985), pp. 57-77.
15] H.N. GABOWAND R. E. TAIJAN, Faster scaling algorithmsfor networkproblems, SIAM J. Comput., 19 (1989);

pp. 1013-1036.
16] A.V. GOIIBIG, Scaling Algorithmsfor the ShortestPaths Problem, Tech. Report STAN-CS-92-1429, Stanford

University, Stanford, CA, 1992.
[17] R.E. GOMOY ANI T. C. HtJ, Multi-terminal networkflows, SIAM J. Appl. Math., 9 (1961), pp. 551-570.
[18] R. HASSIN AND E. ZFMEt, On shortest paths in graphs with random weights, Math. Oper. Res., 10 (1985),

pp. 557-564.
19] J.E. HOICIOFT AND J. D. UItMAN, Introduction to Automata Theory, Languages and Computation, Series in

Computer Science, Addison-Wesley, Reading, MA, 1979.
[20] H. JA:OSSON, Mixed-approach algorithmsfor transitive closure, in Proceedings of the 10th ACM Symposium

on Principles of Database Systems, Association for Computing Machinery, New York, 1991, pp. 199-205.
[21 D.B. JOIaNSON, Efficient algorithmsfor shortestpaths in sparse networks, J. Assoc. Comput. Mach., 24 (1977),

pp. 1-13.
[22] L. R. Kzl, The Effect of Algebraic Structure on the Computational Complexity of Matrix Multiplications,

Ph.D. thesis, Department of Computer Science, Cornell University, Ithaca, NY, 1970.
[23] D.E. KNUTH, A generalization ofDijkstra’s algorithm, Inform. Process. Lett., 6 (1977), pp. 1-5.
[24] J. KOMIOS, Linear verificationfor spanning trees, Combinatorica, 5 (1985), pp. 57-65.
[25] T. LNGAUI AND D. TI4FUNE, Efficient algorithmsforpath problems with general cost criteria, in Proceedings

of the 18th International Colloquium on Automata, Languages and Programming, Lecture Notes in

Computer Science, Vol 510, Springer-Verlag, Berlin, New York, 1991, pp. 314-326.

FINDING THE HIDDEN PATH 1217

[26] M. LUBY AND P. RAGDE, A bidirectional shortest-path algorithm with good average case behavior, Algorith-
mica, 4 (1989), pp. 551-567.

[27] C.C. McGEOCH, All-pairs shortest paths, and the essential subgraph, Algorithmica, to appear.
[28] H. NAGAMOCHI AND T. IBARAKI, A linear time algorithm forfinding a sparse k-connected spanning subgraph

ofa k-connected graph, Algorithmica, 7 (1992), pp. 583-596.
[29] R. SEIDEL, On the all-pairs-shortest-path problem, in Proceedings of the 24th ACM Symposium on Theory of

Computing, Association for Computing Machinery, New York 1992, pp. 745-749.
[30] P. M. SHRA, A new algorithm for finding all shortest paths in a graph of positive arcs in average time

O(n log n), SIAM J. Comput., 2 (1973), pp. 28-32.
[31] P. M. SPIRA AND A. PAN, On finding and updating shortest paths and spanning trees, in Proceedings of the

14th Annual Symposium on Switching and Automata Theory, IEEE Computer Society, Washington, DC,
1973, pp. 82-84.

[32] T. TAKAOKA, A new upper bound on the complexity of the all pairs shortest path problem, in Proceedings of
the 17th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science, Vo1570, Springer-Verlag, Berlin, New York, 1991, pp. 209-213.

[33] R.E. TArJAN, Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied
Mathematics, Vol. 44, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[34] U. ZIMMEMAN, Linear and Combinatorial Optimization in Ordered Algebraic Structures, Annals of Discrete

Mathematics, Vol. 10, North-Holland, Amsterdam, 1981.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1218-1226, December 1993

() 1993 Society for Industrial and Applied Mathematics
006

ON FINDING THE RECTANGULAR DUALS OF PLANAR TRIANGULAR
GRAPHS*

XIN HE

Abstract. This paper presents a new linear-time algorithm for finding rectangular duals of planar triangular
graphs. The algorithm is conceptually simpler than the previously known algorithm. The coordinates ofthe rectangular
dual constructed by the new algorithm are integers and carry clear combinatorial meaning.

Key words, algorithm, planar graph, rectangular dual

AMS subject classifications. 05C05, 05C38, 68Q25, 68R10

1. Introduction. Let R be a rectangle. A rectangular subdivision system of R is a

partition of R into a set dp R1, R2 Rn of nonintersecting smaller rectangles such that
no four rectangles in meet at the same point. A rectangular dual of a graph G (V, E) is
a rectangular subdivision system and a one-to-one correspondence f V --+ such that
two vertices u and v are adjacent in G if and only if their corresponding rectangles f(u) and
f(v) share a common boundary. Parts (1) and (2) of Fig. show a graph G and its rectangular
dual. If G has a rectangular dual, clearly G must be a planar graph.

The rectangular dual of a graph G finds applications in the floor planning of electronic
chips and in architectural design [5], [9]. Each vertex of G represents a circuit module, and the
edges represent module adjacencies. A rectangular dual provides a placement of the circuit
modules that preserves the required adjacencies.

The problem of finding rectangular duals has been studied in [2], [3], [6], [8], [12]. A
linear-time algorithm for this problem was given in [3]. This algorithm is rather complicated,
and its correctness proof is incomplete. The algorithm requires real arithmetic for the coordi-
nates of the rectangular dual. We present a new linear-time algorithm for solving this problem.
The coordinates of the rectangular dual R constructed by our algorithm are integers and carry
clear combinatorial meaning.

The rectangular dual is related to the tessellation representation ofplanar graphs discussed
in [14], [15]. The tessellation representation of a plane graph G is a mapping that maps
the vertices, edges, and faces of G to the rectangles of the plane such that the incidence
relations of G correspond to the geometric adjacencies between the rectangles. A nice linear-
time algorithm for constructing the tessellation representation was developed in [15]. Our
rectangular-dual algorithm and the algorithm in 15] share certain similarities: both algorithms
use two acyclic directed graphs derived from the input graph G. However, the rectangular dual
differs from the tessellation representation in at least two aspects. Firstly, in the tessellation
representation, the elements (vertices, edges, and faces) of distinct graph-theoretical properties
are represented by the same geometric objects (rectangles). The rectangular dual is a more
natural representation of planar graphs. Secondly, the rectangular dual is more general than
the tessellation representation. Consider a plane graph G. Let G be the plane graph obtained
from G as follows: For each face f of G place a new vertex vf in f and connect vf to the
vertices on the boundary of f. Then the rectangular dual of G1 is a representation similar to
the tessellation representation of G, i.e., the vertices and the faces of G are represented by
rectangles and the edges of G are represented by degenerate rectangles (i.e., line segments).
On the other hand, it does not seem possible to modify the tessellation representation algorithm
so that it constructs the rectangular dual for planar graphs.

*Received by the editors October 2, 1989; accepted for publication (in revised form) May 19, 1992.
Department of Computer Science, State University of New York, Buffalo, New York 14260. This research was

supported in part by National Science Foundation grant CCR-9011214.

1218

RECTANGULAR DUALS OF PLANAR TRIANGULAR GRAPHS 1219

vn 11

10
9

8

6

ve 5

4

3

2

Vs 0

(1) A PTP graph G.

e f d

k__ n

0
P

2 3 4 5 6 7 8 9 10

(2) A rectangular dual of G.

Vs fs [] vs

(3) S-N net G (4) W-E net G
2

FG. 1. A PTP graph G and a rectangular dual of G.
The present paper is organized as follows. Section 2 introduces some definitions and

lemmas needed by our algorithm. Section 3 presents the algorithm. Section 4 proves its
correctness. Section 5 concludes the paper.

2. Regular edge labeling of planar triangular graphs. Let G (V, E) be a planar
graph. Consider a fixed plane embedding of G. The embedding divides the plane into a
number of regions. The unbounded region is called the exteriorface. Other regions are called
interiorfaces. The vertices and the edges on the exterior face are called exterior vertices and
exterior edges, respectively. A cycle C of G divides the plane into its interior region and
exterior region. If C contains at least one vertex in its interior region, C is called a separating
cycle of G. For each vertex v, N(v) denotes the set of neighbors of v and Star(v) denotes
the set of edges incident to v. Whenever these notations are used, it is understood that the
members in the set are listed in counterclockwise order around v in the embedding.

Consider a planar graph H (V, E). Let v0, Vl, v, v3 be four vertices on the exterior
face of H in counterclockwise order. Let Pi (i 0, 1, 2, 3) be the four paths on the exterior
face of H consisting of the vertices between vi and vi+ (where the addition is mod 4). We
seek a rectangular dual R of H such that the four vertices v0, Vl, v2, v3 correspond to the four
comer rectangles of R/-/and the vertices on P0 (P1, P2, P3, respectively) correspond to the
rectangles located along the north (west, south, east, respectively) boundary of R/. Necessary
and sufficient conditions for testing whether H has a rectangular dual were discussed in [2],
[3], [6]. These conditions, however, can be easily reduced to the following simpler form.

1220 XIN HE

In order to simplify the problem, we modify H as follows: Add four new vertices
VN, vw, VS, rE, and connect VN (Vw, VS, rE, respectively) to every vertex on P0 (P1, P2, P3,
respectively). Then add four new edges (VN, Vw), (vw, VS), (Vs, re), (re, VN). Let G be the
resulting graph. It is easy to see that H has a rectangular dual R/4, with v0, Vl, v2, v3 corre-
sponding to the four comer rectangles of R/-/if and only if G has a rectangular dual R with
exactly four rectangles on the boundary of R. Without loss of generality, we will discuss only
planar graphs with exactly four vertices on their exterior faces.

If G has a rectangular dual R, then every face of G, except the exterior face, must be a
triangle (since no four rectangles of R meet at the same point). Moreover, since at least four
rectangles are needed to fully enclose some nonempty area on the plane, any separating cycle
of G must have length at least 4. The following theorem states that these two conditions are
also sufficient for G to have a rectangular dual.

THEOREM 2.1 [6]. A planar graph G (V, E) has a rectangular dual R with four
rectangles on the boundary of R if and only if the following two conditions hold: (1) Every
interior face of G is a triangle, and the exterior face of G is a quadrangle; (2) G has no

separating triangles.
A different form of Theorem 2.1 was given in [2], [3]. A graph satisfying the two

conditions of Theorem 2.1 is called a proper triangular planar (PTP) graph. From now on
we discuss only such graphs.

DEFINITION 1. A regular edge labeling (REL) of a PTP graph G (V, E) is a partition
of the interior edges of G into two subsets T1, T2} of directed edges such that the following
hold:

(1) For each interior vertex v the edges in Star(v) appear in counterclockwise order around
v as follows: a set of edges in T leaving v; a set of edges in T2 entering v; a set of edges in
T entering v; a set of edges in T2 leaving v.

(2) All interior edges incident to VN are in T and entering VN. All interior edges incident
to vw are in T2 and leaving vw. All interior edges incident to vs are in T1 and leaving vs. All
interior edges incident to ve are in T2 and entering re.

From Theorem 2.1 we can easily prove the following.
THEOREM 2.2. Every PTP graph G (V, E) has a REL.
Proof By Theorem 2.1, G has a rectangular dual R. For each v 6 V let R (v) denote the

rectangle in R corresponding to v. For each interior vertex v label each edge (v, u) 6 Star(v)
as follows: If R(u) is above R(v), e is in T and directed leaving v. If R(u) is below R(v), e
is in T1 and directed entering v. If R(u) is to the left of R (v), e is in T2 and directed entering
v. If R(u) is to the right of R(v), e is in T2 and directed leaving v. This labeling satisfies the
two conditions of Definition 1. q

Although Theorem 2.2 is proved from Theorem 2.1, our algorithm goes another way
around: We find a REL of G first and construct a rectangular dual of G from the REL. We
first prove some properties of the REL.

Let G (V, E) be a PTP graph, and let {T1, T2} be a REL of G. Let G1 be the directed
subgraph of G induced by the edges in T and the four exterior edges directed as vs -- vw,
l)W --- ON, VS rE, 1)E VN. Let E1 denote the edge set of G1. (E is the union of T1 and
the four exterior edges.) Let G2 be the directed subgraph of G induced by the edges in T2 and
the four exterior edges directed as vw -- vs, vs -- rE, vw --+ VN, VN -+ re. Let E2 denote
the edge set of G2. (E2 is the union of T2 and the four exterior edges.) We will call G1 the
S-N net and G2 the W-E net of G derived from the REL {T, Te }.

Part (1) of Fig. shows a PTP graph G. An S-N net G1 and the corresponding W-E net

G2 are shown in parts (3) and (4). (Ignore the integers in the small boxes in parts (3) and (4)
for now.)

RECTANGULAR DUALS OF PLANAR TRIANGULAR GRAPHS 1221

LEMMA 2.3. (1) G1 is acyclic, with vs as the only source and VN as the only sink.
(2) G2 is acyclic, with vw as the only source and vE as the only sink.

Proof. The lemma is proved by way of contradiction. Suppose either G1 or G2 contains
a directed cycle. Let C Vl vt be such a cycle such that the total number of vertices
that are on C or in the interior of C is minimized. Without loss of generality, suppose C is a
cycle in G1 and is directed in clockwise direction. (The proofs of other cases are similar.)

Case 1: C contains no vertices in its interior. If 3, then there is no edge in T2 leaving
v2. This contradicts condition (1) of Definition 1. Suppose > 3. Then there is an edge
e (vi, vj) E contained in the interior of C. e cannot be in T1 since otherwise we would
have a smaller cycle in G1, which contradicts the choice of C. So e must be in T2. But
regardless of the direction of e in T2, condition (1) of Definition is violated either at vi or at

vj..
Case 2: C contains at least one vertex u in its interior. Start at u; we can reach another

vertex u2 by using a T2 edge. Similarly, from u2 we can reach another vertex u3 by using a T2
edge. Since every vertex u has an incident edge in T2 leaving u, this process can be repeated
again and again. Since C is the smallest cycle in both G1 and G2, we cannot have a cycle
in G2 completely contained in the interior of C. Thus we must reach a vertex vj C. Then
condition (1) of Definition is violated at vj.

Since we get contradictions in all cases, both G and G2 are acyclic. Since every ver-
tex v, other than vs and VN, has indegree and outdegree at least in G1, vs is the only
source and VN is the only sink of G 1. Similarly, vw is the only source and ve is the only sink
of G2.]

Both G1 and G2 are the so-called s-t planar graphs. (An s-t planar graph is a directed
acyclic planar graph with exactly one source s and exactly one sink t, and both s and are on
the exterior face of the graph.) The properties of these graphs have been studied in [7], 10],
13]. By using these properties, the structure of G1 can be summarized as follows:

(a) For each vertex v other than vs and Vx the edges entering v appear consecutively
around v in G 1. The edges leaving v appear consecutively around v in G 1. Let el and e be
the leftmost and the rightmost edges in G1 entering v. Let e3 and e4 be the leftmost and the
rightmost edges in G leaving v. The face of G1 with e and e on its boundary is denoted
by left(v). The face of G1 with e2 and e4 on its boundary is denoted by right(v). We use fw
to denote left(vw) and fe to denote right(re). (In other words, the exterior face is divided
into two faces fw and fe.) For the vertices vs and VN define left(vs) left(vN) fw and
right(vs) right(VN)-- fE.

(b) For each interior face f of G1 the boundary of f consists of two directed paths P1
and P2 starting at the same vertex and ending at the same vertex (see part (3) of Fig. 1).

Similarly, the structure of G2 can be summarized as follows.
(c) For each vertex v other than vw and ve the edges entering v appear consecutively

around v in G2. The edges leaving v appear consecutively around v in G2. Let el and e2 be
the leftmost and the rightmost edges in G2 entering v. Let e3 and e4 be the leftmost and the
rightmost edges in G2 leaving v. The face of G2 with e and e3 on its boundary is denoted by
above(v). The face of G2 with e2 and e4 on its boundary is denoted by below(v). We use fN
to denote above(vN) and fs to denote below(vs). (In other words, the exterior face is divided
into two faces fN and fs.) For the vertex vw and re, define above(vw) above(re) fN
and below(vw) below(re) fs.

(d) For each interior face g of G2 the boundary of g consists of two directed paths P and

P2 starting at the same vertex and ending at the same vertex (see part (4) of Fig. 1).

3. Algorithm. Let G (V, E) be a PTP graph, and let T1, T2 be a REL of G. Consider
the S-N net G derived from T, T2 }. For each edge e 6 E, let left(e) (right(e), respectively)

1222 XIN HE

denote the face of G on the left (right, respectively) of e. Define the dual graph of G 1, denoted
by G, as follows. The node set of G*I is the set of the interior faces of G plus the two exterior
faces fly and fE. For each edge e 6 E1 there is a corresponding arc e* in G directed from
the face left(e) to the face right(e). Since G1 is an s-t graph, G is also an s-t graph [11].
Namely, G is a directed acyclic planar graph with fw as the only source and fE as the only
sink.

Similarly, define the dual graph G of G2 as follows. For each edge e 6 E2 let above(e)
(below(e), respectively) denote the face of G2 on the left (right, respectively) of e. The nodes
ofG are the interior faces of G2 plus the two exterior faces fs and fN. For each edge e 6 E2
there is a directed arc e* in G from the face below(e) to the face above(e). G is a directed
acyclic planar graph with fs as the only source and fN as the only sink.

DEFINITION 2. A consistent numbering of order kl of G is a surjective mapping F1
from the node set of G to the set of integers {0, kl} such that (1) Fl(fw) 0 and

F1 (fe) kl, and (2) ifthere is an arc from the node f to the node g in G, then F1 (f) < F1 (g).
For an example, a topological ordering [1], [4] of GT is a consistent numbering. As

another example, if we define F1 (f) to be the length of the longest path in GT from fw to

f (with F1 (fw) 0), F1 is also a consistent numbering. Define the length of G to be the
length of the longest path from fw to fe in G. Note that if the length of GT is k, then any
consistent numbering of G has order at least k by Definition 2. The consistent numbering of

G can be defined similarly. We now can present our algorithm as follows.

ALGORITHM DUAL:
Input: A PTP graph G (V, E).

(1) Find a REL T1, T2 of G.
(2a) Construct the S-N net G1 derived from {T1, T2} and its dual graph G.
(2b) Compute a consistent numbering F1 of G. Let kl F1 (fe).
(2c) For each vertex v 6 V other than vs and VN let J] left(v) and j right(v) in

G1. Let XI(V) Fl(fl) and X2(1)) FI(J). Define XI(UN) XI(US) and
X2(UN) X2(I)S) kl 1.

(3a) Construct the W-E net G2 derived from {T1, T2} and its dual graph G.
(3b) Compute a consistent numbering F2 of G. Let k2 F2(fN).
(3c) For each vertex v 6 V let g below(v) and g2 above(v) in G2. Let Yl (v)

Fz(g) and yz(v) Fz(g2).
(4) For each vertex v 6 V assign v a rectangle R (v) bounded by two vertical lines with

x-coordinates xl (v), xz(v) and two horizontal lines with y-coordinates yl (v), yz(v).
End.

In 4 we will prove that the algorithm DUAL correctly computes a kl x k2 rectangular
dual of G. For an example, the rectangular dual shown in part (2) of Fig. is constructed
from the information indicated in parts (3) and (4). In this example F1 (f) is the length of the
longest path from fw to f in G. Fz(g) is the length of the longest path from fs to g in G.
In part (3) the integers in the small boxes are the Fl-numbers of the faces of G 1. In part (4)
the numbers in the small boxes are the Fz-numbers of the faces of G2.

To implement the algorithm DUAL, we assume the embedding of G is given. (If not, it
can be computed by using the well-known linear-time planarity algorithms.) Step can be
carried out by using the O(n) algorithm in [3]. (The algorithm in [3] finds the set T1, which is
called the path digraph.) For step (2a) the graph G and the dual graph G can be constructed
from the embedding information of G. The implementation of step (2b) depends on the choice
of F1. The most natural choice, the length of the longest path from fs to f in GT, can be
calculated according to the topological ordering of G], [4]. For step (2c) the left face and

RECTANGULAR DUALS OF PLANAR TRIANGULAR GRAPHS 1223

the right face of each vertex can be determined from the embedding information. All these
steps take O(n) time. Step (3) can be implemented similarly. Step (4) clearly takes O(n)
time. Thus the total running time of the algorithm is O (n).

4. Correctness proof. Before we prove the correctness of the algorithm DUAL, we need
several definitions. Consider an S-N net G1 of G. An S-N path is a directed path P in G1
from vs to VN. Let P1 and P2 be two S-N paths of G1. (P1 and P2 are not necessarily
edge disjoint.) We say P2 is to the right of P1 if every edge e E P2 is either on P1 or to the
right of P1.

DEFINITION 3. A path system of G1 is a collection Po Pt-1} of S-N paths of
such that

(1) The union of the paths Pi (0 < < 1) is the edge set E1 of G1;
(2) Pi is to the right of Pi-1 for _< _< 1.
DEFINITION 4. Let F1 be a consistent numbering of G of order kl. For each 0 _< < kl
(1) define FACE/ {fl f is a face of G1 with Fl(f) i};
(2) define LBi {e E E1 e is on the left boundary of a face f 6 FACE/};
(3) define RBi {e 6 E1 e is on the right boundary of a face f 6 FACE/};
(4) define the standard path system {P0,..., Pkl-1} of G1 as Po RBo and Pi

Pi-1 L Bi U RBi for _< _< kl 1.
Note that FACE0 {fw}, LB0 0, RB0 {(vs, vw), (vw, Vu)} and that FACEk

{fE}, LBkl {(vs, rE), (re, VN)}, RBk 0.
We make the following observations. Consider any edge e 6 El. Let gl left(e),

g2 right(e), p F1 (gl), and q F1 (g2). Since e is on the right boundary of gl and on the
left boundary of g2, e E RBp and e 6 LBq. Since e’s corresponding arc e* is directed from
gl to g2 in G, we have p < q. So LBi O RBi 0 for all 0 < < kl. Since each e 6 E1 is
in exactly one RBi (0 _< < kl- 1), E1 is the disjoint union of the sets RBi (0 _< < kl- 1).
Similarly, E1 is the disjoint union of the sets LBi (1 < _< kl).

LEMMA 4.1. Let F1 be a consistent numbering ofG oforder kl. Then thefollowing hold:
(a) The standard path system Po, P1 P1-1 in Definition 4 is a path system ofG
(b) For each vertex v V let Ji left(v) and J right(v) in G1. Define Xl (v)

Fl (fl) and xz(v) F1 (j). Then v is on the path Pi ifand only if xl (v) < < xz(v)- 1.

Proof. (a) We prove by induction that the following hold for each (0 < _< kl 1): (1)
Pi is an S-N path of G 1, and (2) LBi+I

_
Pi.

Base step 0. (1) P0 {(vs, vw), (vw, VN)} is an S-N path of
(2) Let e be an edge in LB1. Then e is on the left boundary of a face f 6 FACE1. Let e*

be the arc in GT corresponding to e. Since F1 (f) 1, e* must be directed from fe to f in

G. This implies e E RBo Po. Since this is true for all e 6 LB1, we have LB1

_
P0.

Induction step. Assume the claims (1) and (2) are true for 1; we show they are true
for i.

(1) By the induction hypothesis P/-1 is an S-N path. Suppose FACE/ {hi hi} for
some l. Let Aj and Bj be the left and the right boundary of hj, respectively (1 _< j _< l).
Since (2) is true for Pi-1, the paths Aj (1 < j < l) are subpaths of Pi-a. Since Aj and Bj
(1 < j < l) start at the same vertex and end at the same vertex and Pi is obtained from P,-I
by replacing each Aj with Bj, Pi is an S-N path of G1.

(2) Consider any edge e 6 LBi+a. Letgl left(e) and g2 right(e). Sincee 6 LBi+I,
F1 (g2) + 1. Suppose F1 (gl) q for some q. Then e 6 RBq. Since e* is directed from g
to g2 in G, q < + 1. By definition e is added into Pq and deleted when Pi+l is constructed.
So e is in Pr for all q _< r _< i. In particular, e E Pi. Thus LBi+

_
P/. This completes the

induction.

1224 XIN HE

Each e 6 E1 is in some RBi (0 < < kl 1) and hence in Pi. Therefore, E1 is the union
of P/’s (i 0 kl 1). From the definition of P/it is easy to see Pi is to the right of Pi-1
for all < < kl 1. Thus {P0 Pkl-1} is a path system of G

(b) Since v is on the right boundary of Ji, it is added into the path Px,,. Since v is on
the left boundary of J, it is removed when the path Px2(v is constructed. Hence v is on the
paths P/for exactly those indices/with xl (v) < < x2(v) 1.

All of the preceding discussion can be repeated on the W-E net G2 and its dual graph

G. Let F2 be a consistent numbering of G of order k2. We can construct the standard path
system {Q0 Qk2-1} of G2 from F2 similar to Definition 4. For each vertex v of G let
gl below(v) and g2 above(v) in G2. Define Yl (v) F2(gl) and y2(v) F2(g2). In a
manner similar to that of Lemma 4.1, it can be shown that v is on the path Qj if and only if
yl(v) < j <_ y2(v)- 1.

LEMMA 4.2. Let G1 and G2 be the S-N net and the W-E net derivedfrom a REL {Tx, T2}
of G. Let F1 and F2 be two consistent numberings ofG and G, respectively. Let u and v
be two vertices of G.

(1) If (u, v) T2 and is directedfrom u to v in G2, then xz(u) xl (v).
(2) Ifthere is a directedpathfrom u to v in G2 with length at least 2, then xz(u) < Xl (v).
(3) If (u, v) T1 and is directedfrom u to v in G l, then yz(u) Yl (v).
(4) Ifthere is a directedpathfrom u to v in G1 with length at least 2, then yz(u) < yl (v).
Proof. We prove only (1) and (2). The proofs of (3) and (4) are similar.
(1) Suppose (u, v) 6 T2 and is directed from u to v. Let el (e2, respectively) be the

rightmost outgoing (incoming, respectively) edge of u in G1. Let e3 (e4, respectively) be the
leftmost outgoing (incoming, respectively) edge of v in G 1. Let f be the face of G1 with
el, e2, e3, and e4 on its boundary. Then f right(u) left(v) and xz(u) Xl (v) F1 (f).

(2) Let u uo, ul Up v (p > 2) be a directed path in G2 from u to v. By (1),
xz(uz-1) Xl (uz) for all < _< p. Since Xl (ut) < xz(u) for all 0 < < p and p > 2, we
have Xz(b/) X2(U0) < Xl (Up) Xl (V).

From Lemmas 4.1 amd 4.2, we can prove the following.
THEOREM 4.3. The algorithm DUAL correctly constructs a rectangular dual of G in

0 (n) time.

Proof. We have shown the algorithm can be implemented in linear time. We next prove
the correctness ofthe algorithm. Let P0 Pk,- be the standard path system of G derived
from F1 and let Qo Qk2-1 be the standard path system of G2 derived from F2. In the
rectangular dual R constructed by the algorithm DUAL, each S-N path P/(0 _< _< kl 1)
corresponds to a vertical strip bounded by the two vertical lines with x-coordinates and 4- 1.
Each W-E path Qj (0 _< j _< k2 1) corresponds to a horizontal strip bounded by the two
horizontal lines with y-coordinates j and j 4- 1. Let R(v) be the rectangle with coordinates

xl (v), xz(v), Yl (v), yz(v). To show the set {R(v) v 6 V} forms a rectangular dual of G, we
need to prove the following claims.

(1) We show that each unit square Rij (0 _< < kl- and 0 _< j < k2- 1)with
x-coordinates i, 4- and y-coordinates j, j 4- is occupied by a rectangle R(v) for a unique
v 6 V. Consider the S-N path P/and the W-E path Qj. Except for the four special cases (a)
i=0, j-0,(b) i=kl-l,j=0,(c)i-0, j--kz-l,(d) i--kl-l,j--kz-l, Piand
Qj intersect at a unique vertex v 6 V. By Lemma 4.1 (b), v is the unique vertex satisfying
all of the following inequalities: Xl(V) < i, + < xz(v), Yl (v) < j, j + < y2(v).
Hence R(v) is the unique rectangle occupying Rij. For the four special cases this claim is
not true. (For example, both vs and vw belong to the intersection of P0 and Q0.) The four
special cases correspond to the four comer unit squares of R. However, the special definition

Xl (vs) xl (Vu) and xz(vs) X2(VN) ka at step (2b) of the algorithm DUAL

RECTANGULAR DUALS OF PLANAR TRIANGULAR GRAPHS 1225

ensures that each of the four unit comer squares of R is occupied by one of R (vw), R (rE).
(2) We show if e (u, v) is an edge in G, then the corresponding rectangles R(u) and

R(v) share a common boundary. If e is an exterior edge, this is ensured by the definition of
R(VN), R(vw), R(vs), R(VE). So assume e is an interior edge. Suppose e 6 T1 and is directed
from u to v. (Other cases are similar.) Let P/be an S-N path containing e. By Lemma 4.1 (b),
xl (u) < < x2(u) and xl (v) < _< xz(v) 1. By Lemma 4.2 (3), yz(u) Yl (v) j for
some j. Thus R (u) and R (v) have the line segment connecting two points (i, j) and (i + 1, j)
as their common boundary.

(3) We show that if two rectangles R(u) and R(v) share a common boundary, then (u, v)
is an edge in G. Assume the common boundary of R(u) and R(v) contains a horizontal
line segment I connecting two points (i, j) and (i + 1, j). (Other cases are similar.) Since

Xl (U) _< i, + < x2(u) and Xl (V) _< i, + < x2(v), both u and v are on the S-N path
P,.. We need to show (u, v) is an edge on Pi. If not, there exists a directed path from u to v
in G1 of length at least 2. By Lemma 4.2 (4) we have yz(u) < Yl (v). This contradicts the
assumption that R(u) and R(v) share I as their common boundary.

Thus e (u, v) is an edge of G if and only if R(u) and R(v) share a common boundary.
Hence {R(v)[v V} form a rectangular dual of G.

5. Conclusion. A new linear-time algorithm for finding a rectangular dual R of a proper
triangular planar graph G is presented. The algorithm is based on new understanding of the
structure of PTP graphs, which is of independent interest. Our algorithm is conceptually
simple. The coordinates of the rectangles of the rectangular dual produced by the algorithm
are integers and carry clear combinatorial meaning. This allows us to discuss the heuristics
for reducing the width and the height of the rectangular dual R. Several related optimization
problems are interesting and deserve further study. Let w(R) and h(R) denote the width
and the height of R. How do we find a rectangular dual R of G so that w(R) is minimized,
w(R) + h(R) is minimized, or w(R)h(R) is minimized?

REFERENCES

1] A.V. Ai-io, J. E. HO,CROFr, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, 1974.
[2] J. BHASKER AND S. SAHNI, A linear time algorithm to checkfor the existence ofa rectangular dual ofa planar

triangulated graph, Networks, 17 (1987), pp. 307-317.
[3] ,A linear algorithm tofind a rectangular dual ofa planar triangulated graph, Algorithmica, 3 (1988),

pp. 247-278.
[4] E. HOROWITZ AND S. SAHNI, Fundamentals ofComputer Algorithms, Computer Science Press, Potomac, MD,

1988.
[5] W.R. HELLER, G. SORKIN, AND K. MAILING, The planar package plannerfor system designers, in Proc. 19th

Annual IEEE Design Automation Conference, Institute of Electrical and Electronics Engineers, New
York, 1982, pp. 253-260.

[6] K. KO;MIlqSKI AND E. KINNEN, Rectangular duals ofplanar graphs, Networks, 15 (1985), pp. 145-157.
[7] D. KELLY AND I. RIVAL, Planar lattices, Canad. J. Math., 27 (1975), pp. 636-665.
[8] Y.-T. LAI AND S. M. LEINWAND, A theory ofrectangular dual graphs, Algorithmica, 5 (1990), pp. 467-483.
[9] K. MAILING, S. H. MUELLER, AND W. R. HELLER, Onfinding most optimal rectangular package plans, in Proc.

19th Annual IEEE Design Automation Conference, Institute of Electrical and Electronics Engineers, New
York, 1982, pp. 663-670.

[10] F.P. PREPARATA AND R. TAMASSIA, Fully dynamic techniquesforpoint location and transitive closure in planar
structures, in Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, 1988, pp. 558-567.

[11] P. ROSENSTIEHL AND R. E. TARJAN, Rectilinear planar layouts and bipolar orientations of planar graphs,
Discrete Comput. Geom., (1985), pp. 343-353.

12] C. THOMASSEN, Interval representations ofplanar graphs, J. Combin. Theory Ser. B, 40 (1986), pp. 9-20.

1226 XIN HE

13] R. TAMASSIA AND J. S. VITTER, Optimal parallel algorithmsfor transitive closure andpoint location in planar
structures, in Proc. 1989 ACM Symposium on Parallel Algorithms and Architectures, Association for
Computing Machinery, New York, 1989, pp. 399-407.

14] R. TAMASSIA, Drawing algorithmsfor planar s-t graphs, Australasian J. Combin., 2 (1990), pp. 217-236.
15] R. TAMASSIA AND I. TOLLIS, Tessellation representations ofplanar graphs, in Proc. 27th Allerton Conference,

University of Illinois at Urbana, Champaign, 1989, pp. 48-57.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1227-1250, December 1993

() 1993 Society for Industrial and Applied Mathematics
007

FAST AND EFFICIENT PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS*

VICTOR PAN ariD JOHN REIF

Abstract. This paper presents a parallel algorithm for the solution of a linear system Ax b with a sparse n n
symmetric positive definite matrix A, associated with the graph G(A) that has n vertices and has an edge for each
nonzero entry of A. If G (A) has an s (n)-separator family and a known s(n)-separator tree, then the algorithm requires
only O(log n) time and ([E[+ M(s(n)))/log n processors for the evaluation of the solution vector x A-lb, where
[El is the number ofedges in G(A) and M(n) is the number of processors sufficient for multiplying two n x n rational
matrices in time O(log n). Furthermore, for this computational cost the algorithm computes a recursive factorization
of A such that the solution of any other linear system Ax b with the same matrix A requires only O(log n) time
and (IEI/logn) + s(n) processors.

Key words, parallel algorithms, sparse linear systems, nested dissection, parallel complexity, graph separators

AMS subject classifications. 68Q25, 68Q22, 65Y05, 65Y20, 65F05, 65F50

1. Introduction. Recently, it has become feasible to construct computer architectures
with a large number of processors. We assume the parallel RAM machine model of [BGH]
(see also [EG] and [KR]), where in each step each processor can perform a single addition,
subtraction, multiplication, or division over the rationals. It is natural to study the efficient
use of this parallelism for solving fundamental numerical problems such as the following.

(1) MULT: Given a pair of n n rational matrices A and B, output A B.
(2) INVERT: Given an n n rational matrix A (aij), output A -1 within a pre-

scribed error bound if A is well conditioned (see Definition 2.1 below); else output: ILL-
CONDITIONED.

(3) LINEAR-SOLVE: Given a well-conditioned n n matrix A and a column vector b
of dimension n, find x A-lb within a prescribed error bound e.

Here and hereafter we assume that- and ff approximate A- and x within e if -a
A-1 -< ellA- and I1 xll _< ell A-1 Ilbll for a fixed pair of consistent matrix and vector
norms.

Our main result in this paper is a numerically stable parallel algorithm for LINEAR-
SOLVE for a sparse symmetric positive definite linear system that can be solved by a sequential
algorithm based on the generalized nested dissection of the associated graph. In the remainder
of this introduction and, more formally, in 3 we compare our algorithm with the previous
results, specify the complexity estimates, show our improvement, and list some applications.
In particular, in 3 we comment on the classes of the LINEAR-SOLVE instances for which
our algorithm is effective.

The nested dissection techniques were first proposed in [Ge] for grid graphs and were then
extended to graphs with small separators in [LRT] (see also [R] and the excellent text [GEL]

*Received by the editors March 16, 1987; accepted for publication (in revised form) June 9, 1992. The results of
the preliminary version of this paper were presented at the 17th Annual ACM Symposium on Theory of Computing,
1985.

tDepartment of Mathematics, Lehman College, City University of New York, New York, New York 10468,
and Department of Computer Science, State University of New York at Albany, Albany, New York 12222.
(vpan@lcvax.bitnet). The work of this author was supported by National Science Foundation grants MCS-8203232,
DCR-8507573, CCR-8805782, and CCR-9020690 and by Professional Staff Congress-City University of New York
awards 661340, 668541, and 669290.

Department of Computer Science, Duke University, Durham, North Carolina 27706. The work of this author
was supported by National Science Foundation grant CCR-83-09911, Office of Naval Research contracts N00014-
87-K-0310 and N00014-88-K-0458, U.S. Air Force Office of Scientific Research contract AFOSR-87-0386, Defense
Advanced Research Projects Agency contracts DAAL03-88-K- 1095 and N0014-88-K-0458, and National Aeronau-
tics and Space Administration CESDIS subcontract 550-63 5-30428 URSA.

1227

1228 VICTOR PAN AND JOHN REIF

and an alternative version of the nested dissection algorithm in [GT]). Many applications to
the sciences and engineering require the solution of such large linear systems; such systems
are frequently so large that parallel implementation of the (generalized) nested dissection
algorithms is necessary in order to make the solution feasible. (We recall some examples of
such problems in 3.)

Work on parallel sparse matrix algorithms can be traced back, at least, to [Ca]. The
extension of the idea of nested dissection from the sequential to the parallel case was not
immediate since many sets of separators must be eliminated in each parallel step. Linear-time
parallel algorithms based on the nested dissection of grids were first described in [Lil] and
[Ga]. The survey paper [OV] gives references to early attempts at parallelizing the LINEAR-
SOLVE algorithms by nested dissection. Here and hereafter, by "parallel nested dissection"
we mean a parallel algorithm for solving sparse linear systems and not a parallel algorithm for
computing a dissection ordering. The subsequent literature on the parallel implementation of
the nested dissection algorithms includes the papers [GHLN] and [ZG], which give a parallel
time bound of O(,v/-ff) for grid graphs.

In the proceedings version of our paper [PR], nested dissection was applied for the first
time to yield a numerically stable and processor efficient parallel algorithm for sparse LINEAR-
SOLVE with poly-log time bounds, thus reaching (within poly-log factors) the optimum bounds
for both time and the number of processors. Furthermore, our nested dissection parallel
algorithm has been applied to a much larger class of graphs than grid graphs, including planar
graphs and s(n)-separatable graphs (see Definition 3.1 below) with s(n) o(n), whereas in
the previous literature the parallel nested dissection was restricted to grid graphs. Such an
enhanced generality required us to exploit the intricate construction of [LRT] (rather than the
simpler constructions of the earlier nested dissection papers, more familiar to the numerical
analysis audience); to devise the desired processor efficient version of this approach, we had
to elaborate the construction of [LRT] by including the recursive factorization of the input
matrix and by proving several properties of the associated graphs. This paper assumes the
reader has some exposure to graph techniques. These generalizations of the nested dissection
algorithms, including the recursive factorization techniques, are required in several important
applications, particularly path-algebra computation in graphs (see [T1], [T2], [PR1], [PR4],
and 3 below).

Remark 1.1. Some readers may agree to sacrifice the generality of the results in order
to simplify the graph techniques involved. Such readers may replace our Definition 3.1 of
separators in graphs by the definition from [GT]. The difference between these approaches
is that our definition requires the inclusion of the separator stbgraph S into both subgraphs
G1 and G2, otherwise separated from each other by S in the original graph G, whereas the
definition of [GT] requires the elimination of all of the vertices of S and all of the edges
adjacent to them from both subgraphs G1 and G2. The resulting construction of [GT] is a
little simpler than ours, and its application decreases by a constant factor the complexity of
the performance of the algorithm in the case of planar graphs G, but the results are applied to
a class of graphs that is strictly more narrow than the class we address. As in our proceedings
paper, [PR1], we extend to parallel computation the more general algorithm of [LRT], rather
than one of [GT], but we demonstrate the vertex elimination construction of [GT] for a 7 7
grid graph in our Figs. 1-5 below (in this case, using the version of [GT], rather than ours,
made our display simpler and more compact).

[Li2] and [OR] describe two recent implementations of the parallel nested dissection
algorithm on massively parallel SIMD machines. The first implementation is very general
and applies to any s (n)-separatable graph; it runs on the CONNECTION MACHINE, which is
a hypercube-connected parallel machine with 65,536 processors; the second implementation is

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1229

2,5 2 43 9 31

18 44

6 4’7

i20 48

,8 49

17 26

,3 ,27

5 28

19 29

7 30

13 34

22

,42

FIG. l(a). 7 7 grid graph Go with elimination numbering.

I() 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39,10 ,12 43 44 45 46 47,18 49

FIG. (b). The matrix Ao. denotes a nonzero entry. Go is the sparsity graph of the matrix Ao.
restricted to grid graphs and runs on the MPP, which is a grid-connected parallel machine with
16,384 processors. Both implementations represent a version of the parallel nested dissection
algorithm using O(s(n)) time and s(n)2 processors (see the end of 3).

In the papers [PR2]-[PR4], [PR6], [PR7] we extend our parallel nested dissection algo-
rithm to the linear least-squares problem, to the linear programming problem, and to path-

1230 VICTOR PAN AND JOHN REIF

Xo Y.

Z

FIG. (C). Recursivefactorization of the matrix Ai.

algebra computation in graphs; in all these papers the resulting algorithms are ultimately
reduced to application of the algorithm of the present paper.

The rest of the paper is organized as follows: In 2 we briefly recall the known parallel
algorithms for MULT and INVERT, and we review their complexity estimates. In 3 we recall
some definitions and then state our estimates for the complexity of LINEAR-SOLVE. In 4
we present the parallel nested dissection algorithm for LINEAR-SOLVE for the case of sparse
symmetric positive definite systems. In 5, we state our main theorem, which provides bounds
on the complexity of the nested dissection algorithm. In 6-8 we prove these bounds. In
Remark 6.1 in 6 we comment on the extension of our results to the nonsymmetric sparse
linear systems associated with directed graphs.

2. Auxiliary results on matrix multiplication and inversion. Our algorithm for
LINEAR-SOLVE recursively reduces the original problem of large size to a sequence of
problems ofMULT and INVERT of smaller sizes. Let us recall the complexity of the solution
of the two latter problems.

Let M(n) denote an upper bound on the number of processors that suffice to multiply
a pair of n n matrices in O(log n) time. Here and hereafter the numbers of processors
are defined within a constant factor (we assume Brent’s (slowdown) scheduling principle of
parallel computations, according to which we may decrease the number of processors from P
to P/s] by using s times as many parallel steps for any natural s _< P). By the upper bound
of [Ch], obtained by the straightforward parallelization of the algorithm of [Stral], we may
chose M(n) <_ n281. In [PR1] and [Panl0] we show that if k k matrices can be multiplied
in O(k) arithmetic operations and/3 < 9/for some 9/, then we may choose M(n) <_ n for
some co < 9/ and for all n. The current best upper bound on/3 and co is 2.375 [CW1]; for
surveys of the exciting history of the asymptotic acceleration of matrix multiplications, see
also [Pan6], [Pan7], or the original works [Stral (the first and justly celebrated breakthrough
in this area), [PanlI-[Pan5], [BCLR], [Bi], [Sch6], [CW2], [Stra2]. In practice, however, even
for matrices of reasonably large sizes, we should only count on M(n) n3/log n or, at best,
on M(n) O(n2"78) because of the considerable overhead of the known asymptotically faster
algorithms for matrix multiplication (see [Pan7]).

Let us next estimate the complexity of INVERT.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1231

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

4 5 6 9 10111213141516

2 4 6 9 1011 12 13 14 15 16

FIG. (d). Submatrices Yo and Xo of the matrLr Ao.

DEFINITION 2.1. We call an n x n matrix W well conditioned if log cond W O(log n),
where cond W 11W 11W-1[[for a fixed matrix norm (this definition is invariant in for all
/-norms of matrices).

Now we may recall the following estimate from [PR5] based on the algorithm of [Be]
(compare [PaS]):

Fact 2.1. The problem INVERT for an n n well-conditioned matrix A and for a positive
e < such that log log(1 /e) O (log n) can be solved within error bound e by using O (log2 n)
parallel time and M(n) processors.

Furthermore, matrix multiplication can be reduced to matrix inversion (see [BM, p. 51]
or [Pan7]), so that the processor bound, as well as the parallel and sequential time bounds

1232 VICTOR PAN AND JOHN REIF

,22

,42

,24

FIG. 2(a). Graph G1 derivedfrom Go by simultaneous elimination of R0 {1, 2 16}.

Al=

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

FIG. 2(b). The matrix A1. G1 is the sparsity graph of the matrix A1.

attained this way, are optimal or nearly optimal (to within a factor of O(log n)). In [Pan8]
the above results for dense matrices are extended to the exact evaluation of the inverse of A,
of the determinant of A, andof all the coefficients of the characteristic polynomial of A in
O(log2 n) steps by using M(n) processors in the case for which A is an arbitrary matrix filled
with integers and such that log IIA n (a) (see proceedings papers [GP1, Part 1] and [Pan9],
which cite and (partly) reproduce [Pan8], and see also its extensions in [Panl0], [Panl], and
[KS]).

In 3 we state our estimates for the complexity of sparse LINEAR-SOLVE by using the
above estimates for the complexity of MULT and INVERT.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1233

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

17 18 19 20 21 22 23 24

17
18
19
20
21
22
23
24

17 18 19 20 21 22 23 24

FIG. 2(c). Submatrices Y1 and XI ofthe matrix A .

FIG. 3(a). Graph G2 derivedfrom G by simultaneous elimination ofR 17, 18 24}.

Let us point out two alternatives. In the current applications of our algorithm (see the
end of 3) we apply Gaussian elimination for matrix inversion, which for an n n matrix
means O(n) steps and n2 processors. On the other hand, theoretically, we may rely on the
exact evaluation of the inverse of an n n matrix over rationals. This problem has interesting
combinatorial applications (see [Lo], [GP1], [GP2], [MVV]). The known parallel algorithms

1234 VICTOR PAN AND JOHN REIF

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

25 26 27 28 29 30 31 32 33 34 35 36

25 26 27 28 29 30 31 32 33 34 35 36

FIG. 3(b). The matrix A2 and its submatrices Y2 and X2. G2 is the sparsity graph of the matrix A2.

for its solution use O(log2 n) steps and n M(n) processors, where ot varies from in [Cs] to
in [GP3]; furthermore, ot 0 even for INVERT over the+/- in [PrS] and to slightly less than2

real matrices if we allow randomized Las Vegas algorithms, because of combining [KS] and
[Panl 1] (see also [KP], [BP]), although the problem of numerical stability arises with all of
these matrix inversion algorithms. The parallel cost of solving sparse linear systems varies,
respectively, with the change of matrix inversion algorithms.

3. Some definitions and the complexity of sparse LINEAR-SOLVE. To characterize
the linear systems Ax b that our algorithm solves, we will need some definitions.

DEFINITION 3.1. A graph G (V, E) is said to have an s (n)-separator family (with
respect to two constants, ot < and no) if either VI _< no or, by deleting some separator set S
of vertices such that ISI _< s(IVI), we may partition G into two disconnected subgraphs with

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1235

49

FIG. 4(a). Graph G3 derivedfrom G2 by simultaneous elimination of R2 {25, 26 36}.

37 38 39 40 41 42 43 44 45 46 47 48 49

Y3 =
37 38 39 40 41 42

37 38 39 40 41 42

FIG. 4(b). The matrix A3 and its submatrices Y3 and X3. G3 is the sparsity graph of the matrix A3.

the vertex sets V1 and V2 such that Vil lV[, 1, 2, and if, furthermore, each of the two
subgraphs of G defined by the vertex sets S U Vi, 1, 2, also has an s (n)-separator family
(with respect to the same constants ot and no). The resulting recursive decomposition of G is
known as the s (n)-separator tree, so that each partition of the subgraph G defines its children
in the tree. The vertices of the tree can thus be interpreted as subgraphs of G or as their vertex
sets (we will assume the latter interpretation), and the edges of the tree can be interpreted as the

1236 VICTOR PAN AND JOHN REIF

47

49

FIG. 5(a). Graph G4 derivedfrom G3 by simultaneous elimination of R3 {37, 38 42}.

44 45 46 47 48 49
44
45
46
47
48
49

FIG. 5(b). The matrix A4. G4 is the sparsity graph of the matrix A4.

separator sets. Then the vertex set V equals the union of all the vertex subsets in V associated
with the edges of the s(n)-separator tree and with its leaves. We call a graph s(n)-separatable
if it has an s(n)-separator family and if its s(n)-separator tree is available.

The above definition of a separator tree follows [LT] and includes a separator in each
induced subgraph, unlike the definition of [GT] (see Remark 1.1).

Binary trees obviously have a 1-separator family. A d-dimensional grid (of a uniform size
in each dimension) has an n 1-(1/d)-separator family. [LRT] shows that the planar graphs have
a V/--separator family and that every n-vertex finite element graph with at most k boundary
vertices in every element has a 4 Ik/2J ,,/-if-separator family. An improved construction due to
[D] gives a V/-6--separator family for planar graphs. (Similar small separator bounds have also
been derived by Djidjev for bounded genus graphs and for several other classes of graphs.)

DEFINITION 3.2. Given an n x n symmetric matrix A (aij), define G(A) (V, E) to be
the undirected graph with the vertex set V n} and the edge set E {{i, j}laij 0}.
(We may say that A is sparse if IEI o(n2).)

The very large linear systems Ax b that arise in practice are often sparse and, further-
more, have graphs G(A) with small separators. Important examples of such systems can be
found in circuit analysis (e.g., in the analysis of the electrical properties of a VLSI circuit),
in structural mechanics (e.g., in the stress analysis of large structures), and in fluid mechanics
(e.g., in the design of airplane wings and in weather prediction). These problems require the
solution of (nonlinear) partial differential equations, which are then closely approximated by
very large linear differential equations whose graphs are planar graphs or three-dimensional
grids. Certain weather prediction models, for example, consist of a three-dimensional grid of
size H1 x H2 x H3 with a very large number n H1H2H3 of grid points, but this grid has
only a constant height H3, and hence it has an s(n)-separator family for which s(n) <_ vH3n.

Our algorithm for LINEAR-SOLVE is effective for the systems whose associated graphs
have s(n)-separator families for which s(n) o(n) and for which s(n)-separator trees are

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1237

readily available. Thus our result can be viewed as a reduction of sparse LINEAR-SOLVE to
the problems of (1) computing an s (n)-separator tree in parallel and (2) solving dense linear
systems of s(n) equations with s(n) unknowns.

Efficient parallel computation of s(n)-separator trees is not simple in general, but it
is rather straightforward in the practically important cases of grid graphs (see Figs. 1-5);
similarly, such computation is simple for many finite element graphs (see [Ge]). The recent
O(log2 n)-time, n l+e processor (for any e > 0) randomized parallel algorithm of [GM1 gives
O(fd)-separator trees for all the planar graphs.

Many very large sparse linear systems of algebraic equations found in practice, such as
linear systems arising in the solution of two-dimensional linear partial differential equations
with variable coefficients, have associated graphs that are not grid graphs but that have s(n)-
separators for s(n) o(n). The correctness of the generalized parallel nested dissection
algorithm applied in the case of graphs with s(n)-separators (and thus already in the impor-
tant case of planar graphs) requires a considerably more complex substantiation and a more
advanced proof technique than does the case of grid graphs; in particular, a sophisticated
inductive argument is required (see 7 and 8). This occurs because grid graphs are more
regular than are general graphs with s (n)-separators.

Let us state the complexity estimates for our solution of sparse LINEAR-SOLVE. Our
main result is the decrease of the previous processor bound (supporting the poly-log parallel
time) from M(n) to (IEI + M(s))/log n, whereas the time bound increases from O(log2 n) to
O(log n). (Since in all the known applications of interest s(n) exceeds cn for some positive
constants c and 6, we will write O (log n) rather than O (log s (n)) to simplify the notation.
Also note that 2IEI is roughly the number ofnonzero input entries, so that we cannot generally
count on decreasing the sequential time (and therefore also the total work, that is, parallel time
times the processor bound) below IEI.) It follows, for example, that our improvement of the
previous processor bound is by a factor of n if s(n) n 1/2, IEI 0(n3/2). Because practical
implementations of the algorithms would be slowed down to satisfy processor limitations of
the actual computers (see discussion at the end of this section), we will decrease the processor
bound of M(n) log2 n T(n) to (IEI -+- M(s(n))) log2 n T(n) in our algorithm, provided that
it runs in T (n) time, where T (n) > c log n, c O (1).

Let us comment further on how we arrive at our estimates. In general, the inverse A-1

of a sparse matrix A (even of one with small separators) is dense, and, in fact, if G(A)
is connected, A -1 may have no zero entries. Therefore, it is common to avoid computing
the inverse matrix and instead to factorize it. Our algorithm for LINEAR-SOLVE follows
this custom: It computes a special recursive factorization of A. For sparse matrices with
small separators, our poly-log-time algorithm yields processor bounds that are of an order of
magnitude lower than the bounds attained by means of other poly-log-time parallel algorithms,
which compute the inverse matrix. Specifically, let an n n positive definite symmetric well-
conditioned matrix A be given, such that G (A) has an s (n)-separator family, its s (n)-separator
tree is known, and s(n) is of the form otn for two constants cr < and c. Then we first
compute a special recursive factorization of A (within the error bound 2-no for a positive
constant c) in O(log n) time by using M(s(n))/logn processors (see Theorem 5.1 below),
and finally we compute the desired solution vector x A-lb. The complexity of this final
stage is lower than the complexity of computing the recursive factorization.

For comparison the inversion of an s(n) s(n) dense matrix is one of the steps of
computing the recursive factorization of A, and the current parallel cost of this step alone
is at best O(log2 n) time and M(s(n)) processors (by using the parallel algorithm of [Be],
[PR1].) When our special recursive factorization has been computed, the solution of Ax
b (for any given b) requires only O(log2 n) time and (IEI/logn) + s(n)2 processors. It

1238 VICTOR PAN AND JOHN REIF

is interesting that by multiplying our parallel time and processor bounds we arrive at the
sequential complexity estimate of O(M(s(n))log2 n) o(s(n)2"4) arithmetic operations,
which matches the theoretical upper bound of [LRT].

Let us demonstrate some consequences of the complexity bounds of our algorithm. We
will first assume the weak bound M(n) n3/log n for matrix multiplication. It is significant
that already under this assumption our parallel nested dissection algorithm, for poly-log time
bounds, has processor bounds that substantially improve the previously known bounds. Let G
be a fixed planar graph with n vertices given with its O (x/-d)-separator tree. (For example, G
might be a graph with a x grid.) Then, for any n x n matrix A such that G G(A),
our parallel nested dissection algorithm takes O(log n) time and n1"5/log2n processors to

compute the special recursive factorization of A and then O (log2 n) time and n processors to
solve any linear system Ax b with A fixed. We have the time bounds O(log (kn)) and
O(log2(kn)) and the processor bounds k3nl5/log2(kn) and kn, respectively, if G(A) is an
n-vertex finite element graph with at most k vertices on the boundary of each face. In yet
another example, G(A) is a three-dimensional grid, so that it has an n2/3-separator family. In
this case we have the same asymptotic time bounds as for planar graphs and our processor
bounds are n2/log2 n and n 1.33, respectively. Furthermore, if we use the theoretical bounds
for matrix multiplication, say M(n) n2"4, then our processor bounds for computing the
special recursive factorization are further decreased to n 1.2 in the planar case, to k2"4n 1.2 in the
case of the n-vertex finite elements graphs with at most k vertices per face, and to n 1.6 for the
three-dimensional grid.

In the current practical implementations of our algorithm ([LMNOR] and [OR]) we have
not reached the poly-log-time bounds because we have simply used the Gaussian elimination
rather than Ben-Israel’s algorithm at the stages of matrix inversions, and so we achieve time
s(n) with s(n)2 processors. The reason for this choice is the limitation on the number of
processors that we could efficiently use on the available computers. It is certain, however, that
the future parallel computers will have significantly more processors, and then the application
of Ben-Israel’s algorithm may be preferred; we cannot exactly estimate the threshold number
of processors that would in practice give the edge to Ben-Israel’s algorithm over Gaussian
elimination, but according to our theoretical estimates the former algorithm improves the
parallel time bounds of the latter one if more than s(n)2 processors are available.

4. Outline of the parallel generalized nested dissection algorithm. In this section we
fix an undirected graph G having an s(n)-separator family (with respect to constants no and
or) (see Definition 3.1). Let A be an n x n real symmetric positive definite matrix with graph
G G(A) (see Definition 3.2). We will describe an efficient parallel algorithm that computes
a special recursive factorization of A. With such a factorization available it will become very
simple to solve the system of linear equations Ax b for any given vector b (see the last part
of Theorem 5.1 below).

DEFINITION 4.1. A recursive s(n)-factorization of a symmetric matrix A (associated with
a graph G G(a) having an s(n)-separator family with respect to two constants or, ot < 1,
and no) is a sequence of matrices, Ao, A1 Ad, such that Ao PAPr, where P is an
n x n permutation matrix, Ah has size n

(4.1) Ah=
Yh Zh

Zh Ah+l + YhX Y, h=0,1 d-l,

and Xh is a symmetric block diagonal matrix corresponding to the separators or, for h d,
to the vertex sets in V associated with the leaves of the s(n)-separator tree and consisting of
square blocks of sizes at most s (na_h) x s (ha_h), where

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1239

(4.2) nd= n, nh-1 < Otnh --}- S(nh), h 1 d.

Here and hereafter, Wr denotes the transpose of a matrix or vector W. (Note that the constant

no used in Definition 3.1 for the separator family is also the order of the diagonal blocks
of the matrix X,/.) This recursive factorization is said to be numerically computed if the
computerized approximants of the induced matrices A1 Aa satisfy (4.1) within the error
norm 2-no (relative to A I1) for a positive constant c.

Our definition of a recursive s(n)-factorization relies on the matrix identities

(4.3) Ah
YhX- I 0 Ah+l 0 I

and

(4.4)
O I O A-1 -YX-1 Ih+l

Here the matrix Ah+l defined by (4.1) is known in linear algebra as Schur’s complement of
Xh, h ranges from 0 to d 1, I denotes the identity matrices, and O denotes the null matrices
of appropriate sizes. We show in 7 that Ah+l also has certain sparsity properties.

The recursive decomposition (4.1)-(4.4) is intimately related to the recursive decompo-
sition of the associated graph G G(A) defined by (and defining) the s(n)-separator tree.

Specifically, we will see that the matrices Xh are block diagonal matrices whose blocks for
h 0, d are associated with the separator sets of level h from the root of the tree,
whereas the blocks of Xa are associated with the leaves of the tree.

Given a symmetric n n matrix A associated with an s(n)-separable graph G(A), we
may compute the recursive s(n)-factorization (4.1)-(4.4) by performing the following stages:

Stage O. Compute an appropriate permutation matrix P, matrix A0 PAPr, and the
decreasing sequence of positive integers n n, n-i no satisfying (4.2) and defined
by the sizes of the separators in the s(n)-separator family of G G(A) (as specified below
in 7). The permutation matrix P and the integers nd, na-1 no completely define the
order of the elimination of the variables (vertices), so that first we eliminate the vertices of
G corresponding to the leaves of the s(n)-separator tree, then we eliminate the vertices of
G corresponding to the edges adjacent to the leaves of the tree (that is, the vertices of the
separators used at the final partition step), then we eliminate the vertices of G corresponding
to the next edge level of the tree (separators of the previous partition step), and so on; we
formally analyze this in 7 and 8.

Stage h + (h 0 d 1). Compute the matrices X-I, yh X-I (which also gives
us the matrix -XIy (-YhX-I) r) and Ah+l Zh YhX-IY satisfying (4.1), (4.3),
(4.4) and such that Ah+l has size rid-h-1 nd-h-1. (Each of these stages amounts to inversion,
two multiplications, and subtraction of some matrices.)

When the recursive factorization (4.4) has been computed, it will remain to compute the
vector x A-lb pTAl(pb) for a column vector b. This can be done by means of
recursive premultiplications of some subvectors of the vector Pb by the matrices

-YX- I O A-1 O Ih+l

for h 0, 1 d. At the stage of the premultiplication by the second matrix above, the
premultiplication by X-1 is done explicitly and the premultiplication by Ah is performed

1240 VICTOR PAN AND JOHN REIF

by means of recursive application of (4.4), so that (4.4) defines a simple recursive algorithm
for computing A-lb for any column vector b of length n, provided that a recursive s(n)-
factorization (4.1) is given.

It is instructive to compare the recursive s (n)-factorization (4.1)-(4.4) with the Cholesky
factorization of Ah used in [LRT]. The notations in [LRT] are distinct from ours, but for the
sake of making the comparison we assume that the notation is adjusted to the same format.
Then we may say that both factorizations rely on the matrix identities (4.3), (4.4) which, in
fact, just represent the block Jordan elimination algorithm for a 2 2 block matrix Ah of (4.1).
The Cholesky factorization PAPr LDL 7" is obtained in [LRT] by the application of the
Jordan elimination to the matrix PAPT", which is equivalent to the recursive application of
(4.3) to both submatrices Xh and Ah+l. (This defines L and L 7" in factorized form, but the
entries of the factors do not interfere with each other, so that all the entries of YhX coincide
with the respective entries of L.) Efficient parallelization of this recursive algorithm (yielding
O(log n) parallel time) is straightforward, except for the stage of the factorization of the
matrices Xh (which, by Lemma 7.2 below, are block diagonal with dense diagonal blocks of
sizes of the order of S(rlh) S(rth)). However, for the purpose of solving the systems Ax b,
we do not have to factorize the matrices Xh. It suffices to invert them, and this can be efficiently
done by using the techniques of [Be], provided that A is a well-conditioned matrix. Thus we
arrive at the recursive s(n)-factorization (4.1)-(4.4), where we recursively factorize only the

-1 in (4.4) but not the matrices Xh and X- This modification ofmatrices Ah+l in (4.3) and Ah+
the factorization scheme is crucial in some important combinatorial computations (see [PR4],
[PR6]).

5. Parallel generalized nested dissection: The main theorem. Hereafter, we will as-
sume that c and r are constants such that

(5.1) s(n) cn ! < r <2

Equation (5.1) holds in all the interesting applications (such as planar graphs, grid graphs, and
finite element graphs) for which s (n)-separator families are defined.

For simplicity, we will also assume hereafter that

(5.2) M(n) n* for some constant co* > 2 > +/-

and consequently that

(5.3) M(ab) M(a)M(b).

THEOREM 5.1. Let G (V, E) be an s(n)-separatable graph for s(n) satisfying (5.1).
Then, given an n n symmetric positive definite matrix A such that cond A n() and
G G (A), we can numerically compute a recursive s (n)-factorization ofA in time 0 (log n)
with M(s(n))/ log n processors (provided that M(s(n)) processors suffice to multiply apair of
s(n) s(n) matrices in time O(log n) and that M(n) satisfies (5.2)). Whenever such a recursive
s(n)-factorization ofA is available, O(log2 n) time and (IE[/ log n) + s(n)2 processors suffice
to solve a system of linear equations Ax b for any given vector b ofdimension n.

Remark 5.1. It is possible to extend Theorem 5.1 to the case for which (5.1) does not
hold by using [LRT, Thms. 7-9]. On the other hand, the restriction to the class of symmetric
positive definite input matrices A in the statements of Theorem 5.1 is needed only to support
numerical stability of the factorization (4.3), (4.4).

Remark 5.2. The product of our parallel time and processor bounds is the same, TP
(PARALLEL TIME) PROCESSOR O(M(s(n)) log2 n), both for computing the whole
recursive factorization (4.3), (4.4) and for its proper stage of inverting Xa-1.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1241

Remark 5.3. As was noted by Gazit and Miller [GM2], the recursive s(n)-factorization
can be computed by using O(log2 n log log n) time and M(s(n)) processors. Moreover, their
approach can be extended to reach the bounds of O(log2 n log(1/)) time and simultaneously
O(M(s(n))1+) processors for a positive parameter 6 JAR]. One may try to improve the
processor efficiency of the latter estimates by applying a relatively minor super effective
slowdown of the computations [PP].

6. Outline of the proof of the main theorem. We will show that the parallel algorithm
uses only d O(log n) stages. Let 6 3 (n) denote cn-1 s (n)/n, and let no be large
enough, so that

(6.1) ak+s(k)-(ot+3)k=/3k, /3=ot+6 < ifk>n0.

Equations (4.2) and (6.1) together imply that

(6.2) nh < (Or + 6)d-hn fld-hn, h --O, d.

LEMMA 6.1. d O (log n) forfixed no and ot < 1.

Proof. Relation (6.2) for h 0 implies that d < log(n/no)/log(1/(a + 3))
O(logn). [-1

The next lemma shows that for all h the auxiliary matrices Ah and Xh are positive definite
(and therefore nonsingular) and have condition numbers not exceeding the condition number
of A. This implies that our parallel algorithm is numerically stable. The lemma follows from

-1the observation that Ah+ is a principal submatrix ofA- and from the interlacing property of
the eigenvalues of a symmetric matrix (see [GoL] or [Par]).

LEMMA 6.2. The matrices Ah+l and Xh are symmetric positive definite if the matrix Ah
is symmetric positive definite, and, furthermore, max{(cond Ah)2, (cond Xh)2} < (cond A)2
for all h.

In the remainder of this paper we further specify our parallel nested dissection algorithm
and estimate its complexity. We observe that all its arithmetic operations (except those needed
in order to invert Xh for all h) are also involved in the sequential algorithm of [LRT]. (As in
the latter paper, we ignore the arithmetic operations for which at least one operand is zero;
we assume that no random cancellations of nonzero entries takes place, for if there are such
cancellations, we would only arrive at more optimistic bounds; we will treat both Xh and X-I

as block diagonal matrices having nonzero blocks in the same places.)
For each h we group all the arithmetic operations involved to reduce these operations to a

pair of matrix multiplications Uh YhS (which also gives X- yhT UhT) and Wh UhY
and to a (low-cost) matrix subtraction Ah+l Zh Wh (it is assumed here that the matrix

X-1 has been precomputed). Below, Theorem 7.1 provides a bound on the complexity of
numerically computing the inverse of the auxiliary matrices X0 Xd, and Theorem 8.1
provides a bound on the cost of parallel multiplication of the auxiliary matrices and implies
the time bound of O (log2 n) for the entire computation, excluding the stage of the inversion
of the matrices Xh. The number of processors is bounded above by the number of arithmetic
operations used in the algorithm of [LRT], that is, by O(s(n)3) (see [LRT, Thm. 3] and Remark
5.2).

The estimates of Theorem 5.1 for the cost of computing the recursive factorization (4.1)-
(4.4) immediately follow from Theorems 7.1 and 8.1 below.

Next we discuss the parallel complexity of back solving the linear system Ax b, given
the recursive factorization. As we have already pointed out, when the recursive factorization
(4.1)-(4.4) has been computed, we evaluate x A-lb by means of successive premultiplica-
tions of some subvectors of b by the matrices Yh X-I, X-I, and X-I yhv for h ranging between

1242 VICTOR PAN AND JOHN REIF

0 and d. The parallel time bounds are O (log n) for each h and O (log2 n) for all h. The obvious
processor bound is (IEI + IFl)/logn, where IEI + IFI denotes the number of entries of an
n x n array corresponding to the nonzeros of at least one of the submatrices X-1Y, Yh X- 1,
and X-I of (4.4) for h 0, d (for each h, X y, Yh X- l, and X-1 occupy the
upper-right, lower-left, and upper-left comers of the array, respectively). The nonzeros of A0
form the set E of the edges of G(A); other nonzeros form the set F calledfill-in (associated
with the nonzeros introduced in the process of computing the s(n)-factorization (4.1)-(4.4)).

Finally, we must discuss the space bounds of the algorithm. By [LRT, Thm. 2], IF]
O(n +s(n)2 log n), and this bound can be applied to our algorithm as well. The proofs in [LRT]
are under the assumption that s(n) O (v/-ff), but the extension to any s(n) satisfying (5.1) is
immediate. Likewise, Lipton, Rose, and Tarjan estimated only the number of multiplications
involved, but including the additions and subtractions would increase the upper estimates
yielded in their and our algorithms by only a constant factor.

Remark 6.1. The algorithms and the complexity estimates of this paper will be immedi-
ately extended to the case of nonsymmetric linear systems with directed graphs if for all h we
replace the matrices Y by matrices Wh (which are not generally the transposes of Yh) and
remove the assumption that the matrices Xh are symmetric. Of all the results and proofs, only
Lemma 6.2 and the numerical stability of our s(n)-recursive factorization (4.1)-(4.4) are not
extended. This lack of extension of Lemma 6.2 surely devalues the resulting numerical algo-
rithm, but the algorithm remains powerful for the computations over the semirings (dioids),
with interesting combinatorial applications (see [PR4], [PR6], [PR7]).

7. Cost of parallel inversion of the auxiliary matrices Xh. In this section we specify
Stage 0 of computing the recursive factorization (4.1)-(4.4) (see 4) and prove the following
result:

THEOREM 7.1. Let A be an n n well-conditioned symmetric positive definite matrix
having a recursive s(n)-factorization. Then O(log n) parallel time and M(s(n))/ log n pro-
cessors suffice to numerically invert the auxiliary matrices Xo Xd that appear in the
recursive s(n)-factorization (4.1)-(4.4).

Proof We first reexamine the well-known correlations between the elimination of the
variables and of the associated vertices of G G (A), which we will derive from the previous
analysis of nested dissection in [R] and [GEL]. We observe that the elimination of a vertex
(variable) v is associated with the replacement of the edges in the graph G as follows: (1)
First, for every pair of edges {Ul, v} and {v, u2}, the fill-in edge {Ul, u2} is to be added to the
set of edges (unless {Ul, u2} is already in the graph); (2) then every edge with an end point v
is deleted.

Adding an edge such as {Ul, u2} to the edge set corresponds to four arithmetic operations
ofthe formz-ylx-ly2, where x, Yl, y2, z represent the edges {v, v}, {Ul, v}, {v, U2}, {Ul, U2},
respectively (see Figs. 1-5 and the end of Remark 1.1). If a block of variables is eliminated,
then a set S, representing this block, should replace a vertex in the above description, so that, at
first, for every pair ofedges u 1, Sl }, u2, s2 with the end points s and s2 in S, the edge u 1, u2

is added to the set of edges, and then, when all such pairs of edges have been scanned, all the
edges with one or two end points in S are deleted. This corresponds to the matrix operations of
the form Z Y1 X-1 yf, where X, Y1, Yf, Z represent the blocks of edges of the form {$1, $2 },
{Ul, sl}, {s2, u2}, {ul, u2}, respectively, where Sl, s2 6 S and where ul, u2 denote two vertices
connected by edges with S. For symmetric matrices we may assume that Y1 Y2 Y. Of
course, the objective is to arrange the elimination so as to decrease the fill-in and the (sequential
and parallel) arithmetic cost. This objective is achieved in the nested dissection algorithm, in
which the elimination is ordered so that every eliminated block of vertices is connected by

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1243

edges with only relatively few vertices (confined to an s(nh)-separator, separating the vertices
of the eliminated block from all other vertices).

To ensure the latter property we exploit the existence of an s (n)-separator family for the
graph G G(A) and order the elimination by using a separator tree T6 defined for a graph
G as follows:

DEFINITION 7.1. See Fig. 6. Suppose that the graph G (V, E) has n vertices. If n < no
(see Definition 3.1), let T6 be the trivial tree with no edges and with the single leaf (V, S),
where S V. If n > no, we know an s(n)-separator S of G, so that we can find a partition
V (1), V (2), S of V such that there exists no edge in E between the sets V (1) and V (2) and,
furthermore, IV(1)I _< otn, IV(2)I _< otn, and ISl _< s(n). Then Ta is defined to be the binary
tree with the root (V, S) having exactly two children that are the roots of the subtrees Ta
Ta of T6, where Gj is the subgraph of G induced by the vertex set S tA V (j) for j 1, 2.
(Note that T6 is not equivalent to the elimination trees of [Schr], [Li2], and [GHLN] or to
the separator trees of [GT], since the latter trees do not include the separator in the induced
subgraphs.)

(V
1 Sl,2)

(V ,V (V ,V (V ,V
0,I 0,i 0,2 0,2 0,3 0,3

(Vo’4’Vo 4)

FIG. 6. Tree Tc for the case d 2.

The following definitions are equivalent to the usual ones, as, for example, given in [LRT].
DEFINITION 7.2. Let the height of a node v in Ta equal d minus the length of the path

from the root to v, where d, the height of the root, is the maximum length of a path from the
root to a leaf. Let Nh be the number of nodes of height h in Ta. Since Ta is a binary tree,

Nh < 2d-h. Let (Vh,1, Sh,1) (Vh,Nh, Sh,Nh) be a list of all the nodes of height h in T6, and

let Sh J Sh,k.
Let n be the number of vertices of G. Since G has an s(n)-separator family, IVh,l _< nh

and [Sh,k[< s(nh) for each h > and for k 1 Nh (see (4.2) for the definition of nh);
furthermore, v0,l _< no and S0,k V0,k for k 1, .., No by the definition of the tree T6.

DEFINITION 7.3. For each k 1 Nh let Rh,k denote the set of all the elements of Sh,k
that are not in Sh. for h* > h, so that Rh,k Sh,k USh.,k., where the union is over all the

Nhancestors (Vh.,., Sh.,k.) of (Vh,k, Sh,) in T6. Let Rh -Jk=l Rh,k.
Observe that, by the definition of the sets Rh,k and Rh and of an s(n)-separator family,

Rh,kl f’) Rh,k2 J if kl k2, Rh f’) Rh* J if h h*, and V ha=0 Rh. Also observe that
for distinct k the subsets Rh,k of Rh are not connected by edges with each other; moreover, the
vertices of each set Rh,k can be connected by edges only with the vertices of the set Rh,k itself
and of the separator sets Sh+g,q in the ancestor nodes of (Vh,k, Sh,k) of the tree T6. Now we are

ready to describe the order of elimination of vertices and of the associated variables. We will
eliminate the vertices in the following order: first the vertices of R0, then the vertices of R1,
then the vertices of R2, and so on. (For each h we will eliminate the vertices of Rh in parallel

1244 VICTOR PAN AND JOHN REIF

for all the disjoint subsets Rh,1, Rh,2 Rh,Nh .) This way all the vertices of V Jh Rh will
be processed. In particular, the rows and columns of Ah associated with the vertices of Rh,k
form an [Rh,k[x [Rh,k[diagonal block of Xh for k 1, 2 Nh; Xh is the block diagonal
submatrix of Ah with these Nh diagonal blocks, and nh+ nh [Rh [.

Let us now formally define the desired permutation matrix P and set of integers na, ha-l,

no, which we need in Stage 0 (see 4). Let re {1 n} -+ {1 n} be any enu-
meration of the n vertices of G such that re(v) < re(v*) if v Rh, v* Rh., h* > h, and,
furthermore, re consecutively orders the vertices of Rh,k for each h and k. Thus the elements
of re(Rh) are in the range 3h + 6h+, where 6h g<h [Rg[. Such an enumeration can

be easily computed directly from the separator tree in parallel time O (log2 n) with n / log n
processors by first numbering the vertices of Rd Sd as n, n and then numbering
(also in the decreasing order) all the previously unnumbered vertices of Rh of height h for
each h, where h d 1, d 2 0.

We define the permutation matrix P [Pij] such that pij if j zr(i) and pij 0
otherwise. This gives us the initial matrix A0 PA Pr. Recursively, for h 0, d- 1,
let nh n 3h, and this completes Stage 0.

Now we define

the (n 6h) x (n 6h) symmetric matrix, where Xh is the Rhl x Rhl upper-left submatrix
of Ah, Yh is the (n 3h [Rh[[Rh 1) lower-left submatrix of Ah, and Zh is the (n 3h
IRhl) (n --h --]Rhl) lower-right submatrix of Ah. We then define Ah+ Zh YhX- Y.
Thus in Stage h + of computing the recursive factorization (see 4) we have eliminated the
variables (vertices) associated with Rh.

We now claim that for a fixed h we can compute Ah+l from Xh, Zh, and Yh in time
O(log2 s(n)) with at most M(s(n)) processors. To prove this we will investigate the sparsity
of Ah and the connectivity of Gh.

(h)Let Ah aij). We define the associated graph Gh (Vh, Eh) with the vertex set

Vh {h + h + 2, n} and the edge set Eh {{i + h., j + h}’laij 0}; that is, Gh is
derived from G(Ah) by adding 6h to each vertex number (see Figs. 1-5). Note that i, j Vh
if the edge {i, j} belongs to Eh. (The fill-in in stage h is the set of edges that are in Eh but not
in Eh-1.)

Now we are ready to establish a lemma that provides some useful information about the
fill-in, about the connectivity of Gh, and, consequently, about the sparsity of Xh. By usual
arguments (see [GEL], [Li2], [GT]) we arrive at the following lemma:

LEMMA 7.1. Let h > O. Then the following hold:
(a) Ifp is a path in Gh between two vertices q Vh,,k and j Rh,,kfor some h* > h and

some k, then p visits some vertex v such that re(v) > 6,+, that is, v q Rq for q < h*.
(b)

Eh+l E tA Fh,

E- {{i, j} 6 Eh[i, j q Rh},

Fh t_J{{/, j}lk{i, j}, {j, j2} {jt-, jl}, {j, j} Eh}

provided that jl jl Rh,k and that re(i) > 3h+, re(j) > h+l in the definition of Fh.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1245

Lemma 7.1 defines the desired restriction on the edge connections in G (Ah). In particular,
part (a) of Lemma 7.1 implies that Eh contains no edge between Rh,k and Rh,k* for k # k*.

Since zr groups the vertices of Rh,k together and since maxk IRh,kl < max s(IVh,l) <_
s (n h), we immediately arrive at the following lemma:

LEMMA 7.2. Xh is a block diagonal matrix consisting of Nh < 2d-h square blocks of
sizes Rh,k[Rh,k[, so that each block is of size at most s(nh) s (nh).

Lemma 7.2 implies that for h > 0 the numerical inversion of Xh can be reduced to

Nh < 2d-h parallel numerical inversions of generally dense matrices, each of size at most
S(nh) S(nh) (that is, one dense matrix is associated with each Rh,k, SO that its size is at
most [Rh,kl [Rh,k[). By Fact 2.1 such inversions can be performed in O(log2 n) time with
NhM(s(nh)) <_ 2d-h M(s(nh)) processors.

The next lemma is from [LT]. Its proof is simplified in [PR for the case in which or* > ,
and we need only this case. Both proofs also show simple transformations of the respective
s(n)-separator tree into s* (n -separator trees.

LEMMA 7.3. For any triple of constants or, or*, and no such that <_ < ot < and
no > O, if a graph has an s(n)-separator family with respect to ot and no (see Definition
3.1), then this graph has an s* (n)-separatorfamily with respect to or* and no, where s* (n) <_

dyh=oS(nh) in particular, s*(n) < cn/(1 fl) if s(n) < cn for some positive constants
c, 1, and r, where t3 < (see (5.1), (6.1), (6.2)).

LEMMA 7.4. 2d-h M(s(nh)) < M(s(n))oc-h for some 0 < 1.

Proof Equation (5.1) and relation (6.2) imply that s(nh) <_ c(a + 6)(-hn, so that
M(s(nh)) <_ c; (or + 3)*(-hn* (see (5.2)). We may choose no sufficiently large so as
to make 6 sufficiently small and then apply Lemma 7.3 to make sure that ot + 6 lies as close
to as we like. Since rco* > (see (5.2)), we may assume that (or + 6)* < , so that

0 2(or +)o* < 1. Then

2a-hM(s(nh)) <_ od-hc*nr; od-hM(s(n)).]

From Fact 2.1 and Brent’s slowdown principle of parallel computation, we may invert Xh
by using O(k log2 n) steps and [2a-hM(s(nh))/k] <_ [M(s(n))od-h/k] processors for some
0 < and for any k such that < k k(h). Choosing the minimum k k(h) >_ such that
M(s(n))a-h/k(h) <_ M(s(n))/logn (so that k(h) Oa-h logn if h > d + loglogn/log0
and k(h) otherwise), we simultaneously obtain the time bound O(log n) (see Lemma
6.1) and the processor bound M(s(n))/log n, required in Theorem 7.1. 7]

8. Estimating the cost of parallel multiplication of auxiliary matrices.
THEOREM 8.1. All the 2d matrix multiplications

(8.1) Oh Yh X; 1, Wh VhY h O, 1,..., d-

involved in the recursive s(n)-factorization (4.1)-(4.4) can be performed by using O(log2 n)
parallel time and M(s(n)) processors or (if we slow down the computations by a factor of
log n) by using O(log n) parallel time and M(s(n))/ logn processors.

Proof We will prove Theorem 8.1 by estimating the cost of parallel evaluation of the
matrix products of (8.1) (given Yh and X-1) for h 0, 1 d 1. First we will arrange the
matrix multiplications of (8.1) by reducing them to several matrix multiplications of the form

(8.2) Uh k Yh, -1kXh,k, mh,k Uh,k Y,k k-l,2 Nh, h-0,1 d-1.

To arrive at such a rearrangement, partition Yh into Nh submatrices Yh,k having columns
associated with the row sets Rh,k and having the sizes mh,k Rh,I, where mh,k < n 3h

1246 VICTOR PAN AND JOHN REIF

for k Nh The dense diagonal blocks of X; are denoted X-1 respectively. By theh,k’
definition of Gh and T6 and by virtue of Lemma 7.1, the matrix Yh, may have nonzero entries
only in rows such that lies in one of the sets Rh+g,q (for < g < d h, q q (g, h, k))
corresponding to an ancestor (Vh+g,q Sh+g,q) of the node (Vh,k, Sh,k) in T6.

To deduce the desired complexity estimates, examine the cost of all the latter matrix
multiplications (8.2), grouping them not in the above horizontal order (where k ranges from
to Nh for a fixed h) but in the vertical order of Definition 3.1, that is, going from the root of

the tree Ta to its leaves.
By slightly abusing the notation, denote n [Rh,k[, m mh,k for a fixed pair h and k,

and consider the matrix multiplications of (8.2) associated with the node (Vh,k, Sh,k) and with
its descendents in the tree Ta. These matrix multiplications can be performed in O(log2 n)
time (this is required in Theorem 8.1); let P(n, m) denote the associated processor bound.
For the two children of the node (Vh,k, Sh,k) the two associated numbers of processors will be
denoted by P(nl, m) and P(n2, m2), where, by virtue of Lemma 7.2 and Definition 3.1 (see
also [LRT]),

(8.3)

m + m2 _< m + 2s(n),

n <_ n + rt2 <_ n -+-s(n),

(1 ot)n < ni <_ otn + s(n) for 1, 2.

Let M(p, q, r) hereafter denote the number of processors required in order to multiply
p x q by q x r matrices in O(log(pqr)) parallel steps, so that M(p, q, r) <_ M(q) [p/q] [r/q]
(all the processor bounds have been defined up to within constant factors). For fixed h and k
(and, therefore, for a fixed separator Sh,k) the matrix multiplications (8.2) can be performed by
using O(logn) parallel steps and M(s(n) + m, s(n), s(n) + m) <_ [(1 + m/s(n))ZM(s(n))
processors. Therefore, recursively,

(8.4) P(n, m) <_ 1+ 1-+- M(s(n)) + P(n, ml) + P(n2, m2)

for some n, n2, m, m2 satisfying (8.3).
Using (8.4), we will prove the following claim, which in its special case for m 0

amounts to Theorem 8.1 (recall that we already have the parallel time bound O(log2 n) of this
theorem):

CLAIM. P(n, m) < (co + cl(m/s(n)) + c2(m/s(n))Z)m(s(n)) for all m and n andfor
some constants co, c, c2.

Proof. Ifn < n0, then P(n,m) <_ M(n) < co provided that c0 > M(no). Thus letn > no
and prove the claim by induction on n. We may assume that no is large enough, so that (8.3)
implies that n < n for 1, 2. Then by the induction hypothesis the claim holds if n is
replaced by n for 1, 2, so that

P(nl, m) + P(n2, m2) _</1= co -+- Cl m!. mi

s(ni) + c2 M(s(n))Si?li’
Therefore,

(8.5) Z Z M(s(ni))Z P(ni, mi) < co M(s(ni)) "+-Cl mi
s(ni)

M(s(ni))
At-C2 Z mZi n-ii

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1247

Next we deduce from (8.3) that for g and g 2

ZmgiM-(s--(-ni))
s(tli)g

< (mrg) mX t M(---fS(n!!) 1s(ni)g

< (m 4- 2s(n))gM(s(tn +
s(otn + s(n))g

< (m 4- 2s(n))gM(s(tn)) for/3 <
s(n)g

(apply (6.1) to deduce the last inequality). Applying here (5.1) and (5.2), we obtain that

(8.6) Z mgi M_(s_(._ni).) < y(m + 2s(n))gM(s(n))
s(ni)g s(n)g

where y =/3(*-g> is a constant, V < 1, g 1, 2, g < co*.
Furthermore, (5.1) and (8.3) imply that the sum M(s(nl)) + M(s(n2)) takes on its max-

imum value where one of nl, n2 is as large as possible (that is, equal to an 4- s(n)), which
makes the other as small as possible (that is, equal to (1 or)n). Therefore,

M(s(nl)) 4- M(s(n2)) < M(s(otn 4- s(n))) 4- M(s((1 -or)n))
< M(s((c 4- 3)n)) 4- M(s((1 or)n))

M(cn (or 4-)) 4- M(cn(1 o))

(see (5.1) and (6.1)). Applying here (5.3) and then (5.1) and (5.2), we deduce that

M(s(n)) 4- M(s(n2)) < (M((ot 4- 6)) 4- M((1 ot)))M(cn)
< ((or + 6); + (1 c)*)m(s(n)),

where co*r > 1. The positive 3 can be assumed to be arbitrarily close to 0, and so we deduce
that

(8.7) M(s(nl)) 4- M(s(n2)) < vM(s(n))

for a constant v < 1.
Combining (8.4)-(8.7), we obtain that

P(n, m) < (2 + vco 4- 2yCl + 4yc2)M(s(n))

rn

(8.8)
+(2 4- yC1 4- 4ycz)M(s(n))

s(n)

+(1 + Vc)M(s(n))

for two constants ?’ < 1, v < 1. We choose c large enough, so that 4- gc _< c, we then
choose c large enough so that 2 4- ,c 4- 4g c). _< c, and, finally, we chose co large enough, so
that 2 4- V.Co + 2yc + 47’c < co. Then (8.8) implies the claim and, consequently, Theorem
8.1.

Acknowledgments. The authors thank the referees for numerous helpful suggestions.
The paper was typed by Sally Goodall (with assistance from Joan Bentley, Bettye Kirkland,
and Chris Lane).

1248 VICTOR PAN AND JOHN REIF

[AR]

[BCLR]

[Be]

[BGH]

[Bi]

[BM]

[BP]

[Ca]

[Ch]

[Cs]
[CWl]

[cw2]

[D]

[EG]

[Ga]

[GEL]

[Gel

[GHLN]

[GM1]

[GM2]
[GoL]

[GP1]

[GP2]

[GP3]

[GT]

[KP]

[KR]

REFERENCES

D. ARMON AND J. REIF, Space and time efficient implementation of a parallel nested dissection, in
Proc. 4th Annual ACM Symposium on Parallel Algorithms and Architectures, Association for
Computing Machinery, New York, 1992, pp. 344-352.

D. BINI, M. CAPOVANI, G. LOTTI, AND E ROMANI, O(n2"7799) complexity for matrix multiplication,
Inform. Process. Lett., 8 (1979), pp. 234-235.

A. BEN-ISRaEL, A note on iterative methodsfor generalized inversion of matrices, Math. Comput.,
20 (1966), pp. 439-440.

A. BORODIN, J. VON ZUR GATHEN, AND J. HOPCROFT, Fast parallel matrix and GCD computation,
Inform. and Control, 52 (1982), pp. 241-256.

D. BINI, Relations between EC-algorithms and APA-algorithms: Applications, Calcolo, 17 (1980),
pp. 87-97.

A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

D. BINI AND V. PAN, Numerical and Algebraic Computations with Matrices and Polynomials,
Birkhiuser-Verlag, Boston, 1993.

D. A. CALAIqAN, Parallel solution of sparse simultaneous linear equations, in Proc. th Allerton
Conference, 1973, pp. 729-738.

A. K. CHANDRA, Maximal Parallelism in Matrix Multiplication, Report RC-6193, IBM T. J. Watson
Research Center, Yorktown Heights, NY, 1976.

L. CSANKY, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976), pp. 618-623.
D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, in Proc. 19th

Annual ACM Symposium on Theory of Computing, Association for Computing Machinery,
New York, 1987, pp. 1-6; J. Symbolic Comput., 9 (1990), pp. 251-280.
, On the asymptotic complexity of matrix multiplication, SIAM J. Comput., 11 (1982), pp.

472-492.
H. N. DJIDJEV, On the problem ofpartitioning planar graphs, SIAM J. Alg. Discrete Meth., 3 (1982),

pp. 229-240.
D. EPPSTEIN AND Z. GALIL, Parallel algorithmic techniquesfor combinatorial computation, Annual

Rev. Comput. Sci., 3 (1988), pp. 233-283.
D. A. GANNON, A note on pipelining mesh-connected multiprocessorforfinite element problems by

nested dissection, in Proc. International Conference on Parallel Processing, 1980, pp. 197-204.
J. A. GEORGE AND J. W. H. LIU, Computer Solution of Large Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, NJ, 1981.
J. A. GEORGE, Nested dissection ofa regularfinite element mesh, SIAM J. Numer. Anal., 10 (1973),

pp. 345-367.
A. GEORGE, M. T. HEATH, J. W. H. LIU, AND E. G. Y. NG, Sparse Choleskyfactorization on a local-

memory multiprocessor, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 327-340.
H. GAZIT AND G. L. MILLER, A parallel algorithmforfinding a separator in planar graphs, in Proc.

28th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1987, pp. 238-248.

private communication, 1992.
G. H. GOLUB AND C. E VAN LOAN, Matrix Computations, Johns Hopkins University Press, Baltimore,

MD, 1989.
Z. GALIL AND V. PAN, Improving processor bounds for algebraic and combinatorial problems in

RNC, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, 1985, pp. 490-495.
,Improved processor boundsfor combinatorial problems in RNC, Combinatorica, 8 (1988),

pp. 189-200.
Parallel evaluation ofthe determinant and ofthe inverse ofa matrix, Inform. Process. Lett.,

30 (1989), pp. 41-45.
J. R. GILBERT AND R. E. TARJAN, The analysis of a nested dissection algorithm, Numer. Math., 50

(1987), pp. 377-404.
E. KALTOFEN AND V. PAN, Processor efficient solution of linear systems over an abstract field, in

Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architecture, Association for
Computing Machinery, New York, 1991, pp. 180-191,

R. KARP AND V. RAMACHANDRAN, A Survey ofParallel Algorithmsfor Shared Memory Machines, in
Handbook of Theoretical Computer Science, North-Holland, Amsterdam, 1990, pp. 869-941.

PARALLEL SOLUTION OF SPARSE LINEAR SYSTEMS 1249

[KS]

[Lil]

[Li2]

[LMNOR]

[Lo]

[LRT]

[LT]

[MVV]

[OR]

[OV]

[Pan

[Pan2]

[Pan3]

[Pan4]
[Pan5]

[Pan6]
[Pan7]

[Pan8]

[Pan9]

[Panl0]
[Pan11

[Par]
[PaS]

[PP]

[PR1]

[PR2]

E. KALTOFEN AND M. SINGER, Size Efficient Parallel Algebraic Circuitsfor Partial Derivatives, Tech.
Report 90-32, Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY,
1990.

J. W. H. Lau, The Solution of Mesh Equations on a Parallel Computer, Tech. Report CS-78-19,
Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 1978.
,A compact row storage scheme for Cholesky factors using elimination trees, ACM Trans.

Math. Software, 12 (1986), pp. 127-148.
C. E. LEISERSON, J. E MESIROV, L. NEKLUDOVA, S. OMAHUNDRO, AND J. REIF, Solving sparse systems

oflinear equations on the connection machine, in Proc. Annual SIAM Conference, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1986, p. A51.

L. LovAsz, Connectivity algorithms using rubber-bands, in Proc. 6th Conference on Foundations of
Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science
241, Springer,Verlag, Berlin, 1986, pp. 394-412.

R. J. LIPTON, D. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal., 16
(1979), pp. 346-358.

R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math., 36
(1979), pp. 177-189.

K. MULMULEY, U. VAZIRANI, AND g. VAZIRANI, Matching is as easy as matrix inversion, Combina-
torica, 7 (1987), pp. 105-114.

T. OPSAHL AND J. REIF, Solving sparse systems oflinear equations on the massive parallel machine,
in Proc. st Symposium on Frontiers of Scientific Computing, National Aeronautics and Space
Administration, Goddard Space Flight Center, Greenbelt, MD, 1986, pp. 2241-2248.

J. M. ORTEGA AND R. G. VOIGHT, Solution ofpartial differential equations on vector and parallel
computers, SIAM Rev., 27 (1985), pp. 149-240.

V. PAN, On schemesfor the evaluation ofproducts and inverses ofmatrices, Uspekhi Mat. Nauk, 27
(1972), pp. 249-250.
, Strassen’s algorithm is not optimal. Trilinear technique of aggregating, uniting, and can-

celing for constructing fast algorithms for matrix multiplication, in Proc. 19th Annual IEEE
Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC,
1978, pp. 166-176.

Fields extension and trilinear aggregating, uniting and canceling for the acceleration of
matrix multiplication, in Proc. 20th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society, Washington, DC, 1979, pp. 28-38.

Newfast algorithmsfor matrix operations, SIAM J. Comput., 9 (1980), pp. 321-342.
,Newcombinations ofmethodsfor the acceleration ofmatrix multiplications, Comput. Mach.

Appl., 7 (1981), pp. 73-125.
,How can we speed up matrix multiplication? SIAM Rev., 26 (1984), pp. 393-415.

How to Multiply Matrices Faster, Lecture Notes in Computer Science 179, Springer-Verlag,
Berlin, 1984.

Fast and Efficient Parallel Algorithms for the Exact Inversion of Integer Matrices, Tech.
Report 85-2, Department of Computer Science, State University of New York, Albany, NY,
1985.

Fast and efficientparallel algorithmsfor the exact inversion ofinteger matrices, in Proc. 5th
Conference on the Foundation of Software Technology, Lecture Notes in Computer Science
206, Springer-Verlag, Berlin, 1985, pp. 504-521.

Complexity ofparallel matrix computations, Theoret. Comput. Sci., 54 (1987), pp. 65-85.
Parametrization ofNewton’s Iterationfor Computations with StructuredMatrices andAppli-

cations, Tech. Report CUCS-032-90, Department of Computer Science, Columbia University,
New York, 1990; Comput. Math. Appl., 24 (1992), pp. 61-75.

B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
V. PAN AND R. SCHREIBER, An improved Newton iteration for the generalized inverse of a matrix,

with applications, SIAM J. Sci. Statist. Comput., 12 (1991), pp. 1109-1131.
V. PAN AND E P. PREPARATA, Supereffective slowdown ofparallel computations, in Proc. 4th An-

nual ACM Symposium on Parallel Algorithms and Architectures, Association for Computing
Machinery, New York, 1992, pp. 402-409.

V. PAN AND J. REIF, Efficient parallel solution oflinear systems, in Proc. 17th Annual ACM Sympo-
sium on Theory of Computing, Association for Computing Machinery, New York, 1985, pp.
143-152.
,Efficient parallel linear programming, Oper. Res. Lett., 5 (1986), pp. 127-135.

1250 VICTOR PAN AND JOHN REIF

[PR3]

[PR4]

[PR5]

[PR6]

[PR7]

[PrS]

[R]

[Sch6]
[Schr]

[Stral]
[Stra2]

IT1]

[T2]
[ZG]

g. PAN AND J. REIF, Fast and efficient algorithms for linear programming andfor the linear least
squares problem, Comput. Math. Appl., 12A (1986), pp. 1217-1227.

Parallel nested dissection for path algebra computations, Oper. Res. Lett., 5 (1986), pp.
177-184.

Fast and efficient parallel solution ofdense linear systems, Comput. Math. Appl., 17 (1989),
pp. 1481-1491; preliminary version in Proc. 17th Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 1985, pp. 143-152.

Fast and efficient solution ofpath algebra problems, J. Comput. System Sci., 38 (1989), pp.
494-510.

The parallel computation ofminimum cost paths in graphs by stream contraction, Inform.
Process. Lett., 49 (1991), pp. 79-83.

E. P. PREPARATA AND D. V. SARWATE, An improved parallel processor bound infast matrix inversion,
Inform. Process. Lett., 7 (1978), pp. 148-149.

D. J. RosE, A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations, in Graph Theory and Computing, R. Read, ed., Academic Press, New York,
1972, pp. 183-217.

A. SCHONHAGE, Partial and total matrix multiplication, SIAM J. Comput., 19 (1981), pp. 434-456.
R. SCHREIBER, A new implementation of sparse Gaussian elimination; Trans. Math. Software, 8

(1982), pp. 256-276.
V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
,Relative bilinear complexity and matrix multiplication, in Proc. 27th Annual IEEE Sympo-

sium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, 1986,
pp. 49-54.

R. E. TARJAN, Fast algorithmsfor solving path problems, J. Assoc. Comput. Mach., 28 (1981), pp.
594-614.

A unified approach to path problems, J. Assoc. Comput. Mach., 28 (1981), pp. 577-593.
E. ZMIJEWSKI AND J. R. GILBERT, A parallel algorithmfor sparse Choleskyfactorization on a multi-

processor, Parallel Comput., 7 (1988), pp. 199-210.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1251-1256, December 1993

() 1993 Society for Industrial and Applied Mathematics
008

ON-LINE BIN PACKING OF ITEMS OF RANDOM SIZES, II*

WANSOO T. RHEEt AND MICHEL TALAGRAND

Abstract. This paper describes the construction of an on-line algorithm with the following property. There
exist universal constants K, ot such that given any probability measure # on [0, 1] and a sequence X1 Xn
of items independently and identically distributed according to p, the algorithm packs X1 Xn into at most

Tn(X1 Xn) + Knl/2(logn)3/4 unit-size bins, where Tn(X1 Xn) denotes the minimum number of bins

needed to pack X1 Xn, and does this with probability greater than or equal to K exp(-ot(log n)3/2). In
contrast with the authors’ previous work on this problem, the algorithm is now independent of

Key words, stochastic, bin packing, on-line algorithm

AMS subject classifications. 90B05, 05B430

1. Introduction. The bin-packing problem requires finding the minimum number

Tn (xl xn) of unit-size bins needed to pack items of sizes x Xn, subject to the con-
dition that the sum of the sizes of the items attributed to any given bin does not exceed unity.
The present work is concerned with on-line methods of packing; that is, the items xl, x2
are inspected one at a time. (For simplicity, we denote item names and item sizes by the same
letter.) The decision concerning which bin to attribute Xp is taken at the time Xp is inspected
and cannot be modified later. Celebrated on-line algorithms include Next Fit, First Fit, and
Best Fit. In this paper we focus on the model in which the items X Xn are identically
distributed according to a given distribution IX. This model has been investigated in detail for
general distributions [5], [7], [8]. It is known that

c(ix) lim n- Tn(X1 Xn)
n---o

exists almost everywhere and that

(1.1) P(Tn(X1 Xn) > nc(ix) + tn 1/2) < K exp(-ott2)

for some universal constants K, o. However, to pack X1 Xn in nc(#) + O(n /2) bins
one needs to know the whole sequence X X, and the case of on-line procedures is
rather different from most. Shor [11 showed that when IX is uniform on [0,], any on-line
procedure must use n/2 + f2((n logn) 1/2) bins and that the heuristic Best Fit uses n/2 +
O(n /2 (log /7 3/4) bins. In a previous work [9] the authors showed that, given any distribution

#, one can (in principle) find an on-line algorithm (depending on #) that, with probability
1 exp(-ot(logn)3/2), packs the items X1 X into at most nc(ix) + Knl/2(logn)3/4

bins, where K, oe are universal constants. The contribution of the present work is to make this
algorithm independent of IX. Moreover, in contrast to the result of [9], which was an existence
theorem rather than an explicit algorithm, the method presented here is simple and explicit.

THEOREM 1.1. There exist universal constants K, c and an on-line algorithm with
the following property. Given a sequence X1 Xn of items that are independently
distributed according to a given distribution IX, the algorithm packs the items X1 Xn
into at most nc(IX) -t- Knl/2(logn)3/4 bins with probability greater than or equal to 1
K exp(-ot (log n)3/4).

*Received by the editors May 26, 1992; accepted for publication June 24, 1992. This work was partially supported
by National Science Foundation grants CCR-9000611 and DMS-9101452.

Department of Management Sciences, Ohio State University, 1775 College Road, Columbus, Ohio 43210.
;Equipe d’Analyse Tour 48, Universite Paris VI, European Research Associates, Centre National de la

Recherche Scientifique, No. 294, 4 Place Jussieu, 75230 Paris Cedex 05, France, and Department of Mathemat-
ics, Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210.

1251

1252 WANSOO T. RHEE AND MICHEL TALAGRAND

2. Description of the algorithm. The construction is based on an auxiliary algorithm
(Algorithm A) whose performance is described as follows.

THEOREM 2.1. Consider items X Xq, and consider an independent sequence of
integer-valued random variables (r(i))i>_l distributed uniformly over q. From the
knowledge ofa packing ofxl Xq into m bins, one can construct an on-line algorithm that
packs the sequence (Xr<i))i<_p into at most p + K/-(log p)3/4 bins with probability greater

than or equal to K exp(-ot(log p)3/2), where K, ot are universal constants.

We now describe the algorithm of Theorem 1.1. We put X1 in the first bin. Upon
packing X2k (k > 1), we forget everything that was done up to this point. We construct a

packing of X1 X2k into mk bins, where mk < T2(X X2) + 2k/2k3/4 bins (that this
is possible in practice is shown in [3]). Using this packing, we then construct the auxiliary
algorithm provided by Theorem 2.1. We generate a sequence (r(i))i<_2 that is independently
and uniformly distributed over 2}. We now proceed to the packing of the items
(Xi)2<i<2+. These are packed in two new sequences of bins, and we make no attempt to
use the wasted spaces left in the bins used in the packing of X1 X2. For the purpose of
this packing we keep track of a subset Si of {1 2}. We set So 0. Upon inspection of
Xi, we first pack Yr(i) according to the auxiliary algorithm in the first new sequence of bins.
We determine whether there is j Si_ [,_J {i} such that X Xr(j). If this is not the case,
we put Xi alone in a bin of the second new sequence, we say that Xi is unmatched, and we
set Si Si-1 tO {i}. Otherwise, we select j such that Xr<j >_ X is minimum, and we set

Si Si-1 t3 {i}\{j}. We then remove Xr(j from its bin, and we put Xi in its place.

3. Proof of Theorem 1.1. Consider n > 1, and denote by k the largest integer such
that 2kl < n. In the packing of the items X Xn by our algorithm, we call the kth stage

of the packing the packing of items X2+l Ymin(n,2k+l). We denote by Ak the number of
bins used by the auxiliary algorithm during the kth stage and by Mk the number of unmatched
items during that stage. The total number of bins used by the algorithm is y_< (Ak + Mk).

We observe that obviously

(3.1) Z (Ak + M) _< Z 2.2‘ _< 4.2kl/2.
k<kl/2 k<_kl/2

We set mk 2k if k < kl, m n 2k For definiteness we assume now that mk > 2kl/2

(we will explain later what modification to make when mk < 2kl/2). By Theorem 2.1 we have
for kl/2 < k < ka that

mk
Ak < -- (T2 (X1 Y2,) -+- 2k/Zk3/4) nt- Km--(logn)3/4

with probability greater than or equal to K exp(-ot(log 2k/2)3/2).
By (1.1) we have for kl/2 < k < kl that

P(T2,(X1 S2k) < 2k(])-- k3/42k/2) El- Kexp

(Here and in the following the numbers K and ot denote constants that are > 0 and may change
at each occurrence.) Thus with probability greater than or equal to 1-Kk exp(-ot (log 2k/2)3/2)
we have

kl/2 < k <_ k = A <_ m(c(lz) + 2.2-/2k3/4) + Kx/(logn)3/4.

Thus with the same probability we obtain that

Ak <_ nc(lz) + Kv/-(logn)3/4.
k<kl

ON-LINE BIN PACKING 1253

It remains to study -.k/2<_k<k mk" This is certainly the nontrivial part of the argument.
We first turn toward the explanation of the basic concepts. Consider two subsets I, J of IN,
and numbers (Xi)iEI, (Yi)iEJ. A matching of these lists is a one-to-one map from a subset B
of I to J such that o(i) < and Ye(i >_ xi. We say that xi is unmatched if ’ B. A matching
is called maximal if Card B is as large as possible.

Consider the following procedure. The elements (Xi)iI are examined in turn (as ranked
by their indices). If there exists j 6 J, j < i, such that yj > xi, and if yj has not yet been
matched, we consider such an index j for which yj is as small as possible and we set j q)(i);
otherwise, we leave x; unmatched. It is shown in 11 that this procedure always constructs a
maximum matching.

LEMMA 3.1. Consider two probability measures lz, v on [0, 1]. Consider a sequence
Xi)i <_n (respectively, Zi)i <_n that is independently distributed according to lZ (respectively,

v). Set

a sup(/z([t, 1]) v([t, 1]) "0 < _< 1).

Then, with probability greater than or equal to K exp -or(log n)3/2, a maximal matching
ofthe sequences (Yi)i <_n and (Zi)i <_ will leave at most na + Kn 1/2 (log n)3/4 unmatched items.

Proof. Step 1. We reduce the problem to the case a 0. We can assume that Yi F(Ui),
where the sequence (Ui)i<_n is independently and uniformly distributed over [0, 1] and where
F is nondecreasing. We set

Y; O if Ui > l-a,

Y;--Yi if Ui < 1-a.

The sequence (Y[)i<_ is independently and identically distributed. The distribution #’ of this

sequence satisfies, for > 0,

#’([t, 1]) max(#([t, 1]) a, 0).

It follows that

/z’([t, 1]) _< v([t, 1])

for0<t < 1.
Let I {i < n Yi Y/}. Consider a maximal matching of the sequences (Y/)i<_ and

(Zi)i<_n and denote by m the number of unmatched points. The restriction of this matching
to (Yi)iI gives a matching of the sequences (Yi)ii and (Zi)i<_, such that the number of
unmatched points is at most

m+n- CardI=rn+ Card{/ < n Ui > l-a}.

It follows from the inequality of Hoeffding [2] that we have

Card{/ < n Ui > 1 -a} <_ na + Knl/Z(logn)3/4

with probability greater than or equal to Kexp(-ot(log n)3/2). This completes this step.
Step 2. Consider now two sequences (Ui)i<_n, (Vi)i<_n that are independently and uni-

formly distributed on [0, 1]. We can assume that Yi F(Ui), Zi G(Vi), where F, G are

given by

F(u) inf{t #([t, 1]) > u},

G(u) inf{t v([t, 1]) >_ u}.

1254 WANSOO T. RHEE AND MICHEL TALAGRAND

Thus since a 0, we have G(u) > F(u). Thus a matching of the sequences (Ui)i<n and
(Vi)i<n induces in a natural way a matching of the sequences (Yi)i<n and (Zi)i<n.

Step 3. We have reduced the problem to the case in which (Y/)i <n and (Zi)i <n are uniformly
distributed on [0,]. In that case the problem is equivalent to the "upright matching problem"
solved in [10] and, independently, in [6].

We set

ak sup (/z([t, 1]) 2-kCard{i < 2 Xi > t}).
0<t<l

It follows from Lemma 3.1 that conditionally on X1 X2k the number of unmatched items
1/2 34in the kth stage is less than or equal to Kmk k + ma, with probability greater than or

equal to K exp(-otk/2) (at this point we use the fact that m -- 2kl/2). On the other hand,
by the Kolmogorov-Smirnov statistics, we have P(a > 2-1C/2k3/4) < 2exp-otk3/2. Thus
with probability greater than or equal to K exp(-ok/2) we have M < K2k/2k3/4. Thus

Z Mk < Kx/-ff(log n)3/4

kl/2<k<kl

with probability greater than or equal to Kkl exp(-otk/2).
3/2Finally, we see that with probability greater than or equal to Kkl exp(-otk the

number of bins used is less than or equal to nc(#) + Kx/-ff(log n)3/4.
In the case m < 2kl/2, the same conclusion still holds if the estimate Mk + A < 2mkl

is used.
To conclude the proof it suffices to observe that

t_3/2)kexp-eck/2 < Kexp -t!.
2

4. Auxiliary algorithm. In this section we construct the algorithm described in Theorem
2.1. This algorithm follows the ideas of [9], but considerable simplification is obtained from
the fact that we model our strategy from a packing ofx Xq instead of from the measure-
theoretic decomposition of [5], so that all measure-theoretic difficulties disappear.

We consider a packing of x Xq into m bins. This packing will be referred to as the
model packing (since it will be used as our model). The packing of the items (xri) will be
done in two sequences of bins. The first is called the main sequence, and by bin s we will
always mean of the main sequence. The second sequence is called the overflow sequence. Its
purpose is to get rid of those few items that will not fit in the main packing scheme. Items
sent to the overflow sequence are packed, say, by using Next Fit, so that if S denotes the sum
of their sizes, they will use at most + 2S bins.

During the packing of (Xr(i))i<p we keep track of an integer N that is the number of bins
of the main sequence that contain at least one item. We keep track of lists (Lj)2<_j<_q. An
element of Lj is a couple (x, s), where s < N, 0 < x < 1. It indicates that in bin s (of the
main sequence) there is a space of size x that is reserved for a certain type of item.

Before packing xr we have N 0 and all the lists are empty. On inspection of xi,
we proceed as follows.

Case 1. Xr(i) is the largest element in the bin of the model packing that contains it (ties
are broken once and for all arbitrarily). We set N N + 1, and we put xi) into the bin
N + of the main sequence. We denote by z2 > > zh the other elements of the model bin
that contains Xr(i). For 2 < j < h we add the couple (zj, N / 1) to the list Lj.

ON-LINE BIN PACKING 1255

Case 2. Xr(i) is the j-largest element in the model bin that contains it, for j >_ 2. We
check whether the list Lj contains a couple (x, s) for which x > xri). If this is not the case,
we send xri) to the overflow sequence. If this is the case, we select such a couple (x, s) for
which x >_ xri) is as small as possible. We put xri) in bin s, and we remove (x, s) from the
list Lj.. ProofofTheorem 2.1. It should be clear that the sum ofthe sizes ofthe items attributed
to any given bin of the main sequence is less than or equal to 1. Upon the packing of Xrp,
the number of bins used by the auxiliary algorithm is c _< N + 2S / 1, where N N(p) is
the current value of N and S is the sum of the sizes of the overflow items up to that point.

There is a probability m_ that xri) is the largest element in the bin of the model packingq
that contains it. These probabilities are independent, and N(p) is the number of indexes < p
for which this event occurred. Thus, by the inequality of Hoeffding we have

P N(p) > p- + p/Z(logp)/ < Kexp (-oe(logp)/).

It now remains to evaluate S. This will rely on a slightly different version of the matching
principles used in 3. Consider a subset I of p} and a sequence (Ci)ie, where Ci is a
couple (wi, el), wi [0, 1], ei 4-1. Set I+ {i I ei +1}, I- {i I ei -1}.
We define a matching of the sequence (Ci)ie as a match!ng of the lists (wi)ie/ and (tOi)iI-.
We fix j < q. We define the set Ij and the sequence (C/)ieb as follows. If Xr(i) is the largest
element of the bin of the model packing that contains it and if this bin contains at least j items,
we put in Ij, we set ei -1, and we define w as the size of the j-largest item of this bin.
If x,(i is the j-largest item in the bin of the model packing that contains it (j > 2), we put
in Ij, we set e + 1, and we set L0 Xr(i). We observe that L0 1/j.

We also observe that, conditionally on e I), we have P(ei 1) P(ei -1) 1/2.
Also, j being fixed, the events Ij are independent and each has probability 2mj/q, where
mj is the number of bins of the model packing that contain at least j items.

Among the items X{i), Ij, those that are sent to the overflow sequence are exactly
those for which If and that are left unmatched in the matching of the lists (C/)ie.+ and

(C/)ii7. As mentioned, this is the number of unmatched items in a maximal matching of

these sequences. Conditionally on Ij, the items (tOi)ieI are independently and identically
distributed. It thus follows from the results of 11 (and the argument of Step 2 of the proof
of Lemma 3.1) that conditionally on Ij the number of unmatched items is less than or equal
to Kqr-p-](log pj)3/4 with probability greater than or equal to K exp(c(log pj)3/2), where
pj Card Ij. By distinguishing whether pj < pl/ or pj > pl/3 we see that, conditionally
on Ij, the number nj of unmatched items in the list (C/)iei.+ is less than or equal to pl/ +
K/-p- (log p)/4 with probability greater than or equal to K exp(-c(log p)/2). The
inequality of Hoeffding shows that

2mj
pj < p+ K(log p)3/4

q

with probability greater than or equal to K exp(-o(log p)/2). Thus, with probability
greater than or equal to Kp exp(-c(log p)/2), for all j < q we have

2mj
pj <_ p+ Kq/(log p)/4

q

so that

< K + pl/4(log p)/8

1256 WANSOO T. RHEE AND MICHEL TALAGRAND

and hence nj < hi, where

The sum of the sizes of the unmatched items in the lists (Cj) for j < q is at most

Yj<q nj/j. Since nj < hj and yj<q nj < p, it should be clear that this quantity is bounded

by j_<s hj/j, where s q if Yj<q hj < p, or else s is the smallest integer for which

Yj<_s hj > p. Since hj > pl/3, we have s < p, so that _,j<_ 1/j < K log p.
Since by Cauchy-Schwarz we have

we see that Y-j<_s hj/j < K.v/-fi (log p)3/4. [q

REFERENCES

[1] M. AJTAI, J. KOMLOS, AND G. TUSNADY, On optimal matchings, Combinatorica, 4 (1984), pp. 259-264.
[2] W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58

(1963), pp. 13-30.
[3] N. KARMAKAR AND R. KARP, An efficient approximation schemefor the one-dimensional bin packing problem,

Proc. 23rd Annual IEEE Symposium on Foundation of Computer Science, IEEE Computer Society,
Washington, DC, 1982, pp. 312-320.

[4] T. LEIGI4TON AND R SI4OR, Tight bounds for minimax grid matching with applications to the average case

analysis of algorithms, in Proc. 18th Annual Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1986, pp. 91-103.

[5] W. RI-IZ, Optimal bin packing with items ofrandom sizes, Math. Oper. Res. 13 (1988), pp. 140-151.
[6] W. RI-I AND M. TALAGRAND, Exact boundsfor the stochastic upward matching problem, Trans. Amer. Math.

Soc. 307(1988), pp. 109-125.
[7] ., Optimal bin packing with items ofrandom sizes II, SIAM J. Comput. 18 (1989), pp. 139-151.
[8] Optimal bin packing with items ofrandom sizes III, SIAM J. Comput. 18 (1989), pp. 473-486.
[9] On line bin packing of items ofrandom sizes, Math. Oper. Res. to appear.

[10] R SI4OR, Random Planar Matching and Bin Packing, Ph.D. thesis, Mathematics Department, Massachusetts
Institute of Technology, Cambridge, MA, 1985.

[11] The average case analysis of some on-line algorithmsfor bin packing, Combinatorica, 6 (1986), pp.
179-200.

[12] M. TALAGRAND, Matching theorems and empirical discrepancy computations using majorizing measures,
unpublished manuscript, 1991.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1257-1275, December 1993

() 1993 Society for Industrial and Applied Mathematics
009

ON THE COMPUTATIONAL COMPLEXITY
OF SMALL DESCRIPTIONS*

RICARD GAVALDAt AND OSAMU WATANABE

Abstract. For a set L that is polynomial-time reducible (in short, <T-reducible) to some sparse set, the authors
investigate the computational complexity of such sparse sets relative to L and prove the first lower bounds on the
complexity of recognizing such sets. Sets A and B are constructed such that both of them are <-reducible to some

sparse set, but A (respectively, B) is <_-reducible to no sparse set in P (respectively, NP" co-NP’); that is, the
complexity of sparse sets to which (respectively, B) is _<-reducible is more thanP (respectively, NP" fq co-NP’).
From these results or application of the proof technique the authors obtain (1) lower bounds for the relative complexity
of generating polynomial-size circuits for some sets in P/poly and (2) separations of the classes of sets equivalent or

reducible to sparse sets under various polynomial-time reducibilities.

Key words, computational complexity, sparse sets, tally sets, polynomial-time reducibility, polynomial-time
equivalence, Kolmogorov complexity

AMS subject classifications. 68Q05, 68Q15, 68Q30

1. Introduction. In computational complexity theory or, more in general, in the theory
of computation, sets with a small description have often been the subject of investigation. In
this paper we study the computational complexity of (recognizing or generating) such small
descriptions relative to an original set. More specifically, for a set L that is polynomial-time
reducible to some sparse set, we investigate the complexity of such sparse sets relative to L.

The relative complexity of small descriptions is important in several contexts. Let us
take, for example, "concept learning" as studied in [4], [5]. Roughly speaking, the goal of
concept learning is to obtain a (small) description of an unknown set X. In particular, "query
learning," the type of learning discussed in [4], [5], achieves this task by asking queries on
X to a teacher; thus one can formalize query learning as a type of oracle computation, where
an unknown set is used as an oracle [24]. Therefore, the relative complexity of finding a
description of an unknown set is a key factor in order to discuss whether a given concept class
is, say, polynomial-time learnable.

Now we explain how the problem is formalized in this paper. Rv(SPARSE) is the class
of sets that are polynomial-time reducible (in short, <-reducible) to some sparse set. Recall
that a set S is sparse if for some polynomial p and for all n > 0, S has at most p(n) elements
of length < n. Hence one can encode a sparse set up to a given length n in a string of length
polynomial in n. Thus Rv(SPARSE) sets can be regarded as sets with small descriptions.
There is another interpretation of sets in Rv(SPARSE). It is well known (see, e.g., [7]) that a
set belongs to Rv(SPARSE) if and only if it has polynomial-size circuits. Since a family of
polynomial-size circuits can be considered as a small description, Rv(SPARSE) sets are, also
in this sense, sets with small descriptions.

*Received by the editors September 25, 1991; accepted for publication (in revised form) July 14, 1992. The
authors were supported in part by ESPRIT II Basic Research Actions Program of the European Community under
contract 3075 (project ALCOM).

tDepartment of Software (LSI), Universitat Politbcnica de Catalunya. Pau Gargallo 5, 08028 Barcelona, Spain
(gavaida @ i s i. upc. e s). This paper was prepared while the author was visiting the University of California at
Santa Barbara, supported by National Science Foundation grant CCR-89-13584.

Department of Computer Science, Tokyo Institute of Technology, Meguro-ku, Ookayama 1-12-1, Tokyo 152,
Japan (watanabe @ c s. t it ech. ac. p). This research was performed while this author was visiting the Depar-
tament de Llenguatges Sistemes Informtics, Universitat Polit6cnica de Catalunya. This author was supported by
Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant-in-Aid
for Cooperative Research (A) 02302047 (1990).

1This class was denoted as PT(SPARSE) in [8], [22]. We are following more recent notation [2].

1257

1258 RICARD GAVALD,h, AND OSAMU WATANABE

Let L be any RT(SPARSE) set. A sparse set S to which L is <-reducible is called
a sparse-set description for L. We investigate the computational complexity of sparse-set
descriptions for L. First, notice that L can be nonrecursive. (For example, there is clearly
some sparse set that is not recursive, although all sparse sets are by definition in RT(SPARSE).)
Then all sparse-set descriptions for such L should be nonrecursive, and so it does not make
sense to discuss the absolute complexity of sparse-set descriptions for L. Thus we consider
the relative complexity; that is, we investigate the complexity of sparse-set descriptions for L
relative to L. Second, notice that one can easily construct a sparse-set description for L
that is not recursive relative to L. That is, the problem of interest is the complexity of an
easiest sparse-set description for L. We study this type of description complexity for sets in
R(SPARSE).

In order to state our main results, let us introduce some notions and notation. For any
complexity class C and any set L 6 Rv(SPARSE), we say that L has a C-self-recognizable
sparse-set description if L is <-reducible to some sparse set that is in CL. Define C-SELF to
be the class ofR(SPARSE) sets with a C-self-recognizable sparse-set description. Intuitively,
C represents an upper bound for the relative complexity of sparse-set descriptions.

There is a general upper bound for the complexity of sparse-set descriptions for
Rr(SPARSE) sets. By extending [21, Lem. 5.6], one can easily show that every set L in

P, L pNPNptRT(SPARSE) has a sparse set description in A (=). In other words, R(SPARSE)

_
A-SELF. (Indeed, R:(SPARSE) A-SELF since by definition we have A-SELF c__
R(SPARSE) .) However, we do not know whether this is the optimal upper bound for some
R(SPARSE) set. In fact, no nontrivial lower bound has been known for any RT(SPARSE)
set; for example, it has been asked [23] whether there exists an R(SPARSE) set that is not
in P-SELF. In our main results we construct such a set A, i.e., A R(SPARSE) P-SELF,
and also another set B in R(SPARSE) (NP co-NP)-SELF. Furthermore, we show that
A (NP co-NP)-SELF and B NP-SELF. Thus our results yield a C-SELF hierar-

chy in R(SPARSE); that is, P-SELF (NP g3 co-NP)-SELF : NP-SELF

AsP-SELF (=

R(SPARSE)).
Note that every sparse set S has a trivial sparse-set description, namely, S itself, that is in

pS. Thus a set in R(SPARSE) P-SELF must be one that is _<-reducible to some sparse set
but that looks quite different from sparse sets. Also note that although one can easily think of
a pair of L and S such that S is sparse, L < S, and S PL, this does not necessarily mean
that L RT(SPARSE) P-SELF; L might have another sparse-set description in Pt. That is,
a set L in R(SPARSE) P-SELF must be such that no sparse-set description for L belongs
to P.

There are some topics closely related to our problem; our main results and our proof
technique provide interesting observations in these topics.

Recall that a set is in R(SPARSE) if and only if it has polynomial-size circuits. Fur-
thermore, from the proof of this fact it is clear that there should be a relation between the
complexity of sparse-set descriptions and that of finding polynomial-size circuits. Indeed,
these two measures are closely related, but they are not exactly the same. (The difference is
mainly that between recognition and generation; see 4.1 for more explanation.) Hence our
main results yield similar (but not the same) lower-bound results for the problem of finding
polynomial-size circuits. We show that the set A constructed in the first main result has no
polynomial-size circuits that are polynomial-time generable relative to A and that the set B
constructed in the second main result has no polynomial-size circuits that are NPSV generable
relative to B.

In order to study the difference between various reduction types, Tang and Book [22]
proposed investigating classes E(TALLY) and E(SPARSE), where for any reduction type

COMPLEXITY OF SMALL DESCRIPTIONS 1259

r, Er(TALLY) (respectively, Er(SPARSE)) is the class of sets that are equivalent to some
tally set (respectively, some sparse set) under reducibility r. (A tally set is any subset of 0".)
Although the structure of E(TALLY) classes was studied well in [22] and later in [3], many
important questions concerning E(SPARSE) classes have been left open. Here we answer all
such questions. It has been asked [23] whether P/poly has a set not in E(SPARSE), which

is the same as asking whether P-SELF R:(SPARSE); thus the first main result answers
this question affirmatively. We also prove various separations between E(SPARSE) classes
that have been asked in [22]. From our main results we immediately obtain E(SPARSE)
ESrq (SPARSE) EP(SPARSE). By applying the proof technique we used to obtain our main

results, we show that E(SPARSE) E(SPARSE).
With similar motivations, Book and Ko [8] and Ko 15], 6] studied the inclusion relations

between classes of sets reducible to sparse sets under several polynomial-time reducibilities r,

R(SPARSE). Most of the inclusion relations between these classes were well determined,
except for a few ones that were formulated as conjectures in 5]. We apply again the technique
used to prove our main results and show that two of the conjectures in 15] are true. More
precisely, we show that not every set <-reducible to a sparse set is <-reducible to a sparse
set and therefore that R(SPARSE) f RT(SPARSE).

2. Preliminaries. In this paper we follow standard definitions and notations in compu-
tational complexity theory (see [7], [2]).

We use the alphabet E {0, }. By string or word we mean an element of E*. Let x
and y be any strings, and let X be any set of strings. We denote by x y the concatenation of
strings x and y, by Ix the length of a string x, and by xII the cardinality of X. We use X and
X-<n to denote the complement of X, i.e., E* X, and the set {x 6 X" [xl < n}, respectively.

A pairing (or tupling) function on a domain 79 is a one-to-one function from 79 79 (or
79 ... 79) to 79. We use various pairing (or tupling) functions, depending on our purpose. Let
(., .) be a standard pairing function on E*; we assume that this pairing function is polynomial-
time computable and invertible. Let (., ")N denote a pairing function from N N onto N; for
example, we can define (n, m)N (n + m)(n + rn + 1)/2 + n. Let (., .)T denote a pairing
function from 0* 0* onto 0", which can be defined, for example, as (0n 0m)x 0/n’m/N. We
generalize these pairing functions to k-tupling functions by applying them k 1 times; thus
(x, y, z) (x, (y, z)).

For any string x, a self-delimiting code of x, denoted as 2, is the string u 10x, where u is
obtained by doubling each bit of the binary representation of Ix[; for example, 0 11 10.0,
0110 110000 10 0110, etc. Note that from 2". y one can compute both x and y in linear
time. For any strings x xn we use x#... #Xn to denote the string 2]-... 2--. With our
convention we have that [Xl#""" #Xn < [Xl [-[-""" " [Xn 1-[- 2n ([log(max{lXll [xn 1})] + 1).
The quantity 2n(log(max{Ixll IXn I})q + 1) will be referred as a tupling overhead.

Our computation model is the standard multiple-tape (oracle) Turing machine. We con-
sider deterministic and nondeterministic machines, all of which are either acceptors or trans-
ducers. Note that nondeterministic transducers compute, in general, multivalued functions.
For any (oracle) machine M, the execution of M on an input x (relative to an oracle X) is
denoted as M(x) (respectively, MX(x)). Let L(M) (respectively, L(M; X)) denote the set of
strings accepted by M (relative to X). For any complexity class C let Cx denote the complexity
class C defined relative to X.

We use several polynomial-time reducibilities. For deterministic ones we consider <P-f(n)-tt,
<, <, <, and <. See [1 7] for the definitions of < and <. <’c and < are conjunctive and
disjunctive polynomial-time reducibilities; again see 17]. Note that truth-table and Turing
versions of, say, < are equivalent in power. Therefore, we make no distinction between--C

1260 RICARD GAVALDA AND OSAMU WATANABE

truth-table and Turing versions when talking about conjunctive or disjunctive reducibilities.
<P
--f(n)-tt is a special case of <tPt-reducibility that is defined as follows: for any function f(n),

<PS -f(n)-tt Y if X is reducible to Y via a <tPt-reduction that makes at most f(n) queries on an

input of length n. We also consider two nondeterministic polynomial-time reducibilities, <SN
and <xNP. For any sets A and B, A <SxN B (respectively, A <xNP B) if A is in NPB fq co-NPB

(respectively, NP).
In our discussions we use the notion of "resource-bounded Kolmogorov complexity."

(See 18] for a survey on this notion and related topics.) Here we prepare some useful notation
concerning this complexity measure.

We first fix one universal Turing transducer U. Roughly speaking, U is a deterministic
transducer that expects as input a pair of a transducer T and a string x and simulates T on

input x. More precisely, for every transducer T (whose program is encoded as d) and every
string x, U on input d x executes in the following way:

(i) U(d. x) halts and outputs y if and only if T(x) halts and outputs y;
(ii) if T(x) halts within steps, then U(. x) halts within Idl 2 2 steps.

The existence of such a universal machine is shown in 11].
Now we define the following sets: For any string x and any n, m > 0, KT[n, m Ix] is the

set of strings that are generated by U from some input y. x within m steps, where lYl < n.
Define KT[n, m] to be KT[n, m e], where e denotes the empty string. Notice that for each
n, m, and x, KT[n, m Ix] contains only finitely many strings.

3. Main results. In this section we construct two sets A and B in RT(SPARSE) such
that A is not in P-SELF and B is not in (NP fq co-NP)-SELF. Furthermore, we show that A
is in (NP A co-NP)-SELF and B is in NP-SELF. In other words, A is <-reducible to some

sparse set in NPn A co-NPn but <-reducible to no sparse set in pn, and B is <Px-reducible
to some sparse set in NP but <-reducible to no sparse set in NP co-NP. Therefore, we

have that P-SELF

_
(NP N co-NP)-SELF NP-SELF.

THEOREM 3.1. There is a set A in RT(SPARSE) that is not in P-SELF.
Proof. We construct .4 that meets the following two requirements:

(I) For some sparse set Sn, A <
(II) For every sparse set S, if A < S, then S ’Note that the second requirement is equivalent to the following: for every set X, if

X < A, then X is not sparse.
We first explain the rough idea of our construction. The set .4 is built to be a nonsparse

collection of Kolmogorov complex strings such that every string in .4 is hard to describe
relative to any other string in .4 (Lemma 3.2; we can define such A so that it is <-reducible
to some sparse set Sn). Using this property, we are able to show that every < reduction
from A to A must be very similar to the identity function (in a way to be made precise in
Lemma 3.3). Now consider any set X that is _<-equivalent to A, that is, A < X _< A.
Then the composition of the < reduction from A to X and that from X to A is regarded as a

< reduction from A to A; thus such a reduction is very similar to the identity function. Hence
Xmust have distinguished information about most strings in A (which is nonsparse) and thus
cannot be sparse.

Now we define the set A precisely. Let {Pt }t>_ denote an enumeration of polynomials and
{Mi }i>_1 denote an enumeration of polynomial-time deterministic Turing reductions. We can
assume without loss of generality that the running time of each Mi is bounded by Pi. Also,
we say that a set X is p-sparse if X-<n < P (n) for every n. In the construction we use two
fixed functions (n) and m (n). Function (n) must grow faster than any polynomial; choosing
(n) 2n is enough for this proof. For m (n) we can use any unbounded function that can be
computed in time polynomial in n and for which m (n) log n o(n).

COMPLEXITY OF SMALL DESCRIPTIONS 1261

We build our set A in stages. (Recall that the function)i, j, l.(i, j, l)r is a one-to-one
and onto function from N N N to N.) At each stage k (i, j, 1)N we define Ak so that
one of the following conditions holds"

(a) A 5/= L(Mi; L(Mj; A))).
(b) L(Mj; A) is not pt-sparse.

Then define A t3k>_lA k). We also build Sk) at stage k and define SA t-)k>_iS so that
A < SA; thereby A satisfies requirement (I).

Note that for each stage k, conditions (a) and (b) have the following meaning: (a) guar-
antees that no X exists such that Ak < X < A via Mi and Mj, and (b) guarantees that if
X < Ak via Mj, then X is not pl-sparse. Furthermore, we will construct A in such a way
that the construction does not affect the previously established conditions. Thus the defined
set A satisfies requirement (II).

What follows is how we define the sets A and Sk at stage k (i, j, I)N.
(1) Choose c > 0 that is larger than the constants and the size of programs that appear

during the following construction. These constants and program sizes depend only on Mi,
Mj, and Pt; thus c can be determined at this point of stage k.

(2) Define n > 0 to be the smallest integer such that
(i) clogn + (m(n) + 1) log(2n) + 2c < n/2;
(ii) 2(5 + m(n)) log2n2 < n/4;

(iii) c. (t(n) / 2n2)2 < t(2n2);
(iv) (m(n)) > pl(pi(n" m(n)));
(v) n/c<t(n);
(vi) n is sufficiently large that no string of length > n is used or queried up to stage

k 1, and this construction up to stage k can be done in time n.

With the conditions placed on rn (n), clearly we can choose such n.

(3) Let r be the lexicographically first string of length 2n2 such that r g KT[2n2

1, t(2n2)]. Divide r into 2n blocks of n bits, w W2n, and define W1 {L01 L0n}
and W2 wn+l w2n }. Let rn stand for the value of rn (n) during this stage. Then define

L1 and L2 as follows"

L ul)il Wim all wij are different, sorted, and in W },

L2 ll)i Wi all wij are different, sorted, and in W2 },

(where "sorted" means in lexicographical order). It is easy to show that all blocks L01

wzn must be distinct unless we contradict the definition of r. Hence L1 and L2 are disjoint,
and each of them contains () strings of length n. m. We should notice that L1 (respectively,
L2) is reducible to W1 (respectively, W2) by a simple and uniform reduction that makes rn
queries; that is, to decide whether a given string u ""Um is in L1 (where all ui are of length
n, different, and sorted), it is enough to check whether every u is in W1.

(4) Finally, define A) and Sk) as follows. Let A1 A (k-l) O L1 and A2 A(k-l) O L2.
Case (a). Either (i) AI L(Mi; L(Mj; A1)) <-"m or (ii) A2 L(Mi; L(Mj; A2)) <-nm

occurs. In this case, if (i) occurs, then set Ak to A and Sk) to Sk-1) t3 W1; otherwise, set
A to A2 and Sk to S-1 U W2.

Case (b). Either (i) L(Mj; A1) <-pi(nm) is not pt-sparse or (ii) L(Mj; A2) <-pi(nm) is not

p-sparse. In this case, if (i) occurs, then set Ak to A1 and Sk to S- U W; otherwise, set
A k) to A2 and S to S-1 t.) W2.

Ifthis construction is completed, then the defined sets A (= t.)k>_ 1Ak) and SA (= Uk>_ s(k))
clearly satisfy the requirements. Thus it suffices to show that the construction can be completed,
which is proved in the following lemmas. [q

262 RICARD GAVALD. AND OSAMU WATANABE

We show that the construction can be completed. For this purpose it is enough to show
that either Case (a) or Case (b) holds at every stage; in other words, at every stage, if Case (a)
fails, then Case (b) certainly holds. We will prove this in Lemma 3.4.

The following lemmas refer to any stage k of the construction and use all the symbols
defined in that stage. For a word x toil Wim in L 1U L2, we say that the words toil tOim
are the blocks of x.

We first show the following property.
LEMMA 3.2. For every x and y in L t.) L2, ifx 7/= y, then y ’ KT[c log n + c, (n) x].
Proof. For the sake of contradiction, assume that there is a description dl of size at most

c log n + c such that our universal Turing machine U generates y from dl x in time (n).
We will show that this assumption implies r 6 KT[2n2 1, (2n2)], contradicting the choice
of r.

Let w be the first block in y that is not a block in x, and let v x to be the string
that is obtained by deleting w and all blocks of x from the word v. Also, let g be the list
g0#g#. #gin such that

--w is the g0th block in
--.for every 6 m
That is, g gives the information needed to insert to and x again into : x w.
Finally, let do be the description of some program such that U generates v from do

(d#x#g#(v x w)). Intuitively, do, on input d#x#g#(v x w), computes y from
d x, compares x and y in order to extract w, and inserts x and w into v x w from the
information in g, thereby obtaining v. Note that such a program can be chosen independently
of n, v, x, y, and all; thus we can regard [do[as a fixed constant. Furthermore, the program
can do this task in time <_ b. (t(n) + 2n) for some constant b that depends on do only. Hence
U with 00" (d#x#g#(v -x w)) as input halts within [d0[2. b. (t(n) + 2n2)2 steps. Choose
c >_ [d0[2 b2. By condition (iii) on n this is less than (2n2).

Wenow estimate the sizeofdo.(dl#x#g#(r-x-w)) do#dl#X#g#(r-x-w). Note first
that the size ofeach gi is at most log(2n). Let e be Id01+ Idol+ Ix I+ Ig0l +"""+ Iem I+lr --X W l.
Adding up the size of each string, we have that e < c + (c log n + c) +mn + (m + 1) log(2n) +
(2n2 -mn n); hence, by condition (i) on n, e < 2n2 n/2. The tupling overhead for
do#d#x#g#(r x w) is smaller than 2(5 + m)(log e + 1) _< 2(5 + m) log 2n2 < n/4 (by
condition (ii)). Thus the total size of this string is less than 2n2 n/2 + n/4 < 2n2, giving
the desired contradiction.

Now we define a new oracle machine Ms by composing machines Mi and Mj. On input
x (Ix] < n m) and with oracle Y, Ms executes as follows (if [xl > n .m, then Ms rejects
x): (1) It first builds a table that encodes A(k-). (2) Then Ms simulates Mi(x), where each
query y asked by Mi (x) is solved by simulating Mj(y), and each query asked by Mj(y) is
solved by asking oracle U Y. (3) Ms accepts x if and only if Mi accepts x.

By recalling condition (vi) on n, it is clear that there exists some polynomial ps (depending
on Mi and Mj only) that bounds the running time of Ms. Furthermore, if Case (a) does not
hold, we have that L(Ms; Al) <-nm A1 and L(Ms; A2) <-nm A2. The next lemma says that,
in the performance of these reductions Ms can expect very little help from oracles A and A2.

LEMMA 3.3. For all strings x and y in L U Lz, if either MA1 (x) or MA2 (x) query y,
then x y.

Proof. We will proceed by contradiction. Suppose for example that x is in L1 and that
the first g queries of Mfl (x) are either x or not in L U L2 but that the gth one is a word
y L1 (-J L2 such that y - x.

Define d2 as the description of a program that, being given g x as an input, simulates
Ms(x) with oracle {x} and prints its gth query. Then, on input d2 (g x) (= (dz#g) x), our
universal machine prints a word in L1 U L2 other than x.

COMPLEXITY OF SMALL DESCRIPTIONS 1263

Since the program d2 depends only on Ms, we can regard Id2l as a constant in this stage.
Because Ms is ps-time-bounded, there must be a constant cl, depending on Mi and Mj only,
such that I1 _< Cl log n. If we choose c > 3 (Idol / ca), some routine calculations show
that Id2#gl _< c. log n + c. Furthermore, there must be another constant c2, depending on Mi,
Mj, and Idzl only, such that U on input d. (. x) runs in time n2 + c. If we choose c > c2,

this is less than (n) by condition (v) on n. This contradicts Lemma 3.2.
If x 6 L2 instead, we use oracle 0 in the simulation of Ms. The other cases are sym-

metric. [

Lemma 3.3 roughly states that the composition of reductions Mi and Mj must have a very
simple structure. We can use this to show that intermediate sets in these reductions cannot be
sparse.

LEMMA 3.4. IfCase (a)fails, then Case (b) holds.
Proof Suppose that Case (a) fails, and let X and X2 be two sets such that A < X1 <

A and A2 --<PT X2 -< A2 via Mi and Mj. We will show that at least one of Xpi(nm) and

Xpi(nm) is not p/-sparse.

Define function C as follows. For any x L L2, C(x) is the first query made by
M/x (x) that has different answers from oracles X and X2. Note that C(x) is always defined
for every x in L tA L2. Otherwise, Mi (x) gives the same answer with oracles X and X2; but
this answer cannot be NO because x is in one of L and L2, and it cannot be YES because L
and L2 are disjoint.

Since C(x) is always an element of either X or X, we can regard C as a mapping from
L tA Lz into X tA X. Furthermore, we show in the following that C yields a different element
in X tO X2 for each one in L tA L2.

CLAIM. The function C is one-to-one on the domain L tO L2.
Proof of the claim. Take any x 6 L1 Lz, and name y C(x). Let us show first the

following fact: both MjA (y) and MJ (y) query x.
We know that y must have different answers with respect to oracles X and X2. With

our assumptions, this means that Mj (y) must answer differently with oracles A1 and A2. But
these oracles differ only in the words in L and L2, and neither MA(y) nor M/A (y) can query
any of these words except for x; otherwise, so does Ms (x) and we have a contradiction to
Lemma 3.3. Therefore, to give a different answer both MjA (y) and MS (y) must query x.

To prove that C is one-to-one, assume, for example, that also C(x’) y and that M’ (x’)
queries y, for some x L t_J L2 different from x. We have now that MA (x’) queries x when
simulating Mj(y). This again contradicts Lemma 3.3. This proves the claim. [3

Define now C1 X L tA L2 C(x) 6 Xl and Ce x L tO L2 C(x) X2 }.
Since C is one-to-one on L tA L2, we have

[[YPi(nm)[[/ IlxPi(nm)[[> [[Clll / [ICzl[- [IC1 [,-J C21[.

But C and C2 cover all of L U L2, so that

11Cl1.3C211-[[LII.-JL2[[2() > 2pl(Pi(nm))

(by condition (iv) on n).
Thus IIX(’II + IIX:(II > 2. p(pi(nm)). Therefore, at least one of IIxP(mll

and IIX’(m must be greater than p(pi(nm)), and hence either Xi(m or X(m is not
pl-sparse. This proves Lemma 3.4. [3

From Theorem 3.1 we know that A has no sparse-set description that is pA-recognizable.
Here we give an upper bound; that is, we show that A has a sparse-set description in NPA A
co-NPA

1264 RICARD GAVALD,h, AND OSAMU WATANABE

Indeed, the sparse set SA constructed in Theorem 3.1 is in NPA fq co-NPA. It is easy to
see that SA is in NPA by considering the following procedure. To check that a word w is in
SA, guess a word x that has w as a block and verify that x 6 A. On the other hand, because
of the fact that SA has an easy census function, we can prove that SA co-NPA.

For any set L the following function censL is called the census function of L" For each
n > 0, censL(0n) IlL-<nil Note that SA has n elements at all the lengths n used in its
construction and is empty at all others. Together with the following proposition, this shows
that SA NPA fq co-NPA.

PROPOSITION 3.5. For every pair ofsets Xand Y, ifX is sparse and in NPr and its census

function is polynomial-time computable, then X is in NPr co-NPr.
Proof. It is enough to show that NPr. Since X 6 NPr’, there is a polynomial-time

nondeterministic machine M that recognizes X relative to Y. For a given u we can check that
u is not in X by the following procedure"

(1) Compute c censx(01ul).
(2) Guess c different words v such that v u, Ivl _< lul, and v 6 X. (The last condition

is verified by M relative to Y.)
(3) Conclude that u is not in X if and only if c different words are found (and verified) at

(2). Clearly, this procedure witnesses that NPr. [3

COROLLARY 3.6. The set A defined in Theorem 3.1 is in (NP co-NP)-SELF- P-SELF.
Next we construct a set having only sparse-set descriptions of higher complexity; we will

show a set B that is in Rx(SPARSE) but not in (NP fq co-NP)-SELF. To simplify the following
discussion, let us introduce the following notions.

A three-output machine is a nondeterministic Turing machine with three final states" ACC,
REJ, and ? (standing for "accept," "reject," and "don’t know"). Let M be any three-output
oracle machine, and let Y be any oracle set. M is called strong under oracle Y if for all x,
Mr (x) has either at least one computation path ending in ACC or at least one ending in REJ,
but not both. When M is strong under oracle Y, we define L (M; Y) to be the set of strings x
for which Mr" (x) has at least one computation path ending in ACC. L(M; Y) can be regarded
as the set recognized by M relative to Y.

These are taken from the original definition of <sxY-reducibility in [19], where the fol-
lowing fact is proved.

PROPOSITION 3.7. For any sets Xand Y, X <sxrq Y ifand only ifthere is a polynomial-time
three-output machine M that is strong under oracle Y and that recognizes X relative to Y,
i.e., X L(M; Y).

Our second main result is as follows.
THEOREM 3.8. There is a set B in Rx(SPARSE) such that for every sparse set S, if

B NPs f) co-NPs, then S q NP fq co-NP. Thus B is not in (NP fq co-NP)-SELF.
Remark. For proving B g (NP co-NP)-SELF, it suffices to show that for any sparse

set S, if B < S, then S ’ NP (q co-NP. The theorem is slightly stronger than what we
need for the moment. We will use this stronger version in 4.2.

Proof. We construct B that meets the following requirements"
(I) For some sparse set S, B < S.
(II) For every set X, if B <s X <sy B, then X is not sparse.
The construction is quite similar to that of Theorem 3.1, but now we must attack non-

deterministic machines that may have many computation paths. Note that our construction
technique does not seem to yield a set L in Rx(SPARSE) NP-SELF; that is, a set L con-
structed by our technique always has a NPC-recognizable sparse-set description. Then, from
Proposition 3.5, if such a sparse-set description has an easy census function, its complexity
goes down to NP f3 co-NPc. Thus the key to constructing the desired set B is to make sure
that it is reducible to no sparse set with an easy census function.

COMPLEXITY OF SMALL DESCRIPTIONS 1265

In order to explain how we use this point, let us consider any pair of machines, that may
reduce B <SvN X <N B for some set X. Similarly to the previous proof, define Mr to be
a machine obtained by composing these two machines, i.e., Mr is a <SN-reduction from B
to B. The requirement we consider first is that Mr must be strong under B. But during the
construction at stage k we can try Mr with various extensions of Bk-1) that have different
census values. If Ms fails to be strong under some extension, we can define the set Bk) so
that the pair of machines does not make a correct <sN-reduction fom B to B. Otherwise, Mr
is strong under any extension; furthermore, the extension B Bk) is such that M’ always
has a path ending in REJ state for every sufficiently large input. We choose one such path
for every input, thereby fixing a nondeterministic path of Mr. Then we regard Mr (on such
a path) as a deterministic machine, and, using an argument similar to the previous proof, we
can prove that the intermediate set X must be nonsparse.

To define the sets B and S, let {Mi}i>_l denote an enumeration of polynomial-time
nondeterministic three-output machines. We can assume that the running time of each Mi is
bounded by Pi. Choose rn (n) as before, but choose the time bound (n) 22n much larger
than before.

We build our set B in stages. At each stage k (i, j, I)N we define Bk) so that one of
the following conditions holds:

(a) Either Mj is not strong under oracle B) or Mi is not strong under oracle L(Mj; Bk)).
(b) B (k) L(Mi; L(Mj; B(k))).
(c) L(Mj; B()) is not p-sparse.
Then define B k>_l B(k). We also build S(k) at stage k and define S (2k>_iS() SO

that B <PT S; thereby, B satisfies requirement (I). Also, if we always achieve (a), (b), or (c),
then B clearly satisfies requirement (II).

To define B(k) and S(k) at stage k (i, j,/)N we follow steps (1)-(3) in the proof of
Theorem 3.1; that is, choose c, n, rn, r, and define W1, W2, L1, and L2. Then do step (4)
below.

(4) Define B (k) and S(k) as follows. Let B1 B(-1) t2 L and B2 B(-1) L2.
Case (a). One of the following holds: (i) Mj is not strong under Bk-1) on some input of

length at most pi(nm), (ii) Mi is not strong under L(Mj; B(k-l)) on some input of length at
most nm, or (iii) L(Mi; L(Mj; B(k-1))) <-nm =/= B (k-l). Then set Bk) to B-1) and Sk) to 0.

Case (b). Either (i) L(Mi; L(Mj; B1)) -<’m 91 or (ii) L(Mi; L(Mj; B2)) <-nm =/= B2 .2 In
this case, if (i) occurs, then set B) to BI and Sk) to Sk-l) t2 W1; otherwise, set Bk) to B2
and Sk to Sk-l m2.

Case (c) Either (i) L(Mj; B1) <-pi(nm) is not pz-sparse or (ii) L(Mj; B2) <-pi(nm) is not p-
sparse. In this case, if (i) occurs, then set Bk) to B1 and S) to Sk-1) W; otherwise, set
Bk) to B2 and S) to Sk-) W2.

Ifthis construction is completed, then the defined sets B (-- t2k_> 1Bk)) and S (-- t2k>_ 1Sk))
clearly satisfy the requirements. The following lemmas show that it can always be com-
pleted.

Consider again any stage k. Lemma 3.2 is still true here. Mr is also defined similarly by
using Mi and Mj. Now, for each word x of length n m, define r to be the lexicographically
least computation path of Mr (x) relative to 0 that ends in state REJ (if such a path exists).

It is important to notice that if r exists, it can be found recursively from x by brute-force
search of the computation tree of Mr(x). More precisely, r can be found in time 2p(n) for
some polynomial p that depends on Mi and Mj only. The following property of r is crucial
in our proof.

LEMMA 3.9. IfCase (a) does not hold, then rx exists for every x L t3 L2.

2Case (b) also holds if any of the computations involved fails to be strong, as in Case (a). We omit the details.

1266 RICARD GAVALD, AND OSAMU WATANABE

Proof. If Case (a) does not hold, then Mi(x) is strong under L(Mj; B(k-l) because
x has length rim. Furthermore, Mj(z) is strong under B(k-l) for every possible query z of
Mi(x) because z must have length at most pi(nm). Suppose that no path of M(x) ends
in state REJ. Because M is the composition of Mi and Mj and the composition of strong
computations is strong, some path ofM(x) must end in ACC. That is, Mi accepts x with oracle
L(Mj; B(k-1)). Butthis means that L(Mi; L(Mj; B(k-1))) <-nm = B(k-l) because x B(k-l), a
contradiction.

The next lemma corresponds to Lemma 3.3.
LEMMA 3.10. Assume that Case (a) does not hold. For all strings x and y in L1 U L2, if

y is queried in rx, then x y.
Proof. If Case (a) does not hold, then, by Lemma 3.9, rx exists for every x

and, moreover, can be found in time smaller than (n). Hence one can easily modify the proof
of Lemma 3.3; the detail is omitted.

The following lemma is the counterpart of Lemma 3.4. Its proof is almost the same when
only the path rx for every x 6 L1 U L2 is considered.

LEMMA 3.11. Ifboth Case (a) and Case (b)fail, then Case (c) holds.

Proof. Suppose that Case (a) and Case (b) fail, and let X1 and X2 be two sets such that

B1 <SN X1 <SN B1 and B2 <sN X2 <sN B2 via Mi and Mj. We will show that at least one

ofXpi(nm) and y<Pi(nm)
-2 is not pt-sparse.

For any x 6 L1 U L2, let tx be the computation path of Mi (x) that M(x) is simulating
along path rx. It is clear that t is uniquely determined by r. Now define function C as
follows. For each x in L U L2, C(x) is the first query along t that has different answers from
oracles X1 and X2. In a way similar to Lemma 3.4 we can show the following:

(i) function C is defined on L1 U
(ii) it is one-to-one on L1 U L2.

To prove (i) assume that x 6 L 1. Because L and L2 are disjoint, x (L2. By Lemma 3.10 no
query along rx is in L2, and so all queries in rx have the same answer from oracles 0 and L
Hence t is a correct rejecting path of Mi (x) relative to X2. On the other hand, because x
Mi (x) has no rejecting path relative to X1, some query in tx must have different answers with
oracles X1 and)2.

Part (ii) is proved as was the claim in Lemma 3.4, by repeatedly using Lemma 3.10.
Then the same counting argument of Lemma 3.4 shows that at least one of [[Xpi(nm) and

[Ixpi(nm[I must be greater than p(pi(nm)).
The separation of NP-SELF from (NP f3 co-NP)-SELF follows easily.
COROLLARY 3.12. The set B defined in Theorem 3.8 is in NP-SELF- (NPfqco-NP)-SELF.

Proof. Recall the algorithm that is given before Proposition 3.5 for showing SA NPA.
Clearly, a similar idea proves that S/ NP/. Thus S witnesses that B is in NP-SELF.

4. Related topics. This section presents some consequences of our results and applica-
tions of our proof techniques to other, but closely related, topics.

4.1. Complexity of finding polynomial-size circuits. In 3 we investigated the problem
of recognizing sparse-set descriptions. Recall that sets having sparse-set descriptions are
exactly those accepted by polynomial-size circuits. (Because the term "polynomial-size"
is always assumed in the following discussion, it is often omitted.) However, the relative
complexity of a sparse set S such that L _< S is not exactly representing the relative complexity
of finding circuits for L. Here we will first make such difference clear and then use the results
from 3 to show some lower bounds for the complexity of finding circuits.

First we review the notion of "having polynomial-size circuits." For any set L we say
that L has polynomial-size circuits if for some polynomial p and for every n >_ 0 there exists

COMPLEXITY OF SMALL DESCRIPTIONS 1267

a boolean circuit consisting of p(n) (or fewer) gates that determines whether x 6 L for every
x En. Notice that this definition does not guarantee that a set L with polynomial-size
circuits is recognized by some single machinery; we just know that L is recognized by a
collection of circuits. Thus the class of sets with polynomial-size circuits does not fit in
conventional complexity classes. Karp and Lipton 13] introduced a general framework for
such nonuniform complexity classes, which is useful for studying the class of sets having
polynomial-size circuits. By using one of their nonuniform complexity classes namely,
P/poly one can completely characterize the class of sets with polynomial-size circuits.
(This fact is essentially proved by Pippenger [20]. A good and complete proof can be found
in [7].) Thus we can consider that P/poly is identical to the class of sets with polynomial-size
circuits.

Let us review the definition of P/poly. Define a class of functions, poly, by

poly g" 0* E* 3p" polynomial, Vn > 0 Ig(0)l p(n) }.

Then the class P/poly is defined as follows.

L 6 P/poly +- there exist g 6 poly and E 6 P such that

Vn >_O, Vx E x L (g(On),x) 6 E].

From the proof showing the equivalence between P/poly and the class of sets with polynomial-
size circuits, one can easily fix some set E0 so that for every L a function g satisfying the
preceding with E0 is regarded as a circuit generator; that is, g(On) denotes the circuit for L
and the computation of E0 on (g(O), dl...d) (where di {0, 1}) is the evaluation of the
circuit (denoted as) g(O) with dl d on its input gates.

Now we are ready to discuss the complexity of finding circuits formally. For any L 6

P/poly we regard the relative complexity of a circuit generator for L as the complexity of
finding circuits for L. For example, suppose that some set L 6 P/poly has a generator g
that is polynomial-time computable relative to L, i.e., g 6 PFL. Then we consider that L has
circuits that are easy to find, i.e., that are polynomial-time computable, relative to L. On the
other hand, a set H P/poly such that no circuit generator for H is in PFNP" is considered as
a set with no easy-to-find circuits. Let us introduce the following notion: For any complexity
class CU of functions and any set L 6 P/poly, we say that a set L has CU-self-generable
circuits if there is a circuit generator for L that is in CUL. The class Cf’-SELFgen is defined to
be the class of sets with Cf’-self-generable circuits. Ko 14] introduced the notion of "having
self-p-producible circuits," which is the same as "having,PF-self-generable circuits." Thus
ours is a generalization of his notion.

It is well known (see, e.g., [7]) that P/poly equals RT(SPARSE), that is, L has polynomial-
size circuits if and only if L is reducible to some sparse set. Thus the complexity of finding
circuits for L seems to correspond to the complexity of a sparse-set description for L. Indeed,
the two notions "having a C-self-recognizable sparse-set description" and "having Cf’-self-
generable circuits" are closely related (where CU is a function class corresponding to C).
However, they are not the same; in other words, classes C-SELF and C.T’-SELFgen are not
the same in general. This difference is mainly the one between recognition and generation,
which is often seen in computational complexity theory. Usually recognition is easier than
generation. For example, whereas every PF-printable set [12] is clearly P-recognizable (and
sparse), we do not know whether every sparse set in P is PF-printable. (As a matter of fact,
there is some evidence for the existence of a sparse set in P that is not PF-printable [3].) The
best-known relation is that every sparse set in P is pFNP-printable. Here we have similar
relationships.

1268 RICARD GAVALD,h, AND OSAMU WATANABE

In order to discuss the relation between C-SELF and C’-SELFgen classes, we introduce
one more class that is located between C-SELF and C.T’-SELFgen"

C-TALLY-SELF--{L" 3T tally [L < T /x T 6 CL] }.

The relationship among C-SELF, C-TALLY-SELF, and Cf’-SELFgen is summarized as fol-
lows.

PROPOSITION 4.1. Let C be any standard complexity class of languages, and let C,T be
the corresponding complexity class offunctions.

(1) C.T’-SELFgen ____. C-TALLY-SELF

C-SELF.

(2) C-TALLY-SELF _c PFC-SELFgen.
(3) C-SELF _c NpC-TALLY-SELF.
(4) IfC is closed under <N, reducibility, then C-SELF C-TALLY-SELF.

mC

Remark. (i) For any class C containing A, CU-SELFgen C-TALLY-SELF C-SELF
(see part (1) of the proposition). This is because P/poly _c A-SELFgen [21]. However, the
analog relation is not known for lower complexity classes.

(ii) From parts (2) and (3) we have C-SELF PFNPC-SELFgen.
(iii) From part (4) we have E-SELF E-TALLY-SELF for any k > 1.
In the following we state only the proof of part (3) of the proposition and omit the other

proofs. (Inclusions in parts (1) and (2) are either immediate from the definition or easy to

prove, and part (4) is proved similarly to part (3).)
Proof ofpart (3). Let L be any set in C-SELF. Thus there exists some sparse set S such

that L < S and S 6 CL.
Define a tally set Ts as follows"

TS {(on, om oi oJ Ob T n, rn i, j > O, b {0, 1}

3Sl < < Sm S<-n the ithbit ofsj is b }.

Then it is easy to see that S-<n can be enumerated in polynomial time by using Ts as an oracle.
(Without loss of generality, we are assuming that S does not contain the empty string.) Thus
L < Ts. On the other hand, clearly Ts NpS; thus Ts NPeL 3

Among many relations generated from Proposition 4.1 we are interested, in particular, in
the following ones.

COROLLARY 4.2.
(1) PF-SELFgen P-TALLY-SELF c_ P-SELF.
(2) pFNP-SELFgen- A-TALLY-SELF C_ A-SELF.
(3) PFz-SELFgen- A-TALLY-SELF- A-SELF. Thus P/poly- PFz-SELFgen.
Note that PFZ is a general upper bound for the complexity of finding circuits, essentially

the same one we know for the complexity of a sparse-set description.
Now let us discuss two lower bounds for the complexity of finding circuits that are

consequences of our main results. Recall that recognizing a sparse-set description is easier
than finding circuits. Thus the lower-bound results we had in 3 yield at least the same lower
bounds for the complexity of finding circuits.

The first lower bound is from Theorem 3.1.
THEOREM 4.3. There is a set in P/poly that is not in PF-SELFgen.
Proof. Note that P/poly R-(SPARSE) and that PF-SELFgen c_ P-SELF. Thus the set

A defined in Theorem 3.1 clearly satisfies the theorem.
We should note here that the same lower bound is obtained from observations in [1],

[6]. Balcizar and Book [6] showed that if L is in PF-SELFgen (in their notation, L has a

COMPLEXITY OF SMALL DESCRIPTIONS 1269

self-p-producible circuit), then L has a certain lowness property (more specifically, L has
ELl-lowness). On the other hand, Allender and Hemachandra constructed a sparse set So
that does not have such lowness. Thus So satisfies the theorem. Note that every sparse set is
trivially in P-SELF; hence So satisfies the theorem because So 6 P-SELF PF-SELFgen, and
A does so because A P/poly P-SELF.

Next we improve the lower bound by using Theorem 3.8. In order to state our result
we need a complexity class of functions NPSV that is often used in the literature
(see, e.g., [10]). Let NPSV (respectively, NPSVL) be the class of functions computed by
polynomial-time nondeterministic single-valued transducers (relative to L).

THEOREM 4.4. There is a set in P/poly that is not in NPSV-SELFgen.
Proof. Note that (NPNco-NP)-TALLY-SELF

(NPfqco-NP)-SELF; then it immediately

follows from the next lemma that the set B defined in Theorem 3.8 satisfies the theorem. 1
LEMMA 4.5. NPSV-SELFgen (NP A co-NP)-TALLY-SELF.
Proof. First we prove NPSV-SELFgen

(NP fq co-NP)-TALLY-SELF. Let L be any

set in NPSV-SELFgen. Then L has a circuit generator g 6 NPSVL. Define a tally set T by
T (0n, 0 0b)T "the ith bit of g(0n) is b 6 {0, }. Then one can easily produce g(On) by
using T as an oracle; hence L < T.

Let N be a polynomial-time nondeterministic single-valued oracle transducer that com-
putes g relative to L. Note that g(On) is defined for all n > 0; hence for every n, NL on On

has an accepting computation and NL outputs g(On) on every accepting computation. Once
g(On) is obtained, one can easily determine whether a given (On 0 0b)T is in T. Thus by
modifying N we can obtain polynomial-time nondeterministic oracle acceptors M1 and M2
that respectively accept T and T relative to L.

Next we prove (NP f3 co-NP)-TALLY-SELF

NPSV-SELFgen. Let L be any set in

(NP q co-NP)-TALLY-SELF; then there exists a tally set T such that L 6 pr and T 6

NPc fq co-NPc. Let M and pt respectively denote a polynomial-time deterministic acceptor
that accepts L relative to T and a polynomial time-bound for M. (Note that M on x cannot
query strings of length > PM(Ixl).) Define g 0* E* as follows. For each n > 0,
g(On) rl ...Crp,(n, where cri 1 - 0 6 T. Clearly, g is a circuit generator for L (when
an appropriate circuit evaluator is used).

Now to complete the proof we need only to construct a polynomial-time nondeterministic
single-valued oracle transducer N that computes g relative to L, thereby showing g 6 NPSVc.
Let M1 and M2 be polynomial-time nondeterministic oracle acceptors that respectively accept
T and - relative to L. The computation of Nc on input On proceeds as follows: For each i,
< < pt(n), N guesses the value of O" (i.e., O" if 0 T, and O" 0 if 0 (T) and

verifies it by using either M1 or M2. Then Nc outputs O" "O’pM(n on each nondeterministic
computation that guesses all the ri correctly and that verifies their correctness. Clearly, Nc

is single-valued and computes g. q

4.2. Equivalence and reducibility to sparse sets. Intuitively, the (relative) complexity
of an easiest sparse-set description for a language L gives a lower bound on the power of
the reduction that we must use to recognize it (relative to L). Similarly, we have seen that
the complexity of its easiest tally-set description gives lower bounds on the resources used to
generate any sparse-set description for L.

Note that up to now we have insisted on keeping a < reduction between L and its
descriptions because we wanted to study sets in P/poly. If we relax this condition, we can
then ask what is the minimum reduction type that allows us to simultaneously recognize L and
its easiest sparse-set description relative to each other. This leads naturally to the definition
of classes E(SPARSE) and E(TALLY), which are extensively studied in [2], [3], [22].

1270 RICARD GAVALD/ AND OSAMU WATANABE

For a reduction type r, two sets A and B are <r-equivalent if A _<r B and B _<r A. We
define Er(SPARSE) as the class of sets L for which there is a sparse set S such that L and
S are _<r-equivalent. Er (TALLY) is defined similarly. If reduction r is transitive, the class
Er(SPARSE) is also called the equivalence degree of the sparse sets under r. As explained
in [23] this is not a proper name for nontransitive reduction types, such as _<P and -f(n)-tt,
because these reducibilities do not define equivalence relations.

It follows directly from the definitions that P-SELF E(SPARSE); in particular, every
set in P-SELF is <-equivalent to its easiest sparse-set description. Also, since _< implies

<N and _<’ reducibilities, clearly (NP A co-NP)-SELF

__
ESvN (SPARSE) and NP-SELF

__
E1(SPARSE).

Let us consider now a class defined by equivalence to tally sets. If we recall the definition
in 4.1, it is immediate that P-TALLY-SELF E(TALLY). Therefore, from Corollary 4.2 (1)
we have that PF-SELFgen E(TALLY). This fact was already in [6, Thm. 3.1], where it is
shown that sets with self-p-producible circuits are exactly those <-equivalent to tally sets.

Concerning this class, Allender and Watanabe ask in [3] whether E(TALLY)
E(SPARSE). This question arises from the fact that any set _<-reducible to a sparse set
is also _<-reducible (and thus _<tPt-reducible) to some tally set [8]. Therefore, the reduc-
tion classes of tally and sparse sets are equal for reducibilities < and <tPt (and all of them
equal P/poly). Similarly, when considering equivalence to a tally set, we may ask whether
it is possible to trade the power of _< reductions for the access to a slightly more complex
oracle, namely, a sparse set.

We can now formulate again the results presented in 3 to give various separations between
the equivalence classes mentioned in the preceding. For example, we have pointed out that
the construction in Theorem 3.1 can use any unbounded and easily computable function m (n)
to give a set A that is not in P-SELF E(SPARSE). The reader will easily verify that A is

<Pm(n_tt-reducible to the sparse set SA given in that theorem. Therefore, we have the following
theorem.

THEOREM 4.6. For anyfunction m(n) that is unbounded and computable in time polyno-
mial in n, RPm(n)_tt(SPARSE) E(SPARSE).

Furthermore, the reduction to SA is conjunctive, so that the result holds in fact for <P-m(n)-c
reducibility.

Because the set A is in (NP N co-NP)-SELF c_ EY(SPARSE), we have the following
corollary.

COROLLARY 4.7. E(SPARSE)

_
P/poly C)Esa.r(SPARSE).

Similarly, from Theorem 3.8 and Corollary 3.12 we know that the set B 6 NP-SELF is
not in ESr (SPARSE). As a consequence we have the following corollary.

COROLLARY 4.8. Esa.y (SPARSE) N P/poly El(SPARSE) C)P/poly.
We next answer the last question in [22] concerning Er (SPARSE) classes, that is, we show

that EtPt(SPARSE) E(SPARSE). The separation does not seem to follow directly from the
sets in 3, but we can use the same technique here. To distinguish between < and < we

exploit the adaptiveness of < reducibility, namely, its ability to do prefix search.
THEOREM 4.9. There is a set D in E(SPARSE) E(SPARSE).
Proof. We construct D that meets the following two requirements"

(I) For some sparse set S9, D < So and Sz) < D.
(II) For every set X, if D _< X _< D, then X is not sparse.
Let Mi }i>_1 denote an enumeration ofpolynomial-time deterministic tt-reductions, where

the running time of each Mi is bounded by Pi. The construction proceeds in stages, and at
each stage k (i, j, l)N we define D(and S(k that meet the same requirements as in the
proof of Theorem 3.1.

COMPLEXITY OF SMALL DESCRIPTIONS 1271

Sets Dk and Sk at stage k (i, j, l)N are defined as follows.
(1) Execute steps (1), (2), and (3) as in Theorem 3.1, defining r, W1, W2, L1, and L2.
(2) Define also the following sets: Pref(r) (0n, u) u is a prefix of r }, S

Pref(r) @ Or }, and $2 Pref(r) @ lr (where X@ Y is the set 0XO 1Y). Intuitively,
S and $2 contain all the information about r, plus an indication of whether W1 or W2 is used.
Moreover, we will see that this information can only be accessed if some kind of prefix search
can be used.

(3) Define D D(k-l) to (L1) S1) and D2 D(k- 0 (L2 $2). Then set D(k and
S(k as in step (4) of Theorem 3.1, using D1, D2, $1, and $2 in place of A1, Az, W1, and W2.

Finally, define D Ok>_ D(k and So Ok_>lS(k).
Notice that D is <-reducible to So by the following reduction: On inputs of the form

lx, accept if and only if x So. On an input of the form 0x, with Ix n m for some n
used in the construction, find the word r (of length 2n2) used in that stage by prefix search on
So. Compute the sets W and W2 from r. Then, if 10r 6 So, accept if and only if all blocks
of x are in Wa; otherwise, accept if and only if all blocks of x are in W2.

Since D is of the form L @ So for some set L, it is immediate that So <_ D.
Now to finish the proof of the theorem, we must only show that either Case (a) or Case

(b) holds at every stage. We do this in the following lemmas.
Consider again a fixed stage k and all the definitions made at that stage. Of course,

Lemma 3.2 is also valid in this context. Compose machines Mi and My to give a new
oracle machine Ms, which will also be a tt-machine whose running time is bounded by a poly-
nomial

The next lemma is the analog of Lemma 3.3.
LEMMA 4.10. (i) For all strings x and y in L 0 L2, if Ms(Ox) queries Oy, then x y.
(ii) For all strings x in L U L2, Ms(Ox) queries neither 110r nor 111 r.

Proof. For part (i) suppose that x 6 L10 L2 and that 0y is the eth word in the list of
queries made by Ms (0x) such that y 6 L U L2 and y x. Notice that we can write simply
Ms (0x) because this list is independent of the oracle used by

Define d3 as the description of a program that, being given e x as an input, simulates

Ms (0x) and prints its eth query minus the first symbol, which is y. Then, on input d3. (. x) (=
(d3#e). x), our universal machine prints a word in L [--J L2 other than x. By the same argument
as in Lemma 3.3, the choice of c such that Id3#el _< c log n + c leads to the contradiction.

Part (ii) is proved similarly by using the following argument: If Ms(Ox) produces 110r
or 111 r, then many words in L tO L2 can be described too easily from x plus a short
program.

LEMMA 4.11. IfCase (a)fails, then Case (b) holds.

Proof. Suppose that Case (a) fails, and let X and X2 be two sets such that D _< X1 <tPt
D1 and D2 <tPt X2 _< D2 via Mi and My. We will show that at least one of Xpinm+l and

Pi (nm)+ is not pt-sparse.
Define function C as follows. For any x L1 L2, C(x) is the first query in the list

produced by Mi (Ox) that has different answers from oracles X1 and X2.
As before, it is easy to show that the function C is defined on L [--J L 2. We also make the

following claim.
CLAIM. Thefunction C is one-to-one on L 0 L2.
Proofof the claim. Take any x L1 Lz, and name y C(x).
We show first that Mj(y) must query 0x. This is because D1 and D2 differ only in the

words of0L and 0L2 and in the two words 110r and 111 r. But by Lemma 4.10 Mj(y) cannot
query any of these words except 0x. Therefore, if My (y) does not query 0x, it gets the same

1272 RICARD GAVALD/ AND OSAMU WATANABE

list of answers from oracles D1 and D2. But then y is in both X and X2 or in none of them.
This contradicts the definition of y C(x).

To prove that C is one-to-one, assume for a moment that also C(x’) y and hence
Mi (Ox’) queries y, for some x’ 6 L t_J L2 that is not x. We have now that Ms (0x’) queries 0x
when simulating Mj (y). But this is impossible by Lemma 4.10. This proves the claim. q

Following the same argument as in Lemma 3.4, we can finish the proof of the
lemma. q

Notice now that the sparse set So is defined, essentially, by adding at every stage the set
of prefixes of a single word. It is easy to see that there is a deterministic polynomial-time
machine that, relative to So, prints all the elements of So up to a given length n. This means
that Sz is in PF-SELFgen (= E(TALLY)) and, because _< is transitive, so is D. Thus we
have the following corollary.

COROLLARY 4.12. E(TALLY) Etet(SPARSE).
The last questions that we address deal with the relations between classes of sets reducible

to sparse sets under various reducibilities r, Rr(SPARSE). The study of these classes was
initiated by Book and Ko [8] and continued later by Ko [15], who focused on conjunctive and
disjunctive reducibilities. In 15] four conjectures concerning these classes were formulated.
The first one was refuted by Allender, Hemachandra, Ogiwara, and Watanabe.

THEOREM 4.13 [2]. Rtt(SPARSE

R(SPARSE).

Very recently, the second ofthe conjectures was refuted by Buhrman, Longpr6, and Spaan.
THEOREM 4.14 [9]. Rdtt(SPARSE) RcP(SPARSE).
By using the constructions in 3, we prove the remaining two ofKo’s conjectures. The first

one states that disjunctive reducibility does not have all the power of conjunctive reducibility
when applied to sparse sets.

THEOREM 4.15. Rc(SPARSE) R(SPARSE).
Proof. Build a set A as in Theorem 3.1 but using function (n) 23n instead of (n) 2".

We only use the following properties of A"
(i) A is _<c-reducible to some sparse set,
(ii) A is not sparse;
(iii) for every c >_ 0, for all sufficiently large n, and for every two different words x and y

in A=n, y ’ KT[clogn + c,t(n)Ix].
Part (iii) follows by an easy extension of Lemma 3.2. Note also that the construction in
Theorem 3.1 can be made much simpler if we are interested only in obtaining these properties.

Now assume that A is <-reducible to some sparse set S through a function f, and we
will derive a contradiction. For every x we view f(x) as a set so that x is in A if and only
if f(x) S is not empty. Assume that f is computable in time pi(n) and that S has at most

pj (n) elements of length at most n, for two polynomials Pi and pj.
Since A is not sparse, there are infinitely many n such that A=n has more than pj(pi(n))

elements. For any such n there are two strings x and y in A such that x > y and S f(x)
f(y) 0; that is, x and y share a string witnessing that they are in A=n.

Let z S fq f(x) N f(y) be the eth query in f(x). Let d be a program that, on input
(n#E) x, computes the Eth element in f(x), which is z, and finds the smallest string u of
length n such that z f(u). Observe that u must be in A=n and that it must be different
from x (by the assumption x > y).

The time used by d to do this task can be bounded by Pk (n). 2 for some polynomial pk.

Hence U((d#n#e) x) prints u in time at most Idl 2 (pk(n) 2n)2. If n is sufficiently large,
this is less than (n). Furthermore, because f is computable in time bounded by Pi, there is
a constant c independent of n such that In#El < c log n + c. Therefore, for these particular x,
u, and c, u 6 KT[c log n + c, (n) Ix].

COMPLEXITY OF SMALL DESCRIPTIONS 1273

With the assumption A _< S, this must happen for infinitely many n. But this contra-
dicts (iii).

As in Theorem 4.6, this result holds not only for <1 but also for <P reducibility,--c --m(n)-c
where rn (n) is any reasonable unbounded function. And Theorem 4.13 states precisely that it
cannot be extended to bounded rn (n).

Note also that Buhrman, Longpr6, and Spaan [9] have obtained an improvement of this
theorem. They use an extension of our techniques to show that the set witnessing the separation
can be made <mn_c-reducible to some tally set, so Rmn_c(TALLY) R(SPARSE).

The last of Ko’s conjectures is an immediate corollary of Theorem 4.15.
COROLLARY 4.16. R(SPARSE) f RT(SPARSE).

5. Final remarks. Two aspects of our main results are worth noting. The first one is that
sets A and B in 3 are recursive and that we can give good bounds for their time complexity.
The second one is that the constructions can be used for sparseness bounds much larger than
polynomial.

Let us consider first the time complexity of set A in Theorem 3.1. A small modification
of its construction will make A decidable in exponential time. The only hard steps in the
construction are steps (3) and (4). Step (3) requires finding the string r ’ KT[2n2 1, (2n2)],
and this can be done by exhaustive search in time 22. Step (4), Case (a), can be detected
by cycling through all words of length at most nm and using each one to simulate machines

Mi and Mj; since Mi and Mj run in polynomial time, this simulation takes time less than 2
if n is chosen sufficiently large with respect to Pi and pj. Thus the total time in this step is
20(nm) 2 which is 22.

A similar exponential bound for step (4), Case (b), fails because the polynomial Pi can be
arbitrarily large and thus the number of strings to test grows faster than any fixed exponential.
However, for the rest of the proof it is enough to test only the strings that are actually queried
in the reduction from A to L(Mj, A). There are at most pi(nm) 2nm+l such strings, which is

less than 2n for n sufficiently large. Thus the total running time of this modified construction
is exponential in n. It is an open question whether there exists some set satisfying Theorem 3.1
that is decidable in subexponential time.

A similar argument shows that set B in Theorem 3.8 can be built in time 2fn, where f
is any function that majorizes every polynomial. Our technique requires a superexponential
bound because we have to simulate arbitrary <sN reductions in a deterministic way.

As for the sparseness bound, we can use the construction in Theorem 3.1 to prove the
following: Say that a function f(n) is subexponential if for every > 0 and for all but finitely
many n, f(n) < 2’. Then there is some A P/poly that is <-equivalent to no set whose
census is bounded by a subexponential function.

Indeed, take the function rn (n) in the proof of Theorem 3.1 to be and modify the
construction of A as follows:

Step (4), Case (b)" If IIL(Mj; A1)<-pinmI[> IIL(Mj; A2)<-Pinmll, then set Ak to A1 and
Sk to S-1 U W1; otherwise, set Ak to A2 and S to Sk-l tO W2. Informally, we choose
the extension of A that maximizes the number of elements in L(Mj, A) at that stage.

Suppose that set X is <-equivalent to the resulting set A, and let Mi be any < reduction
from A to X. Recall that polynomial Pi bounds the running time of Mi. With the argument
in the proof of Lemma 3.4 we can show that

IlX_pi(n/-) > llA-n/- (n
for infinitely many n otherwise, at some stage of the construction of A we diagonalize

nagainst the reductions making A and X equivalent. Since () is 24 it is easy to see that

1274 RICARD GAVALD, AND OSAMU WATANABE

in these conditions

for some > 0 depending on Pi and infinitely many n. In other words, the census of X is not
bounded by any subexponential function.

Analogous bounds can be achieved for sets B and D in Theorems 3.8 and 4.9, respectively.
Note that these bounds are essentially optimal: a standard padding argument shows that for
any set L and any > 0 there is some set _<m-equivalent to L whose census is bounded
by 2’’

Acknowledgments. We thank the two referees for their thorough reading and many
helpful suggestions. We thank Harry Buhrman and Luc Longpr6 for providing us with their
work [9]. The first author thanks Jos6 Balcfizar for many discussions on this subject and
Ronald Book for inviting him to the University of California at Santa Barbara.

REFERENCES

E. ALLENDER AND L. HEMACHANDRA, Lower boundsfor the low hierarchy, J. Assoc. Comput. Mach., 39 (1992),
pp. 234-251.

[2] E. ALLENDER, L. HEMACHANDRA, M. OGIWARA, AND O. WATANABE, Relating equivalence and reducibility to

sparse sets, SIAM J. Comput., 21 (1992), pp. 521-539.
[3] E. ALLENDER AND O. WATANABE, Kolmogorov complexity and degrees of tally sets, Inform. and Comput., 86

(1990), pp. 160-178.
[4] D. ANGIUIN, Learning regular sets from queries and counterexamples, Inform. and Comput., 75 (1987),

pp. 87-106.
[5] Queries and concept learning, Mach. Learning, 2 (1988), pp. 319-342.
[6] J. BALC.ZAR AND R. BOOK, Sets with small generalized Kolmogorov complexity, Acta Inform. 23 (1986),

pp. 679-688.
[7] J. BALCAZAR, J. DAZ, AND J. GABARR0, Structural Complexity I, EATCS Monographs on Theoretical Computer

Science 11, Springer-Verlag, Berlin, 1988.
[8] R. BooI ANI K. Ko, On sets truth-table reducible to sparse sets, SIAM J. Comput., 17 (1988), pp. 903-919.
[9] H. BUHRMAN, L. LONGPRI, AND E. SPAAN, SPARSE Reduces Conjunctively to TALLY, in Proc. Structure in

Complexity Theory 8th Annual Conference, IEEE Computer Society, Washington, DC, 1993, pp. 208-
214.

10] J. GROLLMANN AND A. SELMAN, Complexity measures for public-key cryptosystems, SIAM J. Comput., 17
(1988), pp. 309-335.

[11] J. HARTMANIS, Generalized Kolmogorov complexity and the structure offeasible computations, in Proc. 24th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, 1983, pp. 439-445.

[12] J. HARTMANIS AND Y. YESHA, Computation times ofNP sets of different densities, Theoret. Comput. Sci., 34
(1984), pp. 17-32.

13] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, in Proc. 12th
Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New York,
1980, pp. 302-309.

14] K. Ko, Continuous optimization problems and a polynomial hierarchy of real functions, J. Complexity,
(1985), pp. 210-231.

[15] Distinguishing conjunctive and disjunctive reducibilities by sparse sets, Inform. and Comput., 81
(1989), pp. 62-87.

16] On adaptive versus nonadaptive bounded query machines, Theoret. Comput. Sci., 82 (1991), pp. 51-
69.

[17] R. LADNER, N. LYNCH, AND A. SELMAN, A comparison ofpolynomial time reducibilities, Theoret. Comput.
Sci., (1975), pp. 103-123.

18] M. LI AND P. VITNYI, Kolmogorov complexity and its applications, in Handbook of Theoretical Computer
Science, Vol. A, J. van Leeuwen, ed., Elsevier, New York, 1990, pp. 187-254.

[19] T. LONG, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci., 21 (1982), pp. 1-25.

COMPLEXITY OF SMALL DESCRIPTIONS 1275

[20] N. PI’r’ENER, On simultaneous resource bounds, in Proc. 20th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society, Washington, DC, 1979, pp. 307-311.

[21] U. SIONI, Complexity and Structure, Lecture Notes in Computer Science 211, Springer-Verlag, Berlin,
1986.

[22] S. TANG AND R. BOOK, Separating polynomial-time Turing and truth-table reductions by tally sets, in Proc.
15th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer
Science 317, Springer-Verlag, Berlin, 1988, pp. 591-599.

[23 Reducibilities on tally and sparse sets, RAIRO Inform. Th6or. Appl., 25 1991), pp. 293-302 (Extended
version of [22]).

[24] O. WATANABE, A formal study of learning via queries, in Proc. 17th International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science 443, Springer-Verlag, Berlin, 1990,
pp. 139-152.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1276-1285, December 1993

() 1993 Society for Industrial and Applied Mathematics
010

VC DIMENSION AND UNIFORM LEARNABILITY OF
SPARSE POLYNOMIALS AND RATIONAL FUNCTIONS*

MAREK KARPINSKI ANt THORSTEN WERTHER

Abstract. The authors prove upper and lower bounds on the VC dimension of sparse univariate polynomials
over reals and apply these results to prove uniform learnability of sparse polynomials and rational functions. As an

application the solution to the open problem of Vapnik [in Estimation of Dependences Based on Empirical Data,
Springer-Verlag, Berlin, 1982] on computational approximation of the regression in a class of polynomials used in
the theory of empirical data dependences is given.

Key words. VC dimension, computational learning theory, sparse polynomials, regression function

AMS subject classifications. 68T05, 68T10, 68R05, 62J99, 26C05

1. Introduction. This paper studies the problem of identification (learnability) of sparse
real polynomials and rational functions. For the corresponding problem of identification of
polynomials and rational functions over arbitrary fields see [1], [8], [9].

We derive linear upper (4t 1) and lower (3t) bounds on the VC dimension of the class of
t-sparse polynomials over the real numbers implying uniform probably approximately correct

(pac) learnability of this class of functions [3]. The results generalize to uniform distribution-
free learnability of sparse polynomials even in the extended metric model of Haussler [10].
Applying this result, we solve Vapnik’s open problem on uniform estimation of the polynomial
regression function 16].

The analysis of the computational complexity of learning sparse polynomials and ratio-
nal functions has several motivations. The complexity analysis of algorithms manipulating
polynomials usually measures the input length in terms of the degree of polynomials. For
polynomials with a small number of terms, this model is not reasonable since sparse polyno-
mials are usually represented by a list ofnonzero coefficients and the corresponding exponents.
Hence the natural measure of the size of a polynomial is given in terms of its sparsity when the
uniform cost model of computation is applied. Recent results indicate also that sparse poly-
nomials play a key role in the harmonic analysis of Boolean circuits [4], [5] and, surprisingly,
in the area of learnability of Boolean functions as well [13].

The problems of sparse polynomial interpolation provide a second motivation. In the
black-box model, a learning algorithm for sparse polynomials has access to an oracle that gives
the value of the polynomial for an arbitrary evaluation point [11]. Grigoriev and Karpinski
[7], Ben-Or and Tiwari [1], and Grigoriev, Karpinski, and Singer [8] show that in this oracle
model there are efficient algorithms for exact learning (interpolation) of sparse determinants
[7], sparse polynomials over fields of characteristic zero], and also over finite fields [8].

It is known (see [6], 19]) that elements of vector spaces of real-valued functions are pac
learnable. Therefore, the third motivation of this work is to explore the learnability of sparse
polynomials as a function class that is not embedded in some vector that space.

Throughout this paper we employ the model of machine learning introduced by Valiant
15] and usually referred to as the PAC model. Valiant used this new model of distribution-

*Received by the editors December 5, 1991; accepted for publication (in revised form) July 21, 1992.
Department ofComputer Science, University ofBonn, R6merstraBe 164, 5300 Bonn, Germany, and International

Computer Science Institute, 1947 Center Street, Berkeley, California 94704-1105 (marek@theory.cs.uni-bonn.de).
The research of this author was supported in part by Leibniz Center for Research in Computer Science, by Deutsche
Forschungsgemeinschaft grant KA 673/2-1, and by Science and Engineering Research Council grant GR-E 68297.

tDepartment of Computer Science, University of Bonn, R6merstraBe 164, 5300 Bonn, Germany
(thorsten@theory.cs.uni-bonn.de). Part of the research was done while the author was visiting the International
Computer Science Institute, Berkeley, California.

1276

VC DIMENSION AND UNIFORM LEARNABILITY 1277

free learning from examples to exhibit and analyze several learning algorithms for Boolean
functions.

In this model a concept c from a class C is a subset of an instance space X. Let C be a
class of concepts from X. Each example (x, l) of a target concept c consists of an instance
x 6 X and its classification (label) 6 {0, as either a positive example (x, 1) or a negative
example (x, 0), indicating whether or not x is a member of the set c. In the Valiant model of
learning, each example is drawn independently from a fixed but unknown distribution P on
X and is labeled consistently with the unknown target concept c.

In the PAC model, a learning function for the concept class C is a function that, given a
large enough, randomly drawn sample, returns a hypothesis that is with high probability a good
approximation (with respect to the unknown distribution P) to the target concept, no matter
which concept from C we are trying to learn. The error of the hypothesis is the probability that
the hypothesis disagrees with the target on a randomly (with respect to P) drawn example.

Upper and lower bounds on the sample complexity for learning various concept classes
have been given in [3], [6], [18]. These bounds are based on the Vapnik-Chervonenkis (VC)
dimension of a class C.

DEFINITION 1.1. For a concept class C on X and for S C X, let FIc(S) be the set of
subsets T of S such that T S A c for some concept c in C. Thus I-Ic(S) is the restriction of
concept class C to the set S. If FIc(S) 2s, then the set S is shattered by C. The Vapnik-
Chervonenkis dimension (VC dimension) of the class C is the largest integer d such that some
set S C X of size d is shattered by C.

Let f" be a collection of real-valued functions on a set X. We investigate learnability of
the concept class pos(J 9t-) defined as the collection of all concepts pos(J f) {x 6

X fo(x) f(x) > 0} for f .T" and j f f" an arbitrary real function on X.
This paper explores the VC dimension of the concept class 7at, where 79t C R[x] denotes

the set of t-sparse univariate polynomials over the real numbers, i.e, for each p 6 79t the
number of nonzero coefficients of p is bounded by t. We define the VC dimension of 79t to
be the VC dimension of the concept class pos(y 79t) C 2.

Valiant’s model of learning can also be thought of as learning the border between positive
and negative examples. In this situation we consider {0, }-valued indicator functions. Hence,
in context to the problem of pattern recognition 16], we define examples (x, y) from the
instance space X R2 to be labeled positive if the point (x, y) lies above the t-sparse
polynomial f (f 6 79t the unknown target concept), and negative if the point (x, y) lies below
the t-sparse polynomial, i.e.,

((x, y), 1) iff y > f(x) and ((x, y),0) iff y < f(x).

LetS C R2bethesetofpoints{(xi,yi)}i= dofsizedforx < x2 < < Xd. A
t-sparse polynomial f is said to satisfy a labeling cr 6 {0, }d on S if the points (xi, Yi) are
positive examples for f if r(i) and negative examples for f if r(i) 0. The set S is
shattered by the class of t-sparse polynomials 79t, if and only if for each labeling r 6 {0, }d
there exists a t-sparse polynomial f satisfying cr on S.

One of the shortcomings of the standard PAC model is that it is defined only for {0, }-
valued functions. Haussler 10] proposes a generalization of the PAC model for distribution-
free learning of functions that take values in an arbitrary metric space. This is of particular
interest when real-valued functions are learned.

Let U be a family of functions from a domain X to a set Y with metric dy. Similar to the
results of Blumer, Ehrenfeucht, Haussler, and Warmuth [2], the results of Haussler show that
the essential condition for distribution-free uniform learnability of f" is the finiteness of the VC
dimension ofthe graphs offunctions in ., which is an extension ofthe standard VC dimension.

1278 MAREK KARPINSKI AND THORSTEN WERTHER

For each f 6 f" we denote by I (f) the function from X x Y x]R+ into {0, 1} defined by

!
I(f)(x, y, 6) I

[0

if dr(f(x), y) <_ 6,

otherwise.

Let I (9r) {I (f) f 6 Or}. We define the metric VC dimension of " as the (standard) VC
dimension of I (f’). Let m-VCdim(f’) denote the metric VC dimension of

This paper is organized as follows. Section 2 gives lower and upper bounds on the VC
dimension of sparse polynomials, proving that the class of sparse polynomials is uniformly
learnable (see [3]). Section 3 generalizes these bounds for the metric VC dimension of t-sparse
polynomials. Applying results of Vapnik [17], we show that the regression function can be
approximated uniformly by sparse polynomials.

2. Bounds on the VC dimension of 7t. We show that the VC dimension of Pt is linear
in t.

2.1. Lower bounds. We start with a lower bound on the VC dimension of]’1.
LEMMA 2.1. The VC dimension Ofl is boundedfrom below by 3.
Proof. We show that for each labeling o- {0, 1} there is a 1-sparse polynomial

f satisfying a on the set S {(-3, 4), (1, 2), (7, 6)} of size 3. Choose, for example,
joo 7, jol 5, Jlo x2, jll -2x, J]o0 3x, fl01 3, fll0 x, and fill (see
Fig. 1). E]

X

3X

7

//

//

\

7

FIG. 1. Monomials shattering the set S ofsize 3.

In the following proofs, it will be convenient to assume that no element of a set S, which
is shattered by some set of sparse polynomials, lies on the graph of these polynomials. In
Proposition 2.2 we prove that this assumption can be made without loss of generality.

PROPOSITION 2.2. Let a set S ofsize d be shattered by the class of t-sparse polynomials.
Then there are a set Z {(xi, Yi)}i--1 d and constants 6i > O, d, such that every
set S’ {(i, fii)}i=l d with [(9i: i) (Xi’ Yi)[<_ 6-i is shattered by t-sparse polynomials.

VC DIMENSION AND UNIFORM LEARNABILITY 1279

Proof. For each 0. 6 {0, }d there is a t-sparse polynomial f satisfying 0. on S. For
d, we define the regions

if 0.(i) 0

Since S is shattered by {f }{o,1}d, there exists a point (Xi, Yi) and a constant i > 0 such
that the ball

Be (xi, Yi) (x, Y)I I(x, y) (xi, Yi)l <_ 6i

is a proper subset of Mi. Hence each set S’ defined as in the proposition is shattered by the
t-sparse polynomials {f }a{0,1}d. []

Lemma 2.3 states that the VC dimension of sparse polynomials is subadditive. We use
this lemma to derive a lower bound.

Given a set shattered by t-sparse polynomials and a set shattered by tz-sparse polynomials,
we construct a set shattered by (tl 4- tz)-sparse polynomials.

LEMMA 2.3. For tl, t2 I let dl, d2 denote the VC dimension of 79tl, 79t2, respectively.
Then the VC dimension of 79tl+t2 is at least d + d2.

Proof. Let S1 and $2 denote some sets of points of size dl, d2, respectively, shattered by
tl-sparse polynomials, tz-sparse polynomials, respectively.

Let& {(xfi 1), y) (2) (2) For alabeling 0. (1) G {0, 1}dl)}i=1 d, andS2={(xj ,y))}j=l d2.
let f, satisfy 0.(1) on S1, and for a labeling 0.(2) G {0, }d2 let g2 satisfy 0.(2) on $2.

In order to show that the VC dimension of 79t, +t2 > d + d2, we modify the sets S1 and $2
(and the corresponding polynomials shattering $1 and $2) such that the union of these modified
sets is shattered by polynomials derived by adding some of the modified polynomials.

First, we pull the sets S and $2 apart such that the absolute values of the x-coordinates
of points in S1 are at most 7 and the absolute values of the x-coordinates of points in $2 are
at least 2.

Let

Cl > 2. max {Ix/I} and C2 < min {Ixjl},
(xi,Yi)GS1 2 (xj,yj)S2

By Proposition 2.2 we may assume that C2 > 0.
Then, the set

1 {(i, fii)}i=l dl with(i fii)- (xi)--, Yi (Xi, Yi) S1,
Cl

is of size dl and is shattered by the set of tl-sparse polynomials {fO-(1)}ff(1)G{0,1}dl, where,
7a(" (X) fa(1, (lX).

Similarly, the set

2 {(’j, fij)}j=l d2 with (YJ’ fiJ) (xj)C2’ yj (Xj, yj) e $2,

is of size d2 and is shattered by the set of tz-sparse polynomials {o-(2)}o-(2)G{0,1}d2, where
o-(2) (X) ga(2)(2X).

and 2 satisfy the conditions claimed in the preceding, i.e., (x, y) 6 1 Ixl <
and V(x, y) 2 :[Xl > 2.

1280 MAREK KARPINSKI AND THORSTEN WERTHER

Let 5 denote the minimal distance of the point (Xi, Yi) E 1 to some point from
{(xi, fl(Xi))}l{o,1}d,, i.e.,

i min If(xi) Yil.
f6{agl

Similarly, for each point (xj, yj) E 2 define 6j by

6j min Ig(xj) Yjl.

Again, by Proposition 2.2 we assume that 5i, 6j > 0.

Our next step is to modify the set ,2 and the polynomials from {(2)} to some set 3a2
shattered by the modified polynomials {= 3a(2)} such that for each 0-() 6 {0, 1}1 and

0-(2) G {0, 1}d2 the polynomial f(1) +- 3aer(2)satisfies 0-(1) on and 0-(2) on- 33a2.
For each point (xj, yj) $2 define Aj by

zX;= max [f(xa)l.

For some even integer N we transform the set $2 into the set S2 by
-N

(Xj, yj) 2 ==::ff (Xj, Xf. yj) 82

Since N is even, xN is positive and the set S2 is shattered by the set of tz-sparse polyno-
-N

mials {xu ff(2 }. The minimal distance of the point (xj, yj) S2 to some point from
(Xj xjVer(2, (Xj is x aj

We choose the parameter N to be large enough to satisfy the following two conditions:
(i) The polynomials {xN ff(2} may not interfere with the shattering of , i.e.,

xiN. a(xi) < ei for all (xi, yi) and for all 0-(2) {0, 1}d2.

Let G be the maximum of the absolute values of the polynomials {ff2 (x)} for Ixl 1/2 (all
Ixil < 1/2) and e the maximum over all ei. Then we choose N according to

G. < e, i.e., N > log2

-N
(ii) The polynomials {f(,} may not interfere with the shattering of S2 i.e.,

Aj. < xj
N 6j. for all (x, y) 2.

Since the absolute value of the xj’s is at least 2 and N is even, there exists such an N.
-Nx’ and let S2 {(x5Let {(x y)}i=,...,a, with x < < ,/, ya.)}j= < with

tt XttXl < < d2"
-NLetS-S2. S--{(xk, yk)}k=l l+2, andxl <... <Xl+2. For 0- E {0,1}+&

we define 0- {0, } and 0-2 {0, }2 by

and 0-2 (j) 0- (k) iff x "0-1 (i) 0- (k) iff xk x Xj.

S is of size d +d2 and is shattered by the set of (t +t2)-sparse polynomials {h }{0,1}dl+a2,
where ho f,,l +xN2" Hence the VC dimension of the class of (tl + t2)-sparse polynomials
is at least dl+ d2. [3

We are now able to state our lower bound on the VC dimension of t-sparse polynomials.
THEOREM 2.4. The VC dimension of t-sparse polynomials is at least 3t.

Proof. Combine Lemmas 2.3 and 2.1.]

VC DIMENSION AND UNIFORM LEARNABILITY 1281

2.2. Upper bounds. The main tool in this section is Descartes’ Rule of Signs, used to
derive an upper bound on the number of roots of t-sparse polynomials. This leads to a first
upper bound on the VC dimension of t-sparse polynomials. Considering the structure of
sparse polynomials with the maximal number of roots, we derive a (slight) improvement of
the upper bound.

We begin with the well-known Descartes’ Rule. Let f ZI=I cixei E I[X], f 0, be
a t-sparse polynomial with ei < ei+l, 1. The sequence c (Cl, c2 ct) is
said to have a sign alternation at position if cici+l < 0 (zero coefficients are deleted from
the sequence). Denote by s(ft) the number of sign alternations in c. Let n+ (ft) denote the
number of positive real roots of ft counted with multiplicity.

THEOREM 2.5 (DESCARTES’ RULE). Let f R[x], f O, be a t-sparse polynomial.
Then s(f) n+ (f) is a nonnegative even integer.

Hence the number of positive real roots of a t-sparse real polynomial f 0 is strictly
less than its sparsity t. The (total) number of real roots of f is bounded by 2t (where the
root at the origin is counted without multiplicity).

Let f N[x]. f is said to be even if and only. if f (x) ft (-x) (i.e., i
ei is even), and f is said to be odd if and only if f(x) -ft(-x) (i.e., Vi

ei is odd). We call f symmetric if and only if f is odd or even.

LEMMA 2.6. Let f R[x], f O, be a t-sparse polynomial. If f has the maximal
number of 2t 2 nonzero real roots, then f is symmetric.

Proof. Let ft- ZI=I cixei][X], for ei < ei+l,i- t-1. Assume fi has
2t 2 nonzero real roots. Then ft has positive roots. Hence the sequence of coefficients
c of ft has sign alternations. Furthermore, the 1 negative roots are positive roots
for f(-x). Let c’ ((-1)ecl (--1)etct) denote the sequence of coefficients of f(-x).
Suppose ft is not symmetric. Then there is an index such that ei and ei+l are not both even
or both odd. Therefore, (--1)eici (--l)ei+lCi+l (--1) CiCi+I > 0 since cici+l < 0. Hence
c’ has at most 2 sign alternations, contradicting the assumption that ft has negative
real roots. q

Using Descartes’ estimate on the number of positive real roots of a sparse polynomial,
we deduce the (exact) VC dimension of 79t restricted to the right half-space.

LEMMA 2.7. The VC dimension of the concept class pos(y 79t) restricted to the right
half-space equals 2t.

Proof. Let d denote the VC dimension of 79t restricted to the right half-space. From Fig.
1 the VC dimension of 791 restricted to the right half-space is at least 2. By Lemma 2.3 we
have d > 2t. Hence we have to show d < 2t.

Let S {(xi, Yi)}i=l,...,d, 0 < Xl < x2 < < xd, be a set ofpoints shattered by t-sparse
polynomials. Let Ji and J be t-sparse polynomials satisfying the two alternating labelings
oq (1, 0, 1, 0 1, 0) and r2 (0, 1, 0, 0, 1). Let F (fl J). Note that F
is 2t-sparse and s(F) < 2t 1. Furthermore, F(xi) F(xi+l) < 0 for d 1,
forcing F to have at least d positive real roots. By Descartes’ Rule d < 2t, proving
the statement, rq

By Lemma 2.7 the VC dimension of 79t is bounded by 4t. With Theorem 2.4 the VC
dimension of 79t is linear in t.

Theorem 2.8 gives an improvement of the upper bound on the VC dimension of 79t. As
a consequence, the VC dimension of 1-sparse polynomials is exactly 3.

THEOREM 2.8. The VC dimension of 79t is at most 4t 1.

Proof. Assume for the purpose of contradiction that the set S {(xi, yi)}i=l 4t for
X < X2 < < Xzt < 0 < XZt+l < < X4t is shattered by t-sparse polynomials.

1282 MAREK KARPINSKI AND THORSTEN WERTHER

Let or l, 0t2 denote the two alternating labelings of size 2t, i.e.,

Og (1, 0, 1, 0 1, 0) and Ot2 (0, 1, 0, 0, 1).
2t 2t

Consider the following four (catenated) labelings of size 4t on the set S:

0-1 Otl (C) 0t l, 0-2 Ot2 (C) Or2, 9/1 Ot2 (C) Ot 1, 9/"2 Oil (C) Or2.

Let the t-sparse polynomials J], f2 and gl, g2 satisfy the labelings 0-1, 0-2 and 9/1, 9/2.
Define F J] J and G gl g2. Note that both F and G are 2t-sparse. By the

alternating structure of the labelings, both F and G have at least 4t 2 nonzero real roots.
From Lemma 2.6, F and G are symmetric.

We show that F is odd and G is even. Assume F is even, and let Ixztl < xzt+l. Then
F(-xzt) F(xzt) > 0 and F(xzt+l) < 0, i.e., F has an extra positive root in the interval
(--X2t, X2t+l), contradicting the upper bound on the number of positive real roots. For Ixztl >
xzt+l F has an extra negative root in the interval (xzt, -x2t+1). The proof that G is even is
similar.

Note that F is odd implies that both J] and J are odd (if some monomial occurs in J] and
in J as well, F would be at most 2t 1-sparse and hence, by Descartes’ Rule, F would have
at most 4t 3 real roots). Similarly, both g and g2 are even. Then, without loss of generality,
we may assume (for the sake of simplicity of notation) that the x-values of the points from S
are symmetric as well, i.e., xi -x4t+l-i, 2t.

We define 2t intervals Ji on the negative real line by J/ (xi, X/+l), 2t 1.
We prove that for each 2t at least two polynomials from {Ji, j, gl, g2} have
a (negative) root in the interval Ji. We distinguish two cases.

1. Let Yi and Yi+ have different signs. Assume yi < O, Yi+l > 0, and odd. Then,
by definition of the labelings, fl(xi), gz(xi) < yi < 0 and f(xi+l), gz(xi+l) > yi+l > O.
Hence f and g2 have a root in Ji. If is even, J and gl have a root in J,.. The case Yi > O,
yi+ < 0 is symmetric.

2. Let Yi and yi+l have equal signs. We show that fl or g2 and J or g have a root in Ji.
Assume Yi, yi+l > 0 and odd. Then f (Xi+l), gz(xi+l) > Yi+l > 0. Assume J] has no

root in J/(fl is strictly positive in J/). Then J] is strictly negative in the interval (X4t-i, X4t-i+
(J] is odd). Since g2 is even, gz(x4t-i+l) > 0 and gz(x4t-i) < J] (x4t_i) < 0. Hence g2 has
a root in the interval (X4t_i, X4t_i+l) and (g2 is symmetric) g2 has a root in J/. Similarly, we
can show that either f2 or g has a root in J,.. The remaining cases are symmetric.

Hence the total number ofnegative roots ofthe polynomials from Ji, J, g, g2 is at least
2. (2t 1) 4t 2, contradicting the assumption that each polynomial from {Ji, J, gl, g2}
is t-sparse (each polynomial has at most negative roots summing up to at most 4t 4
negative roots). This proves the claimed upper bound of 4t on the VC dimension of
t-sparse polynomials. [3

Note that the bounds derived in this subsection remain valid when restricted to t-sparse
polynomials over the rational numbers and t-sparse polynomials over the integers.

Let t denote the set of real rational functions with t-sparse numerator and t-sparse
denominator. Following the proof of Lemma 2.7, we derive the upper bound of 4t2 on the VC
dimension of pos(y 7t), proving uniform learnability of t-sparse rational functions for any
fixed t.

THEOREM 2.9. The VC dimension of7 is at most 4t2.
Proof. Let d denote the VC dimension ofpos(y-t). Consider the two rational functions

fl ’ J2glg2 from t satisfying the alternating labelings. Then J] (x) J(x) for at

VC DIMENSION AND UNIFORM LEARNABILITY 1283

least d points, that is, the 2t2-sparse polynomial glh2 gzhl has to have at least d
real roots. From Theorem 2.5 we have d- < 4t2- 1. [3

Because of the finiteness of the VC dimension of the classes 79t and 7t we can state the
following theorem without explicitly stating learning algorithms for these classes [3].

THEOREM 2.10. The classes of sparse polynomials and sparse rational functions are
uniformly learnable.

3. Approximating polynomial regression. In this subsection we investigate the learn-
ability of sparse polynomials in the generalized PAC model of Haussler. The essential condi-
tion for distribution-free uniform learnability (in this model) of the class of sparse polynomials
is the finiteness of the metric VC dimension of 79t. We prove linear bounds for m-VCdim(79t).

As an application we consider a central problem in computational regression theory--the
problem of determining the number of terms in an arranged system of functions. A special
case of this problem is the approximation of polynomial regression (see 16], pp. 254-266).

The problem is as follows. Suppose that a statistical model associates a quantity y with
the variable x by the equation

y-- R(x)+,

where R(x) is a polynomial of unknown degree and is an error not depending on x (with
zero mean and finite variance). The problem is to estimate the polynomial R* (x) that is close
to R(x).

The classical scheme of approximating polynomial regression, which involves the de-
termination of the true degree n of regression and approximates the regression in a class of
polynomials of this degree, can be successfully implemented only when large samples are
used. For small samples the classical scheme may yield errorneous results. The reason for
this is the possible large degree of the regression and therefore the large metric VC dimension
(capacity) of the class of polynomials of degree n. Applying the method of structural risk
minimization, Vapnik 16] avoids the determination of the actual degree and proves that the
polynomial regression can be estimated uniformly by sparse polynomials. In this case the
sample size depends only on the sparsity (!) of the regression and the capacity of the class of
sparse polynomials.

Therefore, the problem reduces to the determination of the metric VC dimension of
sparse polynomials (independent of the degree). We prove linear bounds on the metric VC
dimension of t-sparse polynomials and, as a direct consequence, derive the surprising result
that the regression function can be approximated uniformly by sparse polynomials.

First, we construct a lower bound on the metric VC dimension of the class 79t.
LEMMA 3.1. m-VCdim(Jgt) > VCdim(Jgt).

Proof. Let d VCdim(7)t), and let S {(xi, yi)}i-1 d be a set of points shattered (in
the standard sense) by the set of t-sparse polynomials {f }e/0,1/d C 79t, i.e.,

<0 ifa(i)=l,
’i= d Vo 6{0,1}d f(xi)-yi

>0 ifo-(i)-0.

Let e be defined by

max max Yi fa (Xi)"
i=1 d a,cr (i)=1

Then

i= d ’o- {0,1}d If(xi)-(yi-)l
if a (i) 1,

if o(i) O,

1284 MAREK KARPINSKI AND THORSTEN WERTHER

i.e., the set St {(x, y ,) (x, y) 6 S} of size d is shattered (in the metric sense) by the
set of t-sparse polynomials {f }o-{0,1}d C 79t Hence m-VCdim(79t) > VCdim(79t). [3

We introduce the following lemma to derive an upper bound on m-VCdim(79t).
LEMMA 3.2. Let S {(xi, Yi, i)}i=1 4, where Xl < x2 < x3 < x4. Let 0-1

(1, 0, 0, 1), 0-2 (0, 1, 1, 0), 0-3 (1, 0, 1, 0), 04 (0, 1, 0, 1) be labelings on S. Let
{fi}i=l 4 be continuousfunctions satisfying 0"i OFt S (in the metric sense). Then at least one

of the pairs offunctions (fl, J), (j], J), (fl, J), (J, J) has an intersection point in the
interval (Xl, x4).

Proof. Consider the 28 cases for f (xj) > yj + fj or f (xj) < yj ej if 0"i (j) 0. [3

THEOREM 3.3. The metric VC dimension of the class of t-sparse polynomials is at most

48t 9.
Proof. Let d m-VCdim(79t) and S {(xi, Yi, ei)}i=l a, where xl < x2 < < xa.

Assume S is shattered by t-sparse polynomials. Consider the labelings 0"1
(1, 0, 0, 1, 0, 0, 1,0,0),0"2 (0, 1, 1,0, 1, 1,0, 1,),0"3 (1,0, 1,0, 1,0),and
0"4 (0, 1, 0, 1, 0,). Let f jq be t-sparse polynomials satisfying 0"1 0"4. Then
by Lemma 3.2 and the pigeon-hole principle there are two polynomials with at least m inter-
sections within the first 4 + 12(m 1) points of S. By Descartes’ Rule m < 4t since f fj
is at most 2t-sparse. Hence the size of S is strictly less than 4 / 12(4t 1) 48t 8. [3

COROLLARY 3.4. For anyfixed 1 the class of t-sparse polynomials is uniformly and

distribution-free learnable in the metric PAC model.
We prove linear bounds (Theorem 3.3) on the metric VC dimension of t-sparse polyno-

mials (independent of the degree) implying Corollary 3.5.
COROLLARY 3.5. Thepolynomial regression can be estimated uniformlyfor small samples

(depending only on the sparsity of the regression).

4. Further research.

4.1. Learnability of multivariate polynomials. From [19] degree-bounded multivari-
ate polynomials are of finite VC dimension for any fixed number of variables. There is no
corresponding result for sparse multivariate polynomials. As described in 2, the main tool
for proving the finiteness of the VC dimension in the sparse univariate case is the upper bound
on the number of roots of sparse polynomials derived from Descartes’ Rule. A promising
approach for the multivariate case might be the work of Khovanskii [12]. Khovanskii gen-
eralizes Descartes’ estimate to the sparse multivariate case and proves that the number of
nondegenerated solutions of a system of sparse polynomial equations can be bounded in terms
of the sparsity and the number of variables. In spite of these results, it is not clear in the
multidimensional case how to relate the VC dimension to an upper bound on the number of
common roots of sparse multivariate polynomials.

4.2. Efficient learning algorithms. It is an open problem whether there exists a hypoth-
esis finder (i.e., an algorithm that finds a concept consistent with a given sample) for the class
of t-sparse polynomials such that the time complexity of the algorithm depends only on their
sparsity and the sample size (see 4).

A related question is the problem of whether or not the class of univariate polynomials is
learnable with respect to target complexity (see [3]), where the complexity of a polynomial is
given by its sparsity. The results ofLinial, Mansour, and Rivest 14] imply that this is equivalent
to the question of whether or not the class of sparse polynomials is polynomially uniformly
decomposable. This may be reduced to the problem of the existence of a polynomial-time
algorithm for sparse solutions of a linear-programming problem. Note that the existence of
such an algorithm would not imply polynomial leamability of the class of t-sparse polynomials
for fixed since the appropriate degree is unknown.

VC DIMENSION AND UNIFORM LEARNABILITY 1285

Acknowledgment. We thank Manuel Blum, Allan Borodin, Sally Floyd, Dima Grigoriev,
Les Valiant, and Manfred Warmuth for a number of interesting conversations. The discussion
with Vladimir Vapnik led us to the solution of the general regression problem.

REFERENCES

M. BEN-OR AND P. TIWARI, A deterministic algorithmfor sparse multivariate polynomial interpolation, in Proc.
20th Annual ACM Symposium on Theory of Computing, Association for Computing Machinery, New
York, 1988, pp. 301-309.

[2] A. BIUM.R, A. EHRNrZUCHT, D. HAUSSIR, AND M. WARMUTH, Classifying learnable geometric concepts with
the Vapnik-Chervonenkis dimension, in Proc. 18th Annual ACM Symposium on Theory of Computing,
Association for Computing Machinery, New York, 1986, pp. 273-282.

[3] Learnability and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach., 36 (1989), pp. 929-
965.

[4] J. BRtJI, Harmonic analysis ofpolynomial thresholdfunctions, SIAM J. Discrete Math., 3 (1990), pp. 282-
287.

[5] J. BRUCK AND R. SMOLENSKY, Polynomial thresholdfunctions, ACOfunctions, and spectral norms, in Proc. 31 st

Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington,
DC, 1990, pp. 632-641.

[6] S. FLOYD, On Space-bounded Learning and the Vapnik-Chervonenkis Dimension, Ph.D. thesis, University of
California, Berkeley, CA, 1989.

[7] D. GRIGORIEV AND M. KARPINSKI, The matching problem for bipartite graphs with polynomially bounded
permanent is in NC, in Proc. 28th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, 1987, pp. 166-172.

[8] D. GRIGORIEV, M. KARPINSKI, AND M. SINGER, Fast parallel algorithms for sparse multivariate polynomial
interpolation overfinite fields, SIAM J. Comput., 19 (1990), pp. 1059-1063.

[9] Interpolation of sparse rationalfunctions without knowing bounds on exponents, SIAM J. Comput.,
24 (1994), to appear.

10] D. HAUSSLER, Generalizing the pac model: Sample size bounds from metric dimension-based uniform con-

vergence results, in Proc. 30th Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, Washington, DC, 1989, pp. 40-45.

11] M. KAR’INSI, Boolean circuit complexity of algebraic interpolation problems, in Proc. 2nd Workshop on
Computer Science Logic, Lecture Notes in Computer Science 385, Springer-Verlag, Berlin, 1989, pp. 138-
147.

12] A. KI-IOVANSKII, Fewnomials and Pfaff manifolds, in Proc. International Congress of Mathematics, Warsaw,
1983.

13] E. KUSHILEVITZ AND Y. MANSOUR, Learning decision trees using the Fourier spectrum, in Proc. 23rd Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, 1991,
pp. 455-464.

14] N. LNIAL, Y. MANSOUR, AND R. RIVEST, Results on learnability and the Vapnik-Chervonenkis dimension,
in Proc. 29th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Washington, DC, 1988, pp. 120-129.

[15] L. VALIANT, A theory ofthe learnable, Comm. ACM, 27 (1984), pp. 1134-1142.
16] V. VAr’NI, Estimation ofDependences Based on Empirical Data, Springer-Verlag, Berlin, 1982.
17] Inductive principles of the searchfor empirical dependences (methods based on weak convergence of

probability measures), in Proc. 2nd Workshop on Computational Learning Theory, 1989, pp. 3-21.
[18] V. VAPNK AND A. CnERVONENKIS, On the uniform convergence of relative frequencies of events and their

probabilities, Theory Probab. Appl., 16 (1971), pp. 264-280.
19] R. WENOCUR AND R. DUDLEY, Some special Vapnik-Chervonenkis classes, Discrete Math., 33 (1981), pp. 313-

318.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1286-1302, December 1993

() 1993 Society for Industrial and Applied Mathematics
011

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS AND
RELATED PROBLEMS*

BERNARD CHAZELLEt, HERBERT EDELSBRUNNERt, LEONIDAS GUIBAS, MICHA SHARIR, AND

JACK SNOEYINK1

Abstract. This paper presents a randomized incremental algorithm for computing a single face in an arrangement
of n line segments in the plane that is fairly simple to implement. The expected running time of the algorithm is
O (not (n) log n). The analysis of the algorithm uses a novel approach that generalizes and extends the Clarkson-Shor
analysis technique [in Discrete Comput. Geom., 4 (1989), pp. 387-421]. A few extensions of the technique, obtaining
efficient randomized incremental algorithms for constructing the entire arrangement of a collection of line segments
and for computing a single face in an arrangement of Jordan arcs are also presented.

Key words, computational geometry, arrangements, randomized incremental algorithms, probabilistic back-
wards analysis, Davenport-Schinzel sequences

AMS subject classifications. 68P05, 68Q20, 68R99, 51M99

1. Introduction. We consider the following problem. Let S {s1, $2 s be a
collection of n line segments in the plane, and let p be a point not lying on any of the
segments. We wish to compute the face that contains p in the arrangement A of S. This
problem arises in many applications, such as motion planning [9]. It has been shown in [9],
15] that the combinatorial complexity of such a single face is O (not (n)), where ot (n) is the

inverse Ackermann function. This bound is shown in 19] to be tight in the worst case; as a
matter of fact, the construction in 19] gives a set S of n line segments whose lower envelope
has complexity f2 (not (n)).

The problem of computing a single face has been studied by Edelsbrunner, Guibas, and
Sharir [6]; they have given a deterministic algorithm that takes time O(not(n) log2 n) in the
worst case. This is less efficient than the best-known algorithm for computing the envelope of
n segments, due to Hershberger 10], which runs in optimal O(n log n) time. This discrepancy
between the two algorithms is intriguing because the maximum combinatorial complexity of
a single face and of the lower envelope in an arrangement of n segments is asymptotically the
same. We remark that in the special case where S is a collection of lines, computing a single
face can be trivially done in time O (n log n). Another special case is when S is a collection
of rays. A recent paper shows that the complexity of a single face in this case is O (n) and
that the face can be constructed in time O (n log n). Both these algorithms are deterministic.

In this paper we (almost) close the gap by providing a simple randomized incremental
algorithm for computing a single face in an arrangement of general segments, whose expected

*Received by the editors June 27, 1991; accepted for publication (in revised form) July 21, 1992. A prelimi-
nary version of this paper appeared in Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms, Association for
Computing Machinery, New York, 1991, pp. 441-448.

Department of Computer Science, Princeton University, Princeton, New Jersey 08540. The research of this
author was supported by National Science Foundation grant CCR-87-00917.

tDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. The
research of this author was supported by National Science Foundation grant CCR-89-21421.

DEC Systems Research Center, Digital Equipment Corporation, Palo Alto, California, 94301, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of
Computer Science, Stanford University, Stanford, California 94305.

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel, and Courant Institute of Math-
ematical Sciences, New York University, New York, New York 10012. The research of this author was supported
by Office of Naval Research grant N00014-90-J-1284, by National Science Foundation grants CCR-89-01484 and
CCR-91-22103, and by grants from the U.S.-Israeli Binational Science Foundation, the Fund for Basic Research
administered by the Israeli Academy of Sciences, and the German-Israeli Foundation for Scientific Research and
Development.

1Department of Computer Science, Stanford University, Stanford, California 94305.

1286

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1287

running time is O(net(n) log n). (The expectation is taken over the randomizations used by
the algorithm, and the bound holds for any input data.) We have learned that Clarkson has
obtained a similar result in an unpublished work, using a different approach. The algorithm is
similar in some features to the trapezoidal decomposition algorithm of 18], the intersection
algorithms of [2] and [14], and the Delaunay triangulation algorithm of [8]. Like the latter,
it is a purely on-line algorithm that needs no prior information about the as-yet uninserted
segments. We also mention that recently Mitchell 13] has obtained a deterministic algorithm
for constructing a single face, whose running time is O (n log2 n).

A main novel feature of our algorithm is its analysis, which provides a useful extension of
the probabilistic technique of Clarkson and Shor [5] to a domain where the interesting events
that need to be counted are more difficult to specify. The reason is that the decision of what
features of the arrangement of the segments in S appear on the desired face is global and
cannot be determined from the local structure of the features. Such a locality is required in
Clarkson and Shor’s analysis and, for that matter, in all the randomized algorithms we have
mentioned. Our analysis finesses this issue by applying a more general framework, which,
as a consequence, also leads to simplified proofs. We expect that there will be additional
applications of our technique to other contexts, thus extending the usefulness of the Clarkson-
Shor method.

Our technique also can be generalized to other contexts, as discussed in 4. These
problems include the construction of the entire arrangement of a given collection of line
segments (4.1) and computing a single face in an arrangement of curved segments (4.2). In
these extensions our technique yields algorithms with optimal or close-to-optimal expected
time and storage complexities, matching or improving previously known algorithms. Section
2 presents the incremental algorithm, developing it to a level of detail that shows that it is
indeed easy to implement. Section 3 gives the analysis of the algorithm. We conclude the
paper in 5 with a discussion of our results and some open problems.

2. The algorithm. As mentioned in the introduction, the algorithm to be described in
this section is incremental, that is, it computes the desired face by adding the segments one at a
time. Section 3 will show that if the segments are inserted in a random order, then the expected
behavior of the algorithm is very good. We describe the algorithm in detail, to convince the
reader that the algorithm is easy to implement. A compact description of the algorithm in
pseudocode is given at the end of this section. Let sl, s2 Sn be the insertion sequence,
so that at the ith step the algorithm adds si to the data structure built for Sl through si-. For
convenience we start with a rectangular frame big enough to enclose all line segments in S, as
well as the special point p defining the face f that we want to compute. We will be interested
only (without loss of generality) in the portion of f within the frame. For 0 < < n let f
denote the face in the arrangement defined by s, s2 si that contains p, clipped to within
the frame (j is just the frame). We also assume that there are no degenerate cases, such as
three segments meeting at a point, an endpoint of one segment lying on another segment, or
two intersections with the same x coordinate; this assumption is justified by the algorithmic
method of [7].

Although the face f is uniquely determined by the first line segments, the data structure
that we use to represent it is not- it also depends on the sequence in which the line segments
are added. This is very much like in the case of a binary search tree constructed by repeated
insertions, but without a balancing operation: the sorted sequence of the input is unique, but
the tree that represents it depends on the sequence of insertions.

The main idea that leads to the data structure and algorithm of this paper is that while
the central aim is to construct the face marked by p, we keep around everything ever built
(typically portions of the earlier versions of the same face) as an aid in the search operations.

1288 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

An important rule is that these older parts of the structure are not further refined during the
insertion process this helps keep the size of the extra structure within limits.

2.1. The conceptual level. The data structure that represents f, the face after adding the
first line segments, consists of three sorts of geometric information. These three parts should
be considered as fundamentally different at a conceptual level, although we will represent
them in a uniform way at a lower level. The three parts are the city (the face), the suburbs (the
complement of the face), and the history.

2.1.1. The city. After line segments are added, the face f is the city. It is a (not
necessarily simply connected) polygonal region, as shown in Fig. 1. Its boundary consists
of a finite number of contour cycles; one is the outer cycle (which, in case f is unbounded,
coincides with the frame boundary), and all others define holes in the city. We represent the
city by a collection of trapezoids generated by drawing a vertical line up and down from each
vertex until it hits the boundary of the city again. These vertical edges, called sides, are drawn
only inside the citymsee Fig. 2. Two trapezoids are said to be adjacent if they (partially) share
a vertical side.

FIG. 1. The input consists ofa set of line segments and a point inside a frame. It defines a face, which we call
the city.

FIG. 2. The city is decomposed into trapezoids by drawing vertical sides through endpoints and intersection points.

There is a small number of different types of trapezoids, each defined by at most four line
segments. A unique line segment contributes the floor (the bottom edge) of a trapezoid A,
and, similarly, a unique line segment contributes the ceiling (the top edge). The left and right
sides are each defined

(a) by an endpoint of another line segment,
(b) by another line segment intersecting the floor line segment,
(c) by another line segment intersecting the ceiling line segment, or

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1289

(d) as the intersection of the floor with the ceiling.
This makes 16 types of trapezoids altogether. One of the types is impossible, namely,

where both the left and the right sides are case (d). Four of the 15 remaining types are shown
in Fig. 3.

(a) and (b) (b) and (b) (c) and (b) (d) and (a)

FI. 3. Four possible types of trapezoids.

A trapezoid thus defined has one, two, three, or four adjacent trapezoids; four only if both
the left and the right sides are case (a). Notice that the trapezoids that compose the city at
stage depend only on the set of segments sl, s2 si and not on the particular order in which
these segments were inserted.

2.1.2. The suburbs. As new line segments are added the city gets smaller. Each new
line segment may chop off parts of the city by separating them from the point p. When a

portion of the city is thus disconnected from p, it is properly decomposed into trapezoids and
these trapezoids are added to the representation of the complement of the city, the so-called
suburbs. It is thus natural to represent the suburbs in the same way as the city, namely, as a
collection of trapezoids with adjacency relations.

At any point in time the trapezoids of the city and the suburbs define a decomposition (a
tiling) of the entire frame. It should be noted, however, that this decomposition is not edge-to-
edge, in the sense that a vertex of some trapezoid may lie in the middle of an edge of another
trapezoid. We view each edge of our diagram as two sided, so that the above vertex is not part
of the description of the second trapezoid each trapezoid is bounded by one-sided edges.
The same distinction was necessary in the analysis of 14]. There is, however, an important
difference between vertical and nonvertical edges. By our general position assumptions, at
most one point of a left or right side can also be a corner of (two) other trapezoids (in case
(a)), but arbitrarily many such points can lie on the floor or ceiling. For this reason we define
and store adjacencies only across vertical sides.

An important difference between city and suburbs is that the former gets further refined as
new line segments are added, while the latter only expands by the addition of new trapezoids
chopped off from the city. A trapezoid ofthe suburbs, once created, remains part ofthe suburbs
forever.

2.1.3. The history. There is a third type of trapezoid in our structure. This type consists
of trapezoids that belonged to earlier versions of the city and had to be removed because they
were cut by a new line segment. Such a trapezoid A is not deleted from the structure. Instead,
it remains as part of the history. The new trapezoids, generated by the addition of the new
line segment, that overlap A are added to the structure as children of A. Depending on how
the new line segment cuts A, it can have two, three, or four children (see Fig. 4). In effect,
A is removed from the representation of the city and is now part of a hierarchical structure of
trapezoids built on top of the decomposition described as city plus suburbs. As will be detailed
in the following, certain children trapezoids are merged with adjacent children trapezoids of
neighbor trapezoids.

1290 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

two three four three four

FIG. 4. The different ways in which a trapezoid can be split by a new line segment.

The collection (hierarchy) of such trapezoids that once belonged to the city but were later
destroyed is called the history. The history trapezoids, together with those defining the city
and suburbs, are all connected together by the children pointers in a directed acyclic graph.
(Because of the merging of children trapezoids that was previously mentioned, the graph is
not necessarily a tree.)

2.1.4. Adding a line segment. To understand exactly how our data structure looks at

any stage of the incremental process, we need to understand how a line segment, say, si+l, is
added. As mentioned earlier, already existing trapezoids of the suburbs and the history are
unaffected by this insertion.

Here is how the city trapezoids are updated. First, we compute and draw fi fq si+l, which
is a collection of portions (edges) of si+l. These new edges make it necessary to update the
decomposition of f: the trapezoids of f that intersect si+l become part of the history, and
the new trapezoids generated are included in the structure as their children. To understand this
process, let us define the transient city gi as f after si+l has been added and the decomposition
of f into trapezoids has been updated. Of course, gi may contain several trapezoids, some
newly created and some pre-existing as part of the city at stage i, that are no longer accessible
from p and thus not part of f+l. To obtain f+l we must thus remove all these trapezoids
from gi and place them in the suburbs. Figure 5 shows the development of the suburbs when
the line segments are added in the indicated sequence.

3
1

FIG. 5. The subdivision is constructed by inserting the line segments in the indicated sequence. Line segment
11 is not drawn at all because it lies completely outside the city at the time it is added. Only portions ofline segments
8, O, 13, and 14 are drawn. The boundary of the final city consists of two contour cycles.

To help us reflect on the process of adding line segments and updating the structure, let
us look at what distinguishes suburb trapezoids from history trapezoids. For a trapezoid A

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1291

defined by line segments Sa, Sb, Sc, and Sd to be part of the suburbs or the history after the first

+ line segments are added, it must have occurred as part of at least one of the cities fj or

gj for 1 <j<i.
1. If there is a j, j < i, so that A is part of fj. but not part of gj, then A is now part of the

history because it was cut by sj+l while being a city trapezoid.
2. If there is a j, j < i, so that A is part of gj but not part of J)+l, then it is now part of

the suburbs because it was cut off from the city by Sj+l.
There is a subtlety in condition 2, which we take the time to discuss now. The trapezoid A

can be of the type that belongs to j) and to gj but not to fj+l, or it can be of the type that
belongs to gj but neither to J) nor to J)+l. In the latter case we call A a transient trapezoid
because it lives a particularly short life. It will be important later to remember that transient
trapezoids can only be part of the suburbs, not of the history.

2.2. The data sti’ucture. We will now be more specific about the data structure that is
incrementally constructed by the algorithm. It consists of a directed acyclic graph (a dag) that
stores the city, the suburbs, and the history, all at once, a linear array for the line segments;
and a union-find structure for the line segments. We discuss the easy structures first.

2.2.1. The linear array. By keeping the line segments in a linear array we can use a

single index rather than four real numbers wherever a line segment is to be stored. We assume
that the segments are stored in the array in their insertion order.

2.2.2. The union-find structure. This structure allows us to keep track of topological
changes that happen to the boundary of the city as line segments are added. Each set in the
structure represents a connected component of the union of line segments and portions of line
segments as drawn by the algorithm. Although a single line segment can have several disjoint
portions drawn, they all belong to the same connected component. We can thus represent such
a component by the set of line segments that contribute edges to it. Note that each contour
cycle is part of a possibly bigger connected component. However, we will need the union-find
structure only to the extent that it represents contour cycles. We will use a simple union-find
structure, in which every element (segment) has a pointer to its current subset (contour cycle),
so that each find operation takes O (1) time. To form the union of two subsets we change the
pointers of all the elements in the smaller set to be the same as those of the elements in the
larger set. The overall cost of all unions is thus O (n log n).

2.2.3. The dag. Each node of the dag stores a unique trapezoid (city, suburbs, or history),
represented by four indices (line segments) and a few bits to indicate the type. The dag has
a unique root that stores the frame as a single trapezoid. Each interior node stores a history
trapezoid and contains pointers to its (at most) four children. The city and suburb trapezoids
are stored in the leaves of the dag, and each leaf has pointers to the at-most four leaves storing
adjacent trapezoids. To distinguish the three types of nodes we mark history and suburb
trapezoids as such and leave city trapezoids unmarked.

2.3. How it really works. Recall the basic steps that have to be performed when a line
segment Si+l is added.

1. We compute all portions of si+ N f.
2. Using these portions, we update the trapezoidal decomposition of f to get gi. De-

stroyed trapezoids become history.
3. The new city f+ is the component of gi that contains p. All other trapezoids in gi

need to be labeled as suburbs.
The portions of Si+l A f are computed by propagating si+l from the root of the dag down

to the leaves. Each trapezoid of f intersected by si+ is updated, and the new city and suburbs

1292 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

are differentiated with the help of the union-find structure. Here are the details of how steps
through 3 are implemented.

2.3.1. Intersecting the new line segment with the city. Starting at the root of the dag,
the line segment Si+l is propagated downward to all leaves whose trapezoid meets Si+l. When
we are at an internal node v, we know that si+l meets the history trapezoid of v and we mark
v as already visited. Next we recursively visit the children of v whose trapezoids meet Si+l
and that are not yet marked. The order in which we visit them is such that they meet si+l in
sequence from left to right. Because of this ordering, the leaves are also visited in the sequence
in which their trapezoids meet Si+l from left to right.

2.3.2. Updating the trapezoidal decomposition. When a leaf storing a suburb trapezoid
is reached, we do nothing. When a city trapezoid is reached, we do all the work. We distinguish
six cases as illustrated in Fig. 6. We denote the leaf by).

Case Case Case 2 Case Case 4 Case 4 Case Case 6 Case 6 Case 6 Case 6

FIG. 6. Updating the trapezoidal decomposition.

In every case we construct the appropriate number of children, change) from city to
history, and use)’s former adjacency pointers to connect it to its children. In case 1, depending
on whether the endpoint or intersection point that defines the right side of the old trapezoid
is above or below si+, one of the two children trapezoids that lie above and below si+l is
not a properly defined trapezoid yet. This trapezoid will be merged with the adjacent child
trapezoid of the next leaf. The same is true in case 2. The only difference between the two
cases is that in case we remember the line segment Sa that contains the left endpoint of the
currently processed portion of si+ 1 fi (Sa contains the top or bottom edge of)) and the
two children of) that lie above and below the current portion of si+l f3 f. In case 3 one
of the child trapezoids is merged with a child trapezoid of the preceding leaf, and the same
happens in cases 4 and 5. In case 4 we also take note of the line segment sb that contains the
right endpoint of the current portion of si+l N fi. The pair (Sa, sb) delimits this portion. The
pair will be processed as described below. Finally, case 6 is in a way the easiest, because it
requires only the construction of the four children for) and no merging of trapezoids (nodes)
is necessary. If, in case 6, si+l meets both top and bottom edges of), we immediately obtain
the corresponding delimiting pair (Sa, s6). In all other subcases this pair is undefined.

Let us say a few more words about the merging of children trapezoids. As we follow si+l
from left to right, we maintain the current two children trapezoids that lie above and below

Si+l. One of these children may be open-ended on the right. When we reach a trapezoid)

and we are in case 3, 4, or 5, we extend the open-ended trapezoid (if any) and merge it with
the appropriate child of). In case 3 we exit) on the right with one of the children trapezoid
closed and one open ended, as appropriate; in cases 4 and 5 both are closed. In cases and
2 we create two new children accompanying Si+l and leave one of them closed and one open
ended, as above. In case 6, as mentioned above, no merging of children is necessary.

2.3.3. Maintaining the topology. After all portions of si+ N fi are added to the city
decomposition as described, we have effectively obtained the trapezoidal decomposition of
the transient city gi. As a by-product, for each portion of Si+l f we also get a pair (Sa, s)

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1293

of line segments that delimit the portion, and two trapezoids, one that lies immediately above
it and one immediately below it. This extra information is not properly defined, but it is not
needed anyway if the portion contains one of the endpoints of si+l.

For each such pair (Sa, sb) we do the following. First we compute Ca and cb, the names of
the connected components containing sa and s, respectively, by doing two find operations. If
the two components are different, then we just have to union the two components to reflect the
fact that the new segment Si+l has merged the two contours into one; in this case the current
portion of si+ (-] fi does not disconnect any portion of f from p. If Ca Cb, i.e., the two
contours are the same, then we have to work harder because the old city area on one side of
the current portion of Si+l now becomes suburb. It is not possible to decide locally which
side this is. We thus perform two graph traversals in lock-step, starting at the two trapezoids
(nodes) provided with Sa, which are trapezoids that lie on the two sides of the current portion of
Si+l. These traversals use the adjacency pointers and advance in a strictly alternating fashion,
one trapezoid at a time. The traversals stop when one region is exhausted without finding
the trapezoid that contains p (the exhausted region is now suburb and its trapezoids must
therefore be relabeled) or when the trapezoid containing p is found (in this case the other
region becomes suburb and its trapezoids must be relabeled). In either case the amount of
time spent is at most proportional to the number of city trapezoids that became suburb.

Up to minor details, such as the fact that Si+l should be added to the proper contour
cycle or start a new one of its own, this concludes the description of the algorithm. For the
convenience of the reader, we summarize the algorithm in pseudocode.

procedure face(p,S); p is point and S is set of segments

initialize dag to single node containing the enclosing frame;

store a random permutation of S in array [Sl,S Sn];

initialize union-find data structure the segments, each

stored as singleton set;

for all i- do

perform depth-first search of dag to find all trapezoids crossed by si:

construct list x_trapezoids;

visit children of each node of dag that si crosses in

left-to-right order (along si)

mark each visited node (so not to visit it again);

add each city leaf crossed by si to x_trapezoids;

update the trapezoidal decomposition:

for each trapezoid Z in x_trapezoids do

depending on the type of Z do

case

initialize top_trap and hot_trap to the subtrapezoids of

lying above and below si, respectively;

mark which of the two is open-ended the right and which

is closed;

change to history node in dag;

add the 3 newly created subtrapezoids to dag;

store pointers from to them;

the type of the new nodes (city/suburb) is not set as yet;

store adjacency pointers between the nodes as appropriate

(the left subtrapezoid also inherits the left-adjacency

1294 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

pointer(s) from);

set to the segment containing the top bottom portion

of A, whichever si intersects;

set] and to top_trap and hot_trap, respectively;

2:

proceed in case except for setting Sa, I, and ;
both top_trp and bot_trp adjacent to the left

subtrapezoid of A;

case 3:

update top_trp and bot_trp by appending to the open-ended among

them the corresponding top bottom subtrapezoid of

and setting the remaining variable to the other

subtrapezoid of ;
again mark which of the two is now open-ended and which is closed;

add to dag the subtrapezoid that is not appended;

change to history;

store pointers from to these two subtrapezoids;

store adjacency pointers between the node of dg and the

subtrapezoid preceding it on the left;

4:

update top_trp and bot_trp as in case 3;

both resulting subtrapezoids closed;

update g described;

also, add the right subtrapezoid of to a;
store pointer to it from ;
store adjacency pointers between the subtrapezoids as appropriate

(the right subtrapezoid also inherits the right-adjacency

pointer(s) of);

set s to the segment containing the top bottom portion

of A, whichever si intersects;

5:

proceed in 4, except for setting s;

the right subtrapezoid is now adjacent to both top_trp

and hot_trap;

case

construct the subtrapezoids of , all closed, new nodes of da@;

change to history;

add pointers from to these nodes;

store adjacency pointers between these nodes appropriate

(including the carrying over of adjacency pointers of);

if s crosses the top (respectively, bottom) edge of , set sa
(respectively, Sb) to the segment containing that edge;

end case;

if either Sa Sb is undefined then

mark all nodes of dag city;

else

find and Sb in the union-find structure;

if sa and Sb in different subsets then

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1295

end for;

union these subsets;

mark all new nodes of dag as city;

else update the topology of the face:

perform simultaneously, in lock-step, two searches of dag,

starting at rl, , respectively, and following the adjacency

pointers, until either search is exhausted the

trapezoid containing p is encountered;

in either case, mark all nodes encountered in search as city

nodes and in the other search as suburb nodes, appropriate;

end if;

end if;

if either is defined then

union si with Sa with Sb, whichever is

defined;

end if;

end for;

return all city leaves of dag;

end procedure;

Remark. After completing the algorithm we notice that suburb trapezoids are fairly
useless when we add line segments. We could prune the dag by removing all leaves that store
suburb trapezoids and, recursively, all nodes storing history trapezoids that thus end up without
children. However, the analysis in 3 will reveal that the savings possible by this optimization
are not substantial (at least asymptotically).

3. The analysis. The algorithm presented in 2 is a purely on-line algorithm for the
single-face problem. In this section we show that if the segments are inserted according to a
random permutation, then the expected behavior of our algorithm is very good in terms of both
time and storage. We remark that without the randomization there can be situations where
the space and time performance of our algorithm become quadratric in n. Such a situation is
shown in Fig. 7.

FIG. 7. An example where our algorithm will require quadratic time ifall the vertical line segments are inserted

before the horizontal ones, which are then addedfrom bottom to top.

1296 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

Recall that the main data structures used in our algorithm are a linear array, a union-find
structure, and a dag. The sizes of the first two structures are proportional to n, the number
of line segments. The size of the dag is proportional to the number of trapezoids constructed
during the course ofthe algorithm. We will show in 3.1 that the expected number oftrapezoids
is O(not(n)).

The time spent by the algorithm is split among union-find operations, constructing trape-
zoids, searching for and labeling suburban trapezoids, and propagating the line segments
down the dag. The cost of the union-find operations is at most O(n log n), even with a simple
structure that supports n unions in amortized O(log n) time per operation and each find
operation in constant time. By the results of 3.1 the expected number of find operations is
O(not(n)), which thus takes expected time no more than O(not(n)). The same is true for
constructing and labeling trapezoids because our lock-step search strategy ensures that the
cost of these steps is proportional to the number of constructed trapezoids. Indeed, the cost
of the lock-step search is easily seen to be proportional to the number of trapezoids in the
smaller of the two face portions traversed and is thus proportional to the number of trapezoids
that have been now disconnected from the city. Since a trapezoid can leave the city at most
once, the claim follows. To understand the cost of propagating the line segments down the
dag, let us define the weight of a trapezoid A, denoted w(A), as the number of line segments
that intersect A. The cost is then proportional to Y w(A), where the sum is taken over all
trapezoids A constructed by the algorithm. We will show in 3.2 that the expectation of this
sum is O (not (n) log n).

Hence, anticipating these results, we obtain the main result of the paper.
THEOREM 3.1. Given a set of n line segments and a point in the plane, the algorithm

of 2 constructs the face that contains the point in the arrangement of the line segments, in
expected time 0 (not (n) log n) and expected space 0 (not (n)).

3.1. The expected number of trapezoids. Before starting the probabilistic analysis,
recall that the number of transient trapezoids (that is, trapezoids that are constructed but are
never part of the city proper; see 2.1) cannot exceed the number of other trapezoids by more
than a factor of 4. This is because all transient trapezoids belong to the suburbs and are
therefore stored on the leaf level of the dag and because each inner node of the dag has at most
four children. This observation allows us to consider only trapezoids that belonged to the city
at the time they were created.

LEMMA 3.2. The expected number oftrapezoids constructedby the algorithm is (9 (not (n)).
Proof. Fix a trapezoid A, and define the following two events" (i) Xr, zx A is a trapezoid

in f, which is the city as defined after adding the first r segments. (ii) Zr, zx A is a trapezoid
in some f, for 0 < < r.

Clearly, Zn,zx =0 X,A, and ,x P[Zn,A] is the expected number of non-transient
trapezoids constructed by the algorithm, where the sum is taken over all trapezoids A defined
by at most four line segments each, as detailed in 2.1. By the remark before the lemma,
5 --]A P[Zn,A] is an upper bound on the expected number of constructed trapezoids, whether
transient or not.

Notice that a trapezoid A can be constructed only once; thus X-l,zX fq X,,x is nonempty
for at most one r, namely, if A is constructed at the time the rth segment is added. Therefore,
Zn,/X is the disjoint union of the events Xr-I,A N X,zx, for < r < n. This is true for all
trapezoids A, except for the frame, which is the only trapezoid of y, by definition. It follows
that

P[Zn,/X] -+- Z P[r-I,A 7) Yr,/X].
A A r=l

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1297

By the definition of conditional probability we have

P[Xr-l,zX N Xr, zX] P[Xr-l,zx lXr, zX] P[Xr, zx].

To estimate the conditional probability, we note that A is defined by at most four line
segments and, if we assume that A is in fr, then it was also in fr-1 if and only if the rth
segment to be added was not one of these at most four segments. This implies

4
P[Xr-l,6lX,zx] _<

r

The preceding equations thus imply

(1) P[Zn,/xl < + P[Xr, zxl + P[Xr,/xl.
A A r=l r=l

r A

However, -zx P[Xr,/] is the expected number of trapezoids in the city fr, after r line
segments have been added. By the results of [9], [15], [19], fr can have at most O(rot(r))
edges and, therefore, at most O(roe(r)) trapezoids. This finally gives

A r=l

Remark. The analysis just presented is fairly general, and so we would like to restate it
in more abstract terms, which will be exploited in 4. In general, we have a set of n objects
(line segments in our case) that we add incrementally in random order to form some structure
(a single face in our case). This structure is represented as a collection of regions (trapezoids
in our case), each defined by at most some constant number b of objects (4 in our case). Let
M(r) denote the expected number of regions composing the structure after r objects have
been added. Then the expected number of regions ever constructed during the randomized

b M(r) provided that if a region is present in the structureincremental process is at most Y=l 7
after r steps and the rth object to be added is not one of the b objects defining the region,
then the region was also present in the structure after the first r objects had been added.
(If each region is defined by exactly b objects, then the preceding sum is an exact expression
for the expected number of regions.) As an example, we apply this observation to the case
in which the objects are n points in the plane, the structure is their Delaunay triangulation,
and the regions are Delaunay triangles. This fits well into the setup just discussed. Moreover,
we know that M(r) is 2r hr 2, where h is the expected number of vertices appearing
on the convex hull of a random sample of r points of the given n. We thus conclude that
the expected number of Delaunay triangles constructed during a randomized incremental

n (2r h 2). The same expression was recently derived in [20] by usingalgorithm is }-r=3
a more involved analysis. This general framework has also been observed by Seidel 16]-[18]
and by Mehlhorn [11] (see also [4]) and is referred to as "backwards analysis."

3.2. The expectation of the sum of weights. Recall that the weight of a trapezoid A,
w(A), is defined as the number of line segments that intersect A. As in 3.1, we argue that
for the purpose of proving an upper bound on the expectation of the sum of weights of all
constructed trapezoids, it suffices to consider only nontransient trapezoids. To see this, let A
be a transient trapezoid. Distribute its weight among all its parents in the dag so that the share
of each parent does not exceed its original weight. This is possible because the union of the
trapezoids of all parents of A contains A and therefore intersects at least as many segments
as A does. Since any node in the dag has at most four children, its weight can thus go up by

1298 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

at most a factor of 5. Thus 5 times the expected sum of weights of all nontransient trapezoids
is an upper bound on the expectation of the sum over all trapezoids.

LEMMA 3.3. The expected sum ofweights of all trapezoids constructed by the algorithm
is 0 (not (n log n).

Proof. The expected sum of weights over all nontransient trapezoids constructed by the
algorithm is equal to -’-A w(A)P[Zn,zX], where the sum is taken over all trapezoids A defined
by at most four segments each, and Zn,/ is the event that, in the course of adding all line
segments, A was constructed as a nontransient trapezoid, the same event as in Lemma 3.2. In
addition to the events Z,zx and Xr, zx we define Yr, zx A is a trapezoid of fr, and s+, the line
segment added next, is one of the w(A) segments that intersect A.

Note that if A is a trapezoid of fr, then none of the segments intersecting A was chosen
in the first r steps. So for Y,x to occur, given that X,x has occurred, we have to choose at the
(r + 1)th step one of these w(A) segments out of the remaining n r segments. Hence

P[Yr,/] P[Xr,,x]
w(ZX)
nmr

Observe also that

and, in general, we may have proper inclusion, because A can be removed from the city also by
a line segment that does not intersect A. Independent of whether proper or improper inclusion,
this implies that

(2)
A i=1 A i=1 A

In other words, the expected number of trapezoids that become history during the first
r + 1 insertions is O(rot(r)), which is clear because these trapezoids have to be constructed
first, and the expected number of such trapezoids, over the course of the first r insertions, is
O(rot(r)), as shown in 3.1.

Now fix A, and recall from the proof of Lemma 3.2 that

P[Zn,zX] P[r-l,zxlXr, zx]" P[Xr, zx] _< -P[Xr, zx].
r=l r=l

r

This implies that

w(A)P[Zn,zX] < 4 _a
r---1

n --r
w(A)P[Xr,/X] 4

n r,, P[Yr, zX].
r

r=l
r

To simplify the notation we set Dr / P[Yr, zx], and we can now write

(3)
n-1

w(A)P[Zn,zX] < 4
n r

rA r=l

n-1 (n r

r=l
r r+l i=1

However, we have shown that

Di P[Yi,xl O(rot(r)).
i=1 A i=1

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1299

Hence we finally obtain

(4)
n-1

A r=l r(r + 1)
O(rot(r)) O(na(n) log n),

as claimed. [3

Remark. As in the remark at the end of 3.1, these calculations can also be extended to the
more general setup discussed there. Specifically, if we denote by S(r) the expected number
of regions (trapezoids in our case) formed during the first r steps of the randomized process,
then (1) implies that

b
(5) S(r) < -M(j), r n,

j=l J

where b, M are as defined in the previous remark. The analysis leading to equations (2)-(4)
can then be generalized to yield a bound on T (n), which is defined to be the expectation of
the sum of weights of the regions ever formed by the algorithm, where the weight of a region
is the number of objects that intersect it. That is, we obtain

n-1 bn
T(n) <

r=l r(r + 1)
bn b

M(j)S(r)
r(r + 1) Jr=l j=l

b n-1 bn

j--1 J
M(j) Zr=,. r(r + 1)

b2nM(j)(_ __1),
j=l J n

or

bZ(n r)
M(r)(6) T(n) <

r2
r=l

4. Extensions. The technique presented in this paper is sufficiently general to be appli-
cable to a variety of other related problems. In this section we present a few such applications.
In 4.1 we extend the previous algorithm to compute the entire arrangement ofn line segments,
and in 4.2 we describe an algorithm for computing a single face in an arrangement of Jordan
arcs. The overall strategy is similar to that described earlier, but there are certain additional
technical details that are particular to the specific application. In each case we discuss in some
detail these difficulties, the modifications to the algorithm that they require, and the analysis
of the resulting modified algorithm.

4.1. Computing the entire arrangement of n line segments. We first consider a simple
extension of our technique to the problem of calculating the entire arrangement of a collection
of n line segments in the plane. This can be achieved by applying a simplified version of
the technique of 2. In this case there is no need to distinguish between city and suburbs
since every face of the arrangement needs to be constructed. Consequently, when a segment
is added to the arrangement, all its portions are drawn and there is no need to maintain any
face topology by means of a union-find structure. We leave it to the reader to work out
the details of this modified and simplified algorithm. The analysis is also easy; it uses the
general method described at the end of 3. In this case we have b 4 (the maximum number
of segments defining a trapezoid), and M(r), the expected number of trapezoids forming the
vertical decomposition ofthe arrangement of the first r segments that were inserted, is bounded

1300 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

by O (r 4- K), where K is the total number of intersections between the given segments
(see [5] for the simple proof of this bound). Hence the expected storage of the algorithm is

4 ((Kr))S(n) < -M(r) 0 + - O(n + K),
r=l

F
r=l

and the expected running time is

n 16(n--r)M(r)
0 ((n--r K(n-r)))(n) < Z + O(n log n + K)T

F2 F n2
r=l r=l

We thus obtain an algorithm with optimal (expected) running time and storage. The same
performance is achieved by the deterministic (but complicated) algorithm of [3] and by the
alternative randomized algorithms of [5], 14] (a variant of the algorithm of [5] also achieves
O(n) working storage).

4.2. Computing a face in an arrangement of arcs. Let F be a collection of n Jordan
arcs ?’1 9/n. We assume that the arcs have a simple shape, which means that any pair of
them intersect in at most some fixed number s of points, that each arc consists of a small fixed
number of x-monotone pieces, and that it takes constant time to perform any of the following
primitive operations finding the intersection points between a pair of arcs, decomposing
an arc into its x-monotone pieces, intersecting an arc with a vertical line, and testing whether
a given point lies above or below a given (x-monotone piece of an) arc. To simplify the
description of the algorithm, we assume that each arc is already x-monotone; otherwise, we
first decompose the arcs into x-monotone pieces and then apply the algorithm. We also assume
that the arcs are in general position, in the spirit of the similar assumption we have made for
line segments.

As above, let p be a given point not lying on any arc. Our goal is to compute the face in
the arrangement of 1-’ that contains p. To compute the desired face, we apply the same scheme
of 2, except that there are several new technical difficulties that need to be addressed. The
face (city) and its complement (suburbs) are represented by their vertical decomposition into
pseudotrapezoids, obtained, as was done earlier, by drawing vertical segments up and down
from every endpoint and intersection point until they hit another arc. If general position is
assumed, each pseudotrapezoid is defined by at most four arcs, two containing its top and
bottom edges and two defining its left and right sides.

The data structures that we use are the same as those in 2 the dag, the linear array, and
the union-find structure. Searching in the dag for the pseudotrapezoids that intersect a newly
inserted arc 9/is trickier in this case because the intersection of 9/with a pseudotrapezoid A
can consist of several connected components (at most s 4- components, as is easily checked).
In this case we expect the search through the dag to yield a partition of 9/into a (sorted) list of
subarcs, each of which is either contained in the suburbs (and is therefore not drawn at all) or
intersects a single pseudotrapezoid of the current city. This list is initialized to consist only of
9/itself and is refined during the search as follows. Any recursive step involves the processing
of some history pseudotrapezoid A and some subarc 9/ that is a connected component of
9/f A. We go over the (constant number of) children of A, and for each child A’ we compute
9/’ f A’. The constant number of resulting subarcs of 9/’ are sorted by x coordinate and replace
9/’ in the output list. The search now continues recursively at each of the new subarcs and at the
pseudotrapezoid that contains it. Note that a node A of the dag may be visited several times
during the search, each time with a different subarc 9/’. However, it is easy to show that the cost
of searching with 9/in the dag is proportional to the number of pseudotrapezoids ever formed

COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS 1301

that are crossed by V. At the end of the search we almost obtain the desired sorted partition
of y; since children pseudotrapezoids are merged, the final list of subarcs may contain pairs
of adjacent subarcs that share an endpoint and are contained in the same pseudotrapezoid. An
additional pass through the final list is needed to merge such pairs.

The remaining steps of the algorithm are the same (with certain trivial modifications) as
those of the algorithm of 2. We leave it to the reader to fill in the details.

The analysis is also similar to that in 3. Using the general notations at the end of that
section, we observe that in our case we have b 4 (maximum number of arcs defining a

pseudotrapezoid) and M(r) O(.s+z(r)) (bound on the complexity of a single face in an
arrangement of r arcs as above; see [9]). Then the expected storage of the algorithm is

S(n) <_ -M(r) O()s+(n)),
r=l

F

and the expected running time, again dominated by the cost of the searches through the dag,
is

T(n) 0
r2]\r=l

Hence we have the following theorem.
THEOREM 4.1. Given a collection F of n arcs in the plane with the aforementioned

properties and a point p not lying on any arc, the face of 4(F) that contains p can be
computed in randomized expected time O()s+2(n) log n) and expected storage O()s+2(n)).

Remark. This result is an improvement of the previous (deterministic) algorithm of
Guibas, Sharir, and Sifrony [9], whose running time is O(.s+z(n) log2 n).

5. Disetssion. In this paper we have presented a randomized incremental technique for
computing a single face in an arrangement of line segments and for several related problems.
The technique is a variant of several related recent randomized algorithms. It improves the
running time of the previously best algorithms for these problems, and it is fairly simple to

implement. The main characteristic of the technique is maintaining the history of the random
process as a dag of trapezoids, which facilitates efficient location of the new segment to be
inserted relative to the current version of the computed face. The analysis of the algorithm is
also novel, in the sense that it extends the previous analysis technique of Clarkson and Shor,
resulting in a simpler and more general approach.

The problems studied in this paper are only a sample of problems that can be solved
efficiently by using our technique. In addition to the earlier algorithm of Guibas, Knuth, and
Sharir [8] for computing Delaunay triangulations in the plane, there appeared, after the original
preparation of this paper, a few related works that also apply this or closely related techniques.
Among these we mention work by Seidel [18] for constructing trapezoidal decompositions of
arrangements of nonintersecting line segments and applying them for efficient point location
and triangulation of simple polygons and work by Miller and Sharir [12] for computing the
union of fat triangles or of pseudodiscs.

There are several other problems that are likely to be amenable to the technique presented
here. Among these we mention the problems of computing many faces in an arrangement of
lines or of line segments, computing a single cell in an arrangement of triangles in 3-space,
computing the zone of a plane in an arrangement of planes in 3-space, and computing many
cells in such an arrangement of planes. In all these cases it is straightforward to design
the general structure of an appropriate algorithm, along the lines of the algorithms we have
described. It is also fairly easy to extend the analysis to obtain sharp bounds on the expected

1302 CHAZELLE, EDELSBRUNNER, GUIBAS, SHARIR, AND SNOEYINK

number of regions constructed by the algorithm and on the expected sum of their weights,
appropriately defined. The difficulty in completing the algorithm usually lies in the subproblem
of maintaining the topology of the constructed structure. For example, in computing a single
cell in an arrangement oftriangles in space, when we add a new triangle t, we need to determine
the way in which it modifies the current cell, which seems to be considerably more difficult
than the similar problem in two dimensions.

To conclude, we mention one final open problem, namely, to close the still remaining gap
between the expected running time of our main algorithm, i.e., O(not(n) log n), and the lower
bound of f2 (n log n).

Acknowledgment. The authors wish to express their gratitude for the generous support
and hospitality of the DEC Palo Alto Systems Research Center.

REFERENCES

E ALEVIZOS, J. D. BOISSONNAT, AND E P. PREPARATA, An optimal algorithmfor the boundary ofa cell in a union

ofrays, Algorithmica, 5 (1990), pp. 573-590.
[2] J.D. BOISSONNAT, O. DEVILLERS, R. SCHOTT, M. TEILLAUD, AND M. YVINEC, On-line geometric algorithms with

good expected behaviours, in Proc. Journ6es GOometriques Algorithmiques, INRIA, Sophia-Antipolis,
June 1990, pp. 7-13.

[3] B. CHAZELLE AND n. EDELSBRUNNER, An optimal algorithmfor intersecting line segments in theplane, J. Assoc.
Comput. Mach., 39 (1992), pp. 1-54.

[4] L.P. CHEW, The Simplest Voronoi Diagram Algorithm Takes Linear Expected Time, Manuscript, 1988.
[5] K. CLARKSON AND P. SHOR, Applications ofrandom sampling in computational geometry II, Discrete Comput.

Geom., 4 (1989), pp. 387-421.
[6] n. EDELSBRUNNER, L. GUIBAS, AND M. SHARIR, The complexity and construction ofmanyfaces in arrangements

of lines and ofsegments, Discrete Comput. Geom., 5 (1990), pp. 161-196.
[7] n. EDELSBRUNNER AND E. MOCKE, Simulation of simplicity: A technique to cope with degenerate cases in

geometric algorithms, ACM Trans. Graphics, 9 (1990), pp. 66-104.
[8] L. GUIBAS, D. E. KNUTH, AND M. SHARIR, Randomized incremental construction of Voronoi and Delaunay

diagrams, Algorithmica, 7 (1992), pp. 381-413.
[9] L. GUIBAS, M. SHARIR, AND S. SIFRONY, On the general motion planning problem with two degrees offreedom,

Discrete Comput. Geom., 4 (1989), pp. 491-521.
10] J. HERSHBERGER, Finding the upper envelope ofn line segments in O(n log n) time, Inform. Process. Lett., 33

(1989), pp. 169-174.
11] K. MEHLHORN, Unpublished manuscript, 1990.
12] N. MILLER AND M. SHARIR, Efficient Randomized Algorithmsfor Constructing the Union ofFat Triangles and

ofPseudodiscs, Manuscript, 1991.
13] J. S. B. MITCHELL, On Computing a Single Face in an Arrangement ofLine Segments, Manuscript, School of

Operations Research and Industrial Engineering, Cornell University, Ithaca, NY, July 1990.
[14] K. MULMULEY, A fast planar partition algorithm I, J. Symbolic Comput., 10 (1990), pp. 253-280.
15] R. POLLACK, M. SHARIR, AND S. SIFRONY, Separating two simple polygons by a sequence of translations,

Discrete Comput. Geom., 3 (1988), pp. 123-136.
16] R. SEIDEL, Small dimensional linear programming and convex hulls made easy, Discrete Comput. Geom., 6

(1991), pp. 423-434.
17] ,Backwards analysis ofrandomizedgeometric algorithms, inNew Trends in Discrete and Computational

Geometry, J. Pach, ed., Springer-Verlag, Berlin, 1993, pp. 37-67.
18] ,A simple andfast incremental randomized algorithm for computing trapezoidal decompositions and

for triangulating polygons, Comput. Geom. Theory Appl., (1991), pp. 51-64.
[19] A. WIERNIK AND M. SHARIR, Planar realization of nonlinear Davenport Schinzel sequences by segments,

Discrete Comput. Geom., 3 (1988), pp. 15-47.
[20] E. YANIV. Randomized Incremental Construction of Delaunay Triangulations: Theory and Practice, M.Sc.

thesis, Tel Aviv University, Tel Aviv, Israel, 1991.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1303-1318, December 1993

() 1993 Society for Industrial and Applied Mathematics
012

A BETTER HEURISTIC FOR PREEMPTIVE PARALLEL
MACHINE SCHEDULING WITH BATCH SETUP TIMES*

BO CHENt

Abstract. This paper addresses the problem of scheduling N jobs on M identical parallel machines with the
objective of minimizing the makespan. Jobs are divided into B batches. A sequence-independent batch setup time
on a machine is incurred whenever the machine starts its processing on or switches it from a job in one batch to a
job in another batch. On the basis of a heuristic for this NP-hard problem proposed by Monma and Ports, a modified
heuristic that requires the same implementing time O(N + (M + B) log(M + B)) and is asymptotically optimal is

presented. Furthermore, for a certain class of problems, which includes the case in which each batch contains a single
3M 3M-41job, it has the worst-case performance ratio rM max 2M+1’ 2M-2

Key words, identical parallel machines, batch setup times, preemptive scheduling, heuristics, worst-case per-
formance

AMS subject classification. 90B35, 68M20

1. Introduction. Suppose that a computer is presented with a collection of tasks (source-
code programs), each with a known processing time (compilation plus execution). Each task
has a requirement for a particular compiler to be in memory. If the proper compiler for a task is
resident, the task may be instantly started; otherwise, the contents of memory are abandoned
and a setup time is incurred while the proper compiler is loaded into memory. Only one
compiler can be resident in memory at a time. Thus it may be advisable to continuously
schedule several tasks requiring the same compiler’s presence.

This sort of problem [2], among others (see, for example, [5]), motivates us to consider
the following scheduling model with batch setup times.

We are given N jobs that are divided into B batches and are to be scheduled on M (> 2)
identical parallel machines. Job j of batch b is available for processing at time zero and has a
positive processing time Pjb. At any time, each machine can handle at most one job and each
job can be processed by at most one machine. Preemption, which allows the processing of
a job to be interrupted and resumed later on the same or on any other machine, is permitted.
A nonnegative setup time sb on a machine is necessary either when a job from batch b is
processed first on the machine or when the machine switches from processing a job in batch
b’ (- b) to a job in batch b. Our objective is to find a schedule that minimizes the makespan.

The computational complexity of various scheduling problems with batch setup times is
investigated by Bruno and Downey [2] and by Monma and Potts [5] and surveyed by Potts
and Van Wassenhove [7]. It is shown that the preemptive parallel machine problem we are
considering is NP-hard even when M 2. Monma and Potts [6] propose a heuristic algorithm
LSU (largest-setup-time list scheduling and splitting heuristic), which requires O(N + (M +
B) log(M+ B)) time and generates a schedule for which the makespan does not exceed 6M-7

4M-4

times that of an optimal schedule, respectively, for M < 4 and M > 3, where M isM
a multiple of 3. In this paper we modify the heuristic LSU to LBT (largest-batch-time list
scheduling and splitting heuristic), which has the same time requirement as LSU but returns
a better worst-case guarantee of ra4 max 3t 3t-4

2M+l’ 2M-2 and is asymptotically optimal.
In 2 a brief description of heuristic LBT is presented and some notation is introduced. In

3 we examine the asymptotic performance of LBT, which is very similar to the generalized
bound on LPT sequencing [4]. The worst-case performance of LBT is analyzed in 4 and 5.

*Received by the editors June 17, 1992; accepted for publication (in revised form) August 14, 1992.
tEconometric Institute, Erasmus University, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands

(bchen@cvx.eur.nl).

1303

1304 BO CHEN

Some conclusions and remarks are provided in 6. The appendix deals with some mathematical
treatments for 5.

2. Heuristic LBT and notation. The largest-batch-time list scheduling and splitting
heuristic, or LBT for short, is formulated as follows:

Phase I: List scheduling.
1. Group the jobs into batches and compute for each batch b, < b < B, the total

processing time Pb Pjb, where the summation is over all jobs j of batch b. Place the
batches in a list in the order 2Sl + P1 _> > 2s + P. Set Z 0 for < < M.

2. Select a machine for which Li is as small as possible. Choose the first unscheduled
batch b of the list, and assign it to machine i. Set L :-- L q- Sb -+- Pb. Repeat this step until
all batches are scheduled.

3. Relabel the machines so that Li-1 < Li for 2 < < M. Set rn 1, m’ := M, and
LBTCrna 0.

Phase II" Splitting.
4. Consider the last batch b that is assigned to machine m’. If Lm -1- Sb >_ Lm’, then set

Cmax :--- Lm, and stop. Otherwise, assign to machine rn any processing that occurs after time
(Lm + Sb -t- Lm,)/2 on machine m" for machine m, all original setups and processing are
rescheduled (Lm, -1- Sb Lm)/2 units later, at time zero a setup for batch b commences, and
from time s to (Lm, q- Sb Lm)/2 the processing transferred from machine m’ is executed.
If, through rescheduling, the preemption of some job j of batch b is necessary, then job j is
scheduled first on machine rn and, after insertion of idle time ifnecessary, last on machine m f, to
be completed at time Tm, max{(Lm +s + Lm,)/2, s + pj}. Set CIBT "= max{CIBT Tm,}vmax "-’max

5 If m rn 2, then set CI :-- maxCI rn or if--max t--max, Zm’-l} and stop. If m’
Lm’-I < (TLBT then stop. Otherwise, set rn :-- rn + m’ "----- m and go to step 4."-’max

LBTLet, with the machine relabeling produced after the first phase of LBT, the value of Cma
be given by the completion time ofmachine m’, where m’ >_ [M+]/2. Let rn M- m’ + 1,
and let some job of batch b be scheduled last on machine m’. Let L’ be the total load assigned
to machine i, for _< _< M, just before the batch b is scheduled in step 2 of LBT. Let
Ek(k _> 1) be such a set ofjobs that when the algorithm LBT applies to Ek, batch b is the kth
one on machine m’ after the first phase of LBT. Let Ct(E) and C(E) denote the makespan of
LBT and the optimal makespan, respectively, for job set/2. If no confusion can arise, we use
C and C* instead. We assume that idle time has not been introduced by LBT in considering
the machine pair (m m’) since otherwise we always have C C* Let 0 Lm L’ Itm"
is clear that 0 _> 0 and that Lm + s >_ Lm’ is equivalent to 0 > Pb. All the upper bounds
obtained in the theorems of the following sections are tight, which can be shown by various
examples. Interested readers are referred to [3] for those examples.

3. Asymptotic performance. Let us begin with the following lemma.
LEMMA 3.1. For any M >_ 2 we have

M-m m-1
C C* <s-4- P ifrn rn’ or ifrn < rn’ and 0 > P;

M M

M- rn M- 2m 4m 2- M
C-C* <s+Pb+ 0 if rn < rn’ and O < P.M 2M 2M

Sketch ofproof. Case 1" rn m’. For 2 rn Li > L’ C (sb + P6)tn

Also, we have Li >_ C for > m. Hence /--1 Li + (m 1)(sb + Pb) > MC. Since
MC* > ., Li, we get C C* _< -(sb + Pb), as we desired Therefore, we suppose
m<mt.

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1305

Case 2" 0 > Pb. Then C Lrn,. Since, for 1, 2,..., rn- 1, Li-t-0 >_ L + 0 > Lm
and Lm C q-0 (Sb q- Pb), we have

m-1 mr-1 M

MC* > Li nt- Li q- Li > (M- m)Lm (m 1)0 -k- mLm,
i=1 i=m i=m’

MC (M- m)(sb +. Pb) + (M- 2m + 1)0.

Using 0 > Pb, we get

M-m M-2m +C-C* < (Sb nt- Pb) 0 <
M M

Case 3:0 < Pb. This case is similar to Case 2. [3

COROLLARY 3.2.

C C* < Sb +M

Proof. The proof is a matter of careful calculations. Interested readers are referred to [3]
for details.

COROLLARY 3.3. Ifm 1, then

M-1
C-C* < sb ifO > Pb,

M
M-1 M-2

C C* < sb + (Pb O) otherwise.
M 2M

With Lemma 3.1 and Corollaries 3.2 and 3.3 we can establish the following result.
THEOREM 3.4. For M > 2, k > 3, we have

CM(k) Mk

C(k) M(k- 1)+

Proof. Let the (k 1) batches before batch b be ik-1. Then for any Ik =--
1pb. Since{il ik-1} we have si + Pi > si + Pi > Sb + Lm, minl_<j_<M Lj, we have

Z Sb+PbSb -+- Pb
S At- Pi Af-C* >_ L,+ M M

islk

(1)> (k-l) sb+-Pb +-- sb+-Pb
Hence

s +gP
By Corollary 3.2 we then have

C-C* < Sb + P <
M - M(k-1)+l

C*. [-]

Corollary 3.5 follows directly from the proof of Theorem 3.4.
C(E) < MkCOROLLARY3.5. Foranyset_.ofjobs, ifLm, > (k-1)(sb+1/2 P6), then M(k-1)+l"

1306 BO CHEN

4. Worst-case performance: 2< M < 4. After analyzing the asymptotic case, we turn
to consider the worst case. Our consideration will be in two steps: 2 < M < 4 and M > 5.
The former step is completed in this section, and the latter step is completed in 5. First we
have the following observation.

LEMMA 4.1. Iffor some job set 2

CM(/2) 3M

Ct(;2) 2M +
then M- 3m + l >0.

Proof. Case 1. m < m’ and 0 < Pb. Then C (Lm, -+- Lm -+- Sb)/2 L, -k- Sb -+-
7(Pb +0). On the other hand, MC* >_ , Li > (m- 1)L, + (M-2m + 1)Lm -+-mLm,. If
3m M 2 _> 0, then, noticing that M 2m + > 0 and Lm + Sb < Lm,, we get

MC* > (m -1) (Sb + .Pb.) + (M- 2m + l)Lm + mLm
3m-M-1

2
(Lm, Lm Sb) (M- 2m + 1)

Pb

(M-m+I)C+(3m-M-2)(,+.b.).
M C* HenceSince C > 3tC*, Corollary 3.2 implies that s + Pb >

3M
MC* > (M- m + 1)2M +

M
C* MC*C*+ (3m M- 2)

2M+

which is a contradiction. Therefore, in this case M 3m + > 0.
Case 2. m < m’, 0 > Pb, or m m’. Then C Lm, Lm q- (Sb d- Pb). Noticing that

Lm (C Sb) + (0 Pb) if m < m’ and Lm C if m m’, we have Lm >_ C Sb. Hence

(4.1)
MC* > (m 1)Lm + (M- 2m + 1)(C s) + mC

ML, + msb + (M-m + 1)Pb.

It is implied by Lemma 3.1 that

2M+ (M-m m-1)(4.2) C* < s+ P
M-1 M M

Combining (4.1) and (4.2), we then have

Lm’< M-1 M-1
Pb, wherey--M-m >

M-1

2

1Pb,Since Lm > sb +

) 3y3y
2 (s- P6) > P implying 2.

M-1 M-1

3yAssume _f 2 < 0; then Sb < Pb. Let s (1 or)Pb for some 0 < ot < 1. Then

(1 c)Pa + Pa < L’m’<Pb- M-1) (3y
1 (Pb--Sb)=Pb--Ol

M-1

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1307

or

> --1,
2(2- 3y-:-f) 2(2-)

a contradiction. Hence

3y
M-1

2>0 or M-3m+l >0,

completing our proof of Lemma 4.1. [3

Now we are ready to prove a main result.
THEOREM 4.2. For 2 < M < 4 we have

CM(2) 3M

Ct(/22 2M +

Proof. Given 2 _< M < 4, suppose 2 is such that it violates the preceding inequality.
Then we must have m and m’ M according to Lemma 4.1. Recall that the schedule,
which algorithm LBThad produced atthe momentbatch b was to be assigned, is (L’ L).
Let

131 {i Si + Pi Lj for some _< j < M}

and

Z3 {1, 2 b}, 132 \Jl.

CLAIM 1. In any optimal schedule, any batch of 131 cannot be wholly assigned on the
same machine with another whole batch of 13.

Proof. Suppose batch a 6/31 is on the same machine as b 6 13 in an optimal schedule.
Then we get

(4.3) C* sa, -+- Pa’ 3v Sb’ + Pb’ LtM "- Sb’ + Pb’

Case L! + Sb >_ LM. Then C LM LM + (Sb -Jr- Pb). According to (4.3) and the
batch sequencing by LBT, we have C C* < (Sb + Pb) (Sb, + Pb’) <_ Sb’ Sb. Hence

Sb’ >_ Sb -- (C C*) > Sb +
2M+l

which implies that

C* > L’M + (Sb, + Pb’) > 2Sb +

M+2 C* which contradicts Corollary 3.3"or Sb < 2(2M+1)

2M+1

M-1 M-1
C* < C C* <
2M+1 M Sb.

Case 2. L! + Sb < LM. Then C L’M + Sb "+ (0 + Pb) for some 0 _< 0 < Pb. By (4.3)
we have

c c* <_ (Sb + Pb) (Sb, + Pb") <Sb,-- Sb+- +-,2

1308 BO CHEN

or

Sb, > sb+- --+ 2M+-’------
1Pb), implies thatwhich, together with (4.3) (if we notice that LM > sb +

(Pb) 0 M-1
C, >2(sb_ Pb--O) M-1

C,C* s6+ T +s, 2s+P-+2M+ - +2M+
Again, this contradicts Corollary 3.3:

M-1
C* < C C* < sb

2M+l M 2

Therefore, Claim is tree. S
CLAIM 2. In any optimal schedule of, no machine can receive three complete batches

orB.
Pro@ Suppose in an optimal schedule some machine is assigned with, among others,

three complete batches, say, l, i2, and i. Then

(1)C* _. (Sik -Jr- Pik) > 3 Sb + - Pb
k=l

But by Corollary 3.2 we also have

M-
C* < C- C* < sb -k- Pb

2M+- M

which then implies a contradiction 3M < 2M + 1. Therefore, Claim 2 is also true. V]

Suppose first that at least one preemption is imposed on batch b’ 6 B\{b}, in some optimal
schedule zr*, and batch b’ was assigned by LBT on machine i. Let

(4.4) (2Sb q- Pb) (Sa "[- Pa) o’,

where batch a is the first batch on machine m’ M, assigned by LBT.
It follows that Li + sb, >_ 2sb, + Pb, > 2sb + Pb (Sa + Pa) + a. But we also have

L >sa+Pa+O. Thus

(4.5) Li + Sb, > max{sa + Pa + , Sa -}- ea .ql.. O} (s -}- ea) -- max{0, a}.

Since C* is not less than the mean value of total load, we get

1 M-2
(4.6) C* >_ S -" Pa -+- --’;. Sb "[- Pb -M

[Li-(Saq-Pa)

O+s,+i M

-0
From (4.5) and the fact that Sa > a, (4.6) implies

M-2
(4.7) (Sa + Pa) + -:-:.(sb + Pb) + ---z-;--. O + max{0, a} < C*.

M

Summing up (M 1) times of (4.4) and 3M times of (4.7), we obtain

if iTeM,

ifi M.

(2M + 1)((Sa -k- Pa) 4- (Sb -+- Pb)) (M- 1)(Pb 0)
<_ 3MC* 3 max{0, a} + (M 1)a (2M 5)0
< 3MC* 4-M

-T-- max{0, a} _< 3MC*,

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1309

or

M-1 3M
(sa + Pa + Sb + Pb) +-m O) < C*.

-2M+l
3M(pb 0)} we then have C < C*, aConsidering that C Sa + Pa + Sb + Pb max{0,

contradiction.
Secondly, suppose all the batches of/3\{b} are not preempted in optimal schedule

Consider the assignment of/3\{b} in 7r*. According to Claim 1, all the batches of 1 keep
separate from batches of/3\{b} in this assignment. Also, no three whole batches of/3 can be
on the same machine according to Claim 2. Therefore, in re* any machine receives at least
one whole batch of 1 or two whole batches of J2\{b}. On the other hand, it is apparent
that at least one machine receives 1/M of load of batch b. Noticing that, for i, j 6 /3,
(si + Pi) + (sj + Pj) > LM, according to Corollary 3.5 for k 3, and that si + Pi > LM for
all 6/31, we then obtain

M+2
(4.8) C* >_ LM + sb + - Pb > 2sb - 2M

Pb.

Case 1. 0 > Pb. Then C L’M + (sb + Pb), which, together with (4.8), implies that

2M+l < C <- Pb, or

M
(4.9) Pb > C*.

2M+l

But at the same time Corollary 3.3 gives that

M
(4.10) sb > C*.

2M+l

Combining (4.8), (4.9), and (4.10), we have

2M
C* >2Sb+Pb > C*+C*=C*

2M + 2M +
a contradiction.

l(Pb --0), which, together with (4.8)Case 2. 0 < Pb. ThenC L+sb+Pb-- 7
implies that

or

M-1 M-1
C* <C-C* < Pb- (Pb-0)
2M+l M

(4.11)
M M

P > c*+ (P- 0).
2M + 2(M- 1)

But Corollary 3.3 implies that

M M-2
(4.12) Sb > C*-2M + 2(m- 1)

Substituting (4.11) and (4.12) into (4.8) yields

3 M+2
C*-Sb-- 2 (M.+_2_P > c* +

\4(M-)

(Pb --0).

another contradiction, which completes the proof of Theorem 4.2.

3(M 2)) C*
4(M-l)

(Pb--O) >_

1310 BO CHEN

5. Worst-case performance" M > 5. In this section our interest is on problems in which
no batch contains an amount of processing sufficiently large that we can deduce immediately
that it must be processed on at least two machines. More formally, if for each batch i,

Cax > si + Pi, then such problems will be called small-batch problems. For problems other
than small-batch problems, there is a linear heuristic that has a worst-case performance ratio
of 2- 1/(IM/21 + 1) [6]. The main result is the following.

THEOREM 5.1. For M > 5 andfor any small-batch problem/22, we have

CM(/2) 3M-4

C/(2) 2M- 2

We are going to prove the theorem by contradiction, by assuming the existence of a
counterexample. Let /22 be a counterexample to the theorem, and let Jr* be an optimal
schedule of/22. Denote the makespan of any schedule Jr by Cmax(jr). Our proof is in two
parts. In the first part we shall derive a lower bound on C]4(2) by relaxation of/22 in Jr* and
by rearrangements of Jr*. In the second part we will deal with some mathematical relations.

5.1. Lower bound on Ct (/2), Let/, 1, and/2 be defined as in the proof of Theorem
4.2, and let/’ {b + N}. Let the first batch on machine m’ be a. Denote ot Sa + Pa.
All the following relaxations (replacements, transformations) will reserve the load--the sum

ofsetup andprocessing times concerned.
Step 1. First relaxation of2 into/’. Consider the configuration that LBT had created

in its first phase.
(a) For every c/3’ let an additional job with processing time si be added to batch and

then let all jobs in batch have zero setup time. In other words, batches of/’ are replaced by
a newly created batch with zero setup time but the same load. This batch will be called batch

i0.
Observe that if 2\{b} 7 q, then 2\{b} consists of an even number of batches. In fact,

is the total load of at most two batches. Otherwise, L’m, ot wouldfor any j, <j<M, Lj
1pb),exceed the total load of at least two complete batches in/, which implies that o _> 2(Sb +

contradicting Corollary 3.5. Therefore, batches in/32\{b} are in pairs.
(b) If in some pair of batches in/2\{b}, say, {kl, k.}, there is a batch, say, k2, satisfying

s + P >_ or, then jobs of batch kl are replaced by some corresponding new jobs of batch i0
with total processing time s + P .

Let the number of pairs that have this property be I/2\{b}[q >_ 0.
(c) If q >_ and 2Sb + Pb <_ C*(E.), then each of the q pairs of batches in/2\{b}, say,

{kl, k2}, is jointly replaced by a new batch it,, that has zero setup time and total processing
time 2Sb + Pb (> o by Corollary 3.5) and by a new job of batch i0 with processing time
(sk, + Pk)+ (sk + P2)- (2Sb nt- Pb).

The case

(5.1) q >_ 1, 2Sb %- Pb > C(/2)

is considered in a parallel manner.
After the preceding relaxation, the resulting new list/2’ consists ofM+2 (M+q+2 if (5.1)

holds) batches including batch b, reindexed as i0 ia4+l (i0 iM+q+l, respectively, with
the q pairs of batches being reindexed last), where batch i0 has zero setup time. Furthermore,
we have the following guarantees:

(1) C(’) _<

1The relaxations could be made meticulously. See the footnote for relation (5.2).

A BETTER HEURISTIC FOR MACHINE SCHEDULING 13

The inequality holds because all the changes made are nothing other than conversions of
machine setups into job processings.

(2) For each batch iv, v M/ (v M+q+ 1, respectively), 2si + Piv >

2sb / Pb and sio + Pio < C(/22). Furthermore, for v M+ (v M- q + 1,
respectively), si, / Piv > o, except possibly the former batch b.

(3) If (5.1) holds, then for v 2q, SiM_q+l+v / PiM_q+l+v
Let zr’ be an optimal schedule of
Step 2. Rearrangements of7r’ to

Convention. First of all, we can always regard the jobs as different from machine to
machine in zr’. In other words, no job preemption is introduced in 7r’ since otherwise we can
always make it so by modifying the list ;’. For example, if job J is split in zr’ into several
parts, J1, J2 then we just remove J from and add J1, J2 to

LEMMA 5.2. Given machine with loadedjobs, suppose these jobs belong to at least two

different batches jl jk with k > 2 and Sjl > > sj. Then for any < v < k 1,
through interchanges withjobs on machine belonging to batches jv+l jk, jobs on other
machines belonging to batch jv can be so reassigned onto machine without increasing the
makespan that either jobs belonging to batches jv+l j are all moved out of machine
or all jobs ofbatch j are moved onto machine i.

Proof. We prove the lemma for v 1. Fix any t" 2 _< _< k. Suppose on machine i’
there are jobs of batch jl.

Let Pij be the total processing time of jobs on machine belonging to batch
j, M, j il iM+l (il iM+q+l, respectively).

Case 1. st / Pit < Pi’j. Move all jobs of batch on machine to machine i’ and part of
the jobs, with a total processing time (st / Pit), of batch j on machine i’ to machine i.

This makes Pit O, Pijl Pijl / (st / Pit), and ei’t := Pi’t / Pit, Pi’j, Pl"jl (st /

Case 2. st / Pit > Pi’j,. Move all jobs on machine i’ of batch jl to machine i, and
move either all jobs (if Pi,j, > Pit) or part of the jobs with a total processing time Pi,j (if
P/’jl < P/t) of batch on machine to machine i’.

Thismakes Pij, :- Pij /Pi’j, Pi’jl 0,andeither Pit O, Pi,t Pi’t/Pit (if P/,j
P/t) or Pit Pit Pi’jl, Pi,t P/’t / Pi’jl (if Pi,j, < Pit).

During these movements, if preemptions have to be imposed on some jobs, we just regard
the parts of jobs as different jobs, because we can always make it so by modifying the list/2’.
See the Convention in Step 2.

After these movements, we reschedule the jobs on machines and i’ so that jobs of the
same batch are scheduled consecutively. We see that the schedules of all machines except
machines and i’ remain the same; also, the completion times of machines and i’ cannot be
increased.

Continue the preceding interchanges until reaching one of the two cases mentioned in the
lemma.

With Lemma 5.2 we can rearrange zr’ without increasing its makespan beyond Cu(122), so
that each machine contains a complete batch of I =- {il ia4+l} (of/’_= {il iM+q+l},
respectively). The procedure is as follows.

PROCEDURE
(i) :-- 1.
With interchange argument, we can always assume that on machine there is at least one

job of some batch from I (I’, respectively).
(ii) Let the jobs on machine be from batches {jl jk}

I (I’, respectively), with

sj > > sjk, and possibly also from batch i0.

1312 BO CHEN

If k 1, then move all the jobs of batch jl on other machines to machine (possibly some
interchanges with jobs on machine belonging to batch i0 are needed) and goto (iv). This is
justified by the fact that we are considering small-batch problems and have the guarantee (2)
in Step 1" sir + Piv <_ C(Z;2).

For k >_ 2, if all jobs of batch jl are already on machine i, i.e., P/j1 Pj,, goto (iv);
otherwise, make rearrangements according to Lemma 5.2 for v to reach one of the two
cases.

(iii) Return to (ii).
(iv) If M, stop. Otherwise, let + and goto (ii).

Let the resulting schedule of ’ after Step 2 be re". Now in re" each machine contains a
complete batch other than i0.

If (5.1) holds, then we have a nicer structure.

LEMMA 5.3. Suppose (5.1) is true. Then, after some relaxations, the 2q batches I2
iM_q+2 iM+q+l can be assignedon exactly q machines, which are loadedfull toC(/22),
and the other M q machines each contain a complete batch of I1 {il iM-q+l}.

Proof. First we see that in 7r", if a machine contains a complete batch 6 11 other than
batch b, then for any 6 I2 no job of batch can be on the machine since otherwise the total
load of the machine would exceed (S "At- Pi .qt_ si ol + si, > 2si, / Pi’ >_ 2Sb / Pb > Ct4(/2),
a contradiction (see guarantees (2) and (3) in Step 1). Consider the machines that already
contain a complete batch of I2. Let them be, for instance, machines Mt. The other
M M machines each contain a complete batch of I1, and at most one of those machines
contains jobs of batches from I2. This machine, if any, contains the complete batch b.

We claim that M’ > 2. In fact, (i) no two complete batches of I2 can be on the same
l(2sb/Pb) >machine since for I, si + Pi > gC(), and (ii) no complete batch of I

can be on the same machine with the complete batch b since for I, si + Pi + Sb + Pb >

2Sb + Pb > C(/2). Therefore, if M _< 1, then either all the jobs of 2q > 2 batches of I
have to be assigned on M _< machine, which is impossible according to (i), or these 2q
batches, together with batch b, have to be assigned on M + _< 2 machines. In the latter
case, some batch splitting must be introduced owing to (i) and (ii), but this implies that, for
some t, i" /2, 2C(/22) >_ (Si’ + Pi’) nk- (si" -- Pi") -- (Sb .qt_ Pb) / Si’ 2(2Sb / Pb), which
is again a contradiction.

M’Now we relax the complete batches on machines 2 L-y in the following way. Let

1C(/22) of the load of batch to batch i0.be such a batch. Then transform si / Pi
By doing this, we are able to move every two of these 2[@ batches together on the same

machine. These [-- machines are loaded full to Ct(/;2). Let the index set of the other 2q’
M’ M’batches be I, where q’ q [-]. Execute the Procedure for the remaining M [Z-I

machines, so that each contains a complete batch of I1 U I.
If qt 0, we are done. Otherwise, replace M by M -- and q by q’ and repeat the

operations just described until the desired result is obtained. V]

Step 3. Further relaxation of E’ to E’t. Without loss of generality, we now assume
the following: If (5.1) does not hold, then machine k contains a complete batch ik, k
1, 2 M. If (5.1) does hold, then (i) machine is loaded full to Ct(/22) with batches of I2,
M q / M, and (ii) machine k contains a complete batch ik, k M q.

t tDenote iM+l or iM-q+l, and let b 6 {il, 1}. We see that the load of each of
machines 2 M (if 7 b, then also of machine 1), excluding the contribution from batch

" exceeds or. We further relax our counterexample by transforming alli0 and from batch 1,

these exceeding parts of the loads to batch i0. This completes our final relaxation.

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1313

Since in all of our relaxations the total load is conserved, we have

(5.2) >
(m 1)(Sb + Pb)+ (M-2m)O

Pio
| (m--1)(sb+Pb)+(M--2m+l)0

2ifb- i,
ifb i.

Now consider the following auxiliary problem. Given a number of jobs that are divided
" withinto three batches i0, l, and/1,

(5.3) Sj -+- Pj <_ C4(2) 2sj -nt- Pj. >_ 2Sb + Pb,
"l

sj + Pj >or ifj{il,t}\{b},

and b 6 {il, i’}, Sio 0, Pi0 satisfying (5.2). Let zr6’ be an optimal schedule of these jobs
with the restrictions that (i) machines 2 M are available at time or, and (ii) if b i’ then

" then machine is assigned first the completemachine is also available at time ot If b
batch b. It is then apparent that

(5.4) Cmax(Trg) _< Cp/(/2).

5.2. Some mathematical relations. Throughout this subsection and the appendix we
denote (3M 4)/(2M 2) by rM. First consider the following problem Q(l, 12, s), where
s, ll >_ 0,/2 > O.

Let J1 and J2 be two special jobs that can be preempted anywhere and be simultaneously
processed by several machines but need setup times in shifting processing from one job to
another. They are to be scheduled on M identical machines with the objective of minimizing
the makespan. The setup times of J and J2 are 0 and s, respectively, and their processing
times are ll and 12, respectively. For k 1, 2 M- let 7rk be a schedule such that each of
machines k} is assigned 12/k processing ofjob J2 and each ofmachines {k+ M}
is assigned I/(M k) processing of job J if ll/(M k) <_ s + 12/k; otherwise, distribute
the remaining processing ll (M k)(s + 12/k) of job J1 evenly among M machines. Let
ZrM be a schedule such that each of machines M} is assigned ll/M processing of job
J1 and l/M processing ofjob J2. Then it is easy to see that an optimal solution to Q(ll, 12, s)
must be among {Zrl

Let Ak (M k)(s + 12/k), k 1, 2 M. Then we have

Cmx(r) s + + max 0, (ll A)

The following lemma establishes the optimality of.
[,EMMA 5.4. If s O, then M is optimal. If s > 0, then schedule r is optimal if and

only if
Ak s <_ l <_ A_ s,

where < k < M and Ao
Proof. The case s 0 is obvious. Suppose s > 0. First we observe that

M
A-A+-s+l, k=l,2 M-1.

(k + 1)k

2Here we assume batch 11 comes from machine j, < j _< m 1, or Sit -[- Pit Lm since otherwise it is either

some batch k2 in (b) of Step or some newly created batch i{kl ,k2} in (c) of Step 1. In each case, our assumption can
be made true by using meticulous relaxations on the pair of batches there.

1314 BO CHEN

(The if part.) Suppose Ak <_ ll -q- s <_ Ak-1 for some _< k _< M. Then zrk, cannot be
better than zrk for any k’ 7 k. In fact, if _< k’ < k 1, then ll _< Ak-1 s <_ Ak, s,
implying that Cmax(k’) S + 12/k’ >_ s + 12/(k- 1) >_ Cmax(Yrk) since (/1 A) <

l(Ak_ S Ak) 12 Let k + < k’ < M. Sincem (k- 1)k

k’-I k’-I (M
A- Ak, Z(Aii=k Ai+I)- .= ,s + i(i + 1)) (1-(k’-s+ - M,

we have

Ak > s + Ak, + - Ml,

and hence, if we consider that ll _> A s,

12
Cmax(Yt’k, S nt- - + -z-7(ll Ak,) >_ s

M
+ - + max 0, (/1 Ak) Cmax(Tgk).

(The only if part.) Now suppose ll < Ak s for some 1 < k _< M (notice that k < M
since At- 0 _< l). Then

12
Cmax(Tgk) S + > S @

k+l
+max 0, (ll- Ak+l) } Cmax(Jrk+l),

implying that yt’k+ is better than zrk. Suppose, on the other hand, that ll > Ak-1 s
MA + (k_l)kl2 for some < k < M (notice that k > since l < +cxz). Then

12 12 { }Cmax(Yrk) S nt- - -+- (/1 Ak) > s nt-
k- + max 0, (/1 Ak-1) Cmax(Yrk-1),

implying again that zrk is not optimal.
Define piecewise-linear function

11(H(ll, 12, s) s + -12 k- -- min(l, Ak-1 s) Ak A < l < Ak_, k M.

Then, by Lemma 5.4, H(ll, 1, s) is the optimal makespan for problem Q(ll, 12, s).
Now we are ready to continue our proof of Theorem 5.1. There are two possibilities we

have to take into consideration: b 7 and b l. Suppose first that b l.

We can easily derive from (5.2), (5.3), and (5.4) that

(5.5) C]4(/2) > Cmax(;t) > ot -[- H(ll, Pb, Sb),

where ll (m 1)(sb + Pb) + (M 2m + 1)0, and

(5.6)
min(0 Pb)CM(/2) Ot -+- Sb nt- Pb nt- - 1Pb.C14(/2) Sb + Pb, ol sa + Pa Sb -Let

M-1) M- 2m + 1, rl 4 4)1

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1315

Since M 3m / > 0 by Lemma 4.1, we have

l(M+l)<)l <M-1 and(5.7)

Set

M+4< 2(M+l) -< rl _< 1.

o "= o/P s "= sb / Pb "= / Pb

Then from (5.5) and (5.6) it follows that

min{lo,/1}
(5.8)

CM(/2)
<

Ot / rl (s / 1) / 7,

C4(2) max{s / 1, / H(ll, 1, s)}

where

(5.9)

Let

10 M-l-,1 (s / 1) + 12

ot>s+g, s>O, ll >0.

(5.10) R(ll, s, t)
ot + r (s + 1) + -ll
max{s + 1, + H(ll, 1, s)}’

where (/1, s, Or) satisfy (5.9) and, in addition, ll < 10.
It is apparent from (5.8) that any upper bound on R(/1, s, or) is also an upper bound on

CM(E2)/C*M(E2). We are to show that R(ll, s, or), and hence CM(E2)/C*M(.2), is upper-
bounded by rM, which, as we have desired, contradicts our assumption that 2 is a counterex-
ample to Theorem 5.1.

Because of the special structure of the function H(., 1, .) and the fact that 10 _< A S

(M- 1)(s/ 1)-s, weneedonlytoconsiderthe case Ak <_ ll < Ak_l-sfork 2 < k < M,
where Ak (M- k)(s + 5)" Therefore, Lemma A.3 in the appendix is applicable, and
accomplishes our consideration for the case b

Now, let us suppose that b l. We divide our discussion into two cases, namely,
and o > fl, where fl Sb / Pb.

Case A. o < ft. We may assume si, + Pi’ > ft. Otherwise, we can exchange the roles of
batches i’ and b in "rr0 to get a no worse schedule, which reduces to the case b 5 l, which we

"batch "’ is split among v machineshave already considered. More specifically, suppose in

with loads si, + P!J) (j v). It is apparent that v > 2. Suppose si, + Pi, < fl; then for
some e > 0 we have v(si, Sb e) Pb Pi; since 2si, / Pi’ > 2Sb / Pb by (5.3). Now assign

the complete batch i in the place of batch b, split batch b into loads Sb / (si, / P!J)
il Sb 8)
" Then the(j v), and put them in the place of the corresponding parts of batch 1.

flresulting schedule is no worse than zr0
Relax into batch io the partial processing of batch b that is assigned on machine after

" Then, in a manner similar to that just described, we can derive (see [3]) thattime ot in zr0
CM(/Z2)/C(L2) is upper-bounded by

R(I’1, s’, , s, fl)
2)2ll / (1 / 22)0t / s / (r2 -2)fl

max{s’ / 1, / H(I’I, 1, s’)}

where (1’1, s’, or, s, fl) satisfy

(5.9’)
1,1< 1 (M +)2)fl o)2s, fl > o/ _> fl / s,

1)}, ll > fl 0,s’ > max{O, fl 1, (fl + s

u,s, fl_>O,

1316 BO CHEN

and

3 M-22 M- 2m, r2- 4)2

Thus

I(M- 2) <)2 < (M- 2) 0 < r2 <

We are to show that R(F s’, or, s, [3) is upper-bounded by rt.
If/’ > A1 -s’ (M- 1)(s’ + 1)- s’, then H(ltl, 1, s’)= s’ + 1. Since s’ + _>/3 by

(5.9’), we have

)0/ _+.
R(/’ s’, or, s,/3) _< 2)---/0 + (1 + s + (r2 -2-z)fl oe + fl

SWe are done. Therefore, we can suppose that l’ 5 A Because of the special structure of
Sthe function H(., 1, .), we need only to consider the case Ak l’ Ak-1 for 2 5 k 5 M.

Lemma A.4 in the appendix then serves our puose.
Case B. a > . In this case we need the following two lemmas.
LEMMA 5.5. a < fl + Pi’.
Proof. Suppose, to the contrary, thata R fl+,. Sincesi, +, R , thensi, R ft. Ifsome

" 2 < k < M, then Cmax(job of batch l"’ is assigned to some machine k in 0, Si’l
a + ft. If all jobs of batch i’ are assigned to machine 1, then Cmax(t)
Therefore, by (5.4), C* R + , which contradicts the fact that C a +

IILEMMA 5.6. If , then o can be assumed to have this proper: at least of
the processing ofbatch i’ is assigned to machine right after batch il b.

Pro@ With the Convention in 5.1 and pairwise interchange arguments we can always
make ’ have this form without increasing its makespan.

Now deductions similar to those in Case A lead us to conclude that C(2)/C() is
upper-bounded by (see [3])

R’(l’, s’, a, s, 3)
l_ itt

2.2,1 + Ol -- " S "- r2 fl
max{s’ + ot -/3 + 1, ot + H(lf, 1, s’)}’

where (/’, s’, or, s, 3) satisfy

l(M-2+)2)/5-,k2s, c>/5>s>0, "ltl <_ - 11 >0,

s’ >_ max{0, 3 1, (23 +s-a 1)}.
We are to show that "R (l s’, or, s,/3) is upper-bounded by

s (M 1)(s + 1) s’, then, as we did in Case A, we can similarly getIfl’ > A1
R’ft" s’ s’1, c, s, 3) -< 1. Hence confining ourselves to the case for which A, _< 11 < A,_I
for 2 _< k _< M can also be justified. Lemma A.5 in the appendix then completes our final
discussion.

6. Conclusions and remarks. We have not considered the class 1 of job sets. Ap-
parently, for small-batch problems our heuristic obtains an optimal schedule. If M 2, the
optimality holds for any/1 and the bound rM is true for any [3]. In conclusion, we have

THEOREM 6.1. For small-batch problems, which include those in which each batch con-
tains a single job, the heuristic LBT has the worst-case performance ratio

3M 3M-4}ra4=max 2M+l’ 2M-2

A BETTER HEURISTIC FOR MACHINE SCHEDULING 1317

On the other hand, Theorem 3.4 supplies us a clear support for the intuitive expectation
that LBT comes close to optimal when many batches are scheduled, relative to the number of
machines.

Appendix.
LEMMA A. 1. Given a linearfractional program

{ cTx + Ax < b, x > O}P--sup
drx+rl

where c IR", d IR", IR, rl IR, and A denotes an m n matrix, then the dual can be

formulated as the following linear program:

D inf {y" Aru + yd > c,-bTu + yrl > , u > O, y IR}.
We have relation P D provided that at least one of the two sets is nonempty.

Proof. See]. [3

COROLLARY A.2. If the linear system

-b rMO
u>_O,

has a solution, then P < r.M. [3

In the remaining lemmas,)Vi, ri (i 1, 2) are as defined in 5.2 and M > 5. The basic
idea for proving these lemmas is, by using Corollary A.2, simply to find a solution of the
corresponding linear system, which can be done, for example, by using the software package
Mathematica. For details, interested readers are referred to [3].

LEMMA A.3. Let 2 <_ k < M, and let

2)vlXl + rlx2 + x3 + (rl)
R(,kl, k, M) sup kmax{x2 + 1, xl + X2 + X3 -1- }

subject to

Ax <b, x >0,

where

-(M- k) 0 M-k+l
k-1

-1 M- k 0 M-k

A- b=M-1-) 0 M- lnt-’l
2 2

0 -1 2

Then ROI, k, M) < rM.
LEMMA A.4. Let 2 < k < M, and let --)x3-72Xl or- (1 + + X4 "[- (r2 5i-i)x5

R1 ()v2, k, M) sup kmax{x2 + 1, --Xl -[- x2 -[-x3 --[-- }

subject to

Ax <b, x >0,

1318 BO CHEN

where

/ -(M- k) 0

-1 M-k 0

0

-1 0 -1

0 -2 0

0 0

0 0 -2

\ 0 -1 0

0

0

,2

0

0

0

0

0
M+,k2

2

-1

M-k+l
k-1
M-k
k

0

0

0

0

\

Then Rl(2, k, M) < Z"M.

LEMMA A.5. Let 2 < k < M, and let

R2()2, k, M) sup 2Xl + X3 -1-- X4 -1- r2x5
kmax{x +x3 -x5 + 1, x +x +x3 + }

subject to

Ax <_b, x >0,

where

-(M- k) 0 0 0

-1 M-k 0 0 0
M-2+,k20 0 2 2

0 -2 -1 2

0 0 -1 0

0 0 0 -1

\ 0 -1 0 0

M-k+l
k-1
M-k
k

0

0

0

Then R2()2, k, M) _< Z’M.

REFERENCES

[1] M. AVRIEL, W. E. DIEWERT, S. SCHAIBLE, AND I. ZANG, Generalized Concavity, Plenum Press, New York, 1988.
[2] J. BRUNO AND P. DOWNEY, Complexity of task sequencing with deadlines, set-up times and changeover costs,

SIAM J. Comput., 7 (1978), pp. 393-404.
[3] B. CHEN, A better heuristicfor preemptive parallel machine scheduling with batch set-up times, Report 9131/A,

Econometric Institute, Erasmus University, Rotterdam, The Netherlands, 1991.
[4] E.G. COFFMAN, JR., AND RAVI SETHI, A generalized bound on LPT sequencing, Rev. Fr. Automat. Inform. Rech.

Oper., 10 suppl. 5 (1976), pp. 17-25.
[5] C.L. MONMA AND C. N. POTTS, On the complexity ofscheduling with batch setup times, Oper. Res. 37 (1989),

pp. 798-804.
[6] Analysis of heuristicsfor preemptive parallel machine scheduling with batch set-up times, Oper. Res.,

41 (1993), to appear.
[7] C. N. POTTS AND L. N. VAN WASSENHOVE, Integrating scheduling with batching and lot-sizing: A review of

algorithms and complexity, J. Opl. Res. Soc., 43 (1992), pp. 395-406.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1319-1330, December 1993

1993 Society for Industrial and Applied Mathematics
013

A NEW METHOD FOR COMPUTING PAGE-FAULT RATES*

JIANG-HSING CHU AND GARY D. KNOTT

Abstract. When a program is executed in a caching environment, the caching algorithm can be modeled by an

associated finite-state automaton. It is assumed that the finite automaton will reach a steady state after processing
a long string. By considering the finite automaton, a formula is obtained for the expected page-fault rate in terms
of the steady-state probabilities of the automaton. It is possible to derive the steady-state probabilities for the least-
recently-used (LRU) algorithm with order-0 and order- programs based on a method that describes the page reference
strings as regular expressions. The steady-state behavior for caching algorithms with order-1 programs has never
been reported before. This analysis method is then applied to obtain an analysis of the caching behavior of a practical
storage-and-retrieval algorithm.

Key words, caching, page-fault rate, regular expressions, order-k programs, analysis of algorithms

AMS subject classification. 68M20, 68Q25, 68Q50

1. Introduction. Caching is a technique to increase the speed of executing computer
programs that make accesses to a secondary memory. By holding the frequently used disk
pages in main memory, we can save a considerable number of disk accesses that would
otherwise be required.

Caching is usually implemented by organizing part of the main memory into fixed-size
blocks of locations called caches and organizing the file space into matching-size blocks of
memory called pages. The cache is a buffer pool that contains a fixed number of buffers.
When data within a page is requested by the program, the cache is checked first. If the page is
in the cache, no access to the secondary memory is required. Otherwise, a page fault is said
to occur and the page containing the desired data has to be read from the secondary memory
and placed in the cache. If the cache is full, a cached page must be discarded and its cache
buffer reused. The expected page-fault rate is defined to be the limit of the number of page
faults divided by the number of pages requested as the number of page requests tends to oe.

To use the cache efficiently, we have to minimize the movement of pages in and out.
The rules used to decide which pages should be moved and when they should be moved are
called caching algorithms. Since programs tend to reference part of the address space more
frequently than other parts for reasonable periods of time, it might thus be assumed that pages
that have been recently referenced have a relatively high probability of being referenced in
the near future. Therefore, it is reasonable to remove the page that is least recently used. This
defines the least-recently-used (LRU) algorithm. Several other caching algorithms, such as
MIN, LFU, and FIFO, have also been studied [1]-[4].

Caching has been a subject of considerable interest for a long time. Besides its use in
operating systems, applications of caching can be found in many fields of computer science,
including database systems [5], [6], multiprocessor systems 10], network file systems [12],
and so on. Smith [14] has given a complete bibliography on caching.

Many empirical analyses on caching performance have been conducted. Some of the
recent results can be found in [13], [15], [16]. The most popular method is the trace-driven
analysis, which is done by actually running a large program that issues a large number, usually
millions, of page references. The caching activity is recorded. Then the miss ratio can be
computed from the recorded data.

*Received by the editors April 22, 1991; accepted for publication (in revised form) August 28, 1992.
tDepartment of Computer Science, Southern Illinois University, Carbondale, Illinois 62901.
Civilized Software, Inc., 7735 Old Georgetown Road, #410, Bethesda, Maryland 20814.

1319

1320 JIANG-HSING CHU AND GARY D. KNOTT

In order to analytically analyze the expected page-fault rate of a program that is executed
in a caching environment, we need a mathematical model to describe the behavior ofprograms.
Several models have been proposed], [3], 11], 17]. Among them, the order-0 model (also
known as the independent-reference model) is most popular because of its simplicity, which
makes the analytic analysis tractable.

An order-0 program accesses each page with a fixed probability. Although an order-0
program is analytically tractable because of its simplicity, not many practical programs can
be modeled by order-0 programs. Thus we decided to introduce the order-1 model with the
hope that more practical programs can be modeled by order-1 programs. An order-1 program
accesses each page with a probability that depends on the previous page that was accessed.
The accessed pages of an order-1 program thus form a realization of a Markov chain.

King 11 has reported the expected page-fault rates for order-0 programs with several
caching algorithms. Flajolet, Gardy, and Thimonier [8] have derived the expected page-fault
rates for order-0 programs with LRU. It is not obvious how their work on order-0 models can
be generalized to order-1 models. Thus we have developed a new analysis method that we
call the regular-expression method, which is based upon describing a class of page reference
strings as a regular expression. This method can be used to derive the expected page-fault rate
for the LRU algorithm with an order-0 model.

A derivation of the expected page-fault rate for the LRU algorithm with an order- model
is also given in the following section. Using the regular-expression method, we have also been
able to derive the expected page-fault rates for several page-replacement algorithms with an
order-0 model and order-1 model. Complete details can be found in [3].

2. The LRU algorithm. Consider an order-0 n-page program that is executed in a
caching environment with an m-buffer cache that uses the LRU algorithm. Remember that
the LRU algorithm always replaces the page in the cache that is least recently used. In order
to simulate an LRU algorithm with an automaton, we can let each state be a distinct sequence
of page numbers representing the associated ordered set of pages that may occur in the cache.
Let the set of nm- such states be denoted by Sm, where nm n (n 1) (n rn + 1). A state
(jl j2"" jm) E Sm represents the situation where page jl is the least recently used page in the
cache and page jm is the most recently used page in the cache. We will use Pm ((jl j2"" jm))
to denote the steady-state probability of state (j j2"" jm).

As the length of a page-reference string becomes very long, the probability of referencing
fewer than rn pages in total may be assumed to approach zero. Therefore, in studying LRU
caching we will assume at least rn different pages are referenced in a long page-reference
string.

A page-reference string that results in the state (jl j2"" jm) has the following properties:
(1) the last referenced page is page jm, (2) other than page jm, the last referenced page is
page jm-l, (3) other than pages jm and jm-1, the last referenced page is page jm-2, and so
on. Based on these properties, we see that the set of page-reference strings that result in the
state (jljz’"jm) can be described by the regular expression (ll’"]n)*jl(jzl’"ljm)*
jz(j3l ljm)*j3 jm-lJ*mJm.

Given a random page-reference string of length l, the probability that the page-reference
string will result in state (ja j2"" jm is the probability that the given page-reference string is of
the form (11 In)tjl(jzl Ijm)t2jz(j3l Ijm)3j3 jm-J4mmjm, with/ > 0 lm > O,
and l + 12 -+- + lm m. By letting approach oc, we obtain Pm ((jlj2 jm)), the
steady-state probability of state (jlj2"" jm).

3. Order-0 programs with caching. To start with, we assume we are dealing with order-
0 programs. In the order-0 model, page references made by an n-page program are a sequence
of independent, identically distributed random variables rl, r2 with probability P(rk

COMPUTING PAGE-FAULT RATES 1321

i) Pi > 0, for k 1, 2 < < n, and yin___l Pi 1. Note that we exclude the
degenerate cases where some pages will never be referenced.

For an n-page order-0 program, the probability of having a page-reference string of length
that is of the form (11 [n)’jl(j2[Ijm)lzj2(j31 Ijm)Z3j3 jm_lfmmjm is

lt+...+lm=l-m "= i=2 =’ i=1 l+...+lm=l-m "= ="
0_<11 O<_lm 0_<ll O<_lm

If we let approach , we obtain I’m ((jl j2"’" jm)), the steady-state probability of state

(jlj2 jm).
Let

m

Zi Z Pj,
k=i

and define

g(k, l)
k

l +...+l,=l-k i--2
O_<l O_<l,

for < k < m. Note that 0 < z2 Zm < and that the Z ’S are dependent on (jj2"’" jm).
With these definitions, we thus have

m

Pm((jlj2. jm)) lim (1--[) l)
l._+\=

pji g(m,

()

Note that
k

l +...+lk=l-k i=2
0</1 O<l,
l-k k-1

1-Iz ’
/k=O l+...+lk_l=l-k-lk i=2

0<l 0<l,_
l-k k-1 k-1

l+...+lk_=l-k-l, i=2 l+...+l,_=l-k i=2
0<l 0<l,_ O<l 0<l,_

k-1

ll+...+l_l=l-k-l;-1 i=2

O<l, 0_</_
k

1-I I /

zk 1 1’z

E
l+...+l’k=l-k-1 i=2

0_<l 0<l
z,g(k, 1- 1)+ g(k- 1, 1- 1).

We now show that the limit of g(k, 1) as tends to oe exists for < k < m. Note that
the existence of the limit can also be proved by using the general ergodic theorem for Markov
chains [9]. The proof is an inductive proof on k.

1We thank an anonymous referee for pointing out an error in an earlier proof. We also thank Zhiping You for
inspiring this proof.

1322 JIANG-HSING CHU AND GARY D. KNOTT

To begin, for k 1, g(1, l) by definition; thus the limit for k exists. Now for
k > 1, assume the limit of g(k 1, 1) exists as tends to o (induction hypothesis). From
equation (1) we have

lim (g(k + 1) g(k, 1)) trn(z,g(k, l) + g(k l) z,g(k 1) g(k 1)).

The induction hypothesis allows us to reduce this equation to

lim (g(k, / 1) g(k, l)) zk tlrn(g(k, l) g(k, 1)).

It is well known that g(k, l) converges if the series + zk +z +... converges or, equivalently,
if Izl < 1. Since 0 < z < 1, we conclude that g(k, l) converges as tends to cxz.

Thus we may define

f(k) lim g(k, l).

From equation (1) we have

or, equivalently,

f(k) z,f(k) / f(k 1)

f(k) f(k 1)
1-- Zk

for 2 < k < m. Repeatedly applying the preceding equation gives us

f(m) f(m 1)
1-- Zm 1-- Zm 1-- Zm-1

Since

we have

Therefore,

(/..2) f(1).f(m 2)
Z

f(1)= limg(1,l)= lim Z Uz]’ 1,
I--+o I--+o

ll=l-1 i=2

m m

f(m)
-zi "km=i Pjki=2 "=

Pm (jl j2 jm tlim Pji
"= ll+...+lm=l-m i=2

0<ll O<lm

llim(iIllPJi)g(m’l).=

(il-l.= PJi) f(m)

(1)-IPJ’ Zkm=i Pjlc"= i=2

1- pj, m
i=1 ’= Yk=i Pjk

COMPUTING PAGE-FAULT RATES 1323

for any (jl j2"’" jm) Sm.
In a particular state (jl j2"" in), for an order-0 program the probability of having a page

fault at the next reference is (1 im=l Pji)" Thus the expected page-fault rate Frt(m) for
the LRU algorithm using rn buffers with an n-page order-0 program is

(2)

FRt(m) Z (Pm(s)(1--PJi))
(jlj2""jm)eSm i=1

1- Pji rn

(jljz’"jm)ESm i=1 "= Zk=i Pjk

The same result has been computed by a different method by King [11].
As we can see, this formula is complex because of the summation over the nm possible

terms. It is not likely that we can derive any analytic results from the formula. However, it is

possible to find the asymptotic behavior [7].

4. Order-1 programs with caching. We discuss order-1 programs in this section. An
n-page program is said to be an order-1 program if the probability of referencing a page in a

given state is a function only of the page that was most recently referenced. Therefore, the
probability ofreferencing a particular page is not a constant, as we have with order-0 programs,
but depends on the page previously referenced. We will denote the probability that page j is

nreferenced given that page was previously referenced by Pij. Note that -j=l Pij for all
l<i<n.

We want to compute Pm ((jl je"" jm)), the steady-state probability of state (jl je’" jm),
which is equal to the probability that a random page-reference string of length is of the
form (11 In)ljl(jel Ijm)t2je(j31 Ijm)3j3 "’’jm-ljmmjm, with ll > 0 lm >_ 0and
ll + le + +lm m, if we let approach x.

Define xl (ll) to be the probability that the last referenced page of the page-reference string
rl rl+l of length ll + is page jl, that is, xl(ll) P(rt+l jl). Also, let xi(li) for
2 _< _< m be the probability that if a page-reference string is of length li + 2, where page ji-
is the first referenced page, then page ji is the last referenced page and only pages ji through
jm are referenced in between. That is, xi (li) P (re rli+9. {ji jm and rli+a ji

rl ji-1) for 2 < < m.
With the preceding definitions we know the probability that a random page-reference

string of length is of the form (ll-.. In)tljl(j2l... Ijm)1j2(j31 Ijm)j3 jm-fmmjm,
with ll > 0, lm > 0 and 11 + 12 / + lm m, is

m

H Xi(li)"
ll+’"+lm=l-m i=1
0_<I1 O<_Im

Let

Aqlq2...q

0 Pqlq2 Pqlq3 Pqqk

0 Pqzq2 Pq2q3 Pqzqk

0 Pqkq2 Pqq3 Pqkq

Recall a fundamental theorem in graph theory: If A is the adjacency matrix for a graph
G, then [Ak]ij, the element of Ak that is in row i, columnr j’ is the number of paths of length

k from vertex vi to vertex vj. Similarly, we note that [A J is the probability that if aji-1 ji...jm 12

1324 JIANG-HSING CHU AND GARY D. KNOTT

page-reference string is of length + 1, where page ji-1 is the first referenced page, then page
ji is the last referenced page and only pages ji through jm are referenced in between. Thus

] for/ <2_<rn.xi(li)-
[ji-lji...jm. 12

Now, let us use Ai as a shorthand notation for Aji_lji...jm. Define

g(k, l)
k

H xi(li)
ll+’"+l/‘=l-k i=1
0_<11

k

xl(ll)H[Alii-]-l]12
11 +...+l/‘=l-k i=2
0<ll 0<l/‘

where 2 < k < m. Note the X ’S are dependent on (jlj2"" jm).
We also define

G(k,l)

Hence g(k, l) [G (k, l)]12. We then have

G(k,l)
k-1

Z (xl(/1) H EAlii+l]12)A’;+l
ll +...+l/‘=l-k i=2
0<ll 0_<l/‘

l-k k-1-- (Xl(I|)H[AIi’+’I]12)AI;
l/‘=0 l +’"+l/‘-I =l-k-l i--2

0<ll 0_<l/‘-1

(3)

l-k k-1

l/‘=1 11 +’"+lk-1 =l-k-l/, i=2
12

k

0<_11 O<_lk_l

k-1

(xl(ll) i2,,2[Alii+l]12) AkI1 +’"+lk-1--l-k "=
0</1 O<lk-1

l-k-1

I=0 ll+...+l/‘_l=l-k-l-I
0<11 0_<l/‘_1

k-1
l+1(Xl(ll)H[A:i+l]12)k)Ak+g(k-l,l-1)Ak

i=2

G(k, 1- 1)Ak + g(k- 1, l- 1)Ak.

If we can prove that G (k, l) converges, then g(k, l) also converges. By using the same
method used in 3, we can prove that G(k, l) converges if the series I / Ak + A /...

converges. We know that if the absolute values of all eigenvalues of Ak are less than 1, then
this series converges. If we exclude the degenerate cases by assuming that the Markov chain
is irreducible and aperiodic, then it is obvious that all eigenvalues of Ak are greater than -1
and less than 1. Thus we conclude that both g(k, l) and G (k, l) converge as tends to cz. Note

COMPUTING PAGE-FAULT RATES 1325

that the convergence of the series I + Ak + A +... also implies the existence of (I Ak)-1
which will be needed later. Now we can let

F(k) lim G(k, l)

and

f(k) lim g(k, l).

From (3) we have

F(k) F(k)Ak + f(k- 1)Ak,

which is equivalent to

F(k)(I Ak) f(k 1)Ak.

Recall that (I Ak) -1 exists. Therefore,

F(k) f(k- 1)Ak(I- Ak) -1.

From the definitions of Fk and fi we have

f(k) [F(k)]2 f(k 1)[Ak(I- Ak)-] 12o

Repeatedly applying the preceding equation gives us

f(m) f(m 1)[Am(I Am)-]12

f(m 2)[Am-l(I Am-1)-l]12 [Am(I Am)-l]12

m

f(1)H [Ai(I Ai)-l]12
i=2

m

f(1) H [(Ai I -t- I)(I Ai)-l]12
i=2

m

f(1)H [--I + (I- Ai) -1112
i=2

m

f(1)H [(I- Ai)-l]12
i=2

We know that

f(1) lim g(1, 1) lim Xl(ll) Pa((jl)).
l-x ll-- cx

1326 JIANG-HSING CHU AND GARY D. KNOTT

Thus we have proved that

lim g(m, l)Pm(<jlj2 jm})
l--,

f(m)

m

f(1)H [(I Ai)-1112
i=2

m

PI((jl))H [(I Ai)-l]12
i=2

m

PI((jl))U [(I AJi-’ji "J’n)--l] 12"
i=2

Consider the case when there is only one buffer in the cache. We have

Pll P12 Pln

PI((1)) Pl((n)) --P((1))... Pl((n))

Pnl Pn2 Pnn

and

Pl((i)) 1.
i=1

Thus we can compute P1 ((ji)) for any ji, where < ji < n.
In the state (jl jm) the probability that a page fault will occur in the next page reference

is Eim=l Pjmji" Thus the expected page-fault rate FRu(m) for the LRU algorithm that uses
rn buffers with an n-page order-1 program is

(4)

m

FIRu(rn) E (Pm((jj2 jm))(1 E Pjmji))
(jlj2""jm)GSm i=1

m m

(PI((jl)) U [(I- mji-lji’"Jm)-l]12 (1- ’Pjmj,))"
i=2 i=1

We can see this formula is more complex than the formula for the order-0 programs.
It makes sense to use this approach only if the accuracy of the estimated page-fault rate is
sufficiently improved. An example is presented in the next section.

5. An example. We will consider an example where we store random items into a bi-
nary storage tree and study the expected page-fault rate both analytically and empirically by
assuming that each item is equally likely to be retrieved. We consider both an order-0 model
and an order- model for this example in order to estimate the expected page-fault rate. To our
knowledge, this is the first partially successful caching analysis for a real storage-and-retrieval
algorithm of practical interest.

COMPUTING PAGE-FAULT RATES 1327

Note that a binary-storage-tree retrieval program is not truly an order-1 program because
the probability that we will reference a page depends on the currently referenced item; for a
program to be an order- program, the probability that we will read a page should depend only
on the currently referenced page. Nevertheless, experiments have empirically shown that a
binary-storage-tree retrieval program can be well approximated as an order-1 page-reference
string.

We will use the following simple example to illustrate how the experiments were con-
ducted. Assume there are two buffers in the cache. Suppose a page can accommodate two
nodes of a binary storage tree. After storing six items, assume we end up with the binary
storage tree shown in Fig. 1.

Page 3

Page 1

Page 2

FIG. 1. A binary storage tree with 3 pages.

When data item 0 is referenced, the sequence of the probes that occur in order to retrieve
data item 0 is (5320). This item-probe-sequence string generates the associated page-reference
string (P1 P1 P2 P3), where/9, is a page reference to page for < < 3. Table shows the
probe sequences and the associated page-reference strings with respect to each distinct data
item that is selected to be retrieved.

TABLE
Page reference strings.

Retrieved item Probe sequence Page-reference string
0 (5320) (P1P1P2P3)

(53201) (P1P1Pg.P3P3)
2 (532) (PIP1P2)
3 (53) (P1P1)
4 (534) (P1P1P2)
5 (5)

Since we assume each item is equally likely to be retrieved, it follows that each page-
reference string in Table 1 will occur with the same probability. There are a total of 18
page references in the six page-reference strings, where 11 references are made to page 1, 4
references are made to page 2, and 3 references are made to page 3. In an order-0 model for
the tree shown in Fig. 1, we thus estimate that Pl 11 ! 18, P2 4/18, and p3 3! 18, where
Pi is the probability that page is referenced. We then plug these page-reference probability
values, pl, p2, and P3, into formula (2) to obtain the order-0 expected LRU page-fault rate.

1328 JIANG-HSING CHU AND GARY D. KNOTT

Next we switch to an order- model to estimate the expected page-fault rate. Note that the
last page reference of each page-reference string is followed by P1 because the next retrieval
will reference page first. From Table we find that P1 is followed by P seven times, is
followed by P2 four times, and is never followed by P3. Therefore, we conclude that in an
order-1 model we should choose pl 7/11, P12 4/11, and P13 0, where Pij is the
probability that page j is to be referenced given that page is just previously referenced.
Similarly, we can compute P21, P22, P23, P31, P32, and p33. We can then estimate the expected
page-fault rate for order-1 model by the formula (4) obtained earlier.

We also recorded the page-fault rate seen when we performed a sequence of retrieval
operations in this binary storage tree. We randomly retrieved data items, which were, in
turn, translated into a page-reference string, which was used as the input to the LRU page-
replacement algorithm with 2 buffers.

Our experiments consisted of 100 repetitions of the following procedure:
1. randomly store 1000 items in a binary storage tree, which occupies 10 pages;
2. estimate order-0 probabilities and order-1 probabilities;
3. for m, the number of buffers, varying from 2 to 5, perform random retrievals (100,000

page references) from this binary tree and observe the page-fault rate;
4. from the probabilities associated with the observed reference strings obtained in step

3, compute the order-0 and order-1 estimated page-fault rates.
Two typical instances are shown graphically in Fig. 2.
The average relative errors of the order-0 estimations and the order-1 estimations for

different cache sizes (numbers of buffers) are shown in Table 2.

TABLE 2
Average relative errors.

Number of buffers Order-0 Order-
2 10.78% 0.43%
3 10.18% 0.59%
4 14.02% 0.94%
5 10.53% 1.23%

Not surprisingly, it turns out that the order-0 model yields a poor approximation, whereas
the order-1 model accurately estimates the observed page-fault rate.

Ii. Conclusion. We have presented order- 1 models as a generalization of order-0 models.
The order-1 models are more powerful in describing the caching behavior of programs. We
have also developed a new analysis method,which we call the regular-expression method, that
is based upon describing a class of page reference strings as a regular expression.

With the help of the regular-expression method, we can rederive the expected page-fault
rate for the LRU caching algorithm with an order-0 model. Using the regular-expression
method, we have also been able to derive original results about the expected page-fault rates
for several page-replacement algorithms with an order-1 model.

It is not likely that our result for an order-1 model can be further simplified. It would be
interesting to find a simpler description of the asymptotic behavior of equation (4).

Although the FIFO algorithm looks simpler than the LRU algorithm in the sense that no
page rearrangement is needed when the referenced page is already in the cache, nevertheless,
we are not able to compute the expected order-1 page-fault rate for the FIFO algorithm. This
remains an open problem.

Acknowledgments. We would like to thank the anonymous referees for careful reading,
for constructive criticism, and for pointing out several helpful references.

COMPUTING PAGE-FAULT RATES 1329

pfr

0.20

0.15

0.10

0.05

0.00

m=2

order-O estimations
order- estimations
observed results

20000 40000 60000 80000

m=3

m=5

npr
10000O

pfr

0"30! m=2

0.25 +

0.1.5

0.10
order-O estimations

0.05 order-1 estimations
observed results

npr0.00
20000 40000 60000 80000 100000

m=4

FIG. 2. Page-fault rate (pfr) versus number ofpage references (npr).

REFERENCES

[1] A. V. AHO, P. J. DENNING, AND J. D. ULLMAN, Principles of optimal page replacement, J. Assoc. Comput.
Mach., 18 (1971), pp. 80-93.

[2] L. A. BELADY, A study of replacement algorithms for a virtual-storage computer, IBM Syst. J., 5 (1966),
pp. 78-101.

[3] J.-H. CHu, An Analysis ofCaching with an Application to Binary Storage Trees, Ph.D. thesis, Computer Science

Department, University of Maryland, College Park, MD, 1989.
[4] P.J. DENNING, Y. C. CHEN, AND G. S. SHEDLER, A modelfor program behavior under demand paging, Tech.

Report RC-2301, IBM T. J. Watson Research Center, Yorktown Heights, NY, 1968.
[5] W. EFFELSBERG AND T. HAERDER Principles ofdatabase buffer management, ACM Trans. Database Systems,

9 (1984), pp. 560-595.
[6] K. ELHARDT AND R. BAYER, A database cachefor high performance andfast restart in database systems, ACM

Trans. Database Systems, 9 (1984), pp. 503-525.
[7] R. FAaxY, Asymptotic miss ratios over independent references, J. Comput. System Sci., 14 (1977), pp. 222-250.
[8] P. FLAJOLET, D. GARDY, AND L. THIMONIER, Random allocations and probabilistic languages, in Proc. 15th

International Colloquium on Automata, Languages and Programming, Tampere, Finland, 1988, pp. 239-
253.

[9] G.R. GRIMMET AND O. R. STIRZAKER, Probability and Random Processes, Clarendon Press, Oxford, 1985.
10] A.R. KARLIN, M. S. MANASSE, L. RUDOLPH, AND O. O. SLEATOR, Competitive snoopy caching, Algorithmica,

3 (1988), pp. 79-119.
11 W. E KING, Analysis ofdemandpaging algorithms, in Proc. International Federation for Information Processing

Congress, Ljubljana, Yugoslavia, 1971, pp. TA-3-155-TA-3-159.

1330 JIANG-HSING CHU AND GARY D. KNOTT

[12] M.N. NEISON, B. B. WEICH, AND J. K. OUSTERHOUT, Caching in the sprite networkfile system, ACM Trans.
Comput. Systems, 6 (1988), pp. 134-154.

13] P. PALVIA, The effect ofbuffer size onpages accessed in randomfiles, Inform. Systems, 13 (1988), pp. 187-191.
14] A.J. SMIa’H, Bibliography on paging and related topics, Operating Systems Rev., 12 (1978), pp. 39-56.
15] ,Disk cache-miss ratio analysis and design considerations, ACM Trans. Comput. Systems, 3 (1985),

pp. 161-203.
[16] H. S. STor, J. L. WoIF, ArqI J. TtmEI, Optimal partitioning of cache memories, Tech. Report RC-14444,

IBM T. J. Watson Research Center, Yorktown Heights, NY, 1989.
17] R. TURNER AND]3. STRECKER, Use ofthe lru stack depth distributionfor simulation ofpaging behavior, Comm.

ACM, 20 (1977), pp. 795-798.

SIAM J. COMPUT.
Vol. 22, No. 6, pp. 1331-1348, December 1993

() 1993 Society for Industrial and Applied Mathematics
014

LEARNING DECISION TREES USING THE FOURIER SPECTRUM*
EYAL KUSHILEVITZ AriD YISHAY MANSOUR

Abstract. This work gives a polynomial time algorithm for learning decision trees with respect to the uniform
distribution. (This algorithm uses membership queries.) The decision tree model that is considered is an extension
of the traditional boolean decision tree model that allows linear operations in each node (i.e., summation of a subset
of the input variables over GF(2)).

This paper shows how to learn in polynomial time any function that can be approximated (in norm L2) by
a polynomially sparse function (i.e., a function with only polynomially many nonzero Fourier coefficients). The
authors demonstrate that any function f whose L -norm (i.e., the sum of absolute value of the Fourier coefficients) is

polynomial can be approximated by a polynomially sparse function, and prove that boolean decision trees with linear

operations are a subset of this class of functions. Moreover, it is shown that the functions with polynomial L -norm
can be learned deterministically.

The algorithm can also exactly identify a decision tree of depth d in time polynomial in 2a and n. This result
implies that trees of logarithmic depth can be identified in polynomial time.

Key words, machine learning, decision trees, Fourier transform

AMS subject classifications. 42A16, 68Q20, 68T05

1. Introduction. In recent years much effort has been devoted to providing a theoretical
basis for machine learning. These efforts involved formalization of learning models and
algorithms, with a special emphasis on polynomial running time algorithms (see [Va184],
[Ang87]). This work further extends our understanding of the learning tasks that can be
performed in polynomial time.

Recent work by [LMN89] has established the connection between the Fourier spectrum
and learnability. They presented a quasi-polynomial-time (i.e. O(nply-lg(n))) algorithm
for learning the class AC (polynomial size constant depth circuits), where the quality of
the approximation is judged with respect to the uniform distribution (and n is the number of
variables). Their main result is an interesting property of the representation of the Fourier
transform of ACO circuits. Using this property, they derive the learning algorithm for this
class of functions. [FJS91] has extended the result to apply also to mutually independent
distributions (i.e., product distributions) with a similar running time (i.e. quasi-polynomial
time). In [AM91 polynomial time algorithms are given for learning both decision lists and
decision trees (a boolean decision tree in which each variable appears only once) with respect
to the uniform distribution. As in [LMN89] these algorithms make use of special properties
of the Fourier coefficients and approximate the target function by observing examples drawn
according to the uniform distribution. More information about Fourier transform over finite
groups is found in [Dia88].

In this work we show another interesting application of the Fourier representation that
is applied to achieve learnability. The learning model allows membership queries, where the
learner can query the (unknown) function on any input. Our main result is a polynomial-time
algorithm for learning functions computed by boolean decision trees with linear operations
(over G F(2)). In these trees each node computes a summation (modulo 2) of a subset of the
n boolean input variables, and branches according to whether the sum is zero or one. Clearly,

*Received by the editors August 16, 1991; accepted for publication (in revised form) September 1, 1992. A
preliminary version appeared in the Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
pages 455-464, May 1991.

Department of Computer Science, Technion, Haifa 32000, Israel. Present address, Aiken Computation Labo-
ratory, Harvard University, Cambridge Massachusetts 02138.

Aiken Computation Laboratory, Harvard University, Cambridge Massachusetts 02138. This author was partially
supported by Office of Naval Research grant N00014-85-K-0445.

1331

1332 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

this is an extension of the traditional boolean decision-tree model, since we can still test single
variables. On the other hand, we can test in a single operation the parity of all the input
variables, compared with a lower bound of 2n nodes in the traditional model (see [BHO90]).

An interesting consequence of our construction is that one can exactly find the Fourier
transform representation of boolean decision trees with linear operations in time poly(n, 2d),
where d is the depth of the tree. This implies that we find a function that is identical to the
tree for any boolean input. A corollary of this result is that decision trees with logarithmic
depth can be exactly identified in polynomial time. (Note that enumeration, even of constant
depth trees, would require exponential time (due to the linear operation); even eliminating the
linear operations and constraining each node to contain a single variable, the number of trees
of depth d is f2 (nd).)

Our main resultmthe learning algorithm for decision treesmis achieved by combining
the following three results:

The algorithmic tool--We present a randomized polynomial time algorithm that
performs the following task. The algorithm receives as an input a boolean function

f that can be approximated by a polynomially sparse function g (a function with
a polynomial number of nonzero Fourier coefficients) such that the expected error
square (i.e., E(f- g)2) is bounded by e. The algorithm finds some polynomially
sparse function h that approximates f, such that E(f- h)2 O(). The algorithm
we develop here is based on the ideas of [GL89].
We consider the class of functions {f L (f) < poly(n) }, where L (f) is the
L -norm of the coefficients (i.e., the sum of the absolute value of the coefficients).
We show that in order to achieve an approximation of a function f 6 U within e, it
is sufficient to consider only coefficients larger than e/L(f) (there are at most

(Ll(f)/e)2 such coefficients). Therefore, every function in the class U can be
approximated by a polynomially sparse function and therefore can be learned in
polynomial time by our algorithm.
We prove that the L -norm of the coefficients of a decision tree is bounded by the
number of nodes in the tree. Therefore, polynomial size decision trees are in the class
.T’. It follows that every polynomial size decision tree with linear operations can be
learned in polynomial time.

Furthermore, for functions in the class U we show how to derandomize the learning algorithm.
The derandomization uses constructions of "small," "almost unbiased" probability spaces,
called)-bias distributions [NN90], [AGHP90]. (For a formal definition of ;k-bias probability
distributions see 4.1.) Thus, we derive a deterministic polynomial time algorithm for learning
decision trees.

Our technique sheds a new light on the possibilities of using)-bias distributions for
derandomization. We show that the deviation of the expected value of a function f with
respect to the uniform distribution and a)-bias distribution is bounded by). L (f). One nice
example where this bound comes in handy is for showing that the deviation of the AND of a
subset of the n variables is bounded by 3). (This is since L (AND) < 3, independent of the
subset of variables or its size.)

1.1. Relations to other works. Our result could be contrasted with the result of [EH89],
where an O(nlgm) algorithm is given for learning decision trees in the PAC model, where
n is the number of variables and m is the number of nodes in the tree. Their algorithm
learns traditional boolean decision trees with respect to an arbitrary distribution, and uses
only examples drawn from that distribution. Therefore, it learns in a weaker model. On
the other hand, it runs in time O(nlgm) compared to the polynomial time of our algorithm.
Also, our algorithm handles a stronger model of boolean decision trees, which include linear

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1333

operations, while the algorithm of [EH89] does not seem to extend to such a model. In [Han90]
a polynomial-time algorithm was presented for learning/z-decision trees using membership
queries and equivalence queries, and in [Han91] a polynomial time algorithm was presented
for learning decision trees in which each variable appears at most a constant number of times.
(Again, these results do not address linear operations.)

Recently, Bellare [Be192] was able to extend a few of our results concerning decision
trees and show how to derive an upper bound on the sum of the Fourier coefficients as a
function of the predicates in the nodes. He also extends the learning algorithm to the case of
product distributions and shows that if the L 1-norm of f (with respect to a product distribution
/z) is polynomially bounded, then it can be learned (with respect to/z) in polynomial time.
Unfortunately, this result falls short of showing that decision trees are learnable with respect
to product distributions, since there are functions (e.g., the AND function) that have a small
size decision tree but their L 1-norm is exponential with respect to some product distributions.

Following our work, it has been shown [Man92] how to learn DNF formulas, with respect
to the uniform distribution, in O(nlglgn) time. The main contribution of that work is made
by bounding the number of "large" coefficients in the Fourier expansion of such a function by
O (///log log n). Then the algorithm of this paper is used to recover them.

In the work of [RB91] the same learning model was considered (i.e., using membership
queries and testing the hypothesis with respect to the uniform distribution). They show that
any polynomial over G F(2) with polynomial number of terms can be learned in polynomial
time in such a model. The class of polynomials with polynomial number of terms (considered
in [RB91]) and the class of boolean decision trees with linear operations (considered in our
work) are incomparable. On the one hand, the inner-product function has a small polynomial
but does not have a small decision tree. On the other hand, consider a boolean decision list
with log n nodes, where each node computes the sum of (n) variables. Representing such a
decision list by a polynomial may require f2 (nlgn) terms.

The power of polynomial size boolean decision trees with linear operations is also in-
comparable to AC circuits (which are the target of the learning algorithm of [LMN89]).
Such trees can compute parity, which cannot be approximated by ACO circuits (see [FSS84],
[Ajt83], [Yao85], [Has86]). We show that for boolean decision trees with linear operations the
L 1-norm is bounded by the number of nodes; therefore, computing a polynomial-size DNF
that has an exponential L 1-norm would require an exponential number of nodes (see [BS90]
for a construction of such a DNF).

The class .T" of boolean functions whose L 1-norm is polynomially bounded was also stud-
ied in [Bru90], [BS90], [SB91]. They showed that any such function f can be approximated
by a sparse polynomial of a certain form. Note, however, that their notion of approximation
is different than ours. Another type of approximation for boolean functions was recently
suggested in [ABFR91] (and then studied by others). In that work, boolean functions are
approximated by the sign of a low-degree polynomial over the integers.

1.2. Organization. The rest of this paper is organized as follows. Section 2 has the
definitions of Fourier transform, decision trees, and the learning model. Section 3 includes
the procedure that finds the approximating sparse function. In 4 we prove the properties of
functions with small L 1-norm. In 5 we prove the results about boolean decision trees with
linear operations. Finally, in 6 we discuss some extensions and mention some open problems.

2. Preliminaries. In this section we give the definition of Fourier transform and recall
some known properties of it (2.1). Then, we formally define the model of decision trees,
which is used in this work (2.2). We end by describing the membership-queries learning
model, which is used in this work (2.3).

1334 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

2.1. Fourier transform. Let f {0, 1}n be a real function. Denote by E[f]
the expected value of f(x) with respect to the uniform distribution on x, i.e., E[f]
2-7 _xtO, lln f(x). The set of all real functions on the cube Z is a 2n-dimensional real vector

space with an inner product defined by

< g’ f >= 2-- Z g(x)f(x)= E[gf].
x{0,1}

A
The norm of a function f is defined by [[fll2 /< f, f > E[f2]

Define a basis for the linear space of real functions on the cube Z, using the characters
of Z as follows: For each z 6 {0, }n, define the basis function Xz:

xn) [+1 if iziximd2=OXz(Xl
I -1 if -i zixi mod 2 1.

The following properties of these functions can be verified easily:
For every two vectors zl, z2 6 {0, 1}n: XzlXz2 Xz,.z2, where @ denotes bitwise
exclusive-or.
The family of functions {Xz z {0, }n} forms an orthonormal basis. That is, (1)
any function f(x) on the cube Z can be uniquely expressed as z f(Z)Xz(X), where
j?(z) are real constants; and (2) if zl - z2, then < Xz,, Xz > 0, and for every z,
< Xz, Xz >= l.

The Fourier transform of f is just the expansion of f as a linear combination of the Xz’S.
Since the Xz’S are an orthonormal basis, Fourier coefficients are found via

f(z) =< f, Xz >= E[fXz].

The orthonormality of the basis implies Parseval’s identity:

z6{0,1}

Note that if for every x 6 Z, If(x)l _< 1, then Ilfll2 _< and therefore for every z 6 {0, }",

f(z)l < 1. Finally, we define L l(f) as the L 1-norm of the coefficients of f, i.e., L l(f) =
2.2. Boolean decision trees. In this section we give a precise definition of the decision

tree model used in this work. This model is much stronger than the traditional decision tree
model.

A boolean decision tree T consists of a labeled binary tree. Each inner node v of the
tree is labeled by a set So n and has two outgoing edges. Every leaf of the tree is
labeled by either / or 1. (Throughout this paper a function is called boolean if its range is
{+1, -1}.)

Given an input, x (Xl Xn), the decision tree defines a computation. The compu-
tation traverses a path from the root to a leaf and assigns values to the nodes on the path in
the following way. The computation starts at the root of the tree T. When the computation
arrives at an inner node v, labeled by Sv, it assigns the node v the value Yisv xi mod 2, which
we denote by val(v). If val(v) 1, then the computation continues to the right son of v,
otherwise it continues to the left son. The computation terminates at a leaf u and outputs the
label of u (which is also the value of the leaD. The value of the tree on an input is the value
of the output of the computation.

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1335

Note that if, for example, Sl 1, then the meaning of the operation is testing the
value of a single variable which is the only permitted operation in the traditional decision tree
model. If, for example, Sl 2, then the meaning of the operation is testing whether the two
corresponding variables are equal, and if ISvl n, then in a single operation we have a test
for the parity of all variables. In the traditional decision tree model computing the parity of
all the variables requires 2n nodes.

2.3. Learning model. The learner in our model uses only membership queries. That
is, it can query the unknown function f on any input x 6 {0, }n and receive f(x). After
performing a finite number of membership queries, the learner outputs an hypothesis h. The

error of an hypothesis h, with respect to the function f, is defined to be error(f, h)
Prob[f(x) h(x)], where x is distributed uniformly over {0, }n.

A randomized algorithm A learns a class of functions U if for every f 6 U and e, 6 > 0
the algorithm outputs an hypothesis h A (f, e, 6) such that

Prob[error(f, h) >_ e] _< 6.

The algorithm A learns in polynomial time if its running time is polynomial in n, 1/e, and
log 1/6.

We also discuss deterministic learning algorithms. An algorithm A deterministically
learns a class of functions .T if for every f 6 - and e > 0 the algorithm outputs an hypothesis
h A(f, e) such that

error(f, h) _< e.

The algorithm A learns in deterministic polynomial time if its running time is polynomial in
n and 1/e. Note that in a deterministic algorithm we do not have a parameter 6. That is, the
algorithm always succeeds in finding a "good" hypothesis.

A (real) function g e-approximates f (in norm L2) if E[(f(x) g(x))2] _< e. In the case
that f is a boolean function, we can convert a real prediction function g to a boolean prediction
by predicting the sign of g. In such a case, if f(x) sign(g(x)) then If(x) g(x)[> 1,
which implies

Prob[f(x) - sign(g(x))] < E[(f(x)- g(x))2] _< e.

Thus, we have
CLAIM 2.1. Ifg e-approximates a booleanfunction f, then

Prob[f(x) : sign(g(x))] < e.

3. Approximation by sparse functions. In this section we show how to find an approx-
imation by a sparse function. The main result in this section is that if f can be t-approximated
by some polynomially sparse function g, then there is a randomized polynomial time proce-
dure that finds some function h that O(e)-approximates f. (A function g is t-sparse if it has
at most Fourier coefficients that are not 0.)

The first step is to show that if f can be approximated by a polynomially sparse function
g, it can be approximated by a polynomially sparse function that has only "large" coefficients.
We remark that we do not make a "direct" use of g (e.g., by approximating g instead of
approximating f) but only use its existence in the analysis.

LEMMA 3.1. Iff can be approximated by a t-sparsefunction g such that E[(f g)2 < e,
then there exists a t-sparsefunction h such that El(f-h)2] < e + O(e2/t) andall the nonzero
coefficients of h are at least et.

1336 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

Proof. Let g(x) _=l b(zi)Xzi (x). Note that the Fourier coefficients of the function

f g are exactly f(z) (z). Therefore, by Parseval’s equality,

E[(f- g)2] E(f(z)_ (z))2.

Thus, requiring that (zi) f(zi) can only reduce the expected error squared. Therefore,
without loss of generality, the nonzero coefficients of g are the coefficients of f, i.e., g(x)

YI=i (zi)Xzi (x). Let h be the function obtained from g by replacing the "small" coefficients
by 0. Namely,

h(x) E i(zi)Xzi (x).
f(zi)e/t

We now show that E[(f h)2] e + O(e2/t). Consider the expression,

E[(f- h)2] E[(f- g)2].

By the above arguments, this is equal to

(z)

Since E[(f g)2] < s, the lemma follows.

(f(zi)
f(zi)<s/t

f(zi)<s/t
f2(zi) < ()2t- e2/t.

The above lemma has reduced the problem of approximating f by a t-sparse function to
the problem of finding all the coefficients of f that are greater than a threshold of e/t. Note
that the function h defined above does not necessarily contain all the coefficients of f that are

greater than s/ t, but only those that appear also in g. However, adding these coefficients to h
will clearly make h a better approximation for f. In any case, the number of these coefficients,
as follows from Lemma 3.4, cannot be too high.

In the remainder of this section we show a randomized polynomial time procedure that

given a function f and a threshold 0 outputs (with prob. 3) all the coefficients for which
If(z)[> 0. The procedure runs in polynomial time in n, 1/0 and log 1/3. This procedure is
based on the ideas of [GL89], although the context is completely different.

Let f(x) Zz{0,1}. i(z)xz(x)" For every a 6 {0, 1}k, we define the function f,
{0, }n-k __+ 9 as follows:

f(x) A= Z f(afl)X(X).
,tT{O, 11"-

In other words, the function f(x) includes all the coefficients f(z) of f such that z
starts with oe (and all the other coefficients are 0). This immediately gives the key idea for
how to find the large coefficients of f: find (recursively) the large coefficients of J and
Note that during the learning process we can only query for the value of the target function

f in certain points. Therefore, we first have to show that f (x) can be efficiently computed
using such queries to f. Actually, we need not compute the exact value of f (x) but just
need to approximate it. The following lemma gives an equivalent formulation of f, which is
computationally much more appealing:

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1337

LEMMA 3.2. For anyfunction f, any < k < n, any ot {0, }k, and any x {0, }n-k,

f(x) Ey{O, lF[f(yx)xa(y)].

This formulation implies that even though we do not know how to compute the value of

f (x) we can approximate it, by approximating the above expectation.
Proof. Let f(yx) Yz f(z)Xz(yX). Note that if z ZlZ2, where z 6 {0, }k, then

Xz (yx) Xz (Y)Xz (x). Therefore,

f(ZlZ2)Xz(x)Ey[Xzl (Y)X(Y)],
Zl z2

where y and z denote strings in {0, }k and z2 denotes strings in {0, }n-k. By the oahonoal-
ity of the basis, (see 2.1) it follows that Ey[Xz (y)X (Y)] (which is the same as < Xz, X >)
equals 0 if z , and equals if z . Therefore, only the terms with z contributes
in the sum. Thus, the last term equals

fzxzX- L(x.
z2G{O, 1}n-k

Since both If(x)l and IX(Y)I we derive the following corollary on the value of
Lx).

COROLLARY 3.3. For any boolean function f, any k < n, any 6 {0, }k, and any
x G {0, 1}n-k,

If(x)l 1.

We showed how to decompose a function f into functions f, u 6 {0, }k, such that each
coefficient of f appears in a unique f. Recall that our aim is to find the coefficients f(z)
such that f(z)l o. The next lemma claims that this cannot hold for "too many" values of
z, and that the property E[f] 02 cannot hold for "many" (of length k) simultaneously.

LEMMA 3.4. Let f be a boolean function, and 0 > O. Then,
1. At most 1/02 values ofz satis If(z) 0.
2. For any k < n, at most 1/02 functions f with {0, }k satis E[f] 02.
Proof. By the assumption that f is a boolean function combined with Parseval’s equality,

we get

,.
z{0,1}

Therefore, (1) immediately follows. Similarly, using the definition of f,

{0,1}-
Thus, if I(a)l 0, for some {0, }-, then E[f] 02. By the above two equalities,
the following holds.

a{0,1}

Therefore, at most 1/02 functions f have E[y] 02, which completes the proof
of (2).

1338 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

The algorithm. By now the algorithm for finding the large coefficients of a function f
should be rather obvious. It is described by the recursive subroutine Coe f, which appears in
Fig. 1. We start the algorithm by calling Coef(,), where) is the empty string.

SUBROUTINE
IF E[f2l >_ 02 THEN

IF
ELSE Coef(ot0); Coef(otl);

FIG. 1. Subroutine Coe f_.

As mentioned earlier in this section, we know that each coefficient of f appears in exactly
one of f0 and fl, and also that if If(ot/3)l >_ 0, for some/3 6 {0, 1}n-k, then E[f2] > 02
(note that when Iotl n, then E[f2] fz(ot)). Therefore the correctness of the algorithm
follows; namely, the algorithm outputs all the required coefficients.

By Lemma 3.4, we also know that the number of ot’s for which E[f2] > 02 is bounded by
1/02, for each length of or. Thus, the total number of recursive calls is bounded by O(n/02).

Detailed analysis. We are still not done, since this algorithm assumes that we can com-
pute E[f2] exactly, something that is not achievable in polynomial time. On the other hand,
we can approximate E[f2] very accurately in polynomial time. Therefore we modify Subrou-
tine Coef: instead of testing whether E[f2] > 02 we approximate E[f] and test whether
the approximated value is greater than 02/2 (see Fig. 2).

SUBROUTINE Coe f (or)
B Approx(ot)/* B is approximating E[f2].*/
IF B > 02/2 THEN

IF lot[n THEN OUTPUT ot

ELSE Coef(ot0); Coef(otl);

FIG. 2. The modification ofsubroutine Coe f.

The approximation of E[f2] is such that with very high probability the error in the

approximation is small. That is, with high probability, every coefficient satisfying f(z)l _>
0 will be output, which guarantees the correctness condition of the algorithm.^ Also, this
approximation guarantees that with high probability, no coefficient satisfying [f(z)l < 0/2
will be output, which bounds (by Lem. 3.4) the number of coefficients the algorithm outputs
to at most 4/02. Moreover, it implies that for every k at most 4/02 strings ot 6 {0, }k of
length k will pass the test of the subroutine, which bounds the number of calls to the recursive
subroutine by O(n/02). What we are left with is to bound the computation required to

approximate E[f].
Let ml,m2 be parameters (to be fixed later). We approximate E[f2(x)] as shown in

Fig. 3.
The value ofB is the approximation to E[f2(x)]. We now need to find the "right" values

of ml and m2, such that B will be a "good" approximation to E[f2(x)]. That is, with high
probability, if E[f2] >_ 02 then B >_ 02/2 and if E[f2] <_ 02/4, then B < 02/2.

To prove that B is a "good" approximation of Ex[fZ(x)], we first prove that B would
be a "good" approximation of Ex [f2 (x)] if we compute it with the real values of f (xi). Then
we show that the Ai’s are "good" approximations for f(xi). Finally, we show that even if we

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1339

SUBROUTINE Approx (or)
Choose at random X {0, 1}n-k, for < < m l.
For each xi

Choose at random Yi,j {0, }k, for _< j _< m 2.
m2Let Ai Yj=I f(Yi,jxi)x(Yi,j).

/* Ai is approximating */
/* f(xi) Ey[f(yxi)xa(y)].*/

Let B j=l A/.
/* B is approximating Ex[f2(x)].*/

RETURN B.

FIG. 3. Approximation of E[f2 (x)].

compute B with the Ai’S (instead of fot(Xi) it is still a "good" approximation of Ex[f2(x)].
For the proof we use Chernoff bounds (see [HR89]):

LEMMA 3.5 (CHERNOFF). Let X1 Xm be independent, identically distributed random
variables, such that E[Xi] p and Sm Zi%I Si.

IfXi [0, 1], then

Prob [(1- e) p < Sm < (l + e) p] > 2e-e2mp/3

IfXi [-1, +1], then

Prob[iSm] 2e_Z2/2-p] >). <
m

Using this bound, we claim that by choosing at random m values x and computing the
average JZ(xi), we get a value that is very close to E[f2].

LEMMA 3.6. Let B f (xi), where xi {0, },-k, _< _< m l, are chosen
uniformly at random. Then,

Prob - E[f2 < B <_ - E{f2 >_ 2e-9 el/21

(andProof. Follows immediately from the first part of Lemma 3.5 with e p
E[f]). q

The next lemma claims that Ai is a "good" approximation for f(xi). It is based on the
identity of Lemma 3.2 (i.e., f(xi) Ey[f(yxi)x(y)]).

LEMMA 3.7. For any value ofxi,

Prob [IAi f(xi)l 02/16] < 2e-04m2/29.

Proof. The proof of Lemma 3.7 follows immediately from the second part of Lemma 3.5

with) 24-
16

[]

Intuitively, if we approximate each f (xi) well, the difference between B (which uses
the approximate values) and B’ (which uses the true values) should be small. The following
lemma formalizes this intuition.

02 202LEMMA 3.8. Iflf(xi) Ai[<_ N,for < < ml, then [Bc B[< -fff

1340 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

Proof. By Corollary 3.3 it follows that [f(xi)[1. By the definition of the Ai’s it
follows that IAi[< 1. Therefore,

(f2(Xi) Ai2)I If(xi) Ail If(xi) -t- Ailm
i=1

m
i=1

0 2 202

< .2=. V1
m 16 16

Using the above lemmas, we now fix the values of m and m2 so that B will be a "good"
approximation for E[f2].

n.mlLEMMA 3.9 Let m (R) (2 log a-) and m2 (R) (4 log a02 J. With probability
the procedure Cf outputs all the coecients z such that If(z)l 0, and does not output
any coecient z such that If(z)l 0/2.

Proof. As shown above we have O(n/O2) calls to the subroutine Cf (and the same
number of calls to the subroutine Aprx). To guarantee a total eor probability of 3 we
choose m and m2 so that the probability of eor in each of the calls is no more than 0.

n

Also recall that if z fl, for some 6 {0, 1}k and fl 6 {0, 1}-k, and if If(z)l 0, then
E[fl 02.

Consider an such that E[f] R 02. By Lemma 3.6, with probability at least
3 2 e-O4m2/292e-m1/48 the value of B a0 By Lemma 3.7, with probability 2ml all the

values of Ai (1 ml) satisfy If(xi) All 2/16. In this case, using Lemma 3.8,
102 02BN >T"

Consider an such that E[f] 02/4. Note that B is monotonic in E[f], and
therefore it is enough to consider the case E[fff] 02/4. By Lemma 3.6, with probability

2e-m’2/192, the value of B 02. By Lemma 3.7, with probability 2me-4m/29,
all the values of Ai (1 ml) satisfy If(xi) All 02/16. In this case, using Lemma

023.8, B 02 < T"
SO far we have shown that the algorithm performs the "right" recursive calls. This implies

that, with probability a, the number of recursive calls is at most 4n/02. It also implies
that all the required coefficients will be output. Now we need to show that in such a case
no coefficient z, such that If(z)l 0/2 is output. Note that the probability of outputting
such a coefficient is at least the probability that we made one "wrong" recursive call, and this
probability is bounded by a.

Once the procedure outputs the list of vectors, z ze, we can apprpximate each co-
efficient f(zi). Let the approximate value be Yi. (Since by definition, f(zi) E[fx,],
then Lemma 3.5 guantees that a "small" sample will give with a high probability a "good"
approximation for all these coefficients.) The prediction hypothesis is h (x) = FiXi (x).
To conclude, the algorithm has the following performance:

THEOREM 3.10. There is a randomized algorithm, thatfor any boolean function f, any
> O, and any 0 > 0 outputs a list ofvectors i {0, }n such that

with probability the list contains eery vector for which f()l 0 and
does not contain any vector for which If()l 0/2. (This implies that the list
may contain at most 4/02 vectors.)
the algorithm runs in time polynomial in n, 1/0, and log

To summarize, in this section we have shown that if f can be g-approximated by a t-sparse
function, then it is sufficient to find all its coefficients larger than g/t 0. Therefore we have
established the following theorem.

THEOREM 3.11. Let f be a boolean function such that there exists a t-sparse function
g that g-approximates f (in norm L). Then there exists a randomized algorithm that on

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1341

input f and 6 > 0 outputs afunction h such that with probability 6 the function h 0 (e)-
approximates, in norm L2, the input function f The algorithm runs in time polynomial in
n, t, 1/e, and log 1/6.

4. Functions with small L-norm. In this section we show that a function whose sum
of the absolute value of the coefficients is "small" has a "small" number of"large" coefficients
that "almost" determine the function. Therefore, in order to get a good approximation of the
function, it is sufficient to approximate those coefficients. Saying it differently, we show that
functions with "small" L 1-norm can be approximated by sparse functions.

Let f be a boolean function, and recall that L1 (f) = Y-z If(z) l. The following lemma
shows that it is sufficient to approximate a small number of the (large) coefficients of f.

LEMMA 4.1. Let e > O. Let S {z If(z)l > e/Ll(f)}, and let g(x)
YzeS f(z)Xz(X). Then

E[(f- g)2] < e.

Proof. By the definition of g, we have

(f g)(x) Z(f(z) (z))Xz(X) Z f(z)Xz(X).
zS

Therefore, using Parseval’s identity, we have

E[(f- g)2] Z fZ(z)"
zS

This is clearly bounded above by

z{O, 1} L(f)
Ll(f) e.

This implies that if we can find all the coefficients that are greater, in absolute value, than
e/L(f), we can approximate f. The procedure in the previous section gives a way to find
all such coefficients in time poly(n, L (f), 1/e, log 1/6). Note that in order to use subroutine
Coe f we need to know the value of L (f). If this is not the case, we can search for an upper
bound on it. This will add a multiplicative factor of O (log L (f)) to the time complexity. We
have established the following theorem.

THEOREM 4.2. There is a randomized algorithm, that for any boolean function f, and
e, 6 > O, outputs a function g such that Prob[E[(f- g)2] <_ e] >_ 6, and the algorithm
runs in time polynomial in n, L (f), 1/e, and log 1/6.

4.1. Derandomization. For functions with a "small" L 1-norm we can efficiently deran-
domize the algorithm. One drawback of the derandomization is that it requires that we have
a bound on the L 1-norm, since we cannot test hypotheses using randomization as before.
The main idea in the derandomization is the usage of)-bias distributions. The notion of a
)-bias distribution was first suggested by [NN90], and other constructions were given later by
[AGHP90]. One way to formalize the notion of)-bias is the following.

DEFINITION 4.1. Every distribution/z over {0, }n can be considered as a real function
lz(x) Yz I?Z(z)Xz(X). A distribution/z(x) is)-bias if for any z - 0, It2(z)l _<)2-n.

Note that the uniform distribution u(x) has (z) 0, for z (, and therefore it is
0-bias. Also for any distribution

/2(0) =< #, Xo >-- E[#]- Z/(x)

1342 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

One of the applications of)-bias distributions is to derandomize algorithms. The deran-
domization of an algorithm is done by showing that the output of the algorithm when its coin
tosses are chosen from a uniform distribution, and the output of the algorithm when its coin
tosses are chosen from a)-bias distribution are very similar. If this holds, then the determin-
istic algorithm is the following: (1) enumerate all the strings in the L-bias distribution, (2) for
each such string compute the value of the randomized algorithm, and (3) output the average
of the replies in step (2). To have an efficient derandomization we would like that the sample
space of the)-bias probability distribution would be enumerable "efficiently" (in particular,
it has to be "small").

THEOREM 4.3 ([NN90, AGHP90]). There are .-bias distributions whose sample
spaces are ofsize ()2 and are constructible in polynomial time.

Using the definition (and basic properties) of the Fourier transform we show the following
identity.

LEMMA 4.4. For anyfunction f and any distribution lz,

Ez[f] f(6) -+- 2n E (z)f(z).

Proof. By the definitions,

Clearly, if z z’ then Yx Xz(X)Xz’ (x) 2n, and if z z’ then .x Xz(x)xz’ (x)

x Xz.z’ (x) 0. Therefore the above sum equals

As/2(0) n, the lemma follows. [3

Our goal now is to show that the algorithm behaves "similarly" when its coin tosses are
chosen from the uniform distribution, u, or from a)-bias distribution, /z. We show it by
proving that the Ai’s and the B computed by Subroutine Appro are "similar." The main
tool for this is the following lemma.

LEMMA 4.5. Let f be any function, u be the uniform distribution, and lZ be a)-bias

distribution, then

[E[f]- Eu[f]l <_)Ll(f).

Proof. By definition, Eu[f] f((). From Lemma 4.4 we have

Eu[fl j(6) + 2 E z(z)f(z).

The definition of)-bias distributions ensures that I(z)l)/2n, therefore we get

IE[f]- Eu[f]l <_ [f((J)+ 2n Efi(z)f(z)- j((J)l _< 2n E -; Ij(z)[.L(f),
z#6 z#O

which completes the proof. 3
LEMMA 4.6. Let h(y) f(yx),forsomefixedx {0, 1}k. Then, Ll(h) < L(f).

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1343

Proof. The proof is by induction k; let k 1. Then h(y) f(yb), where b e {0, }.
One can verify easily that if b 0, then (z) f(zO) + f(zl), and if b 1, then (z)
f(zO) f(z 1). In both cases L (h) _< L (f).

The induction step follows from the fact that we can restrict the function bit after
bit.

This implies that we can compute the Ai’s (the inner loop of subroutine Appro) with
]<-bias distributions.

LEMMA 4.7. Let u be the uniform distribution, and IZ be a]<-bias distribution on {0, }k.
For anyfunction f, k < n, ot {0, 1}k, and x {0, 1}n-k,

[Eyu[f(yx)x(y)] Eyu[f(yx)x(y)][<]<Ll(f).

Proof. Let hx(y) L f(yx) and gx(y) = hx(Y)X(y). By Lemma 4.6 L(hx) <. Ll(f).
First, we show that L(gx) L(hx) by showing that they have the same set of coefficients:

(z) =< g, Xz >=< hx, Xz >=< h, XXz >=< hx, Xez >= h (or @ z).

This implies that L (g) _< L (f). By Lemma 4.5,

IE[gx] Eu[gx]l <_]<Ll(gx) <]<Ll(f).

We now show a few basic relations about the L 1-norm of the coefficients of a function,
so that we can show that L (f2) < L2 (f).

CLAIM 4.8. For anyfunction f and ot {0, }, k < n, then L (f) <_ L (f).
This is because f, by definition, includes only a subset of the coefficients of f. The

second claim establishes a relation between the L -norm of two functions and the L -norm of
their product.

CLAIM 4.9. For anyfunctions g and h, L (gh < L (g)L (h).
Proof. Note that

(To see the last transformation, take z3 to be Z () Z2. Therefore,

Ll(gh) Z(Zl)/](z3 (9 z)l < Z I(zl)ll/(z2)l- Ll(g)Ll(h).
Z3 Z1 Z1, Z2

We use the above two claims to bound L (f2).
CLAIM 4.10. For anyfunction f and ote {0, }, k <_ n, then,

L,(f) <_ L(f) <_ L(f).
This implies that we can compute B (the outer loop of subroutine Approx) using only

]<-bias distributions.
LEMMA 4.11. For anyfunction f, and {0, }k, k _< n,

[E.[f2] Eu[f2]l <_

Proof. Combine Lemma 4.5 with Claim 4.10. E]

Lemma 4.11 can be used to derandomize the outer loop by choosing]< e/LZl(f).
Lemma 4.7 can be used to derandomize the inner loop by choosing]< e/L(f). This
implies that we have established the following theorem.

THEOREM 4.12. There is a deterministic algorithm that receives as an input a boolean
function f, Ll(f), and e > O, and outputs a function g such that E[(f g)2] _< 8, and the
algorithm runs in time polynomial in n, L (f), and 1/e.

1344 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

5. Decision trees. We consider decision trees, whose input is n boolean variables, and
the branching in each node is based on a linear combination (over G F(2)) of a subset of the
variables (as described in 2.2). In this section we show that, for any function corresponding
to such a boolean decision tree, the sum of the absolute values of its coefficients (i.e., the
L 1-norm) is bounded by m, the number of nodes in the tree. This implies, using the result in
the previous section, that such decision trees can be approximated in polynomial time.

LEMMA 5.1. Let f be computed by a decision tree with m nodes, then L l(f) <_ m.

Proof. A nonredundant decision tree is a tree in which for every leaf there is some input
that ends up in that leaf. By the claim of the lemma, f has a decision tree with m nodes,
therefore there is a nonredundant decision tree TU with at most m nodes that computes f.
Denote by leaf(Tf) the set of leaves in the tree TU, and by d(v) the depth of node v. That
is, d(v) is the number of nodes on the path from the root to node v, not including v.

We claim that every node at depth d has exactly a 2-a fraction of the inputs reaching it.
The inputs that reach a node at depth d pass through d internal nodes; therefore, they satisfy
a set of d linear constraints over G F(2). Each such linear constraint is satisfied by exactly
1 of the inputs Since Tf is nonredundant, the linear constraints are linearly independent.2
Therefore, the fraction of the inputs that satisfy all the d constraints is 2-a.

By the definition of a decision tree each input reaches a unique leaf. Let I (v) be the set
of all the inputs that reach leaf v. Then for every z,

f(z) =< f Xz >= E[fXz]
v61eaf(Tf)

2-d(v) val (v) ExI(v)[Xz (X)].

In the following we show that IEx()[Xz(X)]l for exactly 2d(v) values of z, and zero
for the rest. This implies that each leaf can contribute at most one to the value of L (f).

Consider a leaf v. Any input x I(v) satisfies d(v) linear constraints, i.e.,

x (9 Yl bl
x (9 y2 b2

X (9 Yd(v) bd(v),

where (9 denotes the inner product of two n-bit vectors x, y 6 {0, 1}n, i.e., x (9 y

Yi xi Yi mod 2.
The argument has two parts, depending on whether or not z is a linear combination of

the yi’s. If z is a linear combination of the yi’s, then clearly the value of x (9 z is fixed, for
every x 6 I (v). Since the value of x (9 z is fixed, by definition, the value of Xz(X) is fixed to
either + or 1, hence IExei()[Xz(X)]l 1. Since the tree is nonredundant, there are exactly
2a() vectors that are a linear combination of the yi ’s. Note that we consider z 6 as a linear
combination of the yi’s.) On the other hand, if z # 0 is not a linear combination of the Yi’s
then the number of x 6 I(v) satisfying x (9 z 0 is the same as the number of x I(v)
satisfying x (9 z 1. Therefore, in this case Exez(v)[Xz(X)] 0. Combining the two claims,
we have that ,z IExi()[Xz]l 2a(v).

Intuitively, each leaf v contributes to at most 2(v) coefficients, and to each coefficient it
contributes 2-(v). This implies that leaf v contributes at most one to the sum of the absolute
value of all the coefficients. Therefore, L l(f) is bounded by the number of leaves, which is
at most m. The following calculations shows this formally:

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1345

ze{O,l}" ze{O,l}"

ze{0,1}, veleaf(Tf)

2-a(v) val(v)ExI(v)[Xz]

Combining Lemma 5.1 and Claim 2.1 with Theorem 4.12, we get the following theorem:
THFOP,FM 5.2. There is a polynomial time (deterministic) algorithm, thatfor any boolean

function f that can be represented by an m node decision tree with linear operations, andfor
any e > O, outputs afunction g such that

Prob[f - sign(g)] _< e,

and the algorithm runs in time polynomial in n, m, and 1/e.
We now show that the bound given in Lemma 5.1 is tight. Consider the inner product

function on inputs of n 2e variables:

f(Xl Xzg) (-- 1)x’xe+lm’"*xex2e U(- 1)xixe+i
i=1

Let hi(x1 x2e) (-1)xixe+i,for <_ < g.. Clearly, f- I-I=l hi. The Fourier transform
of hi is

hi(x) - -t- - XI(i) (X -Jl- - XI (i +g.) (X - XI (i,i +e) (x

where I(S) is the indicator vector of the set S, e.g., I({j}) is equal to the vector who has the

jth coordinate one and all the other coordinates zero. From the expansion of hi it is clear that
If(z)l 2-e, for any z, and therefore L l(f) 22e2-e 2e. We will show that there is a
decision tree with linear operations of size O(2e) that computes f.

The following is a description of the decision tree that computes f. The first g levels of
the decision tree form a complete binary tree. In each node of level (1 _< _< g) we test

xi @ xe+i. For every leaf v of the tree, let b’ b be the sequence of the replies to the
queries xi @ xe+i along the path from the root of the tree to v. Let, S, {ilb 0}. We
now test for the parity of all xi’s with E Sv. Let the value of the computation be the value
of the parity. The tree has only depth g + 2, and hence only O(2e) nodes. The reason that it
computes the inner product correctly is the following. If bi 1, then exactly one of xi, xe+i
is 0 and in particular xix+ O. This implies that the ith term in the inner product is zero,
and therefore we can ignore it. If b 0, then either both xi, xe+i are 0, or both xi, xe+i
are 1. In both cases, xixe+i xi. Therefore, instead of considering the value of the ith term

1346 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

(i.e., XiXg.+i), we can consider the variable xi. Therefore the parity of Sv is the parity of all the
relevant terms.

Exact reconstruction. We show that a boolean decision trees with linear operations can
be recovered exactly in time polynomial in n and 2d, where d is the depth of the tree.

It follows from the proof of Lemma 5.1 that all the coefficients of a tree of depth d can
be written as k/2d, where k is an integer in the range [-2d, +2d]. The idea is to first find a
good approximation of all the nonzero coefficients and then, using the above fact, to compute
them exactly.

By Theorem 4.12, we have a deterministic algorithm that for every function f and e > 0
outputs a function g such that

E(f(z) (z))2 E[(f- g)2l _< e

in time polynomial in n, L (f), and 1/e. In particular, it follows that If(z) (z)l _< v/d, for
)2every z. We use this algorithm, with e < (7 z which ensures that g satisfies If(z) ,(z) <

2 2, for every z. Since the real coefficient is of the form k/2d, where k is integer, the difference

between possible values that a coefficient can have is 1/2d" since the error is smaller than 7 z,
by rounding we find the exact coefficient.

This implies that we recovered all the Fourier coefficients of the function exactly. There-
fore, we found a function whose Fourier transform is identical to the tree’s Fourier transform,
this implies that the two functions are identical. By the choice of e and as L (f) < m < 2d+

the running time of the algorithm is polynomial in n and 2d. Thus, we have established the
following theorem,

THEOREM 5.3. There is a (deterministic) polynomial time algorithm, thatfor any boolean

function f that can be represented by a depth d decision tree with linear operations, outputs
afunction g such that

Vx Z g(x) f(x),

and the algorithm runs in time polynomial in n and 2.
An interesting special case is when the depth of the tree is logarithmic in n. In such a

case, the algorithm will run in polynomial time.

6. Extensions and open problems. The characterization of the decision trees can be
extended easily to boolean functions of the form f {0, k }n

__
{0, that can

be computed by a polynomial-size k-ary decision tree, namely, a tree in which each inner
node v has k outgoing edges. When the computation reaches the node v, labeled by Sv
{0, k 1}n, it assigns this node the value Ein__l Si "xi mod k, and the computation
continues to the appropriate child of v. For extending the results to such functions and
decision trees we have to define the appropriate characters and modify the proofs accordingly.
For each z {0, k 1}n, define the basis function Xz:

XZ (Xl’’’’’ Xn) L Wzl "xl l-’"’-Zn’Xn,
2rri

where to e-r is the root of unity of order k. In this case, a straightforward extension of our
proof for k 2 shows that the sum of the magnitudes of the coefficients is bounded by the
number of leaves.

Another issue is decision trees with real outputs, where the leaves have real values from
the interval [0, M], i.e., f {0, }n

_
[0, M]. In a similar way to the boolean case, one can

EYAL KUSHILEVITZ AND YISHAY MANSOUR 1347

show that any function f that has a real decision tree with rn leaves then L l(f) < rn M. In
this case the running time of the learning algorithm would be polynomial in M.

An open problem related to this work is to find other classes of functions that can be
learned in polynomial time. In particular, it is very interesting whether functions that can
be represented by a polynomial-size DNF formula can be learned in polynomial time. One
possible direction to resolve this open problem is to show that for any polynomial-size DNF
there is a polynomially sparse function that approximates it in L2. So far we have not found
any counter examples to this claim.

While our algorithm can be derandomized in the case of functions with polynomial L 1-

norm, it is an open problem to derandomize it in the more general case of functions that can
be approximated by polynomially sparse functions.

REFERENCES

[ABFR91]

[AGHP90]

[Ajt83]
[AM91]

[Ang87]

[Be192]

[BHO90]

[Bru90]

[BS90]

[Dia88]

[EH891

[FJS91]

[FSS84]

[GL89]

[Han90]
[Han91
[Has86]

[HR89]
[LMN89]

[Man92]

J. ASPNES, R. BEIGEL, M. FURST, AND S. RUDICH, The expressive power of voting polynomials, in
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 1991, pp.
402-409.

N. ALON, O. GOLDREICH, J. HASTAD, AND R. PERALTA, Simple constructions of almost k-wisw inde-
pendent random variables, in 31 st Annual Symposium on Foundations of Computer Science, St.
Louis, Missouri, October 1990, pp. 544-553.

M. AJTAI, I-formulae on finite structure, Ann. Pure and Appl. Logic, 24 (1983), pp. -48.
W. AIELLO AND M. MIHAIL, Learning thefourier spectrum ofprobabilistic lists and trees, in Proceedings

SODA 91, ACM, January 1991.
D. ANGLUIN, Learning regular setsfrom queries and counterexamples, Information and Computation,

75 (November 1987), pp. 87-106.
M. BELLARE, A techniquefor upper bounding the spectral norm with applications to learning, in 5th

Annual Workshop on Computational Learning Theory, July 1992, pp. 62-70.
Y. BRANDMAN, J. HENNESSY, AND A. ORLITSKY, A spectral lower bound technique for the size of

decision trees and two level circuits, IEEE Trans. on Computers, 39(2) (1990), pp. 282-287.
J. BRUCK, Harmonic analysis of polynomial threshold functions, SIAM J. Disc. Math., 3(2) (May

1990), pp. 168-177.
J. BRUCK AND R. SMOLENSKY, Polynomial threshold functions, ACO functions and spectral norms,

in 31st Annual Symposium on Foundations of Computer Science, St. Louis, October 1990, pp.
632-641.

P. DIACONS, The use ofGroup representation inprobability and statistics, in Lecture Notes Monograph
Series, Vol. II, 1988.

A. EHRENFEUCHT AND D. HAUSSLER, Learning decision trees from random examples, Inform. and
Comput., 82(3) (September 1989), pp. 231-246.

M. L. FURST, J. C. JACKSON, AND S. W. SMITH, Improved learning of ACO functions, in 4th Annual
Workshop on Computational Learning Theory, August 1991, pp. 317-325.

M. FURST, J. SAXE, AND M. SIPSER, Parity, circuits, and the polynomial time hierarchy, Math. Systems
Theory, 17 (1984), pp. 13-27.

O. GOLOREICH ANO L. LEVIN, A hard-core predicate for all one-way functions, in Proc. 21st ACM
Symposium on Theory of Computing, ACM, 1989, pp. 25-32.

T. HANCOCK, Identifying lz-decision trees with queries, in 3rd COLT, August 1990, pp. 23-37.
,Learning 2# DNF and klz decision trees, in 4th COLT, August 1991, pp. 199-209.
J. HASTAD, Computational Limitations for Small Depth Circuits, MIT Press, Massachusetts Institute

of Technology, Boston, 1986, Ph.D. thesis.
T. HAERUP ANO C. RuB, A guided tour to chernoffbounds, Info. Proc. Lett., 33 (1989), pp. 305-308.
N. LINEAL, Y. MANSOUR, AND N. NISAN, Constant depth circuits, fourier transform and learnability,

in 30th Annual Symposium on Foundations of Computer Science, Reserach Triangle Park, NC,
October 1989, pp. 574-579.

Y. MANSOUR, An o(nlglgn) learning algorihmfor DNF under the uniform distribution, in 5th Annual
Workshop on Computational Learning Theory, July 1992, pp. 53-61.

1348 LEARNING DECISION TREES USING THE FOURIER SPECTRUM

INN90]

[RB91]

[SB91]

[Va1841

[Yao85]

J. NAOR AtD M. NAOR, Small bias probability spaces: efficient construction and applications, in Pro-
ceedings of the 22nd Annual ACM Symposium on Theory of Computing, Baltimore, Maryland,
May 1990, pp. 213-223.

M. R. ROTH AND G. M. BENEDEK, Interpolation and approximation ofsparse multivariate polynomials
over GF(2), SIAM J. Comput., 20(2) (April 1991), pp. 291-314.

K. SuI AND J. BRUCI, On the power of threshold circuits with small weights, SIAM J. Disc. Math.,
4(3) (1991), pp. 423-435.

L. G. VALIArT, A theory of the learnable, Communications of the ACM, 27(11) (November 1984),
pp. 1134-1142.

A. C. YAO, Separating the polynomial-time hierarchy by oracles, in 26th Annual Symposium on

Foundations of Computer Science, Portland, OR, October 1985, pp. 1-10.

SIAM J. COMPUT.
Vol. 22, No. 6, p. 1349, December 1993

() 1993 Society for Industrial and Applied Mathematics
015

CORRECTION
PARALLEL MERGE SORT*

RICHARD COLEt
This note corrects an error in the CRCW PRAM sorting algorithm described in [Co188].

The error was discovered by Saxena, Bhatt, and Prasad [SBP93]. This algorithm relies on a
fast r-way merge, r a parameter, 2 < r _< n; in turn, this uses a fast CRCW algorithm for
adding a set ofr numbers of O(log r)-bits (the latter algorithm runs in O(log r log log r) time
while performing O(r) operations). Unfortunately, the merge, as described, actually seeks to
add sets of r (R) (log n)-bit numbers.

Below, we describe an alternative way of organizing the additions needed for the merge;
this alternative method performs additions and multiplications of pairs of numbers, and r-way
additions of O(log r)-bit numbers. Thus the bounds claimed in [Co188] do indeed hold.

This correction uses the terminology of the original paper. The following additional
information is stored" each item e in UP(u) stores its rank in each of the arrays OLDSUP(v),
where v is a child of u. (This information is available, for e determined its rank in UP(u) by
computing the sum of its ranks in the arrays OLDSUP(v).)

By means of a proof similar to the one used for Lemma 7, one can show that any k intervals
in SUP(v) contain at least kr items in NEWSUP(v). It follows that if item e has rank h in
OLDSUP(v), hr is a good estimate of its rank in SUP(v). In fact, this rank is at least hr 1
and at most (h + 1)r + (for e lies between the hth and the (h + 1)th items in OLDSUP(v)).

We turn to the algorithm. The algorithm is unchanged except as follows. Following the
creation of merging subproblems in the last paragraph on page 782 [Co188], each item e in
UP(u) knows its rank h’ in SUP(v). Let corr h’ hr. Then e can determine its rank in
NEWUP(u) by summing the corr terms for each child v of u and adding this sum to the product
of r and its current rank. But this only requires the addition of r numbers of O(log r)-bits
each, plus some constant time arithmetic operations.

Now, e’s rank can be used as an offset for the associated merging subproblem. Each item
in SUP(v) involved in the merge has rank in SUP(v) larger than that of e, but larger by at
most r + 1; call this the offset rank. In performing the merge, the offset ranks are treated as
ranks. Then the merge will require only the addition of r numbers of O(log r)-bits each. To
obtain the actual rank of an item in NEWUP(u), simply add e’s rank in NEWUP(u) to the rank
determined in the previous sentence.

The above two paragraphs show that the unduly expensive additions of r numbers used
in [Co188] can be modified to only require additions of r numbers of O(log r)-bits each, plus
constant time operations. Thus the bounds claimed in [Co188] do indeed hold.

[Co188]
[SBP93]

REFERENCES

R. COt.E, Parallel merge sort, SIAM J. Comput., 4 (1988), pp. 770-785.
S. SAXENA, P. C. P. BHATT, AND V. C. PRASAD, Time optimal parallel prefix algorithm, Unpublished

manuscript.

*Received by the editors April 2, 1993; accepted for publication April 12, 1993. The work was supported in part
by National Science Foundation grants CCR-8902221, CCR-8906949, and CCR-9202900.

Courant Institute, New York University, New York, New York 10012.

1349

	SMJCAT_V22_i1_p0001
	SMJCAT_V22_i1_p0011
	SMJCAT_V22_i1_p0029
	SMJCAT_V22_i1_p0046
	SMJCAT_V22_i1_p0057
	SMJCAT_V22_i1_p0062
	SMJCAT_V22_i1_p0072
	SMJCAT_V22_i1_p0079
	SMJCAT_V22_i1_p0102
	SMJCAT_V22_i1_p0114
	SMJCAT_V22_i1_p0136
	SMJCAT_V22_i1_p0147
	SMJCAT_V22_i1_p0157
	SMJCAT_V22_i1_p0175
	SMJCAT_V22_i1_p0203
	SMJCAT_V22_i1_p0211
	SMJCAT_V22_i2_p0221
	SMJCAT_V22_i2_p0243
	SMJCAT_V22_i2_p0261
	SMJCAT_V22_i2_p0272
	SMJCAT_V22_i2_p0284
	SMJCAT_V22_i2_p0294
	SMJCAT_V22_i2_p0303
	SMJCAT_V22_i2_p0318
	SMJCAT_V22_i2_p0332
	SMJCAT_V22_i2_p0349
	SMJCAT_V22_i2_p0356
	SMJCAT_V22_i2_p0379
	SMJCAT_V22_i2_p0395
	SMJCAT_V22_i2_p0403
	SMJCAT_V22_i2_p0418
	SMJCAT_V22_i3_p0431
	SMJCAT_V22_i3_p0460
	SMJCAT_V22_i3_p0482
	SMJCAT_V22_i3_p0500
	SMJCAT_V22_i3_p0527
	SMJCAT_V22_i3_p0552
	SMJCAT_V22_i3_p0560
	SMJCAT_V22_i3_p0573
	SMJCAT_V22_i3_p0587
	SMJCAT_V22_i3_p0617
	SMJCAT_V22_i3_p0627
	SMJCAT_V22_i3_p0650
	SMJCAT_V22_i4_p0661
	SMJCAT_V22_i4_p0684
	SMJCAT_V22_i4_p0695
	SMJCAT_V22_i4_p0705
	SMJCAT_V22_i4_p0727
	SMJCAT_V22_i4_p0751
	SMJCAT_V22_i4_p0778
	SMJCAT_V22_i4_p0794
	SMJCAT_V22_i4_p0807
	SMJCAT_V22_i4_p0838
	SMJCAT_V22_i4_p0857
	SMJCAT_V22_i4_p0875
	SMJCAT_V22_i5_p0889
	SMJCAT_V22_i5_p0913
	SMJCAT_V22_i5_p0935
	SMJCAT_V22_i5_p0949
	SMJCAT_V22_i5_p0976
	SMJCAT_V22_i5_p0994
	SMJCAT_V22_i5_p1006
	SMJCAT_V22_i5_p1035
	SMJCAT_V22_i5_p1053
	SMJCAT_V22_i5_p1075
	SMJCAT_V22_i5_p1087
	SMJCAT_V22_i6_p1117
	SMJCAT_V22_i6_p1142
	SMJCAT_V22_i6_p1163
	SMJCAT_V22_i6_p1176
	SMJCAT_V22_i6_p1199
	SMJCAT_V22_i6_p1218
	SMJCAT_V22_i6_p1227
	SMJCAT_V22_i6_p1251
	SMJCAT_V22_i6_p1257
	SMJCAT_V22_i6_p1276
	SMJCAT_V22_i6_p1286
	SMJCAT_V22_i6_p1303
	SMJCAT_V22_i6_p1319
	SMJCAT_V22_i6_p1331
	SMJCAT_V22_i6_p1349

